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Resumen 

La presente tesis doctoral es un compendio de siete estudios dedicados al análisis numérico de la 

dinámica no lineal y la estabilidad lineal global de flujos de dos fluidos separados por una interfaz 

continua. Para esto se implementa la técnica numérica eficiente computacional desarrollada por 

Herrada y Montanero [1] para el estudio de la dinámica de sistemas capilares de un solo fluido. En 

vez de usar técnicas de aproximación para simplificar las ecuaciones de Navier-Stokes de flujos de 

dos fluidos obteniendo flujos básicos que dependen de una sola dirección, la aplicación de este 

método tiene la capacidad de modelar el conjunto completo de ecuaciones de gobierno de ambos 

fluidos para obtener el comportamiento hidrodinámico y el análisis de estabilidad lineal global. 

El primer capítulo es una introducción para explicar los diferentes tipos de flujos multifásicos y 

su importancia en la industria y la tecnología. Aquí, se presta especial atención a trabajos anteriores 

para el análisis de estabilidad lineal global de flujos de dos fluidos, en particular aquellos que 

contienen una interfaz libre. También se revisan los métodos numéricos para simularlos, así como los 

tipos de discretización espacial. 

El Capítulo 2 se centra en el estudio de un flujo de aire y agua como una aplicación en 

biorreactores aéreos. Este flujo estable de dos fluidos y axisimétrico es impulsado por un disco 

superior giratorio en un cilindro vertical sellado. La investigación demuestra la aparición de una 

burbuja de rotura de vórtice que aparece en el centro inferior y que se expande hacia la interfaz a 

medida que aumenta el número de Reynolds. Además, regiones de circulación meridional en el 

sentido de las agujas del reloj aparecen en el agua y en el aire, las cuales están separadas por una 

delgada capa de circulación en sentido contrario a las agujas del reloj adyacente a la interfaz en la 

región del agua. La novedad de este estudio muestra que el flujo se vuelve inestable para números de 

Reynolds mayores que aquellos en los que emerge la burbuja de rotura de vórtice y la capa delgada 

de circulación. 

En el capítulo 3 es analizado la topología del flujo y el comportamiento de estabilidad que se 

ocultan en el trabajo experimental desarrollado por Tsai et al. [2]. El disco giratorio superior de un 

cilindro vertical sellado, lleno de agua y aceite de soja, genera la circulación meridional y el flujo de 

rotación. El análisis numérico demuestra la forma de la interfaz de superficie plana y la aparición de 

la ruptura del vórtice en ambos fluidos al aumentar la fuerza de rotación. También se encontró que la 

inestabilidad del flujo estable axisimétrico que emerge en el agua es de tipo cizalla. 

Con respecto al capítulo 4, al igual que en el anterior, se analiza el flujo de rotación de dos fluidos 

que fue estudiado experimentalmente por Fujimoto y Takeda [3], con el objetivo de descubrir las 

topologías de flujo y las inestabilidades hidrodinámicas. En este caso, el contenedor cilíndrico 

vertical se llena con agua y aceite de silicona y sus movimientos se establecen mediante la tapa 

giratoria superior. El estudio numérico reproduce con precisión las complejas formas de la interfaz, 

llamadas en la investigación experimental como joroba, cúspide, monte Fuji y campana. Además de 

que la inestabilidad del flujo axisimétrico es de tipo cizalla, se encuentra que la energía de 

perturbación se concentra en la profundidad del agua, lo que explica la no dependencia de la forma 

de la interfaz en la inestabilidad. 

Los patrones de múltiples vórtices y la estabilidad de un flujo de rotación se investigan en el 

capítulo 5. A diferencia de los casos anteriores, se utiliza un disco giratorio inferior y aire y agua 

como fluidos de trabajo. En base a la fracción de volumen de agua, se encuentran diferentes 

escenarios topológicos con características interesantes, como cadenas de vórtices de aire y agua y 
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vórtices de aire con forma de anillo de burbujas. Además, se demuestra que los movimientos de 

múltiples vórtices son estables y las inestabilidades aparecen cuando la interfaz se coloca cerca de la 

parte inferior o superior del contenedor. 

En relación al capítulo 6, este se dedica al análisis de un sistema de aire y agua axisimétrico y 

estable, impulsado por un disco superior giratorio en un contenedor semiesférico. En este estudio se 

demuestra que el aumento de la fuerza de rotación produce un patrón de tres vórtices, donde la 

circulación de aire y la co-circulación de agua están separadas por una región delgada de agua que 

gira en sentido contrario. Además, se encuentra que la perturbación de energía crítica se localiza en la 

región del aire el cual es de tipo cizalla. 

Finalmente, en los dos últimos capítulos, se estudia un puente líquido bajo los efectos de 

vibraciones de pequeña amplitud, surfactantes insolubles superficiales, gradientes térmicos y fuerza 

gravitacional. Específicamente, el capítulo 7 analiza la interacción entre las no homogeneidades de 

concentración de surfactante interfacial debido al flujo de transmisión y la convección de Marangoni. 

Como consecuencia, se encuentra que los patrones de flujo tienen un comportamiento no monótono 

al aumentar el número de Marangoni. Además, se ve que la intensidad del flujo de transmisión en la 

interfaz produce dos regímenes definidos cuando la amplitud de la fuerza se intensifica. En el 

capítulo 8, se estudia la estabilidad de la convección térmica para altos números de Prandtl con 

deformación de la superficie libre. Se muestra que las deformaciones dinámicas de la superficie libre 

del flujo base son muy parecidos a los experimentos previos y colapsan en una curva al normalizarse 

con su respectivo número capilar. Además, un efecto mínimo en el análisis de estabilidad es causado 

por la deformación interfacial. 

  



vii 
 

Abstract 

The present thesis is a compendium of seven studies devoted to the numerical analysis of 

nonlinear dynamics and global linear stability of two-fluid flows separated by a continuous interface.  

The computationally efficient numerical technique developed by Herrada and Montanero [1] is 

implemented to study the dynamics of capillary one-fluid systems. Instead of using approximation 

techniques to simplify the two-fluid flows Navier-Stokes equations, the application of this method 

has the capability of modelling the complete set of governing equations for both fluids in order to 

obtain the hydrodynamics behavior and the global linear stability analysis. 

The first chapter is an introduction to explain the different types of multiphase flows and their 

importance in the industry and technology. Here, special attention is paid to previous works for 

global linear stability analysis of two-fluid flows, in particular those with interfaces. It is also 

reviewed the numerical methods for simulating them as well as the spatial discretization techniques. 

Chapter 2 is focused on the study of an air-water swirling flow as an application in aerial 

bioreactors. This steady axisymmetric two-fluid flow is driven by a rotating top disk in a vertical 

sealed cylinder. It is found that a vortex breakdown bubble appears at the bottom center and spread 

out to the interface as Reynolds number increases. Then, clockwise meridional circulation regions 

appear in water and air, which are separated by a thin anticlockwise circulation layer adjacent to the 

interface in water. The novelty of this study shows that the flow becomes unstable for larger 

Reynolds numbers than those at which vortex breakdown bubble and thin circulation layer emerge.  

In chapter 3, the topological flow structure and stability behaviour hidden in the experimental 

work developed by Tsai et al. [2] is analysed. The upper rotating disk of a sealed vertical cylinder, 

filled with water and soybean oil, generates the meridional circulation and swirl flow. The numerical 

analysis proves the flattop interface shape and the vortex breakdown emergence in both fluids by 

increasing the rotation strength. It is also shown that the instability of the steady axisymmetric flow 

emerging in the water fluid is of the shear-layer type.  

With regard to chapter 4, as with to the previous one, the two-fluid swirling flow experimentally 

studied by Fujimoto and Takeda [3] is analyzed in order to unveil the flow topologies and 

hydrodynamic instabilities. In this case, the vertical cylindrical container is filled with water and 

silicone oil and their motions are set by the upper rotating lid. The numerical study accurately 

reproduces the complex interface shapes, called in the experimental investigation as hump, cusp, Mt. 

Fuji and bell. Besides the instability of the axisymmetric flow is of shear-layer type, it is found that 

the disturbance energy is concentrated in the water depth, explaining the no-dependency of interface 

shape on the instability. 

 Multi-eddy patterns and stability of a whirlpool flow is investigated in chapter 5. Unlike the 

preceding cases, use is made of a bottom rotating disk and air and water as working fluids.  Relying 

on the water volume fraction, it is found different topological scenarios with interesting 

characteristics such as zipper-like chains of air and water eddies and bubble-ring air eddies. In 

addition, it is shown that multi-eddy motions are stable and the instabilities appear when the interface 

is placed near either bottom or top of the container. 

Concerning chapter 6, it is dedidated to the analysis of a steady axisymmetric air-water driven by 

a rotating top disk in a semispherical container. It is found that the increasing of rotation strength 

produces a three-eddy pattern, where the air circulation and the water co-circulation are separated by 

a thin region of water counter-circulation. Moreover, the critical energy disturbance is 
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located in the air region, being of shear-layer type. 

Finally, in the two last chapters, liquid bridges under the effects of small-amplitude vibrations,  

insoluble surfactants, thermal gradients and gravitational force are studied. Specifically, chapter 7 

analyses the interaction between the interfacial surfactant concentration inhomogeneities due to 

streaming flows and Marangoni convection. It is found that the flow patterns have nonmonotone 

behavior with increasing Marangoni number. Furthermore, it is seen that the strength of the 

streaming flow at the interface produces two defined regimes when force amplitude intensifies. In 

chapter 8, the stability of the thermal convection for high Prandtl numbers with free surface 

deformation are studied. It is shown that the dynamical free surface deformations of the base flow are 

in good agreedment with previous experiments and collapse into one curve when normalizing with 

their respective Capillary numbers. Besides, a small effect on the liquid bridge stability is caused by 

the interfacial deformation. 
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ultiphase flows are systems in which different phases in solid, liquid or gas state coexist 

and interact simultaneously. These phenomena can be observed in a variety of industrial 

and technological applications, such as fluidized beds, cavitating flows, pollution 

controls, heat exchangers, aerosols, plasma spray coating, synthesis of nanophase materials, abrasive 

water-jet cutting, electrophotographic processes, to mention a few. Environmental phenomena are 

also typical multiphase flows, for instance, rain, snow, fog, avalanches, mudslides, sediment 

transport debris flows and countless more. Most biological and medical processes like blood flow, 

cell-fluid interface interaction, microbe locomotion, gas exchange, etc, have multiphase flows 

inherent characteristics.  

As mentioned above, multiphase flows are presented in a variety of processes, but their complex 

behavior makes the analysis and study a challenge task, due to mainly the interface interaction, type 

of fluid, change of phases, chemical reactions and size of particles. In order to explore these 

phenomena, it is necessary to determine the topologies [4] involved in, which can be disperse flows 

and separated flows. In disperse flows [5], small particles, bubbles or droplets are spread in a 

continuous fluid, whereas separated flows are composed by different continuous phases limited each 

other by interfaces [6], [7]. Figure 1.1 depicts the different types of multiphase flows and their 

industrial and technological applications. 

The definition of the topology is an important previous step to model the physical behavior of 

multiphase flows, which can be studied experimentally, theoretically and computationally. In the first 

one, it is used a laboratory equipment that is instrumented adequately so that the main physical 

characteristics can be obtained [8]; generally, empirical correlations are acquired from this 

experimental process. In the second approach, mathematical mechanistic equations [9], which are 

generally based on the main characteristics of the phenomenon, are utilized in order to model the 

physical behavior. Finally, computational approach studies the multiphase phenomena by applying 

numerical methods so as to solve the differential equations that govern them [10]. 

1.1 Hydrodynamic linear stability of multiphase flows 

One of the most important branches of the fluid dynamics is the hydrodynamic stability, in which 

perturbations around a basic state flow are studied in order to analyze the transition from a stable to 

unstable condition[11], [12], . Basically, there are five means [13] to establish a hydrodynamic 

stability study: through the natural phenomena and laboratory experiments, numerical experiments, 

application of linear and weakly nonlinear theory, qualitative theory analysis of bifurcation and chaos 

and strongly nonlinear theory approach. 

The study in the present thesis is devoted to the analysis of modal linear stability of two-fluid 

flows with a continuos interface. In this approach, the variables of the flow system such as velocity, 

pressure or temperature are decomposed into a steady (base flow) and an unsteady part 

M 
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(perturbation), the latter being approximated by small amplitude and phase functions. These anzats, 

represented by 𝐯(x, t) = �̅�(𝐱) + ε�̃�(x, t) for the velocity with ε ≪ 1 and x,t as the spatial 

coordinates and time respectively, are replaced into the governing equations. The resulting equations 

are subtracted from the base flow and the terms in ε2 are dropped in order to yield the linearized 

perturbation equations. It is worth mentioning that the perturbation is considered as a superposition 

of many waves that do not interfere with each other. 

