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ABSTRACT 
Discussion of the mathematical neuron basic cells 

employed in popular neural network architectures and 
algorithms are presented. From the fundamental Mc 
Culloch-Pitts model up to  the resultant model from 
Carpenter-Grossberg Neural Nets are discussed. We 
consider the viability of the implementation of these 
models in CMOS technology using transconductance 
and current-mode techniques. Simulations and exper- 
imental results from discrete and CMOS test-chips are 
presented. 

I. INTRODUCTION 
Artificial neural networks research was very active in the 

60's. In the last few years, a reviving interest in this field 
[ I ]  has rapidly grown. One of the main reasons of this reno- 
vated interest is the potential of hardware im lementations of 
these nets. Artificial neural networks (ANN87 mainly consist 
of basic cells (neurons) heavily interconnected through variable 
weighted links (synapses). The neuron outputs are typically 
weighted (via synapses) and injected (through dendrites) to 
the neuron inputs. The ANNs can be trained to implement dif- 
ferent tasks (i.e., classifiers, image, speech recognition). This 
training is usually accomplished by changin the weights (of 
the synapses) using strategic learning algoritfms. 

In this paper, we specifically deal with the most popular 
neuron models (without training) used in neural network archi- 
tectures and algorithms (NNA). The focus will be on hardware 
implementation of neuron models used in NNA, and in emula- 
tion of biological systems. 

In this highly interdisciplinary field of NN, authors have 
not agreed in selecting one unique neuron model for all ap- 
plications. Therefore, regarding hardware implementations we 
should also consider the implementations of the different neu- 
ron models. 

Two attractive circuit implementation techniques [2,3 : 
current-mode and transconductance-based will be consider eJ . 
In some convenient cases, some extra current to voltage (or 
vice versa) converters will be included in the implementations. 

11. NEURON MODELS 
We will discuss several common neuron models in this 

section. Mathematical descriptions and block diagram rep- 
resentations will be utilized. This approach is technology- 
independent. Non-oscillatory and oscillatory models are dis- 
cussed. 
Basic Neuron Cell 

One of the most conventional basic neuron cells 41 is 
shown in Fig. 1 .  The inputs x i k  and weights Wit  are re I ated 
to the h e a r  output by 

n 

Note that a threshold value might be introduced by making one 
of the inputs equal to one, and the corresponding weight equal to the 
threshold value. 

the nonlinear ouput yk is 

where in general fn(-)  is a limiting or threshold function. Sev- 
eral common limiting (also called activation) functions are shown 
in Fig. 2. The original McCulloch-Pitts neuron used only the 
binary (hard-limiting) function. Later development of learn- 
ing algorithms required having a differentiable limiting func- 
tion [1,13] such as Fig. 2 b and the sigmoid of Fig. 2 k ) .  

additional dynamics is next discussed. 
Basic Dynamic Neuron Cell 

This cell is often used in solving optimization problems. 
Hopfield [5,6] has used it and made it popular in his optimiza- 
tion network solutions. The mathematical description of the 
dynamic neuron cell is given by 

yk = f n ( s k )  ( 2 )  

One variation of the basic M cCulloch-Pitts neuron involvlng 

( 3 )  

where rink is an independent input signal and 1/Rk is the self- 
relaxation term which makes the output s k  zero for no input. 
w,k are the weights for the different inputs f ( S i ) ,  and fk) 
is a sigmoidal limiting function as shown in Fig. 2(c). T e 
corresponding block diagram of (3) is shown in Fig. 3. The 
summation term in (3) is sometimes split into two, to consider 
the excitatory and inhibitory inputs. This yields 

n E  sk n' 
dSk c k x  = l i n  - - Wikf(Si )  + wikf(si) ( 4 )  

i=l i= 1 

Note that the growth rate 
tion of Fig. 2(b) or 2(c) is not a 

The most general neural network topology is claimed by 
Grossberg [14]. According to this topology the differential 
equation describing the activity sk of each of the neuron cells 
in the system is given by: 

r n 1 
L Gl 

where Ik, Jk are the external inputs, Dik and Gik describe the 
weight of the interconnections between neurons, f i ( . )  and si( .)  
are nonlinear functions, A& is the self or forgetting term2, 
and the constants Bk, c k ,  uk and Fk are responsible for the 
shunting properties of this net that provide automatic gain 
control and total activity normalization [14]. 

Equation ( 5 )  can be rewritten in order to merge the posi- 
tive and negative terms as f o ~ ~ s  

& is related to the previous models by & = 1/RkCk. 

