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a b s t r a c t 

In this paper we consider a trip covering location model in a mixed planar-network space. An embed- 

ded network in the plane represents an alternative transportation system in which traveling is faster

than traveling within the plane. We assume that the demand to be covered is given by a set of origin- 

destination pairs in the plane, with some traffic between them. An origin-destination pair is covered by

two facility points on the network (or transfer points), if the travel time from the origin to destination

by using the network through such points is not higher than a given acceptance level related to the travel

time without using the network. The facility location problems studied in this work consist of locating

one or two transfer points on the network such that, under several objective functions, the traffic through

the network is maximized. Due to the continuous nature of these problems, a general approach is pro- 

posed for discretizing them. Since the non-convexity of the distance function on cyclic networks also

implies the absence of convexity of the mixed distance function, such an approach is based on a decom- 

position process which leads to a collection of subproblems whose solution set can be found by adapting

the general strategy to each problem considered.
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Given a real or virtual underlying network, the genera

network design problem consists of two intertwined problem

( Contreras & Fernández, 2012 ): to select from the network a

number of points for siting facilities, and to interconnect these

points by choosing 

links of the underlying network. In our problem we have a net

work embedded in the plane and a set of demand points in the

plane. The demand or traffic between demand points is given by

an OD-matrix (Origin-Destination matrix) which is assumed to be

static, and it is satisfied by traveling from one to the other poin

of each pair. We want to select points on the network to access

exit to/from it. These facility points are used to transfer from the

plane to the embedded given network, thus allowing the
connection of the pairs of demand points by using the network. A 

subproblem of the general network design problem arises in the 

design of a railway network ( Laporte & Mesa, 2015; Laporte, 

Mesa, & Ortega, 20 0 0)  that consists in locating a number of 

stations and the tracks to connect the station-facilities. 

d  

a  

m  

R  

o  
The problem of locating stations in a railway network was in-

irectly tackled in Vuchic and Newell (1968) , in which the optimal

nterstation spacing problem in a commuter line was researched.

he objective of this problem is to minimize the total time of pas-

engers going to a city center along a railway line. A commuter

ine competing with a freeway was considered in Vuchic (1969) in

rder to maximize the number of passengers on the basis of short-

st travel times. The aim was also to determine the optimal inter-

tation space between pairs of adjacent stations. Apart from the

apers ( Laporte, Mesa, & Ortega, 2002; Laporte, Mesa, Ortega, &

evillano, 2005; Repolho, Antunes, & Church, 2013 ) in which the

easible solution space for locating stations was discrete and the

bjectives were to maximize the passenger coverage, trip cover-

ge and savings in travel cost, respectively, several objective func-

ions have been considered in those models in which stations can

e located along the edges of the railway network: saving in pas-

enger travel time ( Hamacher, Liebers, Schöbel, Wagner, & Wag-

er, 2001 ), coverage/number of new stations ( Schöbel, 2005 ), ad-

itional travel time ( Schöbel, Hamacher, Liebers, & Wagner, 2009 ),

nd total travel time ( Carrizosa, Harbering, & Schöbel, 2016 ). The

aximal covering location problem was introduced in Church and

eVelle (1974) in which a number of facilities are to be located

n a network so that the population within a service distance is
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α  
aximized. In Murawski and Church (2009) time to access the fa-

ilities is improved by upgrading edges of the transportation net-

ork. The objective function consists in maximizing the number

f people who are covered by upgrading some parts of the net-

ork. In order to locate interchanges points in a highway network

 cost-benefit objective function is considered in Repolho, Church,

nd Antunes (2010) that takes into account a route choice model. 

In the problem dealt with in this paper, there are existing de-

and points in the Euclidean plane whereas new facilities are to

e located in a network. Instead of covering facilities the objec-

ive aims at covering trips between each pair of existing facilities.

hese trips can be done either by using the plane with the Eu-

lidean distance or by a plane-network combination in which the

ection on the network is supposed to be traversed faster than

hose on the plane. Therefore, there is competition between the

ode that only uses the planar distance and the combined one. If

he time spent by the trip in the combined mode is lower than

hat of the planar mode then the OD-pair is said to be covered

y the transfer points used to access/exit the network. Each pair

f existing facilities has an associated demand and the objective is

o maximize the number of trips for which the combined mode is

referable to the planar one. 

In this paper we assume the decision space is the set of points

n the edges of the network. The nature of the decision space

hen locating new transfer points in long and medium distance

ailway networks as well as in underground urban/suburban rapid

ransit systems is continuous. As was pointed out in Laporte, Mesa,

nd Perea (2014) 30% of the stations of the Spanish high-speed

etwork are situated outside cities in the countryside, thus al-

owing a continuous decision space. Furthermore, the continuous

etting of the decision space allows the use of continuous opti-

ization methods thus providing insight into the behavior of the

bjective function and the problem itself. Moreover, new devel-

pment areas, congestion or environmental and energy consump-

ion are reasons for constructing new stations. An example is the

se of a section of the railway line Seville-Huelva as a new com-

uter line (Line 5) for the metropolitan area of Seville ( Laporte

t al., 2014 ). For this line new stations were built, some of them

etween towns. Another example is the construction of a new sta-

ion in the high-speed line Madrid-Seville between Córdoba and

uertollano stations. The new station: Villanueva de Córdoba-Los

edroches covers an area of the north of the province of Córdoba. 

Since the traveling demand is given by pairs of existing points it

s coherent to consider the location of pairs of transfer points act-

ng as access/exit points on the network. Under the assumption of

 network with a set of existing node-stations, there are two prob-

ems particularly relevant from an applied point of view, which

eal with locating one, or two, transfer points in order to maxi-

ize the amount of OD-pairs additionally covered, that is, those

D-pairs which cannot be covered by the existing stations. In the

rst problem only one transfer point is located since this point in

ombination with each station works as an access/exit point. In

he second problem, which seeks to locate two transfer points, the

dditional coverage refers the OD-pairs covered either by the two

ransfer points or by a combination of each point with some sta-

ion, but not yet covered by pairs of vertices. Both problems also

xclude the OD-pairs previously covered by the existing stations.

oreover, the second problem presents a more general formula-

ion of the model, in the way that it incorporates the additional

overage provided both by the two points and by each point sepa-

ately. 

For solving these additional covering problems, this paper pro-

oses a methodology which is based on considering a key problem,

hose solution procedure provides a general approach which can

e adapted to the remaining problems. This key problem does not

equire any hypothesis on the network (it is possible that there
s no already located station), since it seeks to locate two trans-

er points maximizing the amount of OD-pairs covered. The rele-

ance of this problem derives from it allowing the development of

 theoretical framework which is shared by the above one or two

ransfer additional covering problems, as well as by other related

roblems. 

Summarizing, the main contribution of this paper is, in the first

lace, to propose a comprehensive approach for solving several

roblems dealing with locating transfer points on cyclic transporta-

ion networks under several objective functions, all of them fo-

used on covering OD-pairs instead of single demand points. More-

ver, the proposed approach to solve the problem of maximizing

he coverage obtained by 2-transfer points is used for the more

eal problems of locating one or two transfer points so that the

dditional coverage (in presence of already functioning stations)

ill be maximized. The problems studied deal with a continuous

odel, whose analysis enlarges the knowledge on both the geo-

etric structure of the problems and the behavior and properties

f the objective functions. On the other hand, such an approach de-

cribes a flexible methodology which, by incorporating slight mod-

fications, allows to discretize the solution set of all problems con-

idered. 

In a previous paper ( Körner, Mesa, Perea, Schöbel, & Scholz,

014 ) the key problem was solved when the new facilities are to

e located in segments and tree networks. In this paper we extend

he approach applied in Körner et al. (2014) to the case of general

etworks by taking into account the loss of convexity of the dis-

ance function between pairs of points through the network. The

ain aim of this research is to solve that complex continuous lo-

ation problem by reducing the candidate set to a finite one from

hich an optimal solution is selected by means of a polynomial

ime algorithm. 

The paper is organized as follows: after this introduction the

lements of the model are presented in Section 2 . The necessary

efinitions and results on the distance on networks are summa-

ized in Section 3 . Section 4 provides a decomposition of the first

roblem into two types of subproblems, such that for each sub-

roblem a solution method is proposed in Sections 5 . Sections 6

nd 7 study respectively two new problems, both related to the

revious one, in which one and two transfer points are located un-

er different objective functions, and Section 8 is devoted to pre-

enting the corresponding algorithms and discussing its computa-

ional complexity. The paper ends with some conclusions and fur-

her research. 

. Elements of the model

In order to formulate the problems with a mixed mode of trans-

ortation, we consider a connected network N (V, E) representing a

igh-speed system, with | V | nodes and | E | edges (where | ·| denotes

ardinality). We assume that the network is embedded in the Eu-

lidean plane and that each undirected edge e ∈ E can be modeled

s a straight-line segment. The embedding of N in the Euclidean

lane as well as the coordinates of the nodes in N will allow us

o compute the distances along the network. More precisely, the

ength l(u, v ) of an edge (or a subedge) [ u, v ] is the Euclidean dis-

ance || u − v || between its endpoints, and by using shortest path

lgorithms we can moreover compute the distance between each

air of nodes. Moreover, the triangle inequality holds in this model.

Let N be the continuum set of points of the edges. The edge

engths induce a distance function d such that, for any two points

, y ∈ N , d ( x , y ) is the length of any shortest path in N (V, E) con-

ecting x and y . If x and y are on the same edge, then d ( x , y ) coin-

ides with the length of the subedge [ x , y ]. 

For x, y ∈ N , the travel distance between both points is given by

d ( x , y ), with α ∈ (0, 1). Parameter α is a speed factor, such that
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Fig. 1. Travel paths for: h + 
i j 
(X 1 , X 2 ) (left), and h −

i j 
(X 1 , X 2 ) (right).
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Fig. 2. Given the nonnegative acceptance levels ̂ d i j < || A i − A j || , ̂ d ik < || A i − A k || , ̂ d jk < || A j − A k || , and a suitable speed factor α ∈ (0, 1), we have ( i , j ), ( i , k ) ∈ 
C ( X 1 , X 2 ). However ( j , k ) �∈ C ( X 1 , X 2 ). The objective value at ( X 1 , X 2 ) is: F (X 1 , X 2 ) = 

t i j + t ji + t ik + t ki . There may be several points ( X 1 , X 2 ) with the same objective 

value.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

αd ( x , y ) represents the traveling time between x , y by using the

high-speed network. It can immediately be seen that, with these

distance, N is a metric space. 

