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Hadamard ideals were introduced in 2006 as a set of nonlin-
ear polynomial equations whose zeros are uniquely related to
Hadamard matrices with one or two circulant cores of a given or-
der. Based on this idea, the cocyclic Hadamard test enables us to
describe a polynomial ideal that characterizes the set of cocyclic
Hadamard matrices over a fixed finite group G of order 4t. Nev-
ertheless, the complexity of the computation of the reduced Gröb-
ner basis of this ideal is 2O (t2), which is excessive even for very 
small orders. In order to improve the efficiency of this polynomial
method, we take advantage of some recent results on the inner
structure of a cocyclic matrix to describe an alternative polyno-
mial ideal that also characterizes the aforementioned set of cocyclic
Hadamard matrices over G . The complexity of the computation de-
creases in this way to 2O (t). Particularly, we design two specific 
procedures for looking for Zt ×Z2

2-cocyclic Hadamard matrices and 
D4t -cocyclic Hadamard matrices, so that larger cocyclic Hadamard 
matrices (up to t ≤ 39) are explicitly obtained.

1. Introduction

A binary Hadamard matrix H of order n is an n × n matrix with every entry either 1 or −1, which
satisfies H H T = nI , where I is the identity matrix of order n. Although it is well-known that n has 
to be necessarily 1, 2 or a multiple of 4 (as soon as three or more rows have to be simultaneously 
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orthogonal), there is no certainty whether such a Hadamard matrix exists at every possible order. 
Currently, the smallest order for which no Hadamard matrix is known is 668, and there are only 12 
such orders below 2000 (Ðokovic et al. (2014)). The Hadamard conjecture asserts that there exists a 
Hadamard matrix of order 4t for every natural number t .

There exist many different constructions for Hadamard matrices: Sylvester, Paley, Williamson, Ito, 
Goethals–Seidel, one and two circulant cores or cocyclic matrices, amongst others (see Horadam 
(2007)). Nevertheless, most of them fail to yield Hadamard matrices for every order which is a multi-
ple of 4 and therefore are not suitable candidates for a proof of the Hadamard conjecture. Among all 
these constructions, it seems that the most promising are the two circulant cores matrices (Fletcher 
et al. (2001); Kotsireas et al. (2006b)), the Goethals–Seidel arrays (Goethals and Seidel (1967); Se-
berry and Yamada (1992)) and the cocyclic constructions (Horadam (2007)). Actually, the one and 
two circulant cores constructions have recently been described to be somehow cocyclic-based (the 
cores themselves are cocyclic over Z4t−1 and D4t−2, respectively, see Álvarez et al. (2017) for details). 
A stronger version of the Hadamard conjecture, posed by Horadam and de Launey (1995) is the co-
cyclic Hadamard conjecture: this states that there exists a cocyclic Hadamard matrix at every possible 
order. Currently the smallest order for which no cocyclic Hadamard matrix is known is 188 (Horadam 
(2007)).

Kotsireas et al. (2006a) introduced the concept of Hadamard ideal as a set of nonlinear polynomial 
equations whose zeros determine the set of Hadamard matrices with one circulant core. Shortly after, 
Kotsireas et al. (2006b) used the same ideal together with a series of new polynomials in order to 
determine the set of Hadamard matrices with two circulant cores, by means of which they computed 
the Hadamard matrices with two circulant cores up to order 52.

In this paper, we define several cocyclic Hadamard ideals, whose zeros determine the set of cocyclic 
Hadamard matrices over a finite group G of order 4t . Based on the cocyclic test of Horadam and 
de Launey (1995), our first approach (Theorem 2) gives rise to a procedure CocGM(t, G, opt) which 
works just for very small t , actually t ≤ 3.

In order to improve the efficiency of this polynomial method and provided a basis of G-cocycles 
is known (which is always the case, see Flannery and O’Brien (2000); Flannery and Egan (2015)), 
we define in Theorem 5 an alternative ideal based upon the system of equations described by Álvarez 
et al. (2008), which also characterizes the set of G-cocyclic Hadamard matrices. This gives a procedure
CocCB(t, G, opt) suitable for larger values of t .

Furthermore, from the knowledge of the properties of cocyclic matrices over Zt × Z2
2 and D4t de-

scribed by Álvarez et al. (2015, 2016), improved versions of this procedure (CocAH(t, col, dist, H) and
CocDH(t, dist, opt, H), based on Theorems 7 and 9, respectively) are used to perform local searches 
for Zt ×Z2

2-cocyclic Hadamard matrices and D4t -cocyclic Hadamard matrices.
All the procedures have been implemented as a library hadamard.lib in the open computer algebra 

system for polynomial computations Singular, developed by Decker et al. (2016). Examples illustrat-
ing the use of this library and the library itself are available online at http://personales.us.es/
raufalgan/LS/hadamard.lib. Further, all the computations that are exposed throughout the 
paper are implemented in a system with an AMD Opteron 6348, with a 2.8 GHz processor (48 cores), 256 
GB RAM and 3 TB Hard Drive. Running the procedures on this system, cocyclic Hadamard matrices have 
been found up to order 4t ≤ 156.

The remainder of the paper is organized as follows. The first part of Section 2 is devoted to de-
scribing some preliminary concepts and results on Hadamard matrices and Algebraic Geometry, that 
are used in the rest of the paper. Later, we define a zero-dimensional ideal that determines the set 
of cocyclic Hadamard matrices over a given group G of order 4t , which comes from a straightforward 
translation of the cocyclic Hadamard test of Horadam and de Launey (1995). In Section 3, we propose 
an alternative to the previous construction by defining a new zero-dimensional ideal, based on the 
results of Álvarez et al. (2008). Actually, we specialize this procedure for Zt × Z2

2-cocyclic Hadamard 
matrices and D4t -cocyclic Hadamard matrices, attending to the properties described by Álvarez et al. 
(2015, 2016). The last section is devoted to conclusions and outlines for further work.

http://personales.us.es/raufalgan/LS/hadamard.lib
http://personales.us.es/raufalgan/LS/hadamard.lib


2. Preliminaries

We describe in this section some basic concepts and results on Hadamard matrices and Algebraic 
Geometry that are used throughout the paper. We refer to the monographs of Mac Lane (1995), 
Horadam (2007), De Launey and Flannery (2011) and Cox et al. (1998, 2007) for more details about 
these topics.