-242lSl.00 Q 1990 IEEE 



This equation can be represented schematically by the block 
diagram of Fig. 4. Most of the known neural network archi- 
tectures and algorithms can be considered as special cases of 
this net (note that we are not considering the learning mech- 
anism but only the short term memory STM). For example, 
the ART1 [15] and ART2 [16] STM equations correspond pre- 
cisely to  the block dia ram in Fig. 4; additive models such as 
the ones by Hopfield f5], Anderson [17], McCulloch-Pitts [4] 
or Ackley [18] are simply obtained by eliminating the shunting 
terms in Fig. 4., i.e., H k  = 1, LI; = 0; feedforward nets like 
the back propagation algorithm [19] are obtained by properly 
making zero some of the weights ztJ .  As mentioned before, 
different shapes can be used for the nonlinear function ft(S,). 

So far, we have discussed only what we call non-oscillatory 
neurnn models, where the output of the neuron v k  is a non- 
linear monotonic function of the internal potential s k .  Let us 
consider the other general case. 
Analog Neural Oscillator Cell 

For biological oscillatory neurons, the output is a firing 
sequence of pulses whose frequency is a nonlinear monotonic 
function of the internal potential. In this case, we have to  
substitute the function fk(.) in Fig. 4 by a voltage-controlled- 
oscillator (VCO) whose output frequency is controlled nonlin- 
early by S k ,  as shown in Fig. 5 .  

One of the closest models resembling biological neurons is 
the Hodgkin and Huxley model [7]. We discuss two simplified 
versions of the Hodgkin and HLxley model. First the hysteretic 
neural type oscillator cell [8-101 is presented. In this case the 
VCO of Fig. 5 is implemented according to  the block diagram 
of Fig. 6. The corresponding characterization of Fig. 6 is given 
by 

C k L  d X  = -- X k  - G  H H ( X k ) - S k  (7) d t  Rk 
where H ( X k )  describes the hysteresis nature of the model 

and Fk is the oscillation frequency of the signal V k .  Thus F k  
will have an oscillatory frequency dependent on S k .  Other 
alternatives to  feed SI, into the VCO instead of connecting it 
to the summing input, as shown in Fi . 6, are to either make 
Rk or H+ and H -  dependent on SI; [9f Also note that in this 
model for oscillating neurons all the signals VI to V, have equal 
amplitude but the oscillating frequencies are different. 

The next model presented is the FitzHugh-Nagumo, which 
is one of the most complex, with potential application in emu- 
lation of biological systems. This cell can be characterized by 
a second-order system of the following form: 

Where S k l  and S k Z  represent the summation and integration of 
inputs coming from other neurons and/or independent inputs, 
and f ( X k 2 )  was ori inally [11] suggested as a cubic polynomial. 
It has been shown f12] that f ( x k 2 )  can be approximated as a 
piecewise linear function as shown in Fig. 7(a). The block di- 
agram representing eqs. (9a) and (9b) is shown in Fig. 7. The 
solution of (9) yields a Van der Pol when the time constants 
associated with (9a) and (9b) are equal. 

111. NEURON MODEL IMPLEMENTATIONS: 
In order to  exploit the advantages and to avoid the draw- 

backs of VLSI CMOS integration we will consider two differ- 
ent approaches of implementation, the transconductance-mode 
and the current-mode. Both avoid the use of resistors and 
allow use of tunable synapses in the network. Also, we will 
not consider any shunting mechanism in our future discussion, 
therefore H i  = 1 and L ;  = 0 in Figs. 4 and 5 .  

A. Non-Oscillatory 
A. l .  Transconductance Mode: This mode allows a very simple 
implementation for the integration device of the neuron (see 
Fig. 3), namely a capacitor as shown in Fig. 8. The saturation 
of the output voltage is accomplished by a limiting device (a 
simple inverter), whose characteristic is also shown in Fig. 8. 
Observe that W i k  = G i k  can take any polarity [3]. 
A . & .  Current-Mode: The current-mode comparator [9] shown 
in Fig. 9 allows the implementation of the limiting function of 
Fig. 9b. This element is symbolically represented in Fig. 9c. 
The complete implementation of eq. (3) using this technique is 
given in Fig. 10. Note that the weights of the interconnections 
are determined by the (F) ratio of the synaptic transistors Mi. 
The resitance Rk that implements the self-term of eq. (3) can 
be made using an MOS transistor working in its triode region. 
Rk can also be assumed composed as the parallel combinaiton 
of the output resistors of the transistors. 
B. Oscillatory Neurons 
B. 1: Transconductance-Mode: The fundaments of this neural 
modeling that is based on a hysteretic element were presented 
elsewhere [9]. According to Fig. 5, the equation relating the 
input ( S k )  and output v k  of the VCO would be of the type 

d l i k  7 = - g l x k  - H(Xk) - g Z S k r  v k  = H(Xk) (10) 