• Let A = { A i = (a i , b i ) , i = 1 , . . . , n } ⊂ IR 

2 be a set of existing de-

mand points on the plane. We assume that distances between

two points in the plane can be estimated by the Euclidean met-

ric.
• Let T = (t i j ) ∈ IR 

n ×n be an origin-destination matrix in which

trip patterns are codified, i.e., t ij is the weight of the ordered

pair ( i , j ). This matrix is known a priori: for example, in a trans-

portation context each t ij can be viewed as the number of trips

from an origin A i to a destination A j , and in a telecommunica-

tion setting it could represent the amount of data transferred

from server A i to server A j .
• Given an OD-pair ( i , j ), the travel distance by using the network

through the points X 1 , X 2 ∈ N (or the 2-facility point ( X 1 , X 2 ))

is obtained from the two possible travel paths: ( A i , X 1 , X 2 , A j ),

and ( A i , X 2 , X 1 , A j ), linking origin and destination (see Fig. 1 ).

For each of them, the travel distance is given by

h+ 
i j
(X 1 , X 2 ) = || A i − X 1 || + αd(X 1 , X 2 ) + || X 2 − A j ||

h−
i j
(X 1 , X 2 ) = || A i − X 2 || + αd(X 2 , X 1 ) + || X 1 − A j || .

The mixed travel distance between A i and A j by using the high-

speed network through the transfer points X 1 , X 2 ∈ N is given

by the shortest travel distance obtained from both travel paths,

and it is written as:

f i j (X 1 , X 2 ) = min { h+ 
i j 
(X1 , X2 ), h−

i j 
(X 1 , X 2 ) } .

Symmetry of such paths implies h + 
i j 
(X 1 , X 2 ) = h −

ji 
(X 1 , X 2 ) ,

h−
i j 
(X1 , X2 ) = h+ 

ji 
(X 1 , X 2 ) , and therefore f i j (X 1 , X 2 ) = f ji (X 1 , X 2 ) . 

• Let ̂ D = ( ̂  d i j ) ∈ IR 

n ×n be a symmetric matrix, with 0 ≤ ̂ d i j <

|| A i − A j || , for i � = j , and 

̂ d ii = 0 , i = 1 , . . . , n . The values of D̂

represent the acceptance levels for using the network, meaning

that the OD-pair ( i , j ) chooses the high-speed network if and

only if the mixed travel distance by using it is less than or equal

to ̂ d i j . In other words, the OD-pairs always choose the faster op-

tion. In the following, we assume that i � = j to avoid the trivial

case.

Definition 1. The OD-pair ( i , j ) is covered by X 1 , X 2 ∈ N if

f i j (X 1 , X 2 ) ≤ ̂ d i j .

Let C ( X 1 , X 2 ) be the set of O/D pairs covered by X 1 , X 2 , given

by 

(X 1 , X 2 ) = { (i, j) , i � = j, 1 ≤ i, j ≤ n : f i j (X 1 , X 2 ) ≤ ̂ d i j } .
From symmetry both of the acceptance level matrix ̂ D and the

mixed travel distance we have 

(i, j) ∈ C(X 1 , X 2 ) if and only if ( j, i ) ∈ C(X 1 , X 2 ) . 

As it has been pointed out in the previous section, in the first

place we formulate the key problem, which presents structural

properties shared by the remaining problems, and whose solution

procedure provides a general methodology for analyzing and solv-

ing the one and two additional covering problems, which are for-

mulated subsequently. 
1. The first objective function measures the total weight of OD-

pairs captured by each pair of transfer points X 1 , X 2 ∈ N , and

it is given by:

F (X 1 , X 2 ) = 

∑ 

(i, j) ∈ C(X 1 ,X 2 ) 

t i j . 

In this function whether the node set V contains already lo-

cated stations or not is not relevant, since it seeks to com-

pute the weight of pairs covered by the two transfer points

when they assume the symmetric role of access/exit points

(see Fig. 2 ). 

The key problem, briefly the 2-transfer covering problem (2-

TC), is to find two transfer points X 1 , X 2 ∈ N such that the

sum of weights of all OD-pairs covered by such points is

maximized: 

max 
X 1 ,X 2 ∈N 

F (X 1 , X 2 ) := 

∑ 

(i, j) ∈ C(X 1 ,X 2 ) 

t i j (2-TC)

2. Contrary to the above model, this problem and the follow-

ing one deal with additional coverage, and they require the

hypothesis of having a set of stations already located, these

latter ones selected from the node set.

Without loss of generality we can assume that all nodes of

V are already located transfer points. From Definition 1 , the

OD-pair ( i , j ) is covered by any X ∈ N if there exists v ∈ V

such that f i j (X, v ) ≤ ̂ d i j . Thus, the set C ( X ) containing the

OD-pairs covered by X is

C(X ) = { (i, j) , i � = j, 1 ≤ i, j ≤ n : f i j (X, v ) ≤ ̂ d i j

for some v ∈ V }
Similarly, the set C V of OD-pairs already covered by the

nodes of V is given by 

C V = { (i, j) , i � = j, 1 ≤ i, j ≤ n : f i j (w, v ) ≤ ̂ d i j

for some w, v ∈ V }
Thus, the second objective function can be stated as 

F V (X ) := 

∑ 

(i, j) ∈ C(X ) \ C V 
t i j 

And the 1-transfer additional covering problem (1-TAC) is: 

max 
X∈N

F V (X ) := 

∑ 

(i, j) ∈ C(X )

t i j (1-TAC)

Finally, in this case two transfer points ( X 1 , X 2 ) are lo-

cated by addressing the additional coverage. As above, we

assume that all nodes are stations, and also the set C V is ex-

cluded. The objective function integrates the above formu-

lations since it takes into account both the amount of OD-

pairs covered by ( X 1 , X 2 ) and the OD-pairs covered by each

point in combination with the stations already located at
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nodes, as follows: 

F A (X 1 , X 2 ) := 

∑ 

(i, j) ∈ 
(

C(X 1 ,X 2 ) ∪ C(X 1 ) ∪ C(X 2 ) 

)
\ C V 

t i j 

The 2-transfer additional covering problem (2-TAC), seeks

the location of two transfer points maximizing the total

weight of OD-pairs additionally covered: 

max 
X 1 ,X 2 ∈N 

F A (X 1 , X 2 ) := 

∑ 

(i, j) ∈ 
(

C(X 1 ,X 2 ) ∪ C(X 1 ) ∪ C(X 2 ) 

)
\ C V 

t i j 

(2-TAC) 

emark 2. Each pair of associated problems obtained by excluding,

r not, C V from the corresponding formulation are equivalent, but

ot the same, in the following way: they share the same solution

et (which is a straightforward consequence from the fact that C V 
s a constant set), although their optimal solutions could be differ-

nt. That is, (2-TC) and max X 1 ,X 2 ∈N F (X 1 , X 2 ) := 

∑ 

(i, j) ∈ C(X 1 ,X 2 ) \ C V t i j

re equivalent, and so on. 

Although problems (1-TAC) and (2-TAC) present special rele-

ance regarding the applications, the procedure for solving prob-

em (2-TC) provides a general methodology which can be applied

o all problems presented in this paper. In fact, the nature of such

 methodology allows the resolution to be extended to some gen-

ralizations of these problems, as the p -transfer additional cover-

ng problem ( p > 2). This motivates that problem (2-TC) is studied

n the first place. The strategy for solving this problem lies in de-

omposing it into a collection of subproblems such that, for each

f them, a partition of the feasible solution set is constructed, and

rom such partition, a finite subset containing some optimal solu-

ion is selected. 

Problem (2-TC) has been first solved for the particular case

here N is a segment of a straight line, and subsequently the

ethod was extended to the case where N is a tree network T 
see Körner et al., 2014 ). Thus, henceforth we will consider that N 

ontains at least one cycle. Under this assumption, the approach

pplied to the tree network case cannot be directly extended to

his case due to the absence of convexity of the distance function

n a cyclic network. 

In order to solve this problem, we next summarize some con-

epts and results on distances in networks. 

. Previous results on distances on networks

For evaluating the objective function of problem (2-TC) , it is

rst necessary to obtain an analytical expression for the distance

etween any two points P , Q , of the network N . The aforemen-

ioned non-convexity leads to the fact that the expression for the

istance d ( P , Q ) could vary through the network. In this section

e partition the network into a collection of subedges such that

or each pair of subedges, the distance between their points can

e computed. To this end, we first need to review some concepts

ealing with the distance on networks. 

Hereinafter we assume a network N with a distance function

 ( ·, ·) such that the triangle inequality holds. Let e = [ u, w ] ∈ E be

n edge of N with length l e , and let P be a point on edge e . Let x =
(u, P ) denote the length of subedge [ u , P ], and let l(w, P ) = l e − x

enote the length of subedge [ P, w ] . It is well known that for any

ode v ∈ V, the distance d(v , P ) = min { d(v , u ) + x, d(v , w ) + l e − x }
s concave and piecewise linear on x ∈ [0, l e ], with at most two

ieces with slopes 1 and −1 . From the triangle inequality we

ave l e = d(u, w ) ≤ | d(v , u ) − d(v , w ) | , therefore the distance func-

ion d(v , P ) on [ u, w ] is linear. For the sake of completeness we in-

lude the following concepts and definitions, although all of them
an be found in Hooker, Garfinkel, and Chen. (1991) and references

herein. 

efinition 3. Given a point Q ∈ N and an edge [ u, w ] , the point

 ∈ [ u, w ] at which d ( Q , P ) is maximized is called antipodal to Q in

 u, w ] . 

efinition 4. A point v̄ ∈ [ u, w ] , other than a node, is called an arc

ottleneck point if there is a node v for which v̄ is antipodal to v .
n this case, we call it the arc bottleneck point v̄ . 

Clearly, the edge e = [ u, w ] contains at most | V | arc bottleneck

oints. If v̄ ∈ [ u, w ] is antipodal to v we have d(v , u ) + l(u, ̄v ) =
(v , w ) + l(w, ̄v ) , hence such a point v̄ can be identified by the

ength of the subedge [ u, ̄v ] , given by: l(u, ̄v ) = 

d (v ,w ) −d (v ,u )+ l e 
2 .

efinition 5. Let B e be the set of arc bottleneck points of edge

 = [ u, w ] , and let v̄ , v̄ ′ be two adjacent points of B e ∪ { u, w } . Then

he closed subedge L = [ ̄v , ̄v ′ ] is called a linear arc segment (or a

reelike segment ( Hooker et al., 1991 )). 

We remark that B e has O (| V |) elements. On each linear arc

egment the distance d(v , ·) is linear. If B e = ∅ the entire edge

 = [ u, w ] (including nodes) is a linear arc segment. The set of all

inear arc segments of an edge e is denoted by L (e ) . 