2.1. Hadamard matrices

Assume throughout that G = {g1 = 1, . . . , g4t} is a multiplicative finite group of 4t elements, not 
necessarily abelian. A function ψ : G × G → 〈−1〉 ∼= Z2 is said to be a (binary) cocycle over G , or simply 
G-cocycle for short, if it satisfies that

ψ(gi, g j)ψ(gi g j, gk) = ψ(g j, gk)ψ(gi, g j gk), for all gi, g j, gk ∈ G. (1)

The cocycle ψ is naturally displayed as a cocyclic matrix Mψ of order 4t × 4t , whose (i, j)th entry 
is ψ(gi, g j) for all gi, g j ∈ G . Since it must be ψ(1, g j) = ψ(gi, 1) for all gi, g j ∈ G , the first row 
and column of Mψ are all either 1 or −1. In the first case, the cocycle ψ and its cocyclic matrix 
Mψ are said to be normalized. There is a one to one correspondence between normalized and non 
normalized cocycles. Without loss of generality, we will assume that all cocycles considered hereafter 
are normalized, and will be termed simply cocycles for short.

Let gd ∈ G . The elementary coboundary ∂d is the cocycle over G defined as

∂d(i, j) := δgd (gi)δgd (g j)δgd (gi g j),

where δgd : G → 〈−1〉 is the characteristic set map such that δgd (gi) = −1 if gi = gd and 1, otherwise. 
The generalized coboundary matrix M∂d consists of negating the dth-row of the matrix M∂d . Note that 
negating a row or a column of a matrix does not change its Hadamard character. This is just a par-
ticular case of a more general set: there is an equivalence relation (termed Hadamard equivalence) on 
Hadamard matrices, so that two matrices are Hadamard equivalent whenever they differ in a series 
of row and/or column negations and/or permutations. These Hadamard equivalence classes may be 
grouped by means of a broader notion of equivalence relation which incorporates some different or-
thogonality preserving moves, termed switching operations. The interested reader is referred to Orrick 
(2008) and the references therein for details.

The following technical result summarizes some properties which are satisfied by generalized 
coboundary matrices, as described in Álvarez et al. (2008), and will be of interest for later use.

Lemma 1 (Álvarez et al. (2008)). The next results hold.

a) M∂d contains exactly two negative entries in each row s �= 1, which are located at positions (s, d) and
(s, e), for ge = g−1

s gd.
b) Given gs �= 1 and gc in G, there are exactly two generalized coboundary matrices (M∂c and M∂d ), with a

negative entry in the position (s, c), where gd = gs gc .
c) Two generalized coboundary matrices share their two negative entries at the sth row if and only if g2

s = 1.

A basis B = {ψ1, . . . , ψk} of cocycles over G consists of some elementary coboundaries ∂i and some
representative cocycles. Since the elementary coboundary ∂1 related to the identity element 1 ∈ G is 
not normalized, we may assume that ∂1 /∈ B. A basis for coboundaries consists of 4t − r − 1 elements, 
for r being the rank of the Sylow 2-subgroup of G/[G, G], and may be calculated straightforwardly 
(see Horadam and de Launey (1995); Flannery and Egan (2015)). A basis for representative cocycles 
consists of r cocycles coming from Ext(G/[G, G], Z2) and k − 4t + 1 cocycles (one for each 2-power 
component of H2(G)) coming from Hom(H2(G), Z2), and may be calculated by means of a Magma

(Bosma et al. (1997)) procedure as described in Flannery (1996); Flannery and O’Brien (2000).



Every cocycle over G admits a unique representation as a product of the generators in B, 
ψ = ψ

x1
1 · · ·ψxk

k , xi ∈ {0, 1}. The tuple (x1, . . . , xk)B defines the coordinates of ψ with regards to B. Ac-
cordingly, every cocyclic matrix Mψ = (ψ(i, j)), for ψ = (x1, . . . , xk)B , admits a unique decomposition 
Mψ = Mx1

ψ1
· · · Mxk

ψk
as the Hadamard pointwise product of those matrices Mψi corresponding to en-

tries xi = 1. In what follows, we use generalized coboundary matrices instead of classical coboundary 
matrices. Let us point out that any matrix obtained as the Hadamard product of generalized cobound-
ary matrices and representative cocycles is Hadamard equivalent to a cocyclic matrix by means of 
negations of certain rows.

A cocycle ψ (over G) is said to be orthogonal if its cocyclic matrix Mψ is Hadamard. In such a case, 
Mψ is said to be a cocyclic Hadamard matrix over G or a G-cocyclic Hadamard matrix. The set of cocyclic 
Hadamard matrices over G is denoted by HG . The cocyclic Hadamard test of Horadam and de Launey 
(1995) asserts that a cocyclic matrix Mψ is Hadamard if and only if∑

j∈G

ψ(i, j) = 0, for all i ∈ G \ {1}. (2)

A row of Mψ is termed Hadamard row precisely when its summation is zero. Therefore, Mψ is 
Hadamard if and only if every row (but the first) is a Hadamard row.

2.2. Algebraic geometry

Let {X} and K[X] be, respectively, the set of m variables {x1, . . . , xm} and the associated multivari-
ate polynomial ring over a field K. The affine variety V (I) of an ideal I ⊆ K[X] is the set of points 
in Km that are zeros of all the polynomials of I . The ideal I is said to be zero-dimensional if V (I)
is finite. It is said to be radical if every polynomial p ∈ K[X] belongs to I whenever there exists a 
natural number n such that pn ∈ I . A term order < on the set of monomials of K[X] is a multiplica-
tive well-ordering that has the constant monomial 1 as its smallest element. The largest monomial 
of a polynomial p of I with respect to the term order < is its leading monomial. The ideal generated 
by the leading monomials of all the non-zero elements of I is its initial ideal I< . Those monomi-
als of polynomials of I that are not leading monomials of any polynomial of I are called standard 
monomials. If the ideal I is zero-dimensional, then the number of standard monomials of I coincides 
with the dimension of K[X]/I over K, which is greater than or equal to the number of points of 
V (I). The equality holds when I is radical. This dimension can be obtained by computing the Hilbert 
function HFK[X]/I , which maps each non-negative integer d onto dimK(K[X]d/Id), where K[X]d de-
notes the set of homogeneous polynomials in K[X] of degree d and Id = K[X]d ∩ I . In particular, 
dimK(K[X]/I) = ∑

0≤d HFK[X]/I (d). If the ideal I is zero-dimensional, then the number HFK[X]/I (d)

coincides with the set of standard monomials of degree d, regardless of the term order. As a conse-
quence, the Hilbert function of K[X]/I coincides with that of K[X]/I< , for any term order <, which 
can be obtained by using for instance the algorithm of Mora and Möller (1983). Previously, it was 
required to determine the initial ideal I< . In any case, Bayer and Stillman (1992) already proved that 
the problem of computing Hilbert functions is NP-complete.