where g l  and g2 are constants and H ( . )  is a hysteresis func- 
tion. The frequency is controlled by s k .  We denote the value 
of this frequency by F k  = f ( S k ) .  A slight modification of this 
circuit in order to  obtain a suitable CMOS implementation is 
shown in Fig. 11 [13]. Here g2 = 0 and S k  is fed into the VCO 
through 91, which is made to depend nonlinearly on s k .  This 
hysteretic model can be included in the more general model 
proposed by FitzHugh-Nagumo [ll], by noting that in reality 
a hysteretic element is a simplification of a second order sys- 
tem [20]. An OTA-C implementation of FitzHugh-Nagumo’s 
differential equation using nonlinear OTA-C techniques [3] has 
been presented elsewhere [21]. The set of differential equations 
is, according to Fig. 12, 

(11) 
g m l s k  + g m l x k  - g m 3 V k  = C l v k  

- g m Z V k  - f n ( - x k )  = C Z X k  

Where g n 2 1 ,  g m 2 ,  c1 and CZ are constants, x k  is an internal 
variable (same as X k l  in eq. (9)) of the VCO, V k  is the output 
(same as xk2 in eq. (9)) and fn(.) is an N-shaped nonlin- 
ear function as shown in Fig. 12 together with the OTA-C 
implement ation. 
D.2: Current-Mode: Based on the current-mode comparator 
of Fig. 4, it is very simple, to implement a current-mode hys- 
teretic element [22] as shown in Fig. 13. A complete hysteretic- 
type current mode VCO model for Fig. 5 is shown in Fig. 14. 
It is essentially composed by a hysteretic element and a non- 
linear transconductor, and it works under the same principle 
as the previous circuit of Fig. 11. 

Iv. EXPERIMENTAL AND SIMULATED RESULTS 
The circuit of Fig. 11 was fabricated in a 3pm CMOS 

process (MOSIS). Fig. 15 shows the switching of the output 
between the on (oscillations) and off (no oscillations) states 
depending on the input, S k ,  being above or below threshold. 

At this time we built a discrete prototype for the FitzHugh- 
Nagumo circuit of Fig. 12. We can observe in Fig. 16 how the 
input (lower trace) makes the VCO to change between the fir- 
ing state (on) and the non-firing (off) state. 

Only simulation results are available for the current-mode 
circuits of Fig. 13 and 14. In Fig. 17, we can see the hysteresis 
loop generated by the circuit of Fig. 13, and in Fig. 18, we 
can see the on-off operation of the circuit of Fig. 14. 

V. CONCLUSIONS 
-4 discussion of neuron models using mathematical de- 

scriptions and block diagrams which are suitable for CMOS 
integration was presented. Two approaches have been used to 
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address this problem: the transconductance and the current- 
mode. Both of these techniques are suitable for IC designs. 
Several experimental and simulated results of the prototypes 
for 3pm CMOS processes (MOSIS) were presented. 

f n  (*) 

Y k  Threshold 
Function 

x 2* 
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Fig. 2. Activation Functions: Binary, Hard-Limiting or 
Signum, (b) Threshold gic, (c) Signoidal 

Fig. 3. Dynamic Basic Neuron Cell Architecture 

Fig. 4. Block Diagram for General Non-Oscillatory Neuron 
Model 

I I 
T+ I 

Fig. 5. Block Diagram for General Oscillatory Neuron Model 

r-+ 

II 

Fig. 6. Hysteretic Neural Oscillator Cell 
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(b) 

Fig. 7. Fitzhugh-Nagumo Neuron; (a) Nonlinear Function 
- f ( X s k ) ,  (b) Block Diagram or Neuron 

Fig. 8. OTA-C Implementation of Non-Oscillatory Neural 
Network 

( 8 )  (b) ( c l  

Fig. 9. Current-Mode Comparator; (a) Circuit, (b) Transfer 
Function, (c) Symbol 

Fig. 10. Current-Mode Implementation of Nonoscillatory 
Neural Network 

Fig. 11. OTA-C CMOS Implementation of Oscillatory Neuron 

Fig. 12. OTA-C Implementation of Oscillatory FitzHugh- 
Nagumo Neuron 

I 

vss 

Fig. 13. Current-Mode Hysteresis Element 

Fig. 14. Current-Mode Oscillatory Neuron 
em, * m m  !sm. 

/ ' " " " ' ~  

Fig. 

Fig 

15. Experimental Results for CMOS OTA-C Hysteretic 
Neuron 

16. Experimental Results for OTA-C Fitzhugh-Nagumo 
Neuron 

Fig. 17. Simulated Current-Mode Hystersis Comparator 

Fig. 18. Simulated Results for Current-Mode Oscillatory Neu- 
ron 
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