Let [ u p , w p ] and [ u q , w q ] be two edges of the network N ,

nd let [ ̄w p , ū p ] ⊆ [ u q , w q ] , [ ̄w q , ū q ] ⊆ [ u p , w p ] be the subedges for

hich the extreme points are antipodal points as follows: ū p , w̄ p 

re the antipodal points to u p , w p , respectively, and ū q , w̄ q are the

ntipodal points to u q , w q , respectively (see Fig. 3 ). From previous

efinitions we have l( ̄w q , ū q ) = l( ̄w p , ū p ) and d( ̄w q , w̄ p ) = d( ̄u q , ū p )

see Hooker et al., 1991 for a more detailed explanation). 

efinition 6. Let L p , L q be two linear arc segments of different

dges [ u p , w p ] and [ u q , w q ] , respectively, and let [ ̄w q , ū q ] ⊆ [ u p , w p ]

nd [ ̄w p , ū p ] ⊆ [ u q , w q ] be the subedges for which ū p , w̄ p are the

ntipodal points to u p , w p , respectively, and ū q , w̄ q are the antipo-

al points to u q , w q , respectively. If L p ⊆ [ ̄w q , ū q ] and L q ⊆ [ ̄w p , ū p ] ,

hen L p , L q are called antipodal segments to each other. 

(This definition includes the case [ ̄w q , ū q ] = [ u p , w p ] and

 ̄w p , ū p ] = [ u q , w q ] ). The following result summarizes the behavior

f distance d ( P , Q ) on linear arc segments of different edges (see

ooker et al., 1991 ). 

emma 7. Let P be restricted to linear arc segment L p of edge

 u p , w p ] and Q to linear arc segment L q of edge [ u q , w q ] , with

 u p , w p ] � = [ u q , w q ] . 

1. If L p , L q are antipodal segments to each other, d ( P , Q ) is con-

cave.

2. Otherwise, d ( P , Q ) is linear.

In case 1, the distance between a point P on the segment

 ̄w q , ū q ] and a point Q on the segment [ ̄w p , ū p ] behaves like the

istance on the parallelogram in Fig. 3 (a), and it is concave. Dis-

ance on any other pair of segments behaves like distance on a

ine segment and is therefore linear. 
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Fig. 4. Network with V = { v i , i = 1 , . . . , 4 } , and linear arc segments L p , p = 1 , . . . , 8 . 
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By denoting x = l(u p , P ) , with x ∈ [0 , l(u p , w p )] and y = l(u q , Q ) ,

with y ∈ [0 , l(u q , w q )] , we can compute the distance d ( P , Q ) for the

cases considered in this lemma. 

d(P, Q ) = 

⎧ ⎪ ⎪⎪⎪⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

min { x + d(u p , u q ) + y, l(u p , w p ) − x + d(w p , w q )
+ l(u q , w q ) − y } , L p , L q antipodal

x + d (u p , u q ) + y, L p ⊆ [ u p , w̄ q ] , L q ⊆ [ u q , w̄ p ] 
or L q ⊆ [ ̄w p , ū p ] 

x + d (u p , w q ) + l(u q , w q ) − y, L p ⊆ [ u p , w̄ q ] , 
L q ⊆ [ ̄u p , w q ] . 

Note that if L p , L q are antipodal segments, with u p � = w̄ q , ū q � = w p

and similarly u q � = w̄ p , ū p � = w q , then the distance d ( P , Q ) can also

be computed by min { x + d(u p , w q ) + l(u q , w q ) − y, l(u p , w p ) − x +
d(w p , u q ) + y } . Finally, the remaining cases obtained by combin-

ing L p , L q can be reduced to one of these by symmetry (for exam-

ple, for the case L p ⊆ [ u p , w̄ q ] , L q ⊆ [ ̄u p , w q ] the distance can also

be equivalently obtained as l(u p , w p ) − x + d(w p , u q ) + y ). 

We now comment the case in which P , Q lie on the same edge

e = [ u, w ] . Let L p , L q be two linear arc segments of e such that P ∈
L p , Q ∈ L q . The triangle inequality implies that L p and L q are not

antipodal to each other, consequently the distance d ( P , Q ) is either

convex (if L p = L q ), or linear (if L p � = L q ), and it is given by the

length of subedge [ P , Q ]. By using the above notation x = l(u, P )

and y = l(u, Q ) , we have d(P, Q ) = | x − y | . 

4. Decomposing the 2-transfer covering problem

Summarizing the previous section, for each pair of linear arc

segments the distance d ( P , Q ) between their respective points is

either concave or convex, and its analytical expression can be com-

puted. For this reason, the solution method is based on decompos-

ing problem (2-TC) into a collection of independent subproblems

(where each subproblem is the restriction of (2-TC) to a given pair

of linear arc segments), and solving each of them via discretiza-

tion of the solution set. To this end and for the sake of readability,

we will describe the process in three phases: the first one is de-

voted to both decomposing the problem (2-TC) and grouping the

subproblems into two cases: the concave and the convex case. The

second phase deals with the subproblems of the first case, and fi-

nally in the last step we will study the subproblems of the second.

These two cases will be described as follows. 

To decompose the problem we first compute, in O (| V || E |) time,

the distance matrix between all pairs of nodes of the network.

Then, for each edge e ∈ E we obtain, and sort, the set B e (in

O (| V |log | V |) time). At the end of this process we have, for each

edge e of the network, the ordered sequence L (e ) of all linear

arc segments of the edge. Besides, given a pair of different edges

e p = [ u p , w p ] and e q = [ u q , w q ] we know whether or not two linear

arc segments L p ∈ L (e p ) and L q ∈ L (e q ) are antipodal. 

Let L = 

⋃ 

e ∈ E L (e ) be the set of all linear arc segments of the

overall network. Thus problem (2-TC) is decomposed into a set of

subproblems, where each of them is obtained by restricting the

feasible space N × N to L p × L q , with L p , L q ∈ L . By imposing that

X 1 ∈ L p , X 2 ∈ L q we obtain the restricted problem: 

max 
X 1 ∈ L p , X 2 ∈ L q 

F (X 1 , X 2 ) := 

∑ 

(i, j) ∈ C(X 1 ,X 2 ) 

t i j (2-TCR)

A solution to problem (2-TC) is found by solving the collec-

tion of all O (|L| 2 ) restricted problems (2-TCR) (in fact, |L| (|L|−1) 
2

restricted problems by symmetry), and then selecting the best so-

lution. 

The classification of the restricted problem (2-TCR) is made ac-

cording to the concavity of the distance d ( X 1 , X 2 ), which is related

to the antipodal character of L p , L q . More specifically, problem (2-

CR) is concave if the following condition holds: 
[
L p ∈ L (e p ) , L q ∈ L (e q ) , with e p � = e q , and L p , L q are antipodal to

ach other. 

For the remaining cases, the problem (2-TCR) is classified as

onvex. 

. A procedure for discretizing the restricted problem (2-TCR)

This section is devoted to studying the restricted problem

2-TCR) for a given pair L p , L q ∈ L . Henceforth, we write ( X 1 , X 2 )

 L p × L q instead of X 1 ∈ L p , X 2 ∈ L q . 

The strategy for solving (2-TCR) is based on identifying a Fi-

ite Dominating Set (FDS), that is, a finite set of points �⊂ L p ×
L q containing an optimal solution. From this set, (2-TCR) becomes

he problem max (X 1 ,X 2 ) ∈ � F (X 1 , X 2 ) . In order to describe the pro-

edure for finding �, the concave and convex cases are analyzed

eparately. 

.1. The concave case 

This problem can be formulated from (2-TCR) by adding the as-

umption “L p , L q are antipodal to each other”, and it will be iden-

ified as (2-TCR) (1). 

Each linear arc segment is a rectifiable subedge in which all dis-

ance functions d(v i , P ) are linear. On the other hand, we have: 

1. For each A i ∈ A , the Euclidean distance || A i − X|| is con-

vex when X varies in any linear arc segment. In effect, this

result follows straightforwardly from convexity theory (see

Rockafeller, 1970 ), since if f is a convex function in an open

set U then the restriction of f to any interval (i.e., straight

line segment) inside U is convex.

2. When ( X 1 , X 2 ) ∈ L p × L q , with L p , L q antipodal to each other,

the distance αd ( X 1 , X 2 ) is concave ( Lemma 7 ), where α ∈ (0,

1) is the speed factor.

Therefore both the function h + 
i j 
(X 1 , X 2 ) and h−

i j 
(X 1 , X 2 ) are not

onvex on L p × L q . 

To illustrate some concepts and properties associated with this

ase, we will use the network with trapezoidal shape shown in

ig. 4 . The lengths of the basis edges of the trapezoid are 7 and

, respectively, and the nodes { v i , i = 1 , . . . , 4 } are indicated in the

figure with their corresponding coordinates. Likewise, each v̄ i rep-

esents the arc bottleneck point opposite to v i , i = 1 , . . . , 4 . This

gure also shows the partition of the network originated by the

et of linear arc segments L = { L p , p = 1 , . . . , 8 } . In this case, L 2 =
 ̄v , ̄v ] and L = [ v , v ] are antipodal to each other. 
3 4 6 4 3 



Fig. 5. Surface h + 
i j 
(X 1 , X 2 ) for α = 0 . 3 (left), and sets H + 

i j 
(η) of such a surface (right).
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In order to find an FDS for the problem, in the following we in-

roduce the necessary definitions on the sublevel sets, from which

he FDS is constructed. 

.1.1. Characterizing the sublevel sets 

When ( X 1 , X 2 ) ∈ L p × L q , and { L p , L q } are antipodal to each

ther, the distance d ( X 1 , X 2 ) is a concave function obtained from

he lower envelope of two linear functions: d a ( X 1 , X 2 ) and d b ( X 1 ,

 2 ). That is, d(X 1 , X 2 ) = min { d a (X 1 , X 2 ) , d b (X 1 , X 2 ) } , where this ex-

ression is obtained from Lemma 7 by replacing P and Q by X 1 and

 2 , respectively. More specifically, if x = l(u p , X 1 ) and y = l(u q , X 2 ) ,

e have 

 a (X 1 , X 2 ) = x + d(u p , u q ) + y, and d b (X 1 , X 2 ) 

= l(u p , w p ) − x + d(w p , w q ) + l(u q , w q ) − y. 

f there is no confusion we will identify X 1 with x and X 2 with y .

herefore, the travel distance h + 
i j 
(X 1 , X 2 ) of travel path ( A i , X 1 , X 2 ,

 j ) can be expressed as 

 

+ 
i j 
(X 1 , X 2 ) = || A i −X 1 || + α min { d a (X 1 , X 2 ) , d b (X 1 , X 2 ) } + || X 2 −A j ||

nd consequently, 

 

+ 
i j 
(X 1 , X 2 ) = min { g + ,a 

i j 
(X 1 , X 2 ) , g + ,b 

i j 
(X 1 , X 2 ) } ,

here 

 

+ ,a 
i j 

(X 1 , X 2 ) = || A i − X 1 || + α d a (X 1 , X 2 ) + || X 2 − A j ||
 

+ ,b 
i j 

(X 1 , X 2 ) = || A i − X 1 || + α d b (X 1 , X 2 ) + || X 2 − A j || .
ince d(X 2 , X 1 ) = d(X 1 , X 2 ) , in a similar manner we can define the

ravel distance h −
i j 
(X 1 , X 2 ) of travel path ( A i , X 2 , X 1 , A j ): 

 

−
i j 
(X 1 , X 2 ) = min { g −,a 

i j 
(X 1 , X 2 ) , g −,b 

i j 
(X 1 , X 2 ) } ,

ith g −,t 
i j

(X 1 , X 2 ) = || A i − X 2 || + α d t (X 1 , X 2 ) + || X 1 − A j || , for t ∈ { a ,

 }. 