A Gröbner basis (Buchberger (2006)) of the ideal I is any subset G B of polynomials of I whose 
leading monomials with respect to a given term order generate the initial ideal I< . It is reduced if 
all its polynomials are monic and no monomial of a polynomial in G B is generated by the leading 
monomials of the rest of polynomials in the basis. There exists a unique reduced Gröbner basis of the 
ideal I . This basis generates the initial ideal I< and can be used, therefore, to determine the cardinal-
ity of its affine variety V (I). Further, the points of this variety can be enumerated once the reduced 
Gröbner basis is decomposed into finitely many disjoint subsets, each of them being formed by the 
polynomials of a triangular system of polynomial equations, whose factorization and subsequent res-
olution are easier than the system related to the generators of the original ideal I . See in this regard 
the articles of Hillebrand (1999), Lazard (1992) and Möller (1993).

Gröbner bases can, therefore, be used to determine both the cardinality and the elements of the 
set HG of cocyclic Hadamard matrices over a multiplicative finite group G of 4t elements. To this 



end, let Q[XG ] be the polynomial ring over the field Q of rational numbers, with set of 16t2 variables 
{XG } = {xi, j : gi, g j ∈ G} and let us define the polynomial

pi, j,k(X) := xi, j xi j,k − x j,kxi, jk, for all gi, g j, gk ∈ G,

where the products i j and jk are induced by the group law in G . The next result shows how the 
set HG of cocyclic Hadamard matrices over G can be identified with the affine variety defined by a 
zero-dimensional radical ideal of nonlinear polynomials in Q[XG ].

Theorem 2. The set HG can be identified with the set of zeros of the zero-dimensional ideal IG = I1
G + I2

G +
I3

G + I4
G ⊂ Q[XG ] consisting in the summation of the following four subideals:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I1
G = 〈 x2

i, j − 1 : i, j ∈ G 〉,
I2

G = 〈 pi, j,k(X) : i, j,k ∈ G 〉,
I3

G = 〈 x1,i − 1, xi,1 − 1 : i ∈ G 〉,
I4

G = 〈∑
j∈G xi, j : i ∈ G \ {1} 〉.

Besides, |HG | = dimQ(Q[XG ]/IG).

Proof. Let P = (p1,1, . . . , p4t,4t) be a point of the affine variety V (IG). Attending to I1
G , every com-

ponent pi, j of P is either 1 or −1, for all i, j ∈ G . Let ψ : G × G → {±1} be defined such that 
ψ(i, j) = pi, j , for all gi, g j ∈ G . Since I2

G implies by construction that ψ satisfies identity (1) for all 
gi, g j, gk ∈ G , the point P can be identified with the cocyclic matrix Mψ related to ψ (which is, in 
addition, normalized, because of the definition of the subideal I3

G ). Finally, I4
G implies that Mψ satis-

fies identity (2) and hence, Mψ is Hadamard. The affine variety V (IG) coincides, therefore, with the 
set HG , whose finiteness involves the ideal IG to be zero-dimensional.

Besides, since IG ∩Q[xi, j] = 〈 x2
i, j −1 〉 ⊆ IG for all i, j ∈ G and all these polynomials are square-free, 

Proposition 2.7 of Cox et al. (1998) implies that√
IG = IG +

∑
i, j

IG ∩Q[xi, j] = IG ,

so IG is therefore radical. And hence, |HG | = |V (IG)| = dimQ(Q[XG ]/IG). �
Notice that, as defined, each of the subideals I1

G , I2
G , I3

G and I4
G are generated by 16t2, 64t3, 8t − 1

and 4t − 1 polynomials over the set of 16t2 variables XG . Nevertheless, some of these polynomials 
are redundant and may straightforwardly be removed from a system of generators for IG . Namely, 
it is easy to check that I3

G ⊂ 〈x1,1 − 1〉 + I2
G , as the result of a standard proof on the fact that any 

cocycle is either normalized or unnormalized (see Lemma 1.3 of Horadam and de Launey (1995) for 
details). Furthermore, the 8t − 1 polynomials {x2

1,i − 1, x2
i,1 − 1 : i ∈ G} in I1

G may be removed as well, 
since they are also in I3

G . Anyway, the set of polynomials generating IG which we have just described 
consists of O (t3) polynomials of degree up to 2 over O (t2) variables.

It is a remarkable fact that the computation of the reduced Gröbner basis of a zero-dimensional 
ideal is extremely sensitive to the number of variables. See in this regard the articles of Hashemi 
(2009), Hashemi and Lazard (2011), Lakshman (1991) and Lakshman and Lazard (1991). In the last 
reference, the authors proved that the complexity of our computation is dO (n) , where d is the maximal 
degree of the generators of ideal and n is the number of variables. In the case of Theorem 2, this 
complexity is 2O (t2) , which renders the computation only possible for very low values of t .

The procedure CocGM(t, G, opt) (included in the library hadamard.lib which is available online 
for free at the personal web page of one of the authors, as noticed before) provides an implemen-
tation of the method that runs on Singular (Decker et al. (2016)). It is specifically designed for the 
group Zt × Z2

2 (taking G = 1 as input) and the dihedral group D4t (taking G = 2 as input), though 
it might be straightforwardly modified to fix for any other group G . It would suffice to include the 



polynomials generating the subideal I2
G , attending to the particular group law of G . Depending on 

whether the parameter opt is equal to 1 or 2, the procedure calculates either just the number of 
cocyclic Hadamard matrices over G or the explicit full set of these matrices. Notice that it makes use 
of the Singular procedures elimlinearpart and tolessvars which speed up and simplify the 
calculations, reducing the number of variables and polynomials in turn.

Example 3. As an illustration of the method, consider the group G = Z2
2. The ideal IG , as described in 

Theorem 2, is defined over the set of 16 variables {XG } = {xi, j : gi, g j ∈ G} and initially consists of 90 
generating polynomials, although we already pointed out before that some of these polynomials are 
redundant and may be removed straightforwardly from the very beginning. Assuming x1,i = xi,1 = 1
for 1 ≤ i ≤ 4, we reduce to 9 variables, namely xi, j , for 2 ≤ i, j ≤ 4.

A reduced Gröbner basis for IG with respect to the degree reverse lexicographical order consists of 
the following 14 polynomials: p1 = x4,2 + x4,3 + x4,4 + 1, p2 = x3,2 + x3,3 + x3,4 + 1, p3 = x2,4 + x3,4 +
x4,4 +1, p4 = x2,3 +x3,3 +x4,3 +1, p5 = x2,2 +x2,3 +x2,4 +1, p6 = x2

4,4 −1, p7 = x4,3x4,4 +x4,3 +x4,4 +1, 
p8 = x3,4x4,4 + x3,4 + x4,4 + 1, p9 = x2

4,3 − 1, p10 = x3,4x4,3 + x3,3x4,4 − x3,3 − x3,4 − x4,3 − x4,4 − 2, 
p11 = x3,3x4,3 − x3,3 − x4,3 − 1, p12 = x2

3,4 − 1, p13 = x3,3x3,4 − x3,3 − x3,4 − 1, p14 = x2
3,3 − 1.