 

Figure 1.1 Types of multiphase flows [14] 

 

Based on the flow’s response to the perturbation or impulse, it can be identified both a stable and 
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an unstable flow. In the former one, the perturbation decays toward the base state in every direction 

from the source point of impulse. Conversely, if there is a growing effect of the perturbation along at 

least one ray emanating from the point of impulse, the flow is considered unstable. 

The modal linear stability theories can be classified as: local, nonlocal and global analysis [15]. 

Local stability analysis focuses on flows that vary slowly in one spatial direction or parallel flows 

[16], [17], where the basic flow is considered homogeneous along two spatial directions [18][13]. 

The first studies of hydrodynamics stability were focused in local linear analysis theory and some 

assuptioms were imposed in order to solve the differential equations that model the physical 

phenomenon. For instance, the pioneering work of Kelvin-Helmholtz (1871), which used the 

potential flow approach, analysed the stability of two fluids of different density in two horizontal 

parallel infinite streams; one of the natural phenomena that can be explained by using this theory is 

the generation of waves. From this study, by applying an additional upward vertical acceleration to 

the system, the Rayleigh-Taylor instability emerged and served to explain certain processes involved 

in salt domes, weather inversions and in phenomena related with astrophysics and 

electrohydrodynamics. Rayleigh [19], in other interesting work presented in 1878, used the Euler’s 

equations for inviscid fluids to study the linear stability leading to the break-up process of a round 

liquid jet under the surface tension effects.  

The phase function of the perturbation is composed of the phase velocity and the wave numbers. 

If this numbers are real or complex, then it can be distinguish three ways [20] of leading the local, 

nonlocal and global stability analysis, namely, (a) through temporal approach, from which the first 

classical hydrodynamics theories were developed [21][22], that uses the phase velocity as a complex 

number and real wave numbers; (b) by using spatial approach, where use is made of complex wave 

numbers and real phase velocity; and (c) by means of the spatio-temporal approach, where both the 

wave numbers and phase velocity are complex numbers. 

With respect to spatio-temporal stability analysis, special attention is given to unstable open 

flows, where a perturbation never passes the same point more than once. In this case, if the 

perturbation response grows along some rays from the point of impulse, the flow is called 

convectively unstable. On the other hand, if the perturbation grows at the point where it was applied, 

the flow is absolutely unstable. The reader interested in this subject is referred to Huerre and 

Monkewitz [23] for more details. The Figure 1.2 depicts a graphical description differentiation 

between stable and convectively/absolutely unstable flows. 

 

 

Figure 1.2 (a) Stable flow, (b) convectively unstable flow and (c) absolutely unstable flow [18]. 

 

In the nonlocal linear stability analysis, the amplitude of the perturbation, which depends only on 

one spatial direction for the local case, varies slowly in other one. This analysis emerged due to the 

fact that the local stability does not take into account both the growth of boundary layer and the 
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history effects related with the initial conditions. For these reasons, the so called parabolized stability 

equations (PSE) technique has been developed to solve this type of problems [24]. Some applications 

of this approach can be observed for instance in the study of Yen and Messermith [25], motivated 

mainly by the lack of accuracy of the local lineal stability theory to predict the natural divergence of 

the jet flow, where analysed the streamwise evolution of instability waves in jet flows. Bertolotti and 

Herbert[26] analysed the linear stability of compressible boundary layers using PSE technique, and 

Zhang and Zhou [27] studied the evolution of disturbances of them for subsonic and supersonic 

regimens, whose results from both PSE and Direct Numerical Simulation (DNS) [28] agreed with 

each other reasonably well. In another study in the supersonic regime, Malik [29] investigated the 

linear stability under the chemistry effects associated with high temperature boundary layers. Taking 

advantage of PSE capabilities to solve nonparallel linear stability problems, Herrada et al [30] 

studied the perturbations effects on the boundary layer flow over a long thin cylinder aligned with the 

main flow and with rotation around its axis. 

As far as the global linear stability analysis is concern [31], [32], it can be identified principally 

two sub-categories, namely, the BiGlobal and TriGlobal linear stability theory, directly pertaining to 

two and three dimensional steady basic flows, respectively. In the former case, the base flow depends 

on two of the three spatial directions and homogeneous in the third one, which means that the 

disturbances are three-dimensional with a harmonic behavior along the direction in where the base 

flow does not vary. In this context, it is worth mentioning the pionnering study developed by 

Pierrehumbert [33], who explained the behaviour of two-.dimensional inviscid vortex flows under 

three-dimensional perturbations and discovered the short-wavelength elliptic instability nature of 

them.  Other important stability investigations, related to the implementation of BiGlobal approach, 

are present in the literature for different fluid flow applications, such as the temporal and spatial 

stability of attachment-line boundary layers developed by Ling and Malik [34] and Heeg and Geurts 

[35], respectively; the three-dimensional temporal instabilities in both incompressible and 

compressible flows over open cavities [36], [37]; the temporal stability of pipe flows in rectangular 

and elliptic cross section [38], [39]; the instability of the steady flow past spheres, cylinders and 

airfoils [40], [41], [42], etc. 

Finally, with regard to TriGlobal modal linear stability analysis, the treatment of the flow 

variables is made by assuming non-homogeneity on the basic flow with a total dependency on the 

three spatial directions, which entails applying only temporal analysis with this approach. Here it 

deserves to mention the work of Tezuka and Susuki [43], who were the first to use this stability 

approach so as to analyse a three-dimensional flow around a spheroid at varied angles of attack. In a 

like manner, but comparing the stability results with direct numerical simulations, Bagheri et al. [44], 

demonstrated the existence of self-sustained global oscillations generated by a jet in crossflow. 

Applying to a three-dimensional lid-drive cavity flow, Giannetti et al. [45], evaluated the critical 

Reynolds numbers for which the flow perturbations giving rise instabilities. 

Notwithstanding  a large quantity of works in the literature for studying the linear stability of 

hydrodynamic systems, a great percentage of them are focused on one-fluid flows, and a very little 

has been made to the study of immiscible multiphase flows, specially those characterized by a well-

defined interface or free surface (i.e. liquid bridges [46], flow-focusing systems [47][48], 

electrospinnig phenomenon [49][50], two- fluids bioreactors for oxygen transport processes[51], 

among others). Besides, in order to yield the global linear analysis, various authors have made use of 

simplified momentum equations with base flows as a function of one direction, like the work 

developed by Herrada and Gañan-Calvo [52] so as to study the spatiotemporal stability of a confined 

capillary jet using exact steady unidirectional solutions for both the inner and outer fluid. Re-writing 

the steady Navier-Stokes equations for a two-fluid flow through the well-know slender (parabolized 

or boundary) approximation, Gordillo et al. [53] addressed a temporal linear stability analysis of a 

inviscid liquid jet surrounded by a co-flowing gas stream; using the same approximation technique, 

Sevilla [54] developed a spatiotemporal stability of capillary jets in order to analyse the viscous 

relaxation effect. In other study, Castro-Hernández et al. [55] studied the tip streaming regime using 

the slender-body theory approximation due to Taylor [56], in which the viscosity ratio, the velocity 
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ratio and the capillary number were used as control parameters. This one-dimensional approach was 

used by Gordillo et al. [57] to analyse the effect of the global stability on the generation of 

monodisperse micro and submicro emulsions from stretched jets within a coflowing stream. 

Likewise, Rubio et al.[58] studied experimentally and theorically the transition between jetting to 

dripping regime under gravitational effects; for that purpose, a global linear stability analysis was 

implemented by applying the dimensionless leading-order one dimensional mass and momentum 

equations developed by Eggers and Dupont[59] and García and Castellanos[60]. 

Motivaded by the fact that these approximation techniques, used to simplify the two-fluid flows 

Navier-Stokes equations and to generate one-direction dependent  basic flows only, does not have the 

capability to address a global linear stability analysis using the complete set of governing equations 

for modelling free-interface multi-fluid flows, it is used the computationally efficient numerical 

method developed by Herrada and Montanero [1] for studying both the nonlinear evolution and 

linear stability of capillary one-fluid systems. This technique implements a mapping of the time-

dependent fluid region onto a fixed numerical domain making use of a suitable coordinate 

transformation, a spatial discretization by means of the spectral collocation approach and a second-

order backward finite differences for implicit time advancement. The most interesting and particular 

characteristic of this method, which helps reducing the computational cost for solving the resulting 

algebraic equations, is the fact that the elements of the jacobians pertaining to the discretized system 

of equations are symbolic functions which are evaluated numerically by means of iterative Newton-

Raphson technique. Additionally, the eigenvalue problem, related to the linear stability analysis, can 

be solved by adapting this novel numerical procedure without significant endeavor. 

This doctoral thesis is devoted to the study of the nonlinear dynamics and linear stability of two-

fluid swirling phenomena and liquid bridges; for this purpose, use is made of the above-mentioned 

technique by considering governing equations for both phases including the kinematic and dynamic 

interfacial conditions. 

 

1.2 Computational simulation of multiphase flows 

1.2.1 Multiphase numerical techniques 

The numerical study of multiphase flows has been in constant evolution and improvement, and, 

therefore, there are a large number of scientific articles devoted to investigate them. The main 

challenges that the multiphase numerical technique has to overcome rely mainly on modelling 

discontinuities and properties of different fluid through the interface, ensuring conservation of mass, 

momentum and energy, manipulation of complex topologies and the surface tension forces. 

With regard to the scope of the present thesis, special attention is particularly paid to the study of 

two-phase flows, which can be mainly simulated by the following numerical methods: one-fluid 

model, two-fluid model, smoothed-particle hydrodynamics approach and lattice Boltzmann method. 

In the one-fluid method, it is possible to analyse the two-phase flow by applying a single set of 

governing equations in which the mass, momentum and energy conservation laws are used to 

simulate the whole flow field but taking into account the different physical properties related to each 

fluid. The numerical methods based on this approach can be classified into two [61] categories, 

namely interface-capturing and interface-tracking methods. 

As far the interface-capturing methods concern, the governing equations are solved, in particular, 

on a fixed grid and use is made of a maker function, which is advected by the flow, so as to identify 

the different fluids. Among them, it can be mentioned the so called Volume of Fluid (VOF) [62][63] 

method, where the interface is represented by a discontinuity line and whose generation is obtain 

from the volume fraction values; the use of the maker or auxiliary function generally entails 

numerical diffusion problems which can be dimish by applying suitable interface reconstruction 

techniques[64]. Another important maker-function advection method is the Level-Set Method (LSM) 
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[65][66], which has the advantage of accurately representing interfacial quantities, for instance, the 

curvature and interfacial normal. In order to identify the interface between the phases, a level-set 

function, depending on space and time, is used to represent the distance from the interface, being 

positive for the one fluid and negative for the other one. From this function, the physical properties of 

each fluid (i.e. density, viscosity) and the interface characteristics such as surface tension and 

curvature are determined. An important feature of LSM, is the smooth transition between phases 

allowing accurate discretization of the normal and the curvature, unlike VOF method in where the 

transition occurs in the same grid cell. The drawback of LSM with respect to VOF is the lack of 

conservation of mass, so that a combined method [67], [68] called coupled level set/volume-of-fluid 

(CLSVOF), has emerged in order to overcome the weakness of both methods. In addition to the two 

methods mentioned above, others have been developed to address computational multiphase flows, 

applying one-fluid formulation to the governing equations, for instance the constrained interpolated 

propagation method [69] and the phase-field method [70]. The difference relies basically on the way 

of the maker function is advected or how the governing equations are manipulated. Conversely, in 

the interface-tracking approach for one-fluid approach, the boundary between the fluids is tracked by 

means of marker points, which are advected with the flow, and then the maker function is generated 

using the interface location. Two sub-categories of this approach can be distinguish, namely the 

marker-and-cell (MAC) [71] and front-tracking [72] methods. 

In the Two-fluid models [73], [74], whose development was particulary motivated by the safety 

analysis of nuclear reactors, it is a method that implements a set of governing equations for each 

phase representing the conservation of mass, momentum and energy. Aditionally, the physical 

phenomena occurring between the phases across the interface such as the transfer of mass, 

momentum and energy are obtained by applying an averaging method. The modelling of interface 

interactions is the most difficult task in the two-fluid method, due to the fact that different flow 

regimes [75] (for instance, bubble flow, slug flow, churn flow, annular flow, mist flow, plug flow 

and stratified flow) can appear depending on the flow rates of the phases and the geometric 

characteristics. Under these conditions, apart of implementing a rigorous mathematical model, it is 

necessary to develop accurate constitutive relations and empirical correlations, the latter being 

obtained from experiments.  

Concernig smoothed-particle hydrodynamics method (SPH) [76], initially developed by Gingold 

and Monaghan [77] in 1977 to simulate both solid mechanics and fluid flow problems, it is a 

meshfree method in where the fluid is replaced by a set of particles moving in a lagrangian way. 