For example, when X 1 ∈ L 6 , X 2 ∈ L 2 , Fig. 5 (left) shows the

unction h + 
i j 
(X 1 , X 2 ) on the network of Fig. 4 for α = 0 . 3 , A i (2.5, 6),

 j (1 , −4) . Note the pagoda roof -shape of the surface. 

efinition 8 (Sublevel Sets) . Let { L p , L q } be two linear arc seg-

ents antipodal to each other such that ( X 1 , X 2 ) ∈ L p × L q . For

≥ 0, let us consider: 
1. The ( η)-sublevel set H 

+ 
i j 
(η) of function h + 

i j 
(X 1 , X 2 ) , given

by:

H 

+ 
i j 
(η) = { (X 1 , X 2 ) ∈ L p × L q : h 

+ 
i j 
(X 1 , X 2 ) ≤ η} .

Analogously, H 

−
i j 
(η) = { (X 1 , X 2 ) ∈ L p × L q : h 

−
i j 
(X 1 , X 2 ) ≤ η} .

2. For t ∈ { a , b }, the ( η)-sublevel sets G 

+ ,t 
i j 

(η) and G 

−,t 
i j

(η) ,

of functions g + ,t 
i j 

(X 1 , X 2 ) and g −,t 
i j 

(X 1 , X 2 ) , respectively, given

by: 

G 

+ ,t 
i j 

(η) = { (X 1 , X 2 ) ∈ L p × L q : g + ,t 
i j 

(X 1 , X 2 ) ≤ η}
G 

−,t 
i j 

(η) = { (X 1 , X 2 ) ∈ L p × L q : g −,t 
i j 

(X 1 , X 2 ) ≤ η} .
For several η-values, Fig. 5 (right) displays the corresponding

ublevel sets H 

+ 
i j 
(η) of the surface represented on the left-hand

ide of the figure. 

For t ∈ { a , b }, the function g + ,t 
i j 

(X 1 , X 2 ) is the sum of the convex

erm || A i − X 1 || 2 + || A j − X 2 || 2 and the linear function α d t ( X 1 , X 2 ).

imilarly, g −,t 
i j 

(X 2 , X 1 ) is also the sum of a convex and a linear term.

herefore, the convexity of the sets G 

+ ,t 
i j

(η) and G 

−,t 
i j

(η) , for t ∈
 a , b }, is a straightforward consequence (see Boyd & Vanderberghe,

004 ). 

From these definitions, and taking into account that if h =
in { f, g} , the level set of h is the union of the level sets of f and

 , we have: 

emma 9. H 

+ 
i j 
(η) = G 

+ ,a 
i j 

(η) ∪ G 

+ ,b 
i j 

(η) , and H 

−
i j 
(η) = G 

−,a 
i j

(η) ∪
 

−,b 
i j

(η) 

Consequently, both H 

+ 
i j 
(η) and H 

−
i j 
(η) are the union of two con-

ex (but possibility not disjoint) sets. The following example shows

hat G 

+ ,a 
i j

(η) ∩ G 

+ ,b 
i j 

(η) � = ∅ , for some η-values, with η < || A i − A j || .
In Fig. 4 , we have || A i − A j || =

√ 

409 
2 � 10 . 11 . Fig. 6 (a) displays,

or α = 0 . 4 and η = 10 , the boundaries of the sublevel sets G 

+ ,a 
i j 

(η)

nd G 

+ ,b 
i j

(η) . It can be observed that the intersection of both sets

s not empty. 

roposition 10. For any 0 ≤ η < || A i − A j || , H+ 
i j 
(η) ∩ H 

−
i j 
(η) = ∅ ,

.e., if there exists a path from A i to A j with length shorter than the

uclidean (planar) travel distance, then the order in which X 1 and X 2

re passed is uniquely determined.



a b c

Fig. 6. (a): For ̂ d i j = 10 , curves G 
+ ,a 
i j , G 

+ ,b 
i j , and set Q 

+ (i, j) = G 
+ ,a 
i j ∩ G + ,b i j . (b): Set P((i, j) , (k, r)) , for ̂ d kr = 10 . 5 . (c): Vertex (X ′ 1 , X ′ 2 ) in the boundary of a region R .

 

 

 

 

 

 

 

 

 

 

w  

s  

w  

i  

f  

s  

a

 

b  

h

G

a

G  

m

H

S

C

 

l  

f

L  

P  

f

P

T

P  

l

H

C  

s  

fi  

p

Proof. Let 0 < η < ‖ A i − A j ‖ and assume H 

+ 
i j 
(η) ∩ H 

−
i j 
(η) � = ∅ . Then

there exists ( X 1 , X 2 ) such that 

‖ A i − X 1 ‖ + αd(X 1 , X 2 ) + ‖ A j − X 2 ‖ ≤ η

‖ A i − X 2 ‖ + αd(X 1 , X 2 ) + ‖ A j − X 1 ‖ ≤ η.

Summing up and using that d ( X 1 , X 2 ) ≥ 0 we obtain that

‖ A i − X 1 ‖ + ‖ A j − X 1 ‖ + ‖ A i − X 2 ‖ + ‖ A j − X 2 ‖ ≤ 2 η.

Due to the triangle inequality, we have that ‖ A i − A j ‖ ≤ ‖ A i −
X k ‖ + ‖ A j − X k ‖ for k = 1 , 2 . This gives us

2 ‖ A i −A j ‖ ≤ ‖ A i −X 1 ‖ + ‖ A j − X 1 ‖ + ‖ A i − X 2 ‖ + ‖ A j − X 2 ‖ ≤ 2 η,

a contradiction to the assumption that η < ‖ A i − A j ‖ . �

Let { L p , L q } be antipodal to each other. For a given point ( X 1 , X 2 )

∈ L p × L q , the objective value F (X 1 , X 2 ) = 

∑ 

(i, j) ∈ C(X 1 ,X 2 ) 
t i j quanti-

fies the amount of weights of OD-pairs captured by such a point.

Taking into account Definition 1 , let H ij be the set of points which

cover the OD-pair ( i , j ), given by 

H i j = { (X 1 , X 2 ) ∈ L p × L q : f i j (X 1 , X 2 ) ≤ ̂ d i j } .
The following result follows directly from the definition 

Corollary 11. ( X 1 , X 2 ) ∈ H ij if and only if ( i , j ) ∈ C ( X 1 , X 2 ) . 

In order to obtain H ij from the above defined sublevel sets, we

replace the η-values by the specific acceptance level ̂ d i j associated

with each OD-pair ( i , j ). 

Remark 12 (Notation) . Given an acceptance level 0 ≤ ̂ d i j < || A i −
A j || 2 , for t ∈ { a , b } let us denote G 

+ ,t 
i j 

( ̂  d i j ) and G 

−,t 
i j 

( ̂  d i j ) by G 

+ ,t
i j 

and G 

−,t 
i j

, respectively. This abbreviated notation is also applied to

the sets H 

+ 
i j 
( ̂  d i j ) and H 

−
i j 
( ̂  d i j ) , which will be identified by H 

+ 
i j 

and

H 

−
i j

, respectively. 

Corollary 13. For each OD-pair ( i , j ), H i j = H+ 
i j

∪ H 

−
i j

= G 

+ ,a 
i j

∪ G 

+ ,b 
i j

∪
G 

−,a 
i j

∪ G 

−,b 
i j

. 

Proof. Since f i j (X 1 , X 2 ) = min { h+ 
i j 
(X 1 , X 2 ) , h

−
i j 
(X 1 , X 2 ) } = f ji (X 1 , X 2 ) ,

the result follows from Lemma 9 . �

5.1.2. Identifying a finite dominating set 

We now briefly comment on the role of H ij in the construc-

tion of a Finite Dominating Set (FDS). Recall that C(X 1 , X 2 ) =
{ (i, j) , . . . , (k, r) } is the set of OD-pairs covered by ( X 1 , X 2 ).

Corollary 11 implies that (X 1 , X 2 ) ∈ H i j ∩ . . . ∩ H kr . For this reason,
e next analyze the intersections of these sets, since such inter-

ections will provide the points to be incorporated in the FDS, as

e will see in the following. In fact, due to the absence of convex-

ty of both H 

+ 
i j

and H 

−
i j

, we will focus the effort on selecting points

rom the boundaries of all these sets (as well as from their inter-

ections), in order to guarantee that the selected points belong to

ll sets involved in the intersection. 

Henceforth we will use the notation G (or H ), to identify the

oundary or level curve of a set G (or H ). That is, for t ∈ { a , b }, we

ave 

 

+ ,t
i j = { (X 1 , X 2 ) ∈ L p × L q : g + ,t 

i j 
(X 1 , X 2 ) = 

̂ d i j }
H 

+ 
i j = { (X 1 , X 2 ) ∈ L p , L q : h+ 

i j 
(X 1 , X 2 ) = 

̂ d i j } ,
nd analogously for G 

−,t

i j and H 

−
i j . Clearly, for τ ∈ { + , −} , H 

τ
i j ⊆

 

τ,a 

i j ∪ G 

τ,b 

i j , and H 

τ
i j = G 

τ,a

i j ∪ G 

τ,b 

i j if the set G 

τ,a 
i j 

∩ G 

τ,b 
i j

contains at

ost one point. Likewise 

 i j = { (X 1 , X 2 ) ∈ L p × L q : f i j (X 1 , X 2 ) = 

̂ d i j } .
ince from Proposition 10 , H 

+ 
i j

∩ H 

−
i j

= ∅ , we trivially conclude 

orollary 14. H i j = H 

+ 
i j ∪ H 

−
i j . 