These polynomials consist of monomials which may be organized into two subsets, leader mono-
mials LM = {x2,2, x2,3, x2,4, x3,2, x4,2, x2

3,3, x3,3x3,4, x3,3x4,3, x2
3,4, x3,4x4,3, x3,4x4,4, x2

4,3, x4,3x4,4, x2
4,4}

and standard monomials S M = {1, x3,3, x3,4, x4,3, x4,4, x3,3x4,4}. Since |S M| = 6, the affine variety 
V (IG ) consists of 6 points Pk = (x(k)

2,2, x
(k)
2,3, x

(k)
2,4, x

(k)
3,2, x

(k)
3,3, x

(k)
3,4, x

(k)
4,2, x

(k)
4,3, x

(k)
4,4), 1 ≤ k ≤ 6, as well. These

points⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = (−1,−1,1,−1,1,−1,1,−1,−1),

P2 = (−1,1,−1,−1,−1,1,1,−1,−1),

P3 = (−1,−1,1,1,−1,−1,−1,1,−1),

P4 = (1,−1,−1,−1,−1,1,−1,1,−1),

P5 = (−1,1,−1,1,−1,−1,−1,−1,1),

P6 = (1,−1,−1,−1,1,−1,−1,−1,1),

provide the 6 normalized cocyclic Hadamard matrices over Z2
2, consisting of 3 × 3 cores with exactly 

one positive entry at each row i and at each column j, 2 ≤ i, j ≤ 4. �
As a matter of fact, running the procedure CocGM(t, G, opt) in our computer system, the compu-

tation of the reduced Gröbner bases of the ideals related to the group Zt ×Z2
2 and the dihedral group 

D4t are only feasible for t ≤ 3 (see Table 1). Unfortunately, for higher orders, the system runs out of 
memory, and some new insight is needed to improve the method.

In Section 3 we define another ideal J G for computing HG in a more subtle way, based on the 
previous work of Álvarez et al. (2008). Unfortunately, it will still be extremely hard to compute HG for 
large |G|. Nevertheless, taking advantage of the properties of cocyclic matrices over D4t and Zt × Z2

2
described by Álvarez et al. (2015, 2016), this ideal J G may be specifically simplified for computing 
HD4t and HZt×Z2

2
in a better way.

3. Ideals built from a basis for G-cocycles

In order to reduce the complexity of the computation of the reduced Gröbner basis that has been
described in the previous section, we consider a new zero-dimensional radical ideal J G related to the 
set HG , where we diminish the number of variables and the maximal degree of the polynomials. For 
this purpose, what is needed is just knowing an explicit basis for cocycles over G , which the methods 
of Horadam and de Launey (1995); Flannery (1996); Flannery and O’Brien (2000); Flannery and Egan 
(2015); Álvarez et al. (2009) provide.

Let G be a multiplicative finite group of order 4t , B = {ψ1, . . . , ψk} be a basis for normalized 
cocycles over G and ψ be a normalized cocycle over G of coordinates (x1, . . . , xk)B with regards to B, 



so that ψ = ψ
x1
1 · · ·ψxk

k , for some xi ∈ {0, 1}, 1 ≤ i ≤ k. Let md
i, j denote the (i, j)th entry of Mψd , 

so that the (i, j)th entry of Mψ is (m1
i, j)

x1 · · · (mk
i, j)

xk . Recall that cocyclic Hadamard matrices are 
precisely those matrices that are built up from Hadamard rows (excepting the first row, consisting all 
of 1s). In these circumstances, the ith-row of the previous matrix Mψ is Hadamard if and only if

4t∑
j=1

(m1
i, j)

x1 · · · (mk
i, j)

xk = 0.

The next result holds.

Theorem 4 (Álvarez et al. (2008)). The matrix Mψ is Hadamard if and only if the vector of coordinates 
(x1, . . . , xk)B of ψ with regards to B satisfies the following system of 4t − 1 equations and k unknowns

⎧⎪⎨
⎪⎩

(m1
2,1)

x1 . . . (mk
2,1)

xk + . . . + (m1
2,4t)

x1 . . . (mk
2,4t)

xk = 0
...

(m1
4t,1)

x1 . . . (mk
4t,1)

xk + . . . + (m1
4t,4t)

x1 · · · (mk
4t,4t)

xk = 0

(3)

The solutions of the system (3) constitute precisely the whole set of normalized cocyclic Hadamard 
matrices over G . Trying to solve this system may be as complicated as performing an exhaustive 
search for cocyclic Hadamard matrices over G . Instead, we intend to translate the system (3) in terms 
of a set of nonlinear Q[X]-polynomial equations over the set of variables {X} = {x1, . . . , xk} (whose 
0, 1 values are related to the coordinates of G-cocycles with regards to B), and to study the structure 
of the associated ideal.

A succinct algebraic description of the quadratic constraints {X} ⊂ {0, 1}k is provided by the fol-
lowing set of k algebraic equations:

xi(xi − 1) = 0, for all i ∈ {1, . . . ,k}. (4)

In order to define the rest of polynomial equations that arise from the system (3), we use the next 
two main ideas for simplifications:

• From a practical point of view, we may assume we work with a fixed representative cocycle ρ
among all of the possible choices of representative cocycles. In fact, empirically, in the groups
most intensively studied, there always exists a choice ρ of representative cocycle that tends to
be the most successful for providing Hadamard matrices. See in this regard the works of Álvarez
et al. (2008, 2015, 2016), Baliga and Horadam (1995), Flannery (1997) and Horadam (2007). We
will denote by Mρ = (ri, j) the matrix related to this representative cocycle ρ . Obviously, this
pruning in the searching space leads to the circumstance that some G-cocyclic Hadamard ma-
trices are lost (namely, if they do exist, those lying on a cocyclic equivalence class different to
that of ρ). For instance, this is the case of the 1400 cocyclic Hadamard matrices over D4·5, listed
in Table 1, where 800 matrices Mψ are missing from the total amount of 2200 D4·5-cocyclic
Hadamard matrices. If we want to find the whole set of cocyclic Hadamard matrices, we have to
perform an analogous search for the other possible choices of Mρ . In what follows we assume
that ψ1, . . . , ψk−m ∈ B are G-coboundaries, ψk−m+1, . . . , ψk ∈ B are representative G-cocycles and

ρ =
k∏

i=k−m+1
ψ

xi
i is a fixed linear combination of these representative cocycles.