These particles interact by means of a kernel function, commonly represented by a Gaussian 

function, from which fluid properties at any particle can be estimated through interpolation operation 

within the kernel range. Considering two-phase flows [78], SPH generates a free surface between the 

fluids where the particles represent the denser fluid whereas the empty spaces represent the ligther 

fluid. Due to the meshfree nature, this method is adequate to numerically study complex boundary 

dynamics problems and to implement the momentum and energy equations which become a set of 

ordinary differential equations. In additon, since the particles themselves are considered mass, the 

conservation of mass is maintained. The limitations of SPH method is the difficulty of setting the 

boundary conditions in comparison to grid-based numerical method counterpart. 

Finally, in the lattice Boltzmann (LB) approach [79], [80], use is made of the kinetic theory 

represented by the original Boltzmann equation at the mesoscopic level. LB method has the capacity 

of maintaining the microscopic kinetic principles while hydrodynamics characteristic at the 

macroscopic scale are retrieved. Since microscopic methods for instance molecular dynamics, 

dissipative particle dynamics and direct simulation Monte Carlo have high computational cost and 

are not really suitable for fluid dynamics problems, LB method has interesting advantages [81] even 

in comparison to classical numerical methods used in continuum media mechanics. These include: 

(a) the linear nature of convective operator, which is non-linear in the Navier-Stokes formulation; (b) 

the boundary conditions are implemented using mechanical rules as for example interactions 

between molecules and solid walls; and (c) the pressure field is obtained by means of equation of 

state instead of using the costly Poisson equation implemented in the typical numerical methods. 
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However, considering high-Mach number flows in aerodynamics, LB method still has drawbacks 

addressing them. In order to study multiphase flows various LB methods has been proposed, for 

instance the phase field approach[82] , based on the Canh-Hilliard equation, the pseudopotential 

method, in where the multi-fluid flow behaviour is simulated through an interparticle potential[83], 

the free-energy method which applies thermodynamics concepts and the color-gradient [84] method 

based on particle distribution functions for each fluids. 

In order to increase the accuracy level of the interface evolution that can be seen in interface 

phenomena (i.e., liquid bridges, jets, flow focusing and electrospinning), methods based on grid lines 

that are aligned with the interface have been developed. These can be classified in three categories: 

(a) unstructured grids [85], in where the edges of triangular shaped elements (for two-dimension 

case) and thetrahedral elements (for three-dimension case) moving with the fluid are aligned with the 

interface; (b) the sharp interface method [86], based on a structured grid to represent the fluid 

domain, that makes use of different treatment of interface, for instance,  implementing “ghost points” 

across the interface, using mathematical relations to take into account the jump across the interface, 

or rearranging the faces of the control volumes so as to maintain aligned with the interface; and (c) 

body-fitted grids [87] in where a time-dependent coordinate transformations is used to map the 

physical domain onto a fixed computational domain; in addition, the position of the interface is 

obtained by implementing a spatio-temporal contour function, being represented by a straight line in 

the numerical domain. This is precisely the multiphase method used by Herrada and Montanero [1] 

to study the nonlinear analysis and linear stability of capillary one-fluid flows and that is 

implemented in this thesis for two-fluid flows with free or continuos interface. 

 

1.2.2 Spatial discretization 

In computational fluid dynamics (CFD) and mainly in the hydrodynamic stability studies, three 

traditional spatial numerical discretizations can be distinguished [88], namely, finite difference 

method (FDM), finite element method (FEM) and finite volume method (FVM).  

The FDM method approximates the differential equations by means of differential quotients 

resulting from Taylor series application, where the domain is partitioned in both space and time 

giving rise to approximate solutions at each space and time point. Some interesting works using 

FDM for analyzing flow stability can be cited, for instance the linear stability analysis of three-

dimensional lid-driven cavity flow by Giannetti et. al. [45], where use is made of second-order 

accurate, staggered discretization of the three-dimensional linearized Navier-Stokes equations. Using 

the same approach, Shiratori et al. [89] studied the thermal effects on linear stability of capillary 

systems in confined zones. Morzynksi and Thiele  [90] analyzed the stability of flow around a 

cylinder employing second-order central differences. With regard to the stability analysis of 

compressible flows, high order compact finite-difference methods were used by Bres and Colonius 

[91] in order to study the global stability of three-dimensional flow over open cavities. Likewise, 

Mack and Schmid [92] studied the compressibility effects on the boundary layer flows. 

In FEM method, the entire physical domain is decomposed on an assembly of discrete elements, 

called finite elements that are interconnected by nodes. In order to obtain the approximate solution of 

the partial differential equations governing the phenomena, it is applied a linear combination of basic 

functions which are defined in each discrete element or subdomain. After assembling the 

subdomains, a discrete set of equations are obtained. The advantage of FEM is the capability of 

leading unstructured meshes that are especially suitable for nonlinear and stability analysis of flows 

in complex geometries. Among some typical applications, FEM has been applied to study the three-

dimensional linear stability [93] and biglobal instability [94] of viscous incompressible flows. In 

other interesting works, a global stability analysis of 3D flow around a circular cylinder has been 

developed by Morzynski and Thiele [95] and a linear stability in lid-driven cavity flows [96]. 

As in the FEM method, in FVM approach the flow domain is divided into a number of small 
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control volumes. The most important characteristic of this method is that the conservation principles 

of mass, momentum and energy are applied to each control volume, guaranteeing global 

conservation during the numerical simultions. In addition, FVM can be adapted to complex 

geometries by employing unstructured meshes. The values of the governing equations variables are 

usually stored in the centre of the control volumes. Some applications in the literature include for 

example, a fully-implicit finite volume method that was used by Sahin and Owens [97] in order to 

investigate the linear stability of a lid-driven cavity flow. In other study, Gelfgat [98] used a low-

order FVM to study the stability of convective flows in cavities. A parallel adaptive unstructured 

finite volume method were used by Sahin and Wilson [99] to analyse the linear stability of 

viscoelastic fluid flows and a second-order FVM were applied by Dijkstra [100] to study the global 

stability of the structure of cellular solutions in Rayleigh-Bénard-Marangoni flows in small-aspect-

ratio containers.  

Here, special attention is paid to spectral collocation methods (SCM) [101] which have been 

broadly implemented in hydrodynamic stability analysis.  These methods are related to FEM due to 

the fact that the solution of the differential equations is represented as a sum of certain basis 

functions, such as Fourier series and Chebyshev polynomials. The main difference between these 

methods relies on that the basic functions used in SCM are non-zero over the whole domain, whereas 

those used by FEM vanish except on small subdomains. For these reasons, SCM and FEM are 

considered as global and local approach, respectively. Such is the importance of SCM thas was used 

in the pionner work by Pierrehumbert and Widnall [102] in order to develop the first global analysis 

of two and three dimensional instabilities of a spatially periodic shear layer considering an inviscid 

flow. Taking into account viscous effects, one can mention the work by Zebib [103] which employed 

trigonometric functions and Chebyshev polynomials to study the linear stability of an incompressible 

laminar flow past a circular cylinder. Recently, using parallel computing, Biglobal analysis instability 

for the study of laminar separation bubble phenomena was investigated by Rodríguez and Theofilis 

[104] and the Triglobal stability of a jet in crossflow by Bagheri et al. [44].   

Throughout the present thesis the hydrodynamic equations of two-fluid flows are spatially 

discretized using Chebyshev spectral collocation and high-order finite different techiques.  Both are 

able to accumulate points near the solid walls and interface in order to overcome the problems 

associated with the increasing effects of the hydrodynamic quantities’ gradients.  

 

1.3 Objectives and document structure 

In this chapter, the different types of multiphase flows and their applications arising in the 

industry were introduced. Then, the classical theories of hydrodynamic stability were explained for 

both one-fluid and two-fluid flows, the latter being focused on those related with free or continuous 

interface. Finally, the numerical methods and spatial discretization in order to simulate multiphase 

flows were reviewed.  

The principal objective of this thesis is the numerical analysis of nonlinear dynamics and global 

linear stability of two-fluid flows separated by a continuos interface using the efficient numerical 

technique developed by Herrada and Montanero [1]. The novelty of this method is the capability to 

model the complete set of governing equations for both fluids without applying approximations to 

simplify them, obtaining the hydrodynamic behavior and the global linear stability analysis of the 

flow with the same approach. In the next chapters, this numerical tool is used to study two-fluid 

swirling flows and liquid bridges behavior. 

In chapter 2, it is studied a steady air-water swirling flow in a vertical sealed cylinder with a 

rotating top disk. The purpose is to find the relations between the appearance mechanisms of vortex 

breakdown phenomenon and the instability states. 

The aim of chapter 3 is to unveil the topological flow structure and the stability behavior hidden 

in the experimental work developed by Tsai et al. [2]. This water-soybean oil swirling flow is 
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generated by the upper rotating disk in a sealed vertical cylinder. The goal of this study is to prove 

the flattop interface shape and to find the vortex breakdown emergence in both fluids while 

increasing Reynolds number. Besides, the type of instability and its location is investigated. 

In chapter 4, similar to previous one, it is analysed the water-silicone oil swirling flow, studied 

experimentally by Fujimoto and Takeda [3], in order to discover the flow topologies and stability 

states.  The main objectives are to prove the complex interface shapes found in the experiment and to 

discover the location of critical disturbance energy and its relation with the instability. 

The goal of chapter 5 is to study the stability and multi-eddy patterns of a whirlpool flow, where 

the motion is yielded by a bottom rotating disk. To this end, it is varied the water volume fraction as 

the swirling strenght is increased. As a result, interesting topologies are found such as: zipper-like 

chains, air and water eddies, and bubble-ring air eddies. In addition, the influence of the interface 

ubiety on the instability is examined. 

The objective of chapter 6 is devoted to the analysis of the steady axisymmetric air-water 

swirling flow in a semispherical container driven by a rotating top disk. This numerical study reveals 

that as the rotation strength is increasing, a three-eddy pattern appears in the flow. Also, it is studied 

the location of the critical energy disturbance as well as the instability of shear-layer type appearing 

in the air region. 

In the last two chapters, the effects produced by small-amplitude vibrations, insoluble surfactants, 

thermal gradients and gravitational forces on the liquid bridge behavior are studied. Specifically, in 

chapter 7, the interaction between the streaming flow and the Marangoni convection is investigated 

so that to discover flow patterns with nonmonotone behavior whereas increasing Marangoni number. 

In chapter 8, the objective is to study the impact of the dynamical free surface deformation on the 

stability of thermal convection for high Prandtl numbers. Additionally, the good agreement between 

our numerical simulations and previous experimental works is proved, demonstrating the efficacy of 

the numerical technique even at micro-meter level. 

The contents and results in the next six chapters have been published in the following articles: 

 L. Carrión, M. A. Herrada, and V. N. Shtern, “Instability of a water-spout flow,” Phys. 

Fluids, vol. 28, no. 3, p. 034107, Mar. 2016. 

 L. Carrión, M. A. Herrada, and V. N. Shtern, “Topology and stability of a water-soybean-

oil swirling flow,” Phys. Rev. Fluids, vol. 2, no. 2, p. 024702, Feb. 2017. 

 L. Carrión, M. A. Herrada, and V. N. Shtern, “Topology changes in a water-oil swirling 

flow,” Phys. Fluids, vol. 29, no. 3, p. 032109, Mar. 2017. 

 L. Carrión, M. A. Herrada, V. N. Shtern, and J. María López-Herrera, “Patterns and 

stability of a whirlpool flow,” Fluid Dyn. Res., vol. 49, no. 2, p. 025519, Apr. 2017. 

 L. Carrión, M. A. Herrada, and V. N. Shtern, “Stability of an air–water flow in a 

semispherical container,” Eur. J. Mech. - B/Fluids, vol. 67, pp. 377–384, Jan. 2018. 

 L. M. Carrión, M. A. Herrada, J. M. Montanero, and J. M. Vega, “Mean flow produced 

by small-amplitude vibrations of a liquid bridge with its free surface covered with an 

insoluble surfactant,” Phys. Rev. E, vol. 96, no. 3, p. 033101, Sep. 2017. 

The results of the last chapter were submitted for publication in the International Journal of 

Multiphase Flow, with title: “Influence of the dynamical free surface deformation on the stability of 

thermal convection in high-Prandtl-number liquid bridges”, and authors: Luis Carrión, Miguel Ángel 

Herrada and José María Montanero. 
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2. INSTABILITY ANALYSIS OF WATER-SPOT 

FLOW 

 

 

 

his chapter studies the hydrodynamic linear stability of a air-water swirling flow as a 

potential application in aerial bioreactors. This steady axisymmetric two-fluid flow is 

driven by the rotating top disk in a vertical sealed cylinder. A vortex breakdown bubble 

(VBB) appears at the bottom center and spread out to the interface as Reynolds number (Re) 

increases. Clockwise meridional circulation regions appear in water and air, which are separated by a 

thin anticlockwise circulation layer (TCL) adjacent to the interface in water. This study shows that 

the flow becomes instable for larger Re than those at which VBB and TCL emerge. Additionally, the 

instability is of shear-layer type in the air region but becomes centrifugal when the air volume 

fraction is small. 