As we have already seen, in order to construct the FDS of prob-

em (2-TCR) (1), we will successively select several feasible points

rom these level curves and their intersections. 

emma 15. Given two different OD-pairs ( i , j ), ( k , r ), let

((i, j) , (k, r)) ⊂ L p × L q be the set of intersection points defined as

ollows: 

((i, j) , (k, r)) = 

⋃ 

{
( G 

τ,t

i j ∩ G 

τ ′ ,t ′ 
kr ) , τ, τ ′ ∈ { + , −} , t, t ′ ∈ { a, b}

}
.

hen, H i j ∩ H kr ⊆ P((i, j) , (k, r)) . 

roof. H i j = H 

+ 
i j ∪ H 

−
i j ⊆ ( G 

+ ,a 
i j ∪ G 

+ ,b 
i j ) ∪ ( G 

−,a 

i j ∪ G 

−,b

i j ) , and a simi-

ar inclusion can be obtained for H kr . Therefore we can write 

 i j ∩ H kr ⊆
(

G 

+ ,a 
i j ∪ G 

+ ,b
i j ∪ G 

−,a

i j ∪ G 

−,b

i j 

)
⋂ 

(
G 

+ ,a 
kr ∪ G 

+ ,b
kr ∪ G 

−,a

kr ∪ G 

−,b

kr 

)
.

learly, P((i, j) , (k, r)) is the right-hand side of this expression

ince P((i, j) , (k, r)) is obtained by intersecting each set of the

rst group with each set of the second group. This concludes the

roof. �
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efinition 16. For each OD-pair ( i , j ), let Q (i, j) = Q 

+ (i, j) ∪
 

−(i, j) be a set of feasible points of H i j = H 

+ 
i j ∪ H 

−
i j , where for

ach τ ∈ { + , −} : 

 

τ (i, j) = 

⎧⎪ ⎪ ⎪ ⎪⎨⎪⎪⎪⎪⎩
G 

τ,a 

i j ∩ G 

τ,b 

i j , if this intersection contains at least 

one feasible point. 

{ X 

a , X 

b } , otherwise, where the points X 

a and 

X 

b are arbitrarily selected from 

G 

τ,a 

i j , G 

τ,b

i j , respectively. 

learly Q 

τ (i, j) ⊂ H 

τ
i j , for τ ∈ { + , −} .

Fig. 6 (a) and (b) shows some of these sets. 

Fig. 6 is based on the network of Fig. 4 , with α = 0 . 4 . We have

onsidered the points A i (2.5, 6), A j (1 , −4) , A k (−2 , −4 . 5) and A r (3,

.5). For ̂ d i j = 10 and d̂ kr = 10 . 5 , Fig. 6 (a) shows the curves G 

+ ,a
i j

nd G 

+ ,b 
i j , as well as the corresponding set Q (i, j) = G 

+ ,a 
i j ∩ G 

+ ,b
i j

ontaining two intersection points (in this case H 

−
i j

= ∅ ). Likewise,

ig. 6 (b) displays the set of intersection points P((i, j) , (k, r)) con-

aining three points. In this figure only a branch of the curve G 

−,a

kr

s inside the feasible domain. 

heorem 17. For the concave restricted problem (2-TCR) (1), let Q and

be the sets defined as follows 

 = 

⋃ 

(i, j)

Q (i, j) , P = 

⋃ 

(i, j) � =(k,r)

P((i, j) , (k, r)) 

hen, for any arbitrary point X 

pq ∈ L p × L q , the set � = Q ∪ P ∪ { X pq }
s an FDS for the problem (2-TCR) (1) 

roof. Let G = 

⋃ 

(i, j) { G 

τ,t 

i j , τ ∈ { + , −} , t ∈ { a, b}} ⊂ L p × L q be the

ollection of all level curves of the restricted problem (2-TCR) (1).

rom both Definition 8 and subsequent results, the collection G in-

uces a partition � of the feasible domain L p × L q into a set of

egions { R s , s ∈ I } (where I is an index set), such that both F ( X 1 ,

 2 ) and C ( X 1 , X 2 ) are constant in the interior points of each region

see Fig. 6 (c)). The possible changes in the objective function may

nly occur at the points on the boundary of each region. There-

ore an FDS for problem (2-TCR) (1) can be constructed by selecting

oints from the set of boundaries { R s , s ∈ I} .
Given a region R ∈ �, we analyze the cases R = L p × L q and

 ⊂ L p × L q . 

1. If R = L p × L q , then G = ∅ . Hence, F ( X 1 , X 2 ), C ( X 1 , X 2 ) are

constant, for all ( X 1 , X 2 ) ∈ L p × L q . Equivalently, any point

X pq = (X 1 , X 2 ) ∈ L p × L q is optimal.

2. Otherwise, R ⊂ L p × L q , and its boundary R contains a set

of edges: pieces of level curves, and possibly some vertex

which is a point shared by (at least) two different level

curves ( Fig. 6 (c)). All points of an edge obtained from the

level curve G 

τ,t 

i j ∈ G cover the OD-pair ( i , j ). Therefore, given

a set of edges incident to a vertex, such a vertex covers

all OD-pairs associated with these edges. In other words: if

(X ′ 1 , X 
′ 
2 ) is a vertex, then F (X ′ 1 , X 

′ 
2 ) ≥ F (X 1 , X 2 ) , for any point

( X 1 , X 2 ) of each edge incident to (X ′ 1 , X 
′ 
2 ) . From this argu-

ment, all vertices of the partition � are selected to be in-

corporated to the FDS. Additionally, if there is some R s with

none vertex, then R s contains a single level curve, in which

case an arbitrary point of such a curve is also added to the

FDS. 

In the following we prove that the FDS thus constructed is

the set �. In effect, a vertex (X ′ 
1 
, X ′ 

2 
) of R is the intersection

point of (at least) two level curves, and these curves can be

obtained either from a single OD-pair ( i , j ) or from (at least)

two OD-pairs ( i , j ), ( k , r ). 
(a) In the first case, Lemma 9 and Proposition 10 imply

that (X ′ 1 , X 
′ 
2 ) ∈ G 

τ,a

i j ∩ G 

τ,b 

i j . From Definition 16 , this in-

tersection is the set Q 

τ (i, j) . 

(b) Let assume two edges associated with the OD-pairs ( i ,

j ) and ( k , r ) are incident to (X ′ 1 , X 
′ 
2 ) . This means that

(X ′ 
1 
, X ′ 

2 
) is obtained from the intersection G 

τ,t 

i j ∩ G 

τ ′ ,t
kr ,

for some τ, τ ′ ∈ { + , −} and t , t ′ ∈ { a , b }, which implies

that it belongs to the set P((i, j) , (k, r)) . 

Steps (a) y (b) are repeated with each vertex of the partition

�. At the end of this process, all vertices of the case (b) are

the set P . On the other hand, an arbitrary point is selected

from each R s without vertices: these arbitrary points, to-

gether with all vertices of the case (a), are the set Q . Finally,

the arbitrary point X 

pq may be selected as one of points pre-

viously selected (in fact, X 

pq is necessary only if G = ∅ ). This

concludes the proof. �

.2. The convex case 

This problem, identified by (2-TCR) (2), is formulated by adding

he assumption that { L p , L q } are not antipodal to each other to prob-

em (2-TCR) . 

In this case, when ( X 1 , X 2 ) ∈ L p × L q , from Lemma 7 and

he subsequent reasoning, the distance d ( X 1 , X 2 ) is convex. More

pecifically, we have 

 a ((X 1 , X 2 ) = d b (X 1 , X 2 ) = d(X 1 , X 2 ) . 

onsequently, all results of the previous section are valid for (2-

CR) (2) taking into account that we now have: 

 

+ 
i j 

= G 

+ ,a 
i j 

= G 

+ ,b 
i j 

, and H 

−
i j 

= G 

−,a 
i j 

= G 

−,b 
i j 

.

herefore, from Proposition 10 and Corollary 13 , both H 

+ 
i j

and H 

−
i j

re convex and disjoint sets such that H i j = H+ 
i j

∪ H 

−
i j

. Likewise,

or this problem the set Q (i, j) of Definition 16 becomes the set

 (i, j) = { X + , X −} , where X + = (X + 
1 

, X + 
2 

) and X − = (X −
1 

, X −
2 

) are

oints arbitrarily selected from H 

+
i j and H 

−
i j , respectively. And for

ach two different OD-pairs ( i , j ), ( k , r ), the set P((i, j) , (k, r)) of

emma 15 is now given by 

((i, j) , (k, r)) = 

⋃ 

(i, j) � =(k,r)

( H i j ∩ H kr ) = { H 

+ 
i j ∩ H 

+ 
kr } ∪ { H 

+ 
i j ∩ H 

−
kr} 

∪{ H 

−
i j ∩ H 

+ 
kr } ∪ { H 

−
i j ∩ H 

−
kr } . 

ith these sets, Theorem 17 remains valid and establishes that

= Q ∪ P ∪ { X pq } is a FDS for this problem. 

Finally, since C V is a constant set, it follows straightforwardly: 

orollary 18. Let us consider that there exists a set of stations located

n the nodes of the network. Then, � is also a FDS for the prob-

em in which the set C V is excluded: max (X 1 ,X 2 ) ∈ L p ×L q F (X 1 , X 2 ) :=
 

(i, j) ∈ C(X 1 ,X 2 ) \ C V t i j . 

.3. Example 

This example, based on the network of Fig. 4 , illustrates the

bove procedure. 

The existing demand is located at the points: A 1 (2.5, 6),

 2 (3, 5.5), A 3 (5 . 5 , 
√ 

6 / 10) , A 4 (2 , −4 . 5) , and A 5 (1 , −4) . The parti-

ion of the network originated by the set of linear arc segments

 = { L p , p = 1 , . . . , 8 } provides 36 different restricted problems

n the pairs {{ L p , L q }, p = 1 , . . . , 7 , q = p + 1 , . . . , 8 } ∪ {{ L p , L p } , p =
 , . . . , 8 } , (the pairs { L p , L q } and { L q , L p } give rise to symmetric re-

tricted problems with the same solution). Among all these pairs,

 L 2 , L 6 }, { L 1 , L 5 } and { L 3 , L 7 } are antipodal to each other, and the

emaining pairs are not. 



Fig. 7. Left: Collection G and partition � for the concave restricted problem on { L 2 , L 6 }, and points of the FDS �. Right: FDS for the subproblem (1) on { L 2 , V ( L 6 )}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1

Best optimum values for the 2-transfer problem.

Restricted

problem

Local solutions C ( X 1 , X 2 ) F ∗p,q

{ L 2 , L 6 } x 1 = (4 . 556013 , 2 . 90379) (1, 3), (1, 4), (1, 5), (2, 3), (2, 4) 286

x 2 = (4 . 776812 , 2 . 950328) 

{ L 3 , L 6 } x 3 = (5 . 1 , 3 . 075407) (1, 3), (1, 4), (2, 3), (2, 4) 258

{ L 1 , L 6 } x 4 = (0 , 2 . 2126927) (1,4), (1,5), (2,4), (2,5) 217

x 5 = (0 , 3 . 1439062) 
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We consider α = 0 . 4 . The matrices T = (t i j ) and 

̂ D = ( ̂  d i j ) con-

taining the weights and the acceptance levels for all OD-pairs, re-

spectively, are given by 

T = 

⎛ ⎜ ⎜ ⎝
0 30 15 28 14 

16 0 32 45 23 

40 25 0 20 20 

28 45 26 0 30 

14 20 23 30 0 

⎞⎟⎟⎠

̂ D =

⎛⎜ ⎜⎝
0 0 . 5 6 10 . 2 10 

0 . 5 0 5 9 . 2 8 . 5 

6 5 0 5 . 5 5 

10 . 2 9 . 2 5 . 5 0 1 

10 8 . 5 5 1 0 

⎞⎟⎟⎠
With this scenario we first have considered the concave restricted

problem: 

max 
(X 1 ,X 2 ) ∈ L 2 ×L 6 

F (X 1 , X 2 ) := 

∑ 

(i, j) ∈ C(X 1 ,X 2 ) 

t i j 

Note that for ( X 1 , X 2 ) ∈ L 2 × L 6 , X 1 = (x 1 , 0) ∈ L 2 and X 2 =
(x 2 , 2 

√ 

6 ) ∈ L 6 , therefore each point ( X 1 , X 2 ) ∈ � is identified as

x = (x 1 , x 2 ) . With this notation, x k = (x k 
1 
, x k 

2 
) denotes the k th local

solution (X k 
1 
, X k 

2 
) of this subproblem (if any). 