• The second property of Lemma 1 implies that the hth summand of the lth equation in (3) reduces
to be rl+1,h(mi

l+1,h)xi (m j
l+1,h)x j , for i and j defining the (unique) two generalized coboundaries

M∂i and M∂ j sharing a negative entry in the position (l + 1, h). Namely, {i, j} = {h, (l + 1)h}.
Notice that, eventually, one or even both of these coboundaries ∂h, ∂(l+1)h might not be in B.



Actually, the monomial sl,h(X) related to the aforementioned hth summand of the lth equation in 
(3) depends on whether the two, just one or none of the coboundaries ∂h, ∂(l+1)h (precisely those
whose related generalized coboundary matrices contribute a negative entry at position (l + 1, h)) are
in B. More concretely,

• If both ∂h, ∂(l+1)h, ∈ B, then

sl,h(X) := rl+1,h (1 − 2xh)(1 − 2x(l+1)h).

• If just one of them is in B, say {i} = {h, (l + 1)h} ∩ B, then

sl,h(X) := rl+1,h (1 − 2xi).

• If both ∂h, ∂(l+1)h /∈ B, then

sl,h(X) := rl+1,h.

Let Sl(X) :=
4t∑

j=1
sl, j(X) and let Hρ

G be the set of solutions of (3) of the form ψ = ρ
k−m∏
i=1

ψ
xi
i . The set 

Hρ
G coincides with the set of solutions of the system of polynomial equations{

xi(xi − 1) = 0, if 1 ≤ i ≤ k − m,

Sl(X) = 0, if 1 ≤ l ≤ 4t − 1.

Similarly to Theorem 2, the next result holds.

Theorem 5. The set Hρ
G can be identified with the set of zeros of the zero-dimensional ideal J G = J 1

G + J 2
G ⊂

Q[X] consisting in the summation of the following two subideals:{
J 1

G = 〈 x2
i − xi : i ∈ {1, . . . ,k − m} 〉 ,

J 2
G = 〈 Sl(X) : l ∈ {1, . . . 4t − 1} 〉.

Moreover, |Hρ
G | = dimQ(Q[X]/ J G).

Proof. Similarly to Theorem 2, let P = (p1, . . . , pk−m) be a point of the affine variety V ( J G). Attending 
to J 1

G , every component pi of P is either 1 or 0, for all 1 ≤ i ≤ k −m. Let ψ : G × G → {±1} be defined 
such that

ψ = ρ

k−m∏
i=1

ψ
xi
i .

Since J 2
G implies by construction that Mψ satisfies (4), the point P can be identified with the cocyclic 

Hadamard matrix Mψ related to ψ . The affine variety V ( J G) coincides, therefore, with the set HG , 
whose finiteness involves the ideal J G to be zero-dimensional.

Besides, since J G ∩ Q[xi] = 〈 x2
i − xi 〉 ⊆ J G for all 1 ≤ i ≤ k − m and all these polynomials are 

square-free, Proposition 2.7 of Cox et al. (1998) implies that√
J G = J G +

∑
i

J G ∩Q[xi] = J G ,

so J G is therefore radical. And hence, |Hρ
G | = |V ( J G)| = dimQ(Q[X]/ J G). �

Notice that, as defined, the ideal J G is generated by O (t) polynomials of degree up to 2 over the 
set of O (t) variables {x1, . . . , xk−m}. Observe in particular that, according to Lakshman and Lazard, the 



Table 1
Running times related to CocGM and CocCB.

t |Hρ

Zt ×Z
2
2
| Running time in seconds |Hρ

D4t
| Running time in seconds

CocGM CocCB CocGM CocCB

1 6 0 (0) 0 (0) 6 0 (0) 0 (0)

3 24 102 (4255) 0 (0) 72 − 0 (0)

5 120 − 7 (93) 1400 − 11 (5826)

7 − − − 7488 − 52282 (−)

complexity of the computation of the reduced Gröbner decreases from 2O (t2) in Theorem 2 to 2O (t)

in Theorem 5.
The procedure CocCB(t, G, opt) (included in the library hadamard.lib as well) provides an imple-

mentation of this method. It is specifically designed for the group Zt × Z2
2 (taking G = 1 as input 

and using (5) as the representative cocycle ρ) and the dihedral group D4t (taking G = 2 as input and 
using (6) as the representative cocycle ρ), though it might be straightforwardly modified to fix for 
any other group G . It would suffice to actualize the polynomials Sl(X), attending to the particular 
group law of G and the corresponding representative cocycle ρ . Once again, depending on whether 
the parameter opt is equal to 1 or 2, the procedure calculates either just the number of cocyclic 
Hadamard matrices over G or the explicit full set of these matrices.

In order to check the efficiency of this alternative, the procedure has been tested in the computa-
tion of the number of cocyclic Hadamard matrices developed over the group Zt ×Z2

2 and the dihedral 
group D4t of order 4t . Running times to compute this number on our computer system are exposed 
in Table 1, where we also indicate in parentheses the running time that is required to determine the 
explicit full set of matrices.

Notice that although there are actually 2200 cocyclic Hadamard matrices over D4·5, just 1400 of 
them lies on the cocyclic equivalence class [ρ] of ρ as defined in (6) (see Álvarez et al. (2008) for 
details). This explains the output of the procedure, which limits to compute those cocyclic Hadamard 
matrices lying on the cocyclic equivalence class of [ρ]. Anyway, this is not a source of problems as 
we commented before, since this case seems to provide most of the D4t -cocyclic Hadamard matrices 
known so far (see Flannery (1997); Álvarez et al. (2008, 2016)).

Actually, this procedure CocCB(t, G, opt) might be improved if a deeper knowledge about the 
inner structure of cocyclic matrices over G is known. In particular, building on the works of Ál-
varez et al. (2015, 2016), we have been able to design two specific procedures for looking for 
Zt × Z2

2-cocyclic Hadamard matrices and D4t -cocyclic Hadamard matrices, so that larger cocyclic 
Hadamard matrices (up to t ≤ 39) are obtained. The details are described in the next two subsec-
tions.