2.1. Introduction 

The study of the behavior and metamorphosis that occur in swirling flow is important because of 

industrial and natural applications [105], [106], [107], specially for the emergence of a local 

circulation cells called as vortex breakdown (VB). This phenomenon has been a focus of research 

owing to its relevance to delta-wing aircraft, furnaces and combustion chambers, water turbines, 

compressors, tornadoes, and other applications [108], [109], [110]. The first studies begun in 1957 

with a pionner work of Peckham and Atkison [111] in which analysed the flow over a gothic wing in 

a low speed wind tunnel. Since then, numerous interesting hypotheses [110] has been developed in 

order to uncover the mechanism behind VB phenomenon. Recently, Shtern and Borissov [112] 

worked in swirl-decay mechanism so that to explain the VB emergence and the ways to be controlled 

it [113], [114]. 

Unlike VB studies in single fluid flows, the reseach in two-fluid flows have attracted attention in 

recent years because of applications in aerial bioreactors [51], [115], where air-water flow is driving 

by a propeller and or a rotating lid. The air motion expands towards the reactor axis, near the 

interface, and produces the meridional circulation and hence the rotation of water. The air flow 

delivers oxygen to the interface and helps tissue culture growth and water circulation improves the 

mixing process of the dissolved oxygen with other ingredients. The process of tissue growth riquires 

a considerable interval of time under small shear stresses and slow motion of ingredients. Because of 

the tissue fraction is small compared to that of water, it is neglected in the flow pattern studies [51], 

[115]. VB phenomena is found to be important in this type of biological process [51]. 

The interfacial interactions occurring in two-fluid swirling flows produce interesting 

characteristics which are not present in single-fluid flows. One of them is a thin anticlockwise 

circulation layer [116], [117] (TCL) adjacent to the interface. This remarkable phenomenon, having a 

large surface-area-to-volume ratio, enhances significantly the heat and mass transfer and can be 

important in bioreactors applications. 

Herrada et al. [118] studied a two-fluid flow driven by the rotating lid in a vertical sealed 

cylindrical container with same volumetric fractions of air and water, where the meridional 

circulation of air is clockwise type, which diverges from the axis near the lid and converges to the 

axis near the interface. Conversely, when the rotation lid is slow, the meridional circulation in the 

T 
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water region is anticlockwise, converging to the axis near the interface and diverging from the axis 

near the bottom. The rising of speed rotation produces a vortex breakdown bubble (VBB) at the 

bottom center of the water region and spread out to the interface up to the thin layer anticlockwise 

circulation (TCL)[118]. 

There are vast studies related with the stability analysis of single-fluid VBB flows. For instance, 

Gelfgat et al. [119], [120] described the emergence of VBB in the steady axisymmetric flow as a 

consequence of local flow reversal without generating instabilities; therefore, there is not a direct 

relation between instability and the appareance of vortex breakdown. Escudier[121] and Sorensen et 

al. [122]–[124] found that, the emergence of VB in a steady axisymmetric flow, increasing Reynolds 

number, occurs for the container height-to-radius ratio 𝐻 less than 3.2. For larger values of H, the 

flow becomes unstable with respect to 3D time oscillatory disturbances, with 𝑚=3 for 3.2 <  𝐻 < 

4.3, 𝑚=2 for 4.3 <  𝐻 < 5.2 and 𝑚=4 for 5.2 <  𝐻 < 5.5, being m the azimuthal wave number. 

Recently, Herrada et al. [113] argued that the instability nature of these flows is of the shear layer 

type. 

However, although there are detailed and rigorous instability studies of VBB single flows, no 

attention has been paid to the instability of two-fluid VB flow. Our study reveals that the 

disturbances only grow for Reynolds number being larger than those at which VBB and TCL 

emerge. To this end, a numerical technique has been developed for the stability investigation which 

can linearize efficiently the conditions at the interface.  

2.2. Problem Formulation 

2.2.1. Flow geometry 

 

Figure 2.1 Schematic of water-spout model. 

Figure 2.1 is a schematic of the problem.  The lower part, 0 <  𝑧 <  ℎ𝑤, of the cylindrical 

container of radius R and height h is filled with a heavy fluid (e.g., water), the upper part, ℎ𝑤  <
 𝑧 <  ℎ, is filled with a light fluid (e.g., air).  With no motion, the interface is flat, 𝑧 =  ℎ𝑤 (thin 

horizontal line in Fig. 1). When the top disk (at 𝑧 =  ℎ) rotates with angular velocity  while the 

other walls are stationary, the interface becomes deformed as the curve in Figure 2.1 schematically 

shows.  This flow mimics a water spout where swirling air raises water near the rotation axis.   

One control parameter is aspect ratio 𝐻 =  ℎ/𝑅 which is fixed here: 𝐻 =  1. The dimensionless 

height of the interface at rest is 𝐻ℎ  =  ℎ𝑤/𝑅 being also a volumetric fraction of the heavy fluid 

which varies here.  Other control parameters are the Reynolds number, 𝑅𝑒 = 𝜔𝑅2/𝜈𝑤, 

characterizing the swirl strength, the Froude number, 𝐹𝑟 = 𝜔2𝑅/𝑔 = 𝑎𝑅𝑒2, which is a centrifugal-

to-gravity acceleration ratio, and the Weber number, 𝑊𝑒 = 𝜌𝑤𝜔2𝑅3/𝜎 = 𝑏𝑅𝑒2, characterizing the 
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effect of surface tension 𝜎 at the interface; 𝑔 = 9.81 m
2
/s is the gravity acceleration, 𝜌𝑤 is the density 

of heavy fluid, 𝑎 = 𝜈𝑤
2/(𝑔𝑅3) and 𝑏 = 𝜌𝑤𝜈𝑤

2/(𝜎𝑅).  As the light and heavy fluids are specified, 

coefficients a and b are fixed numbers while Re varies.  

We first consider the fluids, studied by Brady et al [116],[117], and
 
imagine a physical 

experiment where 𝑅 = 5 mm, 𝑎 = 5.7710
5

 and 𝑏 = 1.4210
5

. 
 
 Then we focus on the air-water 

flow[118] where 𝜈𝑎 = 1510
6

 m
2
/s and 𝜈𝑤 = 10

6
 m

2
/s are the kinematic viscosities, 𝜌𝑎 = 1.22 

kg/m
3 
and 𝜌𝑤  = 1000 kg/m

3
 are densities; subscripts “𝑎” and “𝑤” means “air” and “water” as well as 

the light and heavy fluids.  Pressure on the interface at rest is atmospheric, temperature 𝑇 = 300K and 

𝜎 = 0.0715 kg/s
2
. Here we imagine a physical experiment where 𝑅 = 1 mm, 𝑎 = 1.0210

4
 and 

𝑏 = 1.3910
5

. 
 
 

2.2.2. Governing equations 

Using 𝑅, 𝜔𝑅, and 𝜌𝑤𝜔2𝑅2 as scales for length, velocity, and pressure, respectively, renders all 

variables dimensionless.  We consider a flow of two viscous incompressible immiscible fluids 

governed by the Navier-Stokes equations [125], 
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𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑟
+

𝑣

𝑟

𝜕𝑣

𝜕𝜙
+ 𝑤

𝜕𝑣

𝜕𝑧
+

𝑢𝑣

𝑟
= −

𝜌𝑛

𝑟

𝜕𝑝

𝜕𝜙
+

𝜈𝑛

𝑅𝑒
(𝛻2𝑣 −

𝑣

𝑟2
+

2

𝑟2

𝜕𝑢

𝜕𝜙
) 2.3 

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+

𝑣

𝑟

𝜕𝑤

𝜕𝜙
+ 𝑤

𝜕𝑤

𝜕𝑧
= −𝜌𝑛

𝜕𝑝

𝜕𝑧
+

𝜈𝑛

𝑅𝑒
𝛻2𝑤                                  2.4 

where 𝛻2 ≡
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑟2

𝜕2

𝜕𝜙2 +
𝜕2

𝜕𝑧2 is the Laplace operator for a scalar field, (𝑢, 𝑣, 𝑤) are the 

velocity components in cylindrical coordinates  (𝑟, 𝜙, 𝑧), 𝑡 is time, and 𝑝 is pressure.  The 

coefficients, 𝜌𝑛 and 𝜈𝑛, are both equal 1 at 𝑛 = 1 (in the heavy fluid) while 𝜌𝑛 = 𝜌𝑤/𝜌𝑎 and 

𝜈𝑛 = 𝜈𝑎/𝜈𝑤 at 𝑛 = 2 (in the light fluid).   

We denote the list (𝑢, 𝑣, 𝑤, 𝑝)  as 𝑽, and look for a solution of the system 2.1-2.4 in the form 

 𝑽 = 𝑽𝑏(𝑟, 𝑧) + 휀𝑽𝑑(𝑟, 𝑧)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐.,    

2.5 

where subscripts “b” and “d” denote the base flow and a disturbance, respectively; c.c. denotes the 

complex conjugate of the preceding term;  << 1 is an amplitude; integer 𝑚 is an azimuthal wave 

number; and 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 is a complex number to be found, with frequency 𝜔𝑟 and growth rate of 

disturbance i. For a decaying (growing) disturbance, 𝜔𝑖 is negative (positive).  The equations 

governing the base flow result from substituting    2.5  in system 2.1-2.4 and setting  = 0.  The terms 

of order 𝑂() constitute equations governing infinitesimal disturbances.    

2.2.3. Boundary conditions 

Equations 2.1-2.4 are solved under the following boundary conditions:       

(i) Regularity at the axis, 0 < 𝑧 < 𝐻,  𝑟 = 0: 
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a)  𝑢 = 𝑣 = 0, 𝜕𝑤/𝜕𝑟 = 0 (basic flow and 𝑚 = 0 disturbances), 

b)  𝑤𝑑 = 0, 𝑢𝑑 + 𝑚𝑣𝑑 = 0, 𝜕𝑢𝑑/𝜕𝑟 = 0 (𝑚 = 1 disturbances) 

c)  𝑤𝑑 = 𝑢𝑑 = 𝑣𝑑 = 0  (𝑚 >1 disturbances) 

(ii) No-slip at the walls: 𝑢 = 𝑣 = 𝑤 = 0  at the still disk, 0 < 𝑟 < 1, 𝑧 = 0, and at the sidewall, 

0 < 𝑧 < 𝐻, 𝑟 = 1; 𝑢 = 𝑤 = 0, 𝑣 = 𝑟 at the rotating disk, 0 < 𝑟 < 1, 𝑧 = 𝐻.   

(iii)  Continuity of all the velocity and stress components at the interface, 𝑧 = 𝐹(𝑟, 𝜙, 𝑡).  In 

particular, the balance for the normal stresses yields that  

𝑝𝑤 − 𝑝𝑎 =
1

𝑊𝑒
𝛻. 𝒏 −

1

𝑅𝑒
𝒏. (𝝉𝑤 − 𝜇𝑟𝝉𝑎). 𝒏 −

1

𝐹𝑟
(1 − 𝜌𝑟)𝑧, 2.6 

 

where n is the unit vector normal to the interface, 𝝉𝑤  and 𝝉𝑎 are tensors of the viscous 

stresses in the heavy and light fluids, respectively, 𝜇𝑟 and 𝜌𝑟 are the light-to-heavy fluid 

ratios of the dynamic viscosities and densities, respectively. 

(iv) The kinematic equation for the interface shape, 𝑧 = 𝐹(𝑟, 𝜙, 𝑡), yields that 

𝜕𝐹

𝜕𝑡
− 𝑤 + 𝑢

𝜕𝐹

𝜕𝑟
+

𝑣

𝑟

𝜕𝐹

𝜕𝜙
= 0, 2.7 

 

  and we look for a solution in the form 𝑧 = 𝐹𝑏(𝑟, 𝑧) + 휀𝐹𝑑(𝑟, 𝑧)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐.. 

 

2.3. Numeric technique  

 To simulate the nonlinear problem for the axisymmetric basic flow and the generalized 

eigenvalue problem for disturbances, we use a numerical technique which is a variation of that 

described in detail in Ref. [1].  First, the heavy-fluid (e.g. water) and light-fluid (e.g. air) regions are 

mapped onto the standard square domain (0 ≤ (w,a) ≤ 1, 0 ≤  ≤ 1) by means of the coordinate 

transformations (a) w = z/F and  = r and (b)ηa = (z−F)/(H−F) and  = r for the water and air, 

respectively.  Then, each variable (velocities, pressure field and the interface shape) and all its spatial 

and temporal derivatives, which appear in the transformed equations, are composed as a single 

symbolic vector.  For example, for the axial velocity in the water flow we create a vector having 11 

components: xw = [ww, ww/w, ww/, 
2
ww/

2
, 

2
ww/

2
, 

2
ww/, ww/, 

2
ww/

2
, 


2
ww/, 

2
ww/, ww/t]. The next step is to use a symbolic toolbox to calculate the analytical 

Jacobians of all the equations with respect to all the symbolic vectors. Using these analytical 

Jacobians we generate functions which then are evaluated point by point in the square domains. In 

this procedure, we used the MATLAB procedure matlabFunction to convert the symbolic Jacobians in 

MATLAB functions.      