Fig. 7 (left) shows the FDS �, constructed from all vertices of

the partition �. The local solution for this subproblem is reached

at both x 1 = (4 . 556013 , 2 . 90379) and x 2 = (4 . 776812 , 2 . 950328) ,

with x 1 ∈ P((2 , 3) , (2 , 4)) and x 2 ∈ P((1 , 5) , (2 , 4)) . For these

points, the pairs covered and the objective value are (1, 3), (1, 4),

(1, 5), (2, 3), (2, 4) and 286, respectively. 

The following objective values (in decreasing order) are ob-

tained from the convex restricted problems on { L 3 , L 6 } and { L 1 ,

L 6 }. Let F ∗p,q be the optimum objective value of the restricted prob-

lem (2-TCR) . Table 1 summarizes the results of the above three

subproblems. The local solutions of the remaining restricted prob-

lems provide substantially lower objective values, and they have

not been included in this table. 

The solutions obtained from the restricted problem on { L 2 , L 6 }

are also global solutions for the 2-transfer problem on the over-
ll network. The global optimum is F ∗ = F ∗
2 , 6 

= F (X ∗
1 
, X ∗

2 
) = 286 , for

(X ∗
1 
, X ∗

2 
) ∈ { (X k 

1 
, X k 

2 
) , k = 1 , 2 } . 

. The case of locating a single transfer point

The above procedure also solves the case of locating one trans-

er point. In effect, as we have argued at the beginning of this

aper, the formulation of the 1-transfer additional covering prob-

em (1-TAC) is made under the hypothesis that all nodes of V (or

 subset of them) are already located transfer points. From this as-

umption, problem (1-TAC) can also be solved by adapting the pro-

edure described for the 2-transfer restricted problem (2-TCR) to

 set of subproblems dealing with the restriction of problem (1-

AC) to each linear arc segment L p ∈ L . 

The 1-transfer problem (1-TAC) can be reformulated as fol-

ows: 

ax 
L p ∈L 

max 
X∈ L p 

F V (X ) := 

∑ 

(i, j) ∈ C(X ) \ C V 
t i j = 

∑ 

(i, j) ∈
( ⋃

X 2 ∈ V
C(X,X 2 ) 

)
\ C V 

t i j 

here we have applied that C(X ) = 

⋃ 

X 2 ∈ V C(X, X 2 ) . The restriction

f (1-TAC) to L p ∈ L is: 

ax 
X∈ L p 

F V (X ) := 

∑ 

(i, j) ∈
( ⋃

X 2 ∈ V
C(X,X 2 ) 

)
\ C V 

t i j (1-TACR)
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et us consider the associated problem, in which C V is not ex-

luded: 

ax 
X∈ L p 

F V (X ) := 

∑ 

(i, j) ∈ ⋃
X 2 ∈ V

C(X,X 2 )

t i j (1-TCR)

In the following we describe a procedure for finding an FDS for

oth problems. 

For each L ∈ L , let V (L ) = L ∩ V denote the set of endpoints of L

hich are nodes. Clearly, 0 ≤ | V ( L )| ≤ 2. We consider a set L p ⊆ L
f linear arc segments such that the union of all node sets in the

ollection { V (L q ) , L q ∈ L p } is the set V . There may be several sets

 p thus defined, we now indicate how to construct one of them. 

.1. Constructing L p 

Let L 

′ ⊂ L and V 

′ ⊆V be auxiliary sets. Initially, L 

′ = L\ L p . More-

ver, if V ( L p ) contains one node w with degree 1, then L p = { L p }
nd V ′ = V \{ w } ; otherwise L p = ∅ and V ′ = V .

While V ′ � = ∅ , repeat: 

1. Select L q ∈ L 

′ such that V (L q ) ∩ V ′ � = ∅ .
2. Update L p := L p ∪ { L q } , and delete L q and V ( L q ) from L 

′ and

V 

′ , respectively.

.2. Finding an FDS for the problem (1-TACR) 

To this end, we consider a collection of subproblems obtained

rom the restriction of (2-TCR) to each V ( L q ), with L q ∈ L p . Thus,

n FDS of (1-TACR) will be constructed from all FDS’s of such a

ollection. This procedure is summarized in the following phases: 

1. For each L q ∈ L p , let �( L q ) denote an FDS of the subproblem

max 
X∈ L p , X 2 ∈ V (L q ) 

F (X, X 2 ) := 

∑ 

(i, j) ∈ C(X,X 2 ) 

t i j (1) 

Obtaining �( L q ) 

Problem (2-TCR) with the additional restriction X 2 ∈ V ( L q )

becomes (1) . Therefore, the procedure for constructing an

FDS of problem (2-TCR) can be applied to (1) as follows: Let

us consider the collection G defined in Theorem 17 contain-

ing all level curves of (2-TCR) , as well as the partition � of

L p × L q generated by G, such that the changes in the objec-

tive function of (2-TCR) may only occur on the boundaries

of �. 

The feasible domain for subproblem (1) is { L p × X 2 , X 2 ∈
V ( L q )}. By combining this domain with Theorem 17 we con-

struct �( L q ) as follows: 

�(L q ) = 

⋃ 

v ∈ V (L q ) 

⋃ 

G 
τ,t 

i j ∈G

( G 

τ,t

i j ∩ { X 2 = v } )

In other words, �( L q ) is the set of intersection points of all

level curves of G with the (at most two) segments of the

feasible domain { L p × X 2 , X 2 ∈ V ( L q )}, (see Fig. 7 , right). If

this intersection is empty, for all X 2 ∈ V ( L q ), then �(L q ) =
{ X pq } , where X 

pq (the arbitrary point stated in Theorem 17 ),

is any point selected from { L p × X 2 , X 2 ∈ V ( L q )}. From this

theorem, �( L q ) is an FDS for the subproblem (1) . 

2. Let �p ⊂ L p be the points of the union set
⋃ 

L q ∈L p �(L q ) in

L p , defined as:

�p = 

{
X ∈ L p : (X, X 2 ) ∈ 

⋃ 

L q ∈L p 
�(L q ) 

}
roposition 19. �p is an FDS for the problem (1-TCR) . 
roof.  
(a) Since V = ⋃ 

L q ∈L p V (L q ) , we first prove that �p does not de-

pend on the collection L p of linear arc segments, which is

equivalent to prove that this independence is verified by⋃ 

L q ∈L p �(L q ) . 

Let us consider a given node v ∈ V . From construction, any

point (X, v ) ∈ 

⋃ 

L q ∈L p �(L q ) belongs to a level curve of some

boundary set H i j , which means that 

f i j (X, v ) = || A i − X || + αd(X, v ) + || v − A j || = 

̂ d i j

Once v is fixed, this function only depends on the point X

∈ L p . Equivalently the point X ∈ L p at which f i j (X, v ) = 

̂ d i j

is independent of the set L q selected, which implies (X, v ) ∈
�(L q ) , for all L q ∈ L p such that v ∈ V (L q ) . Thus, 

⋃ 

L q ∈L p �(L q )

does not vary, for any selection of L p ⊆ L such that V =⋃ 

L q ∈L p V (L q ) . Consequently, �p is also independent of L p .

(b) The points of �p generate a partition of L p into subintervals.

We now prove that for each X 2 ∈ V , the set C ( X , X 2 ) is con-

stant in the interior points of each subinterval.

In effect, let �p ( L q ) ⊂ L p be the points of �( L q ) in L p , defined

as

�p (L q ) = { X ∈ L p : (X, X 2 ) ∈ �(L q ) }
�p ( L q ) generates a partition of L p which we call a q -

partition. On the other hand, the points of �( L q ) are the in-

tersections of the collection G of level curves with the (at

most) two segments { L p × X 2 , X 2 ∈ V ( L q )}. From Theorem 17 ,

the properties of the partition � generated by G imply that,

when ( X 1 , X 2 ) ∈ L p × L q , the possible changes of C ( X 1 , X 2 )

may only occur on the boundaries of �. From construction,

�( L q ) contains the points of the boundaries of � placed on

the above segments, therefore for each X 2 ∈ V ( L q ) the set

C ( X , X 2 ) is constant in the interior points of each subinterval

of the q -partition, and the possible changes may only occur

at the points of such a partition.

From definitions of both �p and �p ( L q ) we have �p =⋃ 

L q ∈L p �p (L q ) . This means that the partition defined by �p

incorporates all q -partitions. This fact and the above reason-

ing imply that for each X 2 ∈ V , C ( X , X 2 ) is constant in the

open subinterval limited by two consecutive points of �p .

Therefore the possible changes of C(X ) = 

⋃ 

X 2 ∈ V C(X, X 2 ) may

nly occur on the points of �p , which implies that �p is an FDS

or the problem (1-TCR) . This concludes the proof. �

orollary 20. �p is also an FDS for the problem (1-TACR) . 

emark 21. If �(L q ) = { X pq } for all L q ∈ L p , then C ( X , X 2 ) does not

ary on L p , for any X 2 ∈ V , which means that C ( X ) does not vary

ither. In such a case it is sufficient to select X 

p ∈ L p arbitrarily and

et � = { X p } . 

.3. Computing the objective function of problem (1-TACR) 

Let us consider the points of �p sorted in increasing order. 

As it has been stated, �p generates a partition of L p into in-

ervals such that C ( X ), F V ( X ) and 

˜ F V (X ) are constant in the inte-

ior points of each interval. Additionally, X 

� ∈ �p if and only if

(X � , X � 
2 
) ∈ H i j , for some X � 

2 
∈ V and some OD-pair ( i , j ). These facts

llow the recursive computation of F V along the points of �p as

ollows: 

1. Initially, C(X � ) = { (i, j) : (X � , X � 
2 
) ∈ H i j } , and F V (X � ) =∑ 

(i, j) ∈ C(X � ) \ C V t i j , for all X 

� ∈ �p .