3.1. The group Zt ×Z2
2

Let G be the abelian group Zt ×Z2
2 = 〈a, b, c : at = b2 = c2 = 1〉, t > 1 odd, with ordering

{1, c,b,bc,a,ac,ab,abc, . . . ,at−1,at−1c,at−1b,at−1bc},
indexed as {1, . . . , 4t}. A basis B = {∂2, . . . , ∂4t−2, β1, β2, β3} for cocycles over G is described by Álvarez 
et al. (2008, 2009), and consists of 4t − 3 coboundaries and three representative cocycles. As usual, ∂i

refers to the coboundary associated to the ith-element in G . An explicit description of these cocycles 
may be found in Álvarez et al. (2008). Notice that all cocyclic Hadamard matrices over Zt ×Z2

2 known 
so far use all the three representative cocycles β1, β2 and β3 simultaneously (see the paper of Baliga 
and Horadam (1995) for details). Thus, we assume

Mρ = 1t ⊗

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

⎞
⎟⎟⎠ (5)



and hence, we restrict (4) to the equations related to the 4t − 3 coboundaries, that is,

xi(xi − 1) = 0, for all i ∈ {1, . . . ,4t − 3}.
Let us point out that the system (3) is equivalent to the one built up with the equations from 

the 4th to the (2t + 1)th (see the works of Álvarez et al. (2008, 2015)). So, we have only 2t − 2
polynomials of the form Sl(X) = sl,1(X) + . . . + sl,4t(X). In order to describe an explicit expression for 
the monomials sl,h(X), we state the following lemma.

Lemma 6. Given the position (s, c) with 5 ≤ s ≤ 2t + 2 and 1 ≤ c ≤ 4t, the two generalized coboundary 
matrices with entries −1 at the position (s, c) are M∂c and M∂ j(s,c) where

j(s, c) := 1 + 4

(⌊
s − 1

4

⌋
+

⌊
c − 1

4

⌋
mod t

)
+

2

(⌊
s − 1 mod 4

2

⌋
+

⌊
c − 1 mod 4

2

⌋
mod 2

)
+ (s + c mod 2) .

Proof. On one hand, attending to the choices of presentation and ordering of G described above, any 
1 ≤ s ≤ 4t in G may be expressed uniquely as gs = asa bsb csc in terms of the generators a, b, c of the 
given presentation of the group, for sa = 
 s−1

4 �, sb = 
 (s−1) mod 4
2 � and sc = (s −1) mod 2. Reciprocally,

the group element gs = aib jck corresponds to the element s = 1 + 4i + 2 j + k in the given ordering.
On the other hand, as pointed out in the second property of Lemma 1, the indices of the two 

generalized coboundary matrices which share a negative entry at the position (s, c) are c and j(s, c), 
for g j(s,c) = gs · gc , for 1 ≤ s, c ≤ 4t in G . Now the lemma follows straightforwardly. �

Taking into account this lemma and the basis B of cocycles, we compute the monomials

sl,h(X) := rl+4,h (1 − 2xh−1)
χB(h) (1 − 2x j(l+4,h)−1)

χB( j(l+4,h)),

for 1 ≤ l ≤ 2t − 2 and 1 ≤ h ≤ 4t , where

χB(i) :=
{

1, if ∂i ∈ B,

0, otherwise.

In these circumstances, Theorem 5 reads as follows.

Theorem 7. The set Hρ

Zt×Z2
2

can be identified with the set of zeros of the following zero-dimensional ideal of 
Q[X].

JZt×Z2
2
:= 〈 x2

i − xi : i ∈ {1, . . . ,4t − 3} 〉 + 〈
4t∑

h=1

sl,h(X) : l ∈ {4, . . . 2t + 1} 〉.

Besides, |Hρ

Zt×Z2
2
| = dimQ(Q[X]/ JZt×Z2

2
).

Actually, some additional assumptions, as those described in Álvarez et al. (2015), may be consid-
ered. Coboundaries ∂i on Zt ×Z2

2-cocyclic Hadamard matrices

Mψ = Mρ

∏
i∈I

M∂i

are somehow symmetrically distributed, in the sense that the relation 4k + j ∈ I ⇔ 4t − 4k + j ∈ I , 
1 ≤ k ≤ t−1

2 , 1 ≤ j ≤ 4, holds. Furthermore, the number ck of coboundaries of each subset {4k + j ∈
I : 1 ≤ j ≤ 4}, for a fixed 2 ≤ k ≤ t , satisfies c1 − ck ≡ 1 mod 2. And the number r j of coboundaries 



Table 2
Auxiliary matrix method related to the group Zt ×Z2

2.

t col dist Initial coboundaries Running time Final coboundaries
in seconds

3 4 2,2,2,2 – 0 4FC
5 2,2 2,2,2,2 – 0 43CC0
7 0,2,2 2,2,2,2 – 0 203CC30
9 0,2,2,2 2,2,4,4 – 0 E0A7546A

11 2,2,2,2,0 4,6,2,4 – 0 2C65900956C
13 1,3,3,1,1,1 8,4,4,4 – 0 54BE818818EB4
15 1,3,3,3,1,3,1 10,4,8,8 – 5 64BB78B88B87BB4
17 1,3,3,3,1,1,1,1 8,6,4,10 – 16 68D7D21188112D7D8
19 0,4,2,0,2,2,2,2,2 6,8,8,10 – 23 10FC0A35355353A0CF0
21 0,0,4,0,2,2,2,0,2,4 8,8,8,8 – 0 400F033C0CFFC0C330F00
23 1,1,3,3,3,1,3,1,3,3,1 8,14,12,12 6 22508 689CFA564FA23AE565AFC88
25 2,2,2,2,4,2,2,2,2,0,2,2 14,14,8,12 9,12,14,16,18 6844 392ABF4B8C153340D8B5EAB3
27 1,3,3,1,3,3,3,1,3,1,1,1,1 16,8,14,12 19,26,41,47,49 3651 58EB2E7B1D82811828D1B7E2BE8
29 1,1,3,1,1,1,3,1,3,3,3,3,3,1 14,12,18,12 5,9,18,23 17004 6887428B27B7BE44EB7B72B824788
31 0,4,2,4,2,2,2,2,0,2,2,0,4,2,2 12,18,18,12 14,15,21 12614 10F6F96990660F6666F06609969F6F0
33 2,4,2,2,2,2,2,2,2,2,2,0,2,0,2,2 12,18,14,16 5,6,14,18,19,22,24,25,27,29,32,35 13392 4CF565A93AC506035530605CA39A565FC
37 0,2,4,4,2,2,4,2,2,2,0,2,2,2,2,2,2,2 22,14,20,20 9,11,23,24,25,26,33,34,37,39 12325 70AFF3CFCAA0939659339569390AACFC3FFA0
39 0,0,2,4,2,2,2,2,4,2,2,2,2,2,4,2,2,2,4 24,22,22,16 13,14,23,24,25,27,30,32,33,35,41,42 1653 100CF3A5AFCCA6AF53CFFC35FA6ACCFA5A3FC00

of each subset {4k + j ∈ I : 1 ≤ k ≤ t}, for 1 ≤ j ≤ 4, give rise to a tuple dist = (r1, r2, r3, r4) (termed 
distribution by Álvarez et al. (2015)) which certainly satisfies some additional properties.