Then, we carry out the spatial and temporal discretization of the problem. The water and air 

domains are discretized using a set of nw and na Chebychev spectral collocation points in the axial 

direction (along the w and a axes, respectively)[126]. The water and air domains are discretized 

using a set of n Chebychev spectral collocation points in the radial direction, . The second-order 

backward finite differences are used to compute the time derivatives for the basic flow.  Since the 

basic flow is axisymmetric, all the azimuthal derivatives are set to zero. For disturbances, we obtain 

the temporal and azimuthal derivatives using the representation    2.5. 

The final step is to set up the numerical matrices allowing us to solve the problem by using a 

Newton procedure for the basic steady flow and by solving a generalized eigenvalue problem for 

disturbances.  Details of this procedure are described in Ref. [1].   
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 To summarize, the numeric procedure includes the mapping of water and air regions, the proper 

spatial and temporal discretization creating the discrete Jacobian matrix for the Newton procedure for 

the basic flow and two more matrices for the generalized eigenvalue problem for disturbances.   For 

the basic flow, we get the final steady solution though an unsteady process. Starting from the rest and 

selecting a time step, dt, the solution is advanced in time until a steady state is reached. Since the 

nonlinear procedure used to compute the basic flow is fully implicit, dt can be taken sufficiently large 

to quickly reach the steady solution.  Once the base flow is computed, and given an azimuthal 

wavenumber m, we use MATLAB subroutine eigs to calculate the eigenvalues () of the system of 

discrete linear equations. 

Most of the simulations presented here are done using nw = 25, na = 25, and n = 30 (standard 

grid), but some runs for flows, having small circulation regions, are performed with more fine grids. 

Since the Chebyshev grid points concentrate near the interface from both sides, the approach is 

adequate to resolve thin circulation layers, located near the interface, even at moderate values of nw, 

na, and n.   

The numerical code was validated by the agreement with the results of the paper [118] where the 

same base flow was simulated using a different code.  The stability results where validated in the 

paper [1] by comparison with experimental studies.   

2.4. Instability of liquid-liquid flow 

We first address the media studied by Brady et al. [116], where the light-to-heavy fluid density 

ratio is 𝜌𝑟 = 0.5284 and dynamic viscosity ratio is 𝜇𝑟 = 0.2.  These values are larger than those for air 

and water by orders of magnitude that makes the interface remarkably deformed even at moderate Re 

values.  We analyze stability features as the fraction of the heavy fluid 𝐻ℎ varies.  

We checked the disturbances with 𝑚 = 0, 1, 2, 3, and 4 and examined 𝜔𝑖. For small 𝑅𝑒, 𝜔𝑖  is 

negative.  As 𝑅𝑒 increases, 𝜔𝑖  first become positive for 𝑚 = 1 disturbances for all 𝐻ℎ
 
listed in Table 

2.1 which presents the results for the critical (𝜔𝑖  = 0) values of the Reynolds number 𝑅𝑒, frequency 

𝜔𝑟 and azimuthal wave number 𝑚 of the leading disturbances.  To better understand the instability 

nature, we consider the distribution of disturbance kinetic energy 𝐸𝑑(𝑟, 𝑧) = 〈|𝑢𝑑|2 + |𝑣𝑑|2 +
|𝑤𝑑|2〉, normalized by its maximal value; < > denote averaging with respect 𝑡 and 𝜙.  

 

 

𝑯𝒉 0.1 0.2 0.3 0.

4 

0.5 0.

6 

0.

7 

0

.8 𝑹𝒆 97

0 

134

6 

105

0 

9

16 

85

0 

7

79 

6

90 

6

30 𝝎𝒓 0.0

26 

0.3 0.19

1 

0.

221 

0.2

47 

0.

268 

0.

298 

0

.34 𝒎 1 1 1 1 1 1 1 1 

Table 2.1 Dependence of critical parameters on heavy fluid fraction 𝐻ℎ  for fluids used by Brady 

at al. 

 

Table 2.1 shows that as 𝐻ℎ decreases from 0.8 down to 0.2, 𝑅𝑒𝑐𝑟 grows while 𝜔𝑟 decreases.  The 

physical reasoning for this trend likely is the following.  The instability develops in the upper fluid 

Figure 2.2.  As 𝐻ℎ decreases at a fixed 𝑅𝑒, the upper-fluid meridional motion weakens because its 

volume increases while its driving does not.  This stabilizes the flow resulting in the 𝑅𝑒𝑐𝑟  growth. 

The limited container volume terminates this trend as the interface approaches the bottom. 
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Figure 2.2  (color online) Streamline patterns at critical 𝑅𝑒 (see Table1) for heavy fluid fraction 

𝐻ℎ  = 0.1 (a), 0.5 (b) and 0.8 (c).  The bold curves show the interface, light (dark) contours show 

clockwise (anticlockwise) meridional circulation. Contours of critical disturbance energy 𝐸𝑑 for 𝐻ℎ  = 

0.1 (d), 0.5 (e) and 0.8 (f); z-dependence of 𝐸𝑑, base-flow axial 𝑤𝑏 and radial 𝑢𝑏 velocities at 

𝑟 =  𝑟𝑚 (Table 2.2) for 𝐻ℎ  = 0.1 (g), 0.5 (h) and 0.8 (i). 

 

At small 𝐻ℎ, the jet-like boundary layer develops near the top disk, sidewall, interface and axis 

(Figure 2.2(a)). The shear-layer instability typical of jets results in the 𝑅𝑒𝑐𝑟  decrease at 𝐻ℎ = 0.1. The 

𝜔𝑟 trend likely relates to the weakening of the upper-fluid rotation near the interface and axis as 𝐻ℎ 

decreases.  This trend reverses at small 𝐻ℎ  for the same reason as that for for Recr.  The trend makes 

r negative at 𝐻ℎ = 0.2, i.e., the critical single-helix disturbances changes the direction of its rotation.  

For all 𝐻ℎ, the most dangerous disturbance is single-helix, 𝑚 = 1.  The simulations at 𝐻ℎ = 0.9 

reveal that the flow remains stable until the interface touches the rotating lid at 𝑟 = 0 as 𝑅𝑒 increases.  

Table 2.1 does not include the 𝐻ℎ = 0.9 case because our numeric technique does not allow 
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describing the interface disconnection from the container axis.  The radial 𝑟𝑚 and axial 𝑧𝑚 locations 

of 𝐸𝑑  absolute maximum help understand the instability nature by indicating where disturbance 

energy 𝐸𝑑 focuses. Table 2.2 lists 𝑟𝑚 and 𝑧𝑚 values for the small (𝐻ℎ = 0.1), middle (𝐻ℎ = 0.5) and 

large (𝐻ℎ = 0.8) fractions of the heavy fluid.  

 To help understand the instability nature, Figure 2.2 depicts the base-flow streamlines (a)-(c), 

contours of disturbance energy 𝐸𝑑  (d)-(f), and 𝐸𝑑 and base-flow velocity 𝑧-profiles at 𝑟 =  𝑟𝑚 (g)-(i) 

for 𝐻ℎ = 0.1 (the first column), 0.5 (the second column) and 0.8 (the third column) at critical 𝑅𝑒.  

The disturbance energy is normalized by its maximal value.   

𝑯𝒉 0.1 0.

5 

0.

8 
𝒓𝒎 0.0

029 

0 0.

898 
𝒛𝒎 0.9

2 

0.

92 

0.

965 

Table 2.2 Dependence on heavy-fluid fraction 𝐻ℎ of radial 𝑟𝑚 and axial  
𝑧𝑚 coordinates of absolute maximum of disturbance energy 𝐸𝑑.  

As the locations of the absolute maximum of 𝐸𝑑 indicate in Figure 2.2(d)- Figure 2.2(f), the 

instability develops in the upper fluid.  This is physically reasonable since (i) the light-fluid viscosity 

is smaller than the heavy-fluid viscosity and (ii) the light-fluid flow, being adjacent to the rotating lid, 

is faster than the heavy-fluid flow since the swirl velocity rapidly decays downward[113].   

 The velocity difference is especially large for the shallow heavy fluid at 𝐻ℎ = 0.1.  Figure 2.2(g) 

shows that the axial velocity of base flow 𝑤𝑏 (normalized by its maximal value, 0.011) is 

significantly smaller in the lower fluid, 0 < 𝑧  < 𝑧𝑖 = 0.242, than in the upper fluid 𝑧𝑖 < 𝑧  < 1.  In the 

upper fluid, 𝑤𝑏 is positive according to the clockwise circulation (Figure 2.2(a)) while in the lower 

fluid there is the small range, 0.225 𝑧  < 𝑧𝑖, where 𝑤𝑏 is negative in the anticlockwise circulation 

region (where contours are dark).    

 The peak locations for disturbance energy 𝐸𝑑  and 𝑤𝑏  are very close in Figure 2.2(g) that 

indicates that the instability is likely related to the near-axis flow whose inflection point in the 𝑤𝑏(r) 

profile causes the shear-layer instability.  This feature is similar to that in the single-fluid Vogel-

Escudier flow[113]. The shear-layer instability also occurs at 𝐻ℎ = 0.5 as Figure 2.2(b), Figure 2.2(e) 

and Figure 2.2(h) illustrate.  There are two peaks of 𝐸𝑑  located at the container axis in Figure 2.2(e) 

and two local peaks of 𝑤𝑏 which are close to the 𝐸𝑑  peaks in Figure 2.2(h).   

The character of instability changes as 𝐻ℎ increases up to 0.8 as Figure 2.2(c), Figure 2.2(f) and 

Figure 2.2(i) illustrate.  The location of the 𝐸𝑑 absolute maximum shifts away from the axis and 

becomes close to the sidewall in Figure 2.2(f) with 𝑟𝑚 = 0.898 and 𝑧𝑚 = 0.965 (Table 2.2).  This 

peak is located within the near-lid radial jet (Kármán’s boundary layer[127]) as Figure 2.2(i) 

illustrates where the radial velocity 𝑢𝑏(z)  is depicted by the dashed curve (𝑢𝑏  and 𝑤𝑏 are normalized 

by maximal 𝑢𝑏 = 0.136).   

 Figure 2.2(f) also reveals a local peak of 𝐸𝑑 which is close to the sidewall in the middle part of 

the upper-fluid region.   This peak is likely associated with the centrifugal instability[22] which also 

occurs in the single-fluid Vogel-Escudier flow[113].  

2.5. Instability of air-water flow 

2.5.1. Instability to m=1 disturbances 

Now we study the stability of the air-water flow where r = 0.0012 and r = 0.018 and therefore 
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the interface deformation is smaller than that for the fluids used by Brady et al.[116] at close Re 

values.    
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r 

0. 
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0.

373 

0.0

338 
0.
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0.0

146 

0.0

194 

0.0

372 

0.

064 

0.
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m 1 1 1 1 1 1 1 1 1 

Table 2.3 Dependence of marginal parameters for m = 1 on water fraction Hh in the air-water 

flow. 

 

Hh 0.1 0.5 0.9 

rm 0.5

809 

0.0

029 

0,9

883 
zm 0.2

060 

0,6

754 

0,9

894 
Table 2.4 Dependence on water fraction Hh of radial rm and axial zm coordinates of absolute 

maximum of disturbance energy Ed. 

 

Figure 2.3, Table 2.3 and Table 2.4 show the characteristics of the air-water flow which are 

similar to those shown in Figure 2.2, Table 2.1 and Table 2.2 respectively.   Following Sorensen at 

al.[123] we use terms “marginal” and “critical”. Neutral disturbances corresponding to the minimal 

Re at prescribed m are marginal. The marginal disturbance corresponding to the minimal Re among 

all m values is critical.   Corresponding parameters Re, r and m are also named as marginal and 

critical.   

In Table 2.3, Re and Rea are based on the water and air viscosities respectively and Rew = ʋbimRe 

where ʋbim is the maximal value of the base-flow swirl velocity at the interface; Rea (Rew) 

characterizes the strength of the air (water) base flow.   

The air-water base-flow and its stability characteristics at m = 1 are similar to those for the fluids 

used by Brady et al.[116] at Hh = 0.1 and 0.5.  The instability is likely of the shear-layer kind and 

develops in the upper fluid (air).  Comparison of plots (g) and (h) in Fig. 3 as well as Rea and Rew 

values in Table 2.3 show that the water flow is drastically weaker than the air flow.  In contrast, 

Figure 2.2 shows that the meridional flow strengths are of the same order of magnitude at marginal 

Re values for the heavy and light fluids studied by Brady et al.[116]. 