2. Let X 

� , X � +1 be two consecutive points of the sorted list

�p . If (X � , X � 
2 
) and (X � +1 , X � +1 

2 
) belong to H i j , then the ob-

jective value does not vary. Otherwise, (X � , X � 
2 
) ∈ H i j and



Table 2

Set �( L 6 ) for problem (1) on { L 2 , V ( L 6 )}.

Point x � = (x � 1 , x 
� 
2 ) ( i , j ) C ( X � )

x 1 = (1 . 276079 , 0) (1, 4) (1, 4), (1, 5)

x 2 = (1 . 913346 , 0) (1, 5) (1, 5)

x 3 = (4 . 7653359 , 5) (1, 3) (1, 3)
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(X � +1 , X � +1 
2 

) ∈ H rs . In this case, the objective value is up-

dated by evaluating whether (X � , X � 
2 
) ∈ H rs or (X � , X � +1 

2 
) ∈

H rs , (where (X � , X � 
2 
) ∈ H rs if f rs (X � , X � 

2 
) ≤ ̂ d rs ). If one of two

cases occurs, then C(X � ) := { C(X � ) ∪ { C(X � +1 ) } , and F V is ad-

equately updated. 

In this process each point of �p is compared with the following

one, therefore it must be repeated twice along �p : left to right and

right to left, to compute the final objective value at each point. 

6.4. Example 

The construction of �( L q ) is shown in this example, which uses

the same network, demand points and notation as in the previous

example. For the 1-transfer problem restricted to L 2 , the set L 2 =
{ L 1 , L 3 , L 6 } gives the collection { V ( L 1 ), V ( L 3 ), V ( L 6 )}, whose union is

V . Furthermore, C V = ∅ . 
Fig. 7 (right) shows the FDS for the subproblem (1) when X 1 ∈

L 2 and X 2 ∈ V (L 6 ) = { v 3 , v 4 } . The feasible domain for this subprob-

lem is given by the boundaries L 2 × v 4 and L 2 × v 3 (i.e., the seg-

ments x 2 = 0 and x 2 = 5 , respectively). To construct �( L 6 ) we only

need to compute the intersections of the level curves with such

boundaries. 

For the subproblem (1) on { L 2 , V ( L 6 )}, Table 2 shows the points

of �( L 6 ), the OD-pairs ( i , j ) whose associated level curves originate

these intersections, and the corresponding sets C ( X 

� ). 

Moreover, �(L q ) = ∅ for the subproblems on

both { L 2 , V ( L 1 )} and { L 2 , V ( L 3 )}. Thus the set �2 =
{ (1 . 276079 , 0) , (1 . 913346 , 0) , (4 . 7653359 , 0) } ⊂ L 2 is an FDS

for the problem (1-TACR) on L 2 . 

Finally, problem (1-TACR) on L 6 provides the solution to the 1-

transfer problem on the overall network, which is reached at the

points (2 . 461131 , 2 
√ 

6 ) , (2 . 97537 , 2 
√ 

6 ) ∈ L 6 , with objective value

equal 217, and the same set {1, 4), (1, 5), (2, 4), (2, 5)} of covered

OD-pairs. 

7. The 2-transfer additional covering problem

The restriction of problem (2-TAC) to a given pair of linear arc

segments L p , L q ∈ L is formulated as follows: 

max 
(X 1 ,X 2 ) ∈ L p ×L q 

F A (X 1 , X 2 ) := 

∑ 

(i, j) ∈ 
(

C(X 1 ,X 2 ) ∪ C(X 1 ) ∪ C(X 2 ) 

)
\ C V 

t i j 

(2-TACR)

The strategy for discretizing the solution set is based on obtain-

ing the FDS of the restricted problems (2-TCR) and (1-TACR) , re-

spectively. These sets together which the level curves from which

they have been obtained will be combined in order to derive an

FDS for (2-TACR) . We now describe the elements of this process. 

1. For a given pair L p , L q ∈ L , let G and � be the collection of

level curves and the partition of L p × L q , respectively, stated

in Theorem 17 for the restricted problem (2-TCR) . From this

Theorem, both F ( X 1 , X 2 ) and C ( X 1 , X 2 ) are constant in the

interior points of each region of such a partition.
2. Let �p and �q be the FDS of the problem (1-TACR) on L p and

L q , respectively. The vertical and horizontal segment lines

through the points of �p and �q give rise to a grid � which

partitions L p × L q on cells, such that for k = 1 , 2 , both F V ( X k )

and C ( X k ) are constant on the interior points of each cell.

3. Finally, let � ∪ � be the partition of L p × L q obtained by

overlapping � and �. From construction, possible changes

in the objective function of (2-TACR) only take place at the

points of the boundary of each region of � ∪ �.

Let �p × �q be the set of the corner points of the grid �, and

et �γ = G ∩ � be the set containing the intersection points of the

evel curves in G with the segment lines of �. The above argu-

ents and the fact that C V is a constant set yield the union of the

ets �, �p × �q , and �γ , is an FDS for problem (2-TACR) . 

orollary 22. The set �A = � ∪ (�p × �q ) ∪ �γ contains some op-

imal solution for both the restricted problem (2-TACR) and the asso-

iated restricted problem in which C V is not excluded. 

.1. Some insights on evaluating the objective function 

Evaluating the objective function at each point ( X 1 , X 2 ) ∈ �A 

equires computing C ( X 1 , X 2 ) and C ( X k ), k = 1 , 2 . 

1. The algorithm for solving (2-TCR) provides C ( X 1 , X 2 ), for all

( X 1 , X 2 ) ∈ �. However, for the points in �p × �q ∪ �γ , the

sets C ( X 1 , X 2 ) are constructed by checking each OD-pair.

2. On the other hand, for all ( X 1 , X 2 ) ∈ �p × �q , the sets C ( X k ),

k = 1 , 2 can be known by means of the algorithm for solving

(1-TACR) . Such an algorithm will be described subsequently.

The knowledge of C ( X k ) for the points in �p × �q allows the

computation of C ( X k ), ( k = 1 , 2 ), for all ( X 1 , X 2 ) ∈ �∪ �γ . In

effect, each point ( X 1 , X 2 ) ∈ �γ belongs to some line seg-

ment of �, from which we can obtain C ( X k ), k = 1 , 2 , as

follows: suppose that (X 1 , X 2 ) ∈ [ X � 
1 
, X � +1 

1 
] × X κ

2 
, where X � 

1 
,

X � +1 
1 

are two consecutive points of �p , and X κ
2 

∈ �q . Thus,

C(X 2 ) = C(X κ
2 
) , and C(X 1 ) ∈ { C V (X � 

1 
) , C(X � +1 

1 
) } . The computa-

tional effort is spent for inserting X 1 in the sorted list �p .

This argument can also be extended to any point ( X 1 , X 2 ) ∈
�: since ( X 1 , X 2 ) belongs to some cell of the grid �, it is

only necessary to insert X 1 and X 2 in the sorted lists �p and

�q , respectively. 

. Algorithms and complexity

Assuming that some technical questions (such as the bi-

imensional representation of the restricted problem by means of

 parametrization of linear arc segments) have been previously ob-

ained, the algorithms for solving the three restricted problems an-

lyzed are based on progressively constructing their FDS, and then

valuating the corresponding objective function on the points of

he FDS for finally selecting the best solution. 

We start with a preprocessing phase in which the ordered se-

uence L (e ) of all linear arc segments of each edge e is computed.

t the end of such a phase we can know if two linear arc seg-

ents L p ∈ L (e p ) and L q ∈ L (e q ) are whether or not antipodal to

ach other. In the case of having an antipodal pair { L p , L q }, the

istance d ( X 1 , X 2 ), for ( X 1 , X 2 ) ∈ L p × L q can be established from

emma 7 . 

.1. The 2-transfer covering problem (2-TC) 

The solution procedure for both the concave and the convex

ase selects the global solution as the best of local solutions ob-

ained from the collection of restricted problems. 
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Algorithm for the concave restricted problem (2-TCR) (1) 

1. Set � := ∅ .
2. For each OD-pair ( i , j ), do

(a) Obtain the level curves G 

+ ,a
i j , G 

+ ,b
i j , G 

−,a

i j , and G 

−,b

i j . 

For each τ ∈ { + , −} , do

i. If G 

τ,a

i j ∪ G 

τ,b 

i j � = ∅ , then compute Q 

τ (i, j) =
G 

τ,a

i j ∩ G 

τ,b 

i j .

(1) If Q 

τ (i, j) � = ∅ , then � := � ∪ Q 

τ (i, j) .

(2) Otherwise, set � := �∪ { X 

a , X 

b }, where

X 

a , X 

b , are arbitrarily selected points from

G 

τ,a 

i j , G 

τ,b 

i j , respectively.

(3) For each (X 1 , X 2 ) ∈ Q 

τ (i, j) , initialize

C(X 1 , X 2 ) = { (i, j) , ( j, i ) } .
3. For each different OD-pairs ( i , j ) and ( k , r ), do

(a) Obtain P((i, j) , (k, r)) , the set of intersection points of

all pairs of level curves { G 

τ,t 

i j , G 

τ ′ ,t ′ 
kr } , for τ, τ ′ ∈ { + , −}

and t , t ′ ∈ { a , b }. 

(b) If P((i, j) , (k, r)) � = ∅ , then

i. For each (X 1 , X 2 ) ∈ P((i, j) , (k, r)) ,

compute C(X 1 , X 2 ) = { (i, j) , ( j, i ) , (k, r) , (r, k ) }
ii. Set � := � ∪ P((i, j) , (k, r)) .

4. If � = ∅ , select arbitrarily X 

pq ∈ L p × L q .

Initialize C(X pq ) = ∅ , and set � = { X pq } .
5. For each ( X 1 , X 2 ) ∈ �, do

(a) For each OD-pair ( i , j ), do

i. If ( X 1 , X 2 ) ∈ H ij , then

update C ( X 1 , X 2 ) := C ( X 1 , X 2 ) ∪ {( i , j ), ( j , i )}, and

F ( X 1 , X 2 ).

6. Select as a solution a point (X ∗
1 
, X ∗

2 
) for which F (X ∗

1 
, X ∗

2 
) =

max (X 1 ,X 2 ) ∈ � F (X 1 , X 2 ) (there may be several solutions). 

o discuss the resulting complexity we first analyze the cardi-

ality of the sets Q , P, composing the FDS �. We have previ-

usly pointed out that, as it is usual in origin-destination prob-

ems, henceforth we will use N = O (n 2 ) to denote the number

f OD-pairs in order to reflect the complexity as a function of

 (instead of as a function of the number n of isolated demand

oints). 