Any Zt ×Z2
2-cocyclic matrix Mψ = Mρ

∏
i∈I

M∂i may be uniquely identified as a (4 × t) binary matrix 

Dψ = (d jk) (termed diagram by Álvarez et al. (2015)), such that d jk = 1 if and only if 4(k − 1) + j ∈ I . 
The conditions described above have a straightforward translation in terms of Dψ . More concretely,

• column i of Dψ is equal to column t + 2 − i, for 2 ≤ i ≤ t+1
2 ;

• the sum of column 2 ≤ j ≤ t of Dψ is of different parity of that of column 1 of Dψ ;
• the sum of each row of Dψ gives the distribution dist = (r1, r2, r3, r4).

Thus the method may be improved, as soon as the distribution dist and the number of cobound-
aries per column col = (c2, . . . , c t+1

2
) are provided. We have implemented this method as a Singular

procedure called CocAH(t, col, dist, H). Since exhaustive calculations are not feasible for t ≥ 11, 
we have included in this procedure a new parameter H = (x1, . . . , x2t+1), which determines which 
coboundaries are fixed (xi = 1 means ∂i+1 is used, whereas xi = 0 implies ∂i+1 is not used), and 
which of them are unknowns to be settled in the search (those corresponding to values xi = 2). The 
procedure outputs the set of cocyclic Hadamard matrices meeting these constraints, if any exist.

Running the procedure on our computer system, after many attempts and essaying with differ-
ent parameters, we have been able to find some Zt × Z2

2-cocyclic Hadamard, up to t ≤ 39, as Table 2
shows. The latter are written row after row, where each row is represented by three digits in hexadec-
imal form. To this end, after replacing each −1 by 0, the resulting row in binary form is translated to 
its equivalent hexadecimal form, in such a way that every possible nibble (group of 4 bits) from 0000
to 1111 is encoded as its corresponding hexadecimal digit from 0 to F , as usual.

Notice that there is no example for t = 35. As explained in Álvarez et al. (2015), Zt × Z2
2-cocyclic 

Hadamard matrices of the type we are looking for (using the representative cocycle ρ as described 
in (5)), are in one to one correspondence with the Williamson Hadamard matrices, which are known 
not to exist on order t = 35 among others (see Holzmann et al. (2008) for details).

3.2. The dihedral group D4t

Let G be the dihedral group D4t = 〈a, b : a2t = b2 = 1, bab = a−1〉 with ordering

{1,a, . . . ,a2t−1,b,ab, . . . ,a2t−1b},
indexed as {1, . . . , 4t}. A basis B for cocycles over G is explicitly described by Álvarez et al. (2008, 
2009). For t > 2, the basis consists of 4t − 3 coboundaries ∂k and three representative cocycles βi , 



so that B = {∂2, . . . , ∂4t−2, β1, β2, β3}. In the sequel we assume t > 2. Flannery (1997) observed that 
cocyclic Hadamard matrices over D4t mostly use β2 · β3 and do not use β1. So, we assume

Mρ = Mβ2 · Mβ3 =
(

A A
B −B

)
, (6)

for 2t × 2t matrices A = (ai, j) and B = (bi, j) such that ai, j =
{

1, if j < 2t + 2 − i,
−1, otherwise.

and bi, j ={
1, if j ≤ i,

−1, otherwise.
Therefore, in this case, (4) is rewritten as

xi(xi − 1) = 0, for all i ∈ {1, . . . ,4t − 3}.
According to Álvarez et al. (2008), the last 3t equations in the system (3) are superfluous for 

D4t -cocyclic Hadamard matrices. So, we have only t − 1 polynomials of the form Sl = sl,1 + . . . + sl,4t , 
1 ≤ l ≤ t − 1. In order to describe an explicit expression for the monomials sl,h(X), we state the 
following lemma.

Lemma 8. The two generalized coboundary matrices with entries −1 in a position (s, c) ∈ {2, . . . , t} ×
{1, . . . , 4t} are M∂c and M∂ j(s,c) , where

j(s, c) = 1 + (s + c − 2 mod 2t) + 2t
 c − 1

2t
�.

Proof. On one hand, attending to the choices of presentation and ordering of G described above, 
any 1 ≤ s ≤ 4t in G may be expressed uniquely as gs = asa bsb in terms of the generators a, b of the 
given presentation of the group, for sa = s − 1 mod 2t and sb = 
 s−1

2t �. Reciprocally, the group element
gs = aib j corresponds to the element s = 1 + i + 2t j in the given ordering.

On the other hand, as pointed out in the second property of Lemma 1, the indices of the two 
generalized coboundary matrices which share a negative entry at the position (s, c) are c and j(s, c), 
for g j(s,c) = gs · gc , for 1 ≤ s, c ≤ 4t in G . Now the lemma follows straightforwardly. �

Taking into account this lemma and the basis of cocycles B, an explicit description of the mono-
mials sl,h consists in

sl,h := rl+1,h (1 − 2xh−1)
χB(h) (1 − 2x j(l+1,h)−1)

χB( j(l+1,h)),

for 1 ≤ l ≤ t − 1 and 1 ≤ h ≤ 4t . In these circumstances, Theorem 5 reads as follows.

Theorem 9. The set Hρ
D4t

can be identified with the set of zeros of the following zero-dimensional ideal of 
Q[X].

J D4t := 〈 x2
i − xi : 1 ≤ i ≤ 4t − 3 〉 + 〈

4t∑
h=1

sl,h(X) : 1 ≤ l ≤ t − 1 〉.

Besides, |Hρ
D4t

| = dimQ(Q[X]/ J D4t ).

We have implemented this method as a Singular procedure called CocDH(t, dist, opt, H). 
As before, the parameter opt indicates whether to compute the cardinality or the full set Hρ

D4t
of D4t -cocyclic matrices. And the auxiliary parameter H = (x1, . . . , x4t−3) once again determines 
which coboundaries are fixed (xi = 1 means ∂i+1 is used, whereas xi = 0 implies ∂i+1 is not 
used), and which of them are unknowns to be settled in the search (those corresponding to values 
xi = 2).