Figure 2.3 and Table 2.3 show that the Hh = 0.9 case qualitatively differs from the Hh = 0.1 and 

0.5 cases with respect to both the basic flow pattern and its stability.  At Hh = 0.1 (Figure 2.3(a)) and 

0.5 (Figure 2.3(b)), the bulk air meridional flow is one-cellular and clockwise.  It is separated from 

the water clockwise circulation by a thin layer of anticlockwise circulation (TCL) adjacent to the 

interface from below.  In contrast, the air flow is two-cellular and the TCL is adjacent to the interface 

from above at Hh = 0.9 in Figure 2.3(c).   
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Figure 2.3 Streamline patterns of air-water flow at critical Re values (see Table 3) for water 

fraction Hh = 0.1 (a), 0.5 (b) and 0.9 (c).  The bold curve shows the interface, light (dark) contours 

show clockwise (anticlockwise) meridional circulation. Contours of marginal disturbance energy Ed 

for Hh = 0.1 (d), 0.5 (e) and 0.9 (f); z-dependence of Ed, base-flow axial wb and swirl ʋb velocities at r 

= rm  (see Table 4) for Hh = 0.1 (g), 0.5 (h) and 0.9 (i).  

 

The Hh = 0.8 curve in Figure 2.4 shows that the radial velocity of base flow is negative, ub < 0, 

that corresponds to a one-cell air flow, as Figure 2.5(a) schematically depicts.  As Hh increases, ub 

becomes positive near the axis, r = 0, up to point S, as curve Hh = 0.825 illustrates.  Interpolation 

indicates that the ub > 0 region emerges at Hh = 0.8115.  This corresponds to a change in the flow 

topology. As Figure 2.5(b) schematically depicts, the air flow becomes two-cellular with the 

anticlockwise circulation in region ACa and clockwise circulation in region CCa while the water 

anticlockwise circulation region ACw becomes separated from the axis.   All flow cells meet at the 

saddle point S of the meridional air-water motion.  

0

0.2

0.4

0.6

0.8

1

0 0.5 1

z 

ʋb 

0

0.2

0.4

0.6

0.8

1

0 0.5 1

z 

ʋb 

 
0

0.2

0.4

0.6

0.8

1

0.8 0.9 1

z 

wb 

ʋb 

Ed 

Ed 

Ed 

wb

d 

wb

d 

(g) (i) (h) 



20                            

 

Global stability analysis of two-fluid flows 

       

 

Figure 2.4  The base-flow radial velocity on the interface at Hh values shown near the curves.    

 

In Figure 2.5, the notations CC and AC means clockwise  and anticlockwise circulations in air (a) 

and water (w); subscripts of S denote saddle points at the interface (i), axis (a) and sidewall (w); thin 

curves separate regions of different circulations and show flow directions. The dashed line represents 

the interface.    

Saddle point S moves from the axis toward the sidewall as Hh increases and reaches the sidewall 

at Hh = 0.875 (Figure 2.4).  Accordingly region ACw shrinks to the sidewall-interface intersection 

and region ACa reaches the sidewall. For Hh  0.875, the water flow is one-cellular and region CCa 

is separated from the interface as Figure 2.5(c) schematically depicts. The flow topology in Figure 

2.3(c) is identical to that shown in Figure 2.5(c).  

 

          

  

 

Figure 2.5  Schematics of flow topology changes as water fraction increases: Hh = 0.8 (a), 0.825 

(b) and 0.9 (c).  

 

These topological transformations cause that Re significantly decreases as the two right-hand 

columns of Table 2.3 illustrate.  The air flow becomes less stable because the radial double 

counterflow develops as Figure 2.5(c) illustrates.  The air moving upward near the sidewall in region 

ACa blocks transfer of angular momentum downward thus increasing the axial gradient of base-flow 

swirl velocity ʋb near the lid; see Figure 2.3(i).  The flow moving toward the sidewall near the 

interface reduces the transport of angular momentum to the axis thus increasing the magnitude of 

radial gradient of ʋb near the sidewall as Figure 2.6 illustrates. 

 

-0.0025

0

0.0025

0.005

0 0.2 0.4 0.6 0.8 1

(

a) 

(b) 

(

c) 

ub 

r 

0.8 

0.82

5 

0.85 

0.875 0.9 

S 

(a) (c) 



Instability analysis of water-spot flow 

 

21 

 

Figure 2.6  Radial profiles of basic-flow swirl velocity ʋb and disturbance energy Ed at Hh = 0.9 

and z = zm = 0.9894 (see Table 4) help explain the centrifugal instability. 

The sharp drop of ʋb near r = 1 observed in Figure 2.6 causes the centrifugal (Taylor) instability.  

The necessary condition for the centrifugal instability is that (rʋ)
2
 must decay as r increases [as it 

occurs in the Taylor-Couette flow where the inner (outer) cylinder is rotating (stationary)][22].  The 

ʋb and Ed profiles in Figure 2.6 exactly match this Rayleigh criterion[22]: Ed peaks in the middle of 

near-sidewall region, where (rʋ)
2
 reduces as r increases; and Ed is small in the region, where (rʋ)

2
 

grows with r.    

2.5.2. Instability to multi-helix disturbances 

Table 2.5 lists the marginal and critical (bold) values of the Reynolds number Re depending on 

the water fraction Hh and the azimuthal wave number m.  Table 2.5 is limited to those m values 

which correspond to critical Re at least for one value of Hh.  Frequency r is shown only for critical 

disturbances and corresponding Re.  Single-helix (m = 1) disturbance are the most dangerous if Hh  

0.7.  As the water fraction decreases, multi-helix disturbance become most dangerous as Table 2.5 

shows.   
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Table 2.5. Dependence of marginal and critical (bold) parameters on water fraction Hh and 

azimuthal wave number m. 

Figure 2.7 depicts streamlines, (a) and (b), contours of disturbance energy Ed, (c) and (d), and z-

profiles, (e) and (f), of Ed and base-flow radial velocity ub at r corresponding to the location of 

maximal Ed (see Table 2.6).  The first (second) column of Figure 2.6 corresponds to critical Re at Hh 
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= 0.1 (0.5); see Table 2.5.  The results for critical Re at Hh = 0.9 are presented in the third column of 

Figure 2.3.  Figure 2.7 indicates that the instability likely is of shear-layer kind and mostly develops 

in the jet-like air flow converging to the axis near the interface.  Comparison of (a) the first two 

columns in Figure 2.3 and (b) Figure 2.7shows that the single-helix (marginal) shear-layer instability 

develops near the axis while the multi-helix (critical) shear-layer instability develops near the 

interface.  All instabilities, revealed in this chapter, occur in the air flow at Re values significantly 

larger than those at which VB and TCL emerge.  

 

         

 

 

 

 

 

 

 

 

 

 

 

       

 

                         

Figure 2.7 Streamline patterns of air-water flow at critical Re (see Table 2.5) for water fraction 

Hh = 0.1 (a) and 0.5 (b).  The bold curve shows the interface, light (dark) contours show clockwise 

(anticlockwise) meridional circulation. Contours of marginal disturbance energy Ed for Hh = 0.1 (c) 

and 0.5 (d); z-dependence of Ed (solid curve) and base-flow radial velocity ub (dots) velocities at r = 

rm  (see Table 6) for Hh = 0.1 (e) and 0.5 (f).  
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Table 2.6 Dependence on water fraction Hh of radial rm and axial zm coordinates of absolute 

maximum of disturbance energy Ed for critical Re (see Table 5). 

 

2.6. Conclusions  

An efficient numerical technique is elaborated for stability studies of two-fluid flows.  The key 

features are (a) mapping of heavy and light fluid regions in a standard square domain and (b) using a 

symbolic toolbox to calculate the analytical Jacobians. This helps us to linearize relation (2.6) for the 

stability studies.  This technique is used here for flows of close densities and viscosities[117] and for 

air-water flows driven by the rotating lid in a sealed vertical container.   

It is revealed that these flows become unstable at the Reynolds numbers significantly exceeding 

those at which the vortex breakdown emerges near the axis-bottom intersection and thin circulation 

layer develops near the interface[118].  The difference in the corresponding Reynolds numbers is 

especially large for the air-water flows.   

As the heavy-fluid fraction decreases from 0.9 to 0.2, the critical Re grows and then drops at 0.1.      

For small and moderate values of heavy-fluid volume fraction, the instability likely is of shear-layer 

kind. For the fraction close to 1, the instability is centrifugal. In all cases investigated, the instability 

develops in the upper fluid.  The obtained results are of fundamental interest and can be helpful in 

bioreactor designing. 
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3. TOPOLOGY AND STABILITY OF WATER-
SOYBEAN-OIL SWIRLING FLOW 

 

 

 

his chapter reveals and explains the flow topology and instability hidden in the 

experimental study by Tsai et al.[2].  Water and soybean oil fill a sealed vertical cylindrical 

container. The rotating top disk induces the meridional circulation and swirl of both fluids. 

The experiment shows a flat-top interface shape and vortex breakdown in the oil flow developing as 

the rotation strength 𝑅𝑒𝑜  increases.  Our numerical study shows that vortex breakdown occurs in the 

water flow at 𝑅𝑒𝑜 = 300 and in the oil flow at 𝑅𝑒𝑜 = 941.  As 𝑅𝑒𝑜 increases, the vortex breakdown 

cell occupies most of the water domain and approaches the interface at 𝑅𝑒𝑜 around 600.  The rest—

counter-circulating—water separates from the axis as the vortex breakdown cells in the oil and water 

meet at the interface-axis intersection.  This topological transformation of water flow significantly 

contributes to the development of the flat-top shape.  It is also shown that the steady axisymmetric 

flow suffers from shear-layer instability which emerges in the water domain at 𝑅𝑒𝑜 = 810. 

3.1. Introduction 

Swirling two-fluid flows recently attracted the attention of researchers due to applications in 

aerial vortex bioreactors, a rapidly developing technology [51],[128], [115]. These flows have a 

number of intriguing features of fundamental interest: (i) numerous topological metamorphoses 

[129], (ii) multiple eddies [130], and (iii) thin circulation layers [118],[116], [117]. Fujimoto and 

Takeda [3] performed an interesting experiment which provided a vivid example of nonlinear 

physics. They visualized a flow of silicon oil and water driven by the rotating lid in a sealed 

cylindrical container.  As the rotation strength 𝑅𝑒𝑜 increased, the interface became significantly 

deformed, taking shapes named by the authors as “hump”, “cusp”, “Mt. Fuji” and “bell”.  Similar 

results were obtained by Tsai et al.
 
[2], who moreover detected vortex breakdown in the upper fluid.  

However, some important topological features of the lower-fluid motion remain uncovered in Refs. 

[2] and [3].  These features are related to the vortex breakdown in the water flow. 

 A topological metamorphosis of a swirling flow, which causes the emergence of a local 

circulation cell, often referred to as vortex breakdown (VB), has attracted the attention of researchers 

since 1957 due to its relevance to delta-wing aircraft, combustion, tornadoes, and other applications 

[109].  Many hypotheses have been suggested to interpret the VB physics [110].  A recent view is 

that the swirl-decay mechanism [131] explains why VB occurs and how it can be controlled [113], 

[114].   

In contrast to the long-studied history of VB in a single fluid, two-fluid VB flows have only 

recently been examined. This chapter numerically investigates the flow experimentally studied by 

Tsai et al.
 
[2] and reveals that the development of vortex breakdown in the upper fluid is preceded by 

the development of VB in the lower fluid as the rotation accelerates.  

The VB cell emerges near the bottom center, expands upward, and approaches the interface near 

the axis.  This near-axis rise of water causes a significant deformation of the interface. Next, VB 

occurs in the upper fluid as well.  As the water and oil VB cells meet, they expand in the radial 

direction forming the flat-top shape of the interface.   

T 
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This chapter shows that the steady axisymmetric flow suffers from shear-layer, time-oscillatory, 

three-dimensional instability which emerges in the water domain at 𝑅𝑒𝑜  > 810. Our stability analysis 

has been performed using a novel numerical technique, proving its efficiency for a two-fluid flow 

with a significantly curved interface [1].     

3.2. Problem formulation 

3.2.1. Flow geometry 

Figure 3.1 is a schematic of the problem.  The lower part, 0 < 𝑧 < ℎ𝑤, of the cylindrical 

container of radius R and height h is filled with water; the upper part, ℎ𝑤 < 𝑧 < ℎ, is filled with 

soybean oil.  With no motion, the interface is flat, 𝑧 = ℎ𝑤 (thin horizontal line in Figure 3.1). When 

the top disk (at 𝑧 = ℎ) rotates with angular velocity , while the other walls are stationary, the 

interface becomes deformed, typical of water-spouts, as the curve in Figure 3.1 schematically 

illustrates.   