In this process, the main computational effort of the first four

teps is spent in computing the O ( N 

2 ) sets P((i, j) , (k, r)) . Each

 

τ,t 

i j is the boundary curve of the convex set G 

τ,t 
i j 

, which is the

ublevel set of the convex function g τ,t 
i j

(·) . The algebraic struc-

ure of these functions allows us to establish (by means of Be-

out’s theorem), that for τ, τ ′ ∈ { + , −} and t , t ′ ∈ { a , b }, the num-

er of intersection points of two different curves G 

τ,t 

i j , G 

τ ′ ,t ′ 
kr is (up-

er) bounded by 12 (see Kirwan, 1992; Körner et al., 2014 ). Since

ach P((i, j) , (k, r)) is obtained from the intersection of (at most)

 

2 = 16 pairs of curves, the complexity of P (the total number of

ntersection points) is O ( N 

2 ). From the same argument, the cardi-

ality of Q (computed in step 2) is also O ( N 

2 ), consequently | �|

 O ( N 

2 ). This implies that Step 5, in which for each point ( X 1 , X 2 )

 � the associated set C ( X 1 , X 2 ) and the objective value is com-

uted, requires O ( N 

3 ) time. This gives a final complexity of O ( N 

3 )

or solving the concave restricted problem (2-TCR) (1). 

This algorithm also solves the convex restricted problem (2-

CR) (2) by introducing some slight modifications in steps 2 and

: 

2. For each OD-pair ( i , j ), do

(a) Obtain the level curves H 

+
i j and H 

−
i j . 

For each τ ∈ { + , −} , do

i. If H 

τ
i j � = ∅ , then 

(1) Set � := �∪ { X 

τ }, where X τ = (X τ
1 

, X τ
2 
)

is an arbitrary point in H 

τ
i j .
(2) Initialize C(X τ ) = { (i, j) , ( j, i ) } .
3. For each different OD-pairs ( i , j ) and ( k , r ), do

(a) Compute P((i, j) , (k, r)) , the set of all intersection

points obtained from H 

τ
i j ∩ H 

τ ′
kr , for τ, τ ′ ∈ { + , −} .

(b) If P((i, j) , (k, r)) � = ∅ , then

i. For each (X 1 , X 2 ) ∈ P((i, j) , (k, r)) ,

compute C(X 1 , X 2 ) = { (i, j) , ( j, i ) , (k, r) , (r, k ) } .
ii. Set � := � ∪ P((i, j) , (k, r)) .

he above modifications do not reduce the complexity of O ( N 

3 ) ob-

ained for the concave problem, since for the convex case we also

ave O ( N 

2 ) sets P (( i , j ), ( k , r )). 

These reasonings imply that the restricted problem (2-TCR) can

e solved in O ( N 

3 ) time (independently of the case: concave or

onvex). Taking into account that there are at most | V || E | linear arc

egments in the network, the number of pairs of linear arc seg-

ents is O (| V | 2 | E | 2 ), which is the number of restricted problems

2-TCR) to be solved. This finally gives a complexity of O (| V | 2 | E | 2 N 

3 )

ime for solving the 2-transfer problem (2-TC) on the overall net-

ork. 

.2. The 1-transfer additional covering problem (1-TAC) 

With some modifications, the above algorithms can be applied

o the restricted problem (1-TACR) . We first assume that C V has

een computed in a previous phase, which takes O ( N | V | 2 ) time. 

Each level curve G 

τ,t 

i j contributes with at most four points (if

t is a closed curve) placed on the boundaries L p × { X 2 : X 2 ∈
 ( L q )}, which implies that �( L q ), the FDS of (1) , has a complexity

f O ( N ). From construction, |L p | = O (| V | ) , therefore �p , the FDS of

1-TACR) , has O (| V | N ) points. 

Once these points have been sorted (in O (| V | N max {log | V |,

og N }) time), the objective value can be recursively computed from

 point to the following one in O (| C V |) time. In summary, the final

omplexity for solving (1-TACR) is O (| V | N max {| C V |, log | V |, log N }). 

Algorithm for the restricted problem (1-TACR) 

1. Set �p := ∅ , and construct L p .

2. For each L q ∈ L p do

(a) Set �( L q ) := ∅ .
(b) For each O/D pair ( i , j ) do

i. Obtain the level curves G 

+ ,a
i j , G 

+ ,b
i j , G 

−,a

i j , and

G 

−,b

i j . 

ii. For τ ∈ { + , −} , t ∈ { a , b }:

Compute G 

τ,t

i j ∩ { X 2 = v } for all v ∈ V (L q ) , and

update �( L q ). 

(c) Update �p := �p ∪ { X : ( X , X 2 ) ∈ �( L q )}.

3. If �p = ∅ , then choose any point X 

p ∈ L p , and set �p := { X 

p }.

4. Sort �p , and compute the objective function along �p .

5. Select X 

∗ ∈ �p such that F V (X ∗) = max X∈ �p 
F V (X ) .

rom the above discussion, the 1-transfer additional covering

roblem (1-TAC) can be solved on the overall network in

 (| V | 2 | E | N max {| C V |, log | V |, log N }) time. 

.3. The 2-transfer additional covering problem (2-TAC) 

For finding �A , the FDS stated in Corollary 22 , we start by com-

uting �, �p and �q , for which we use the algorithms for prob-

ems (2-TCR) and (1-TACR) , respectively. Regarding the complexi-

ies already established, we have | �| ∈ O ( N 

2 ) and | �p × �q | ∈
 (| V | 2 N 

2 ). On the other hand, each level curve of the collection G
s convex on L p × L q and intersects with (at most) O (| V | N ) segment

ines of the grid �, which implies that �γ has O (| V | N 

2 ) points. This

eads to a complexity of O (| V | 2 N 

2 ) for the set � . 
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Algorithm for the restricted problem (2-TACR) 

1. Obtain G, �, and C ( X 1 , X 2 ), ∀ ( X 1 , X 2 ) ∈ �, by algorithm for

problem (2-TCR) .

Set �A := �.

2. Obtain �p , �q , and the sets C ( X k ), ( k = 1 , 2 ), for ( X 1 , X 2 ) ∈
�p × �q , by algorithm for problem (1-TACR) .

Update �A := �A ∪ (�p × �q ) .

3. Set �γ := ∅ . For each level curve G 

τ,t 

i j ∈ G do 

Compute G 

τ,t

i j ∩ { X 1 = X � 
1 
} and G 

τ,t

i j ∩ { X 2 = X κ
2 
} , for all X � 

1 
∈

�p , X 
κ
2 

∈ �q . 

Update �γ , and �A . 

4. For each ( X 1 , X 2 ) ∈ �∪ �γ , do

Insert X 1 and X 2 into �p and �q , respectively, and com-

pute C ( X k ), k = 1 , 2 . 

5. For each ( X 1 , X 2 ) ∈ �p × �q ∪ �γ , do

For each OD-pair ( i , j ), check whether ( X 1 , X 2 ) ∈ H ij .

Update C ( X 1 , X 2 ) adequately. 

6. For each ( X 1 , X 2 ) ∈ �A , compute F A ( X 1 , X 2 ).

7. Select the best solution as a solution for the problem (there

may be several solutions).

Steps 1 and 2 of this algorithm takes O ( N 

3 ) and O (| V | N

max {log | V |, log N } time, respectively. Inserting a point into the

sorted lists �p and �q requires O (| V | N ) time and, from Section 7.1 ,

this is the complexity of Step 4. Taken into account that �p × �q 

is the set with the largest cardinality and | C V | ≤ N , the complexity

of Steps 5 and 6 is O (| V | 2 N 

3 ) time, which also is the final complex-

ity for solving (2-TACR) . 

There are O (| V | 2 | E | 2 ) restricted problems, therefore the 2-

transfer additional covering problem (2-TAC) can be solved on the

overall network in O (| V | 4 | E | 2 N 

3 ) time. 

Remark 23. Although from a theoretical point of view the com-

putational analysis of these problems deals with the worst-case

complexity, in practise only a few OD-pairs are involved in each

subproblem. In effect, given L p , L q , the pair ( i , j ) can be ex-

cluded if min {|| A i − L p || + || A j − L q || , || A j − L p || + || A i − L q ||} ≥ ̂ d i j ,

where || A − S|| is the Euclidean distance between the point A and

the segment S . Likewise, a set of linear arc segments could be re-

moved, which leads to an improvement of the average complexity.

9. Conclusions and further research

Given a set of origin-destination pairs in the Euclidean plane,

the problem of locating one or two transfer points on a high-speed

network embedded in the plane under different OD-pairs covering

objectives has been analyzed and solved in this paper. 

The first problem studied seeks to locate two transfer points

so that the amount of weights of the covered pairs is maximized.

Given the lack of convexity of the mixed planar-network distances

our approach is based on a decomposition of the network into

smaller regions such that the travel distances between them are

either concave or convex. This decomposition gives rise to two dif-

ferent restricted problems which have been analyzed and, for each

of them, a finite dominating set of polynomial size has been de-

rived. Hence, the problem can be solved by a polynomial time al-

gorithm. Moreover, this solution method also represents a general

approach for solving the remaining problems treated in this paper,

as it has been described in the mechanism for adapting the general

strategy to each case. Indeed, this method could also be extended

to problems with more transfer points, although it is predictable

that the complexity increases dramatically. 

On the other hand, the methodology proposed here does not

prejudge the assessment of whether one or two transfer points
ust be located, since this question involves a decision-making

rocess in which additional considerations would be taken into ac-

ount. From a strategical point of view, locating 2-transfer points

uarantees better coverage in a long-term approach, however, in

hort-term decisions, it may be suitable to locate first a single

ransfer point and, at a later stage, to determine the convenience

f locating the second one. 

A way of making the model more realistic is to introduce accel-

ration and deceleration between nodes as well as dwell times as-

ociated with these points. This problem deserves further research.

ctual or Manhattan distances are more appropriate in some cases.

hereas the counterpart problems deserve to be studied, they

learly are beyond the scope of this paper. We note that since

he computational complexity of the corresponding problem of lo-

ating more than two transfer points is high, other methodolo-

ies such as the Big Cube Small Cube algorithm ( Schöbel & Scholz,

010 ) could be useful for this extension. Another line of research

ould be oriented to considering a set F of forbidden regions (con-

ained in the high-speed system) in which it is not possible to

ocate facilities. The forbidden regions arise when, for example,

ones of the network pass under a river, or cross a natural park,

tc. The algorithm presented in this paper can be adapted for deal-

ng with this model in the following manner: both deleting from

those points that lie inside some forbidden region and adding

nite intersections between F and the level curves of all sublevel

ets. 

Finally, a generalization of the model can result by incorporat-

ng other objectives (such as minimizing the sum of all distances

etween covered pairs, or maximizing the sum of differences be-

ween the acceptance level and the mixed travel distances, or by

ntroducing other criterion associated to some costs). This multi-

bjective formulation possibly will yield optimal points placed in

he interior of some sublevel sets, which provide a wide under-

tanding of the role of solutions in order to select a more realistic

ptimal decision. 
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