Table 3
Auxiliary matrix method related to the group D4t .

t dist Initial coboundaries Running time Final coboundaries
in seconds

3 2,2 - 0 774
5 2,2,2,2 - 0 5D798
7 2,2,0,2,0,2 - 0 472E4A0
9 1,2,3,2,3,3,3,4 - 0 4FB3AF4F4

11 2,2,1,3,1,3,1,2,3,2 - 29 47942777A2C
13 1,2,2,2,3,1,1,2,1,1,4,2 - 20 703BBDA249518
15 1,1,0,1,1,3,1,1,3,3,3,1,3,2 - 308 6E7DCCA16A9A08
17 1,2,1,2,2,2,0,0,3,0,2,3,2,2,2,2 - 1477 44343445C42F44938
19 1,0,3,1,2,1,1,2,3,2,2,2,1,3,2,3,3,4 6,36,42 2591 25876E0A44EBD737D04
21 2,1,3,1,3,3,0,3,2,1,0,2,3,3,3,3,2,1,1,2 3,6,41,81 3903 91B8A9E69EB33ED0A0BC
23 1,2,3,0,3,3,3,3,1,3,3,2,0,3,2,2,2,2,1,2,1,2 3,6,7,8,38,45,88 15248 48668F0A9FD3BDD146DC8E4
25 1,1,4,3,2,2,3,2,2,2,2,1,2,3,4,3,2,3,1,2,2,0,2,1 7,12,47,50,52,66,82,83 12894 3437D0D4FCBD5EEB9045CC34C
27 0,1,3,3,3,1,2,2,3,0,2,3,2,2,4,0,2,0,2,1,1,2,1,2,4,2 4,6,43,50,63,75,86 17226 2EBEA5DE050438EC782296C4D98
29 2,3,0,1,2,1,4,1,2,2,1,1,4,2,3,1,3,2,3,3,2,0,2,1,1,2,2,1 11,19,35,51,53,62,73,83,89 15918 422ECA4033547CF4B33C2BE1CDA50
31 1,1,2,2,3,3,2,3,0,1,0,4,2,2,3,2,3,2,2,0,0,3,1,1,2,1,3,2,2,3 5,6,17,36,48,63,64,84,95,115,117 19702 21172424E984E2E3FC6B06D5527CA70
33 1,2,3,2,3,1,2,1,2,1,3,1,4,3,2,2,1,2,2,3,2,1,3,3,2,3,2,3,1,2,1,2 3,28,31,38,56,59,62,66,72,77,78,83,88 22180 5A2D1A666661BC21CFBFA5D41AFDE1514
35 2,0,3,1,2,1,1,3,3,2,2,2,2,4,3,2,2,3,0,2,3,3,0,2,3,1,1,1,2,1,2,2,2,3 6,7,9,44,45,53,107,111,113, 119,120,137,138 28447 276EDC8AEF1EC38456867D34250290B2F98
37 1,2,4,3,1,2,3,2,3,2,3,2,2,3,2,1,2,2,2,2,1,2,2,2,2,2,1,2,3,3,2,2,2,2,2,1 36,45,46,64,75,78,79,81,90,95,135,140 24382 73A6D3FF5982AB0E7B3A3B5A83281F1214E6C
39 2,1,2,2,1,3,1,4,3,1,2,1,2,2,2,3,1,2,2,2,3,2,1,2,0,1,3,0,0,1,3,2,3,2,2,1,4,3 5,9,10,38,43,56,58,72,80,84,94,95,124,126,127 29281 D617D23BBCD1123D7A78603300AB32A694F9AC

Additionally, beyond the help list H , in order to improve the process of calculating a D4t -cocyclic 
Hadamard matrix one may impose some extra constraints by means of an initial distribution dist =
(d2, . . . , dt) concerning to the number dl of coboundaries which give an intersection (as termed in 
Álvarez et al. (2008)) at row l for the first time, 2 ≤ l ≤ t . Actually, attending to the work in Álvarez 
et al. (2016), this translates to some extra polynomial constraints of the kind d2 = x2t−1 + x2t , d3 =
x1 + x2t−2 + x2t+1 and dl = xl−2 + x2t−l+1 + x2t+l−2 + x4t−l+1, 4 ≤ l ≤ t , for some prefixed values dl , 
0 ≤ d2 ≤ 2, 0 ≤ d3 ≤ 3 and 0 ≤ dl ≤ 4, for 4 ≤ l ≤ t .

The procedure outputs the set of D4t -cocyclic Hadamard matrices meeting these constraints, if 
any exist. Running the procedure on our computer system, after many attempts and essaying with 
different parameters, we have been able to find some D4t -cocyclic Hadamard matrices, up to t ≤
39, as Table 3 shows. In the table, those initial coboundaries that are not permitted to be used are 
underlined, and the matrices are written once again row after row in hexadecimal form.

Although some work has been done, there is still no way to know which vectors H =
(x1, . . . , x4t−3) and dist = (d2, . . . , dt) are suitable for providing large D4t -cocyclic Hadamard ma-
trices. Getting an example for the case t = 47 should be the main concern in the short term, as it is 
the smallest order for which no cocyclic Hadamard matrix is known yet (see Horadam (2007)).

4. Conclusions and further work

By means of various techniques in Algebraic Geometry, this paper has been concerned with 
the computation of cocyclic Hadamard matrices over a fixed group G of order 4t , as the affine 
varieties of certain zero-dimensional radical ideals. All the procedures that are described in 
the paper have been implemented in the open computer algebra system for polynomial com-
putations Singular and are included in the library hadamard.lib, which is available online at 
http://personales.us.es/raufalgan/LS/hadamard.lib.

Based on the classic cocyclic test of Horadam and de Launey (1995), our first approach (Theorem 2) 
has excessive complexity even for very small t . In order to improve the efficiency of this polynomial 
method, we have used recent results on the inner structure of a cocyclic matrix and we have defined a 
different ideal that also characterizes the set of G-cocyclic Hadamard matrices (Theorem 5). Improved 
versions of this procedure (CocAH(t, col, dist, H) and CocDH(t, dist, opt, H), based on Theorems 7
and 9, respectively) have been used to perform local searches for Zt ×Z2

2-cocyclic Hadamard matrices 
and D4t -cocyclic Hadamard matrices, so that matrices of order up to 4t ≤ 156 have been found. To 
this end, an auxiliary list H is needed to perform these local searches, for t ≥ 11 (an exhaustive search 
is only feasible for t < 11). More concretely, the list H indicates which coboundaries are fixed (either 
used or not), and which of them are considered unknowns to be settled. A very interesting future 
work is trying to characterize if there exist some types of structures for H such that the existence of 
cocyclic Hadamard matrices over either Zt ×Z2

2 or D4t is predicted.

http://personales.us.es/raufalgan/LS/hadamard.lib
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