 

Figure 3.1 Schematic of water-spout model. 

 

One control parameter is aspect ratio, 𝐻 =  ℎ/𝑅, which is fixed here: 𝐻 = 2.014 that 

corresponds to Fig. 2 of Ref. [2] where 𝑅 = 7.2 cm, ℎ = 14.5 cm and ℎ𝑤 = 1.5 cm.  The 

dimensionless height of the interface at rest, 𝐻𝑤 = ℎ𝑤/𝑅 = 0.2083, is also fixed here.  To stay 

consistent with the experiment [2], we vary the Reynolds number, 𝑅𝑒𝑜 = 𝜔𝑅2/𝜈𝑜, characterizing 

the swirl strength; 𝜈𝑜  is the kinematic viscosity of soybean oil. It is also convenient to use 𝑅𝑒 =
𝜔𝑅2/𝜈𝑤, 𝜈𝑤  as the kinematic viscosity of water. Hereafter, subscripts “𝑤” and “𝑜” represent “water” 

and “oil” respectively. 

The other varying parameters are the Froude number, 𝐹𝑟 = 𝜔2𝑅/𝑔 = 𝑎𝑅𝑒2, which is a 

centrifugal-to-gravity acceleration ratio, and the Weber number, 𝑊𝑒 = 𝜌𝑤𝜔2𝑅3/𝜎 = 𝑏𝑅𝑒2, 

characterizing the effect of surface tension 𝜎 at the interface. Here, 𝑔 = 9.81 m
2
/s is the gravity 

acceleration, and 𝜌𝑤 is the water density, 𝑎 = 𝜈𝑤
2/(𝑔𝑅3) and 𝑏 = 𝜌𝑤𝜈𝑤

2/(𝜎𝑅).  As the fluids are 

specified, coefficients 𝑎 and 𝑏 are fixed while 𝑅𝑒 varies.  

To stay consistent with Ref. [2], we take 𝜌𝑤  = 1000 kg/m
3
, 𝜌𝑜  = 920 kg/m

3
, 𝜈𝑤 = 10

6
 m

2
/s. 𝜈𝑜 = 

65.2210
6

 m
2
/s, and 𝜎 = 0.02 kg/s

2
.  This yields that 𝑎 = 2.73110

10
 and 𝑏 = 6.94410

7
.  
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3.2.2. Governing equations 

Using 𝑅, 𝜔𝑅, and 𝜌𝑤𝜔2𝑅2 as scales for length, velocity, and pressure, respectively, renders all 

variables dimensionless.  We consider a flow of two viscous incompressible immiscible fluids 

governed by the Navier-Stokes equations [17],   

    
1

𝑟

𝜕(𝑟𝑢)

𝜕𝑟
+

1

𝑟
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𝜕𝑟
+

𝑣
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where 𝛻2 ≡
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑟2

𝜕2

𝜕𝜙2 +
𝜕2

𝜕𝑧2 is the Laplace operator for a scalar field, (𝑢, 𝑣, 𝑤) are the 

velocity components in cylindrical coordinates (𝑟, 𝜙, 𝑧), 𝑡 is time, and 𝑝 is pressure. The 

coefficients, 𝜌𝑛 and 𝜈𝑛, are both equal to 1 at 𝑛 = 1 (in water) while 𝜌𝑛 = 𝜌𝑤/𝜌𝑜 and 𝜈𝑛 = 𝜈𝑜/𝜈𝑤 at 

𝑛 = 2 (in oil).   

We denote the list (𝑢, 𝑣, 𝑤, 𝑝)  as 𝑽, and look for a solution of the system 3.1 - 3.4 in the form 

        𝑽 = 𝑽𝑏(𝑟, 𝑧) + 휀𝑽𝑑(𝑟, 𝑧)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐.,                                                3.5 

where subscripts “𝑏” and “𝑑” denote the base flow and a disturbance, respectively; 𝑐. 𝑐. denotes the 

complex conjugate of the preceding term;  << 1 is an amplitude; integer 𝑚 is an azimuthal wave 

number; and 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 is a complex number to be found, with frequency 𝜔𝑟 and growth rate of 

disturbance 𝜔𝑖. For a decaying (growing) disturbance, 𝜔𝑖 is negative (positive).  The equations 

governing the base flow follow from substituting 3.5 in system 3.1 - 3.4 and setting  = 0.  The terms 

of order 𝑂() constitute equations governing infinitesimal disturbances.    

3.2.3. Boundary conditions 

Equations 3.1 - 3.4 are solved under the following boundary conditions:       

(i)      Regularity at the axis, 0 < 𝑧 < 𝐻,  𝑟 = 0: 

a) 𝑢 = 𝑣 = 0, 𝜕𝑤/𝜕𝑟 = 0 (base flow and 𝑚 = 0 disturbances), 

b) 𝑤𝑑 = 0, 𝑢𝑑 + 𝑣𝑑 = 0, 𝜕𝑢𝑑/𝜕𝑟 = 0 (𝑚 = 1 disturbances) 

c) 𝑤𝑑 = 𝑢𝑑 = 𝑣𝑑 = 0  (𝑚 >1 disturbances) 

(ii)      No-slip at the walls: 𝑢 = 𝑣 = 𝑤 = 0 at the still disk, 0 < 𝑟 < 1, 𝑧 = 0, and at the sidewall,        

0 < 𝑧 < 𝐻, 𝑟 = 1; 𝑢 = 𝑤 = 0, 𝑣 = 𝑟 at the rotating disk, 0 < 𝑟 < 1, 𝑧 = 𝐻.    

(iii) Continuity of all the velocity and tangential stress components at the interface, 𝑧 =
𝐹(𝑟, 𝜙, 𝑡).  The balance for the normal stresses yields that 

𝑝𝑤 − 𝑝𝑜 =
1

𝑊𝑒
𝛻. 𝒏 −

1

𝑅𝑒
𝒏. (𝝉𝑤 − 𝜇𝑟𝝉𝑜). 𝒏 −

1

𝐹𝑟
(1 − 𝜌𝑟)𝑧,   3.6 
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where 𝒏  is the unit vector perpendicular to the interface, 𝝉𝑤  and 𝝉𝑜 are tensors of the viscous 

stresses in the water and oil, respectively, and 𝜇𝑟 and 𝜌𝑟 are the light-to-heavy fluid ratios of 

the dynamic viscosities and densities, respectively. 

(iv) The kinematic equation for the interface shape, 𝑧 = 𝐹(𝑟, 𝜙, 𝑡), yields that 

    

      
𝜕𝐹

𝜕𝑡
− 𝑤 + 𝑢

𝜕𝐹

𝜕𝑟
+

𝑣

𝑟

𝜕𝐹

𝜕𝜙
= 0,     3.7 

and we look for a solution in the form  𝑧 = 𝐹𝑏(𝑟, 𝑧) + 휀𝐹𝑑(𝑟, 𝑧)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐.. 

3.3. Numeric Technique 

To simulate the nonlinear problem for the axisymmetric base flow and the generalized eigenvalue 

problem for disturbances, we use a numerical technique which is a variation of that described in 

detail in Ref. [1].  First, the water and oil regions are mapped onto the standard square domain (0 ≤ 

(w,o) ≤ 1, 0 ≤  ≤ 1) by means of the coordinate transformations (a) w = z/F and  = r and (b) o = (z

−F)/(H−F) and  = r for the water and oil, respectively.  Then, each variable (velocities, pressure 

field, and the interface shape) and all its spatial and temporal derivatives, which appear in the 

transformed equations, are composed as a single symbolic vector.  For example, for the axial velocity 

in the water flow, we create a vector having 11 components: xw = [ww, ww/w, ww/, 
2
ww/

2
, 


2
ww/

2
, 

2
ww/, ww/, 

2
ww/

2
, 

2
ww/, 

2
ww/, ww/t]. The next step is to use a 

symbolic toolbox to calculate the analytical Jacobians of all the equations with respect to all the 

symbolic vectors. Using these analytical Jacobians, we generate functions which then are evaluated 

point by point in the square domains. In this procedure, we used the MATLAB procedure 

matlabFunction to convert the symbolic Jacobians in MATLAB functions.      

Then, we carry out the spatial and temporal discretization of the problem. The water and oil 

domains are discretized using a set of nw and no Chebychev spectral collocation points in the axial 

direction (along the w and o axes, respectively) [126]. The water and oil domains are discretized 

using a set of n Chebychev spectral collocation points in the radial direction, . The second-order 

backward finite differences are used to compute the time derivatives for the base flow.  Since the 

base flow is axisymmetric, all the azimuthal derivatives are set to zero. For disturbances, we obtain 

the temporal and azimuthal derivatives using the representation (3.5).  This helps overcome the 

technical difficulty of linearizing relation (3.6) for the linear stability study of two-fluid flows. 

The final step is to set up the numerical matrices, allowing us to solve the problem by using a 

Newton procedure for the base steady flow and by solving a generalized eigenvalue problem for 

disturbances.  Details of this procedure are described in Ref. [1]   

To summarize, the numeric procedure includes the mapping of water and oil regions, the proper 

spatial and temporal discretization creating the discrete Jacobian matrix of the Newton procedure for 

the base flow, and two more matrices for the generalized eigenvalue problem for disturbances.   For 

the base flow, we get the final steady solution through an unsteady process. Starting from rest and 

selecting a time step, dt, the solution is advanced through time until a steady state is reached. Since 

the nonlinear procedure used to compute the base flow is fully implicit, a sufficiently large dt can be 

taken to quickly reach the steady solution.  Once the base flow is computed and given an azimuthal 

wavenumber m, we use MATLAB subroutine eigs to calculate the eigenvalues () for the system of 

discrete linear equations. 

 Most of the simulations presented here are done using nw = 60 and no = 25 in the axial direction 

and n = 40 in the radial direction (standard grid), but due to their small circulation regions, some 

simulations for flows at large Re, are performed with finer grids. The larger nw compared with no is 

used because the oil viscosity is significantly larger than the water viscosity. 
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Since the Chebyshev grid points concentrate near the interface from both sides, the approach is 

adequate to resolve thin circulation layers located near the interface, even at moderate values of nw, 

no, and n. The Chebyshev grid points also concentrate near the axis and all walls, helping to resolve 

the small flow cells located near them. 

To analyze the flow topology, we use the Stokes stream function , w = r
1
/r and u = 

r
1
/z, and plot streamlines of the meridional motion, i.e., contours  = constant. 

3.4. Topologycal metamorphoses of water flow 

3.4.1. Moffatt and near-interface eddies 

 

Figure 3.2. (color online) Patterns of meridional motion at Reo = 1 (a), 40 (b) and 60 (c).    

 

It is instructive to start with a creeping flow and to gradually increase 𝑅𝑒𝑜.  Figure 3.2 depicts 
streamlines at 𝑅𝑒𝑜 = 1 (a), 40 (b), and 60 (c). The bold (red online) curve denotes the interface. The 

clockwise (anticlockwise) circulation is shown hereafter by light (dark) contours which are blue 

online.  Figure 2(a) depicts the pattern of the creeping flow.  The rotating lid pushes the upper fluid to 

periphery near the lid and thus drives the clockwise circulation in CRO; CR is an abbreviation for 

“circulation region” and O denotes the oil.  Near the interface, the oil moves toward the container 

axis.  

The water flow is driven by two factors: (i) swirl and (ii) meridional velocities at the interface, 

both provided by the oil motion.  The factors (i) and (ii) push the water in opposite directions; the 

swirl (meridional) velocity tends to drive the clockwise (anticlockwise) meridional circulation.  For 

𝑅𝑒𝑜 = 1, the swirl velocity at the interface is very small, as discussed in more detail below.  

Therefore, factor (ii) dominates over (i) and drives the bulk anticlockwise circulation marked as 

CRW1 in Figure 3.2(a), where W denotes the water.   
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This circulation induces the Moffatt eddies near the sidewall-bottom intersection, as Figure 3.2(a) 

illustrates.  Moffatt [132] revealed that a flow in a corner (between two inclined planes with a 

sufficiently small angle) has an infinite set of eddies whose strength and scale diminish to zero as the 

edge is approached.  Since the outmost eddy size is small compared with the cylinder radius, see ME 

in Fig. 2(a), the sidewall can be approximated by a tangential plane thus reducing the cylindrical 

geometry to the corner between orthogonal planes. The corner angle, 90, is sufficiently small for the 

Moffatt eddies to occur [132].  Our numerical grid only resolves the outmost Moffatt eddy, denoted 

as ME in Figure 3.2(a).   

The Moffatt eddies also develop near the interface-sidewall intersection [133].  Our numerical 

grid only resolves the outmost near-interface eddy in water, marked as CRW2 in Figure 3.2(a). 

CRW2 drives the small counter-circulation cell right above CRW2 in the oil flow.  In turn, this cell 

induces one, in Fig. 2(a), or two, in Figure 3.2(b) and Figure 3.2(c), near-sidewall small eddies.  As 

𝑅𝑒𝑜 increases, ME and CRW2 expand in z-direction, touch each other, as Figure 3.2(b) illustrates, 

and merge. The merged cell is denoted again as CRW2 in Figure 3.2(c).   

3.4.2. Vortex breakdown in water flow 

The water moves upward in the bulk flow near the sidewall and thus blocks the downward 

transfer of the angular momentum from the interface.  The angular momentum is transported toward 

the axis along the interface and then downward near the axis in the water domain.  Therefore, the 

swirl effect is the strongest near the axis-bottom intersection where the VB cell emerges as Reo 

increases and factor (i) strengthens.  The VB cell is denoted as CRW3 in Figure 3.3(c). 

 

  

Figure 3.3 (Color online) Patterns of meridional motion at Reo = 300 (a), 310 (b) and 370 (c) 

show formation of VB cell CRW3 in water. 

 

 Figure 3.4 shows the distribution of velocity w at the axis in water at 𝑅𝑒𝑜 = 250 (dashes), 300 
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(solid curve), and 305 (dots). To better observe small-magnitude velocity near the bottom, z = 0, 

Figure 3.4 plots 𝑤1/3
.  As 𝑅𝑒𝑜 increases, the 𝑤 > 0 range that corresponds to the VB water cell 

appears. Interpolating 𝜕𝑤/𝜕𝑧 at 𝑟 = 𝑧 = 0 as a function of 𝑅𝑒𝑜 yields that CRW3 emerges at 𝑅𝑒𝑜  

300.  Figure 3.5 depicts the dependence of the maximal value of swirl velocity at the interface, 𝑣𝑠𝑖, 

on 𝑅𝑒𝑜. This dependence helps understand why the VB in water occurs at 𝑅𝑒𝑜 = 300. At small 𝑅𝑒𝑜, 

the water rotation is very weak, 𝑣𝑠𝑖 = 0.0015. The 𝑣𝑠𝑖 value starts to significantly grow for 𝑅𝑒𝑜  > 100 

and becomes nearly 0.07 at 𝑅𝑒𝑜 = 300, which corresponds to the inflection point of the curve in 

Figure 3.5     

 

Figure 3.4 Distribution of velocity 𝑤 at the axis in the water domain at 𝑅𝑒𝑜 = 250 (dashes), 300 

(solid curve), and 305 (dots).    

 

Figure 3.5 Dependence of maximal swirl velocity at the interface vsi on the Reynolds number. 

The Reynolds number, based on 𝑣𝑠𝑖 and the water viscosity 𝑣𝑤 , is 𝑅𝑒𝑤 = 1370 at 𝑅𝑒𝑜 = 300, i.e., 

the water rotates sufficiently fast for the nonlinear terms to become important in equations (3.2)-

(3.4). As the rotating fluid meets a normal wall, the secondary flow develops [134]. This flow 

radially converges to the rotation axis near the wall and goes away from the wall near the axis.  The 

driving mechanism for the secondary flow is the radial gradient of pressure. It develops away from 

the wall to balance the centrifugal force: 𝜕𝑝/𝜕𝑟 = 𝜌𝑣2/𝑟.  Near the wall, 𝜕𝑝/𝜕𝑟 is not balanced by 

the centrifugal force (because it has the second-order zero since 𝑣 = 0 at the wall) and pushes the 

fluid radially inward.  This tornado-like secondary motion becomes sufficiently strong to overcome 
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the anticlockwise circulation of water near the axis-bottom intersection at 𝑅𝑒𝑜 = 300. 

3.4.3. Formation of thin anticlockwise circulation layer in water 

      As 𝑅𝑒𝑜   further increases, the vortex breakdown cell CRW3 and the outmost Moffatt eddy 

ME, shown in Figure 3.3(c), merge and form the clockwise circulation, denoted again as CRW3 in 

Figure 3.6(a).  The anticlockwise circulation CRW1 separates from the bottom, as Figure 3.6(a) 

illustrates at 𝑅𝑒𝑜 = 400, and becomes a thin layer, as Figure 3.6(b) illustrates at 𝑅𝑒𝑜 = 600. The z-

extent of CRW1 at the axis, 𝑟 = 0, becomes very small: 0.007 at 𝑅𝑒𝑜 = 600.    

      

Figure 3.6 (color online) Patterns of meridional motion at 𝑅𝑒𝑜 = 400 (a) and 600 (b) show 

formation of thin anticlockwise circulation layer in water.    

 

3.4.4. Growth of the interface height at the axis 

This reduction results in the significant rise of the interface near the axis, driven by the water up-

flow in region CRW3, as Figure 3.6(b) illustrates. Figure 3.7 depicts this trend in more detail by 

showing the dependence of the interface height at the axis, 𝑧𝑖, on 𝑅𝑒𝑜.   
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Figure 3.7 Dependence of interface height at the axis 𝑧𝑖 on the rotation speed 𝑅𝑒𝑜. 

 

3.4.5. Formation of a bulge in the anticlockwise layer 

            

Figure 3.8 (color online) Patterns of meridional motion at 𝑅𝑒𝑜 = 700 (a) and 933 (b) show 

formation of a bulge in anticlockwise circulation layer in water.    

The interface rises in the axis vicinity but remains nearly flat for 𝑟 > 0.3, as Figure 3.8 illustrates.  

This causes an intriguing effect: the formation of a bulge in the anticlockwise water circulation.  At 

𝑅𝑒𝑜 = 700, the water motion is pretty fast, since 𝑅𝑒𝑤 = 3742. A strong jet forms near the interface.  

The interface peak at the axis makes this jet inclined downward.  The inertia force separates the jet 

from the interface, where the interface becomes nearly flat, resulting in the bulge observed in Figure 

3.8(b).  The bulge divides the clockwise water circulation in the near-axis and near-sidewall parts in 

Figure 3.8(b).  Figure 3.8(b) also shows that oil streamlines have a swelling near the axis for 𝑧 close 

to 1.2. This swelling is a precursor of vortex breakdown in the oil flow discussed below. 
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3.5. Vortex breakdown in oil flow 

3.5.1. Accumulation of swirl near the axis-interface intersection 

Figure 3.8 indicates the formation of a jet radially converging toward the axis near the interface in 

the oil flow. This intensifies the swirl near the axis-interface intersection. The dashed (Reo = 700) 

and solid (Reo = 850) curves in Figure 3.9 show that the swirl velocity v at the interface increases 

with Reo and its peak location shifts closer to the axis.  This significantly increases the centrifugal 

acceleration, v2/r, and consequently the radial gradient of pressure, resulting in a local pressure 

minimum near the axis-interface intersection. 

 

Figure 3.9 Distribution of swirl velocity at the interface at 𝑅𝑒𝑜  = 700 (dashes), 850 (solid curve) 

and 1082 (dots). 

 

Figure 3.10 Distribution of oil velocity at the axis at 𝑅𝑒𝑜 values shown near the curves. 
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3.5.2. Distribution of velocity at the axis in the oil flow 

The reduced pressure sucks the downstream oil, decelerating the upward oil motion near the axis.  

Figure 3.10 illustrates this trend by depicting the distribution of oil velocity at the axis at the 𝑅𝑒𝑜 

values shown near the curves.  A local minimum of 𝑤 forms, its location approaches the interface, 

and its value decreases as 𝑅𝑒𝑜 increases.   

3.5.3. Emergence and development of vortex breakdown in the oil flow 

Interpolation of the local-minimal w value as a function of 𝑅𝑒𝑜 yields that vortex breakdown in 

oil occurs at 𝑅𝑒𝑜 = 941. The VB cell in oil emerges at the axis near 𝑧 = 1 and then extends in both 

radial and axial directions.  Interpolating of 𝜕𝑤/𝜕𝑧 at the interface as a function of 𝑅𝑒𝑜 yields that 

the vortex breakdown cell reaches the interface at 𝑅𝑒𝑜 = 1000.  Figure 3.11 depicts the vortex 

breakdown patterns at 𝑅𝑒𝑜  = 966 (a) and 1033 (b).  

As the VB oil cell reaches the interface, it meets the VB water cell.  Next, the stagnation saddle 

point S separates from the axis, as Figure 3.11(b) illustrates.  The anticlockwise circulation region in 

water detaches from the axis as well.  All bulk flow regions meet at S for 𝑅𝑒𝑜 > 1000.  The vortex 

breakdown patterns in the oil flow, depicted in Figure 3.11, agree with the experimental vortex 

breakdown patterns shown in Figure 3.2(b) and (b*c) of Ref. [2]. 

 In contrast, the striking pattern of the water flow is not resolved in Ref. [2].  An advantage of 

numerical simulations is that they help investigate a flow in fine details.  In particular, our study 

reveals the complicated structure of the water flow, which plays an important role in the development 

of the flat-top shape (named as “Mt. Fuji” shape in Ref. [3]) of the oil-water interface.   

       

Figure 3.11 (color online) Patterns of meridional motion at 𝑅𝑒𝑜 = 966 (a) and 1033 (b) show 

vortex breakdown cell in oil. 
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3.6. Stability analysis 

 

m 𝜔𝑟  Re
o 

Re
w 

vsi vtm rm zm 

1 0.073 85

4 

48

29 

0.0827 -0.0342 0 0.0261 

2 0.0097 81

0 

43

71 

0.0867 -0.0315 0.714 0.153 

3 0.0241 84

2 

46

89 

0.0854 -0.0329 0.874 0.106 

4 0.0388 84

9 

47

58 

0.0859 -0.0332 0.874 0.111 

Table 3.1 Marginal (i = 0) and critical (bold) stability characteristics. 

We refer a reader to Refs. [1] and [135] for technical details of the stability study and discuss the 

results summarized in Table 3.1.  It lists the characteristics corresponding to the marginal 

disturbances at the azimuthal wave number 𝑚 = 1, 2, 3, and 4.  The marginal disturbances are 

neutral, 𝜔𝑖 = 0, corresponding to 𝑅𝑒𝑜 at which all other eigenvalues have 𝜔𝑖 < 0 for a prescribed  𝑚.   

       

Figure 3.12  (color online) (a) Meridional motion and (b) contours of constant energy of critical 

disturbances at 𝑅𝑒𝑜 = 810 and 𝑚 = 2.    

The critical disturbance is the marginal one, corresponding to the minimal 𝑅𝑒𝑜  for all 𝑚.  The 

critical characteristics are shown bold in Table 3.1.  The Reynolds number of the water flow, 𝑅𝑒𝑤, is 

based on the water viscosity, 𝜈𝑤, and the maximal azimuthal velocity at the interface, whose 

dimensionless value, 𝑣𝑠𝑖, is also presented in Table 3.1.  The minimal meridional tangential velocity 

at the interface, 𝑣𝑡𝑚, is negative in Table 3.1 because it is directed toward the axis as Figure 3.12(a) 

illustrates.  The location of peak marginal-disturbance squared velocity modulus, 𝐸𝑑, corresponds to 

𝑟 =  𝑟𝑚 and 𝑧 =  𝑧𝑚 shown in the last two columns of Table 3.1.  Here, 𝐸𝑑 = 〈|𝑢𝑑|2 + |𝑣𝑑|2 +
|𝑤𝑑|2〉 where the brackets denote averaging with respect to time and azimuthal angle.  𝐸𝑑 is 

normalized by its maximal value in the entire domain.  A distribution of 𝐸𝑑 indicates where the 

disturbance magnitude is maximal indicating where it most production occurs.  

Other 𝑚 values not presented in Table 3.1 correspond to larger 𝑅𝑒𝑜.  Thus, the flow becomes 

unstable with respect to time-oscillating three-dimensional disturbances for 𝑅𝑒𝑜 > 810.  



36                            

 

Global stability analysis of two-fluid flows 

Figure 2.1 depicts (a) streamlines of meridional motion and (b) contours 𝐸𝑑 = constant at the 

critical 𝑅𝑒𝑜 = 810 and 𝑚 = 2 and reveals that 𝐸𝑑 is focused in the water domain.  Figure 3.13 

illustrates this feature in more detail by depicting 𝑧-distribution of base-flow radial velocity (𝑣𝑟, solid 

curves) and disturbance energy (𝐸𝑑, dashed curves) at 𝑟 =  𝑟𝑚  = 0.714 (see Table 3.1).  For 

convenient observation in one figure, 𝑣𝑟 is normalized by its maximal value in Figure 3.13. 

      

Figure 3.13 (a) z-distributions of bases-flow radial velocity 𝑣𝑟 and critical disturbance energy 𝐸𝑑 

at 𝑟 = 0.714, 𝑅𝑒𝑜 = 810 and 𝑚 =2; (b) close-up of (a) for the water flow only. 

 

      The peak of radial velocity near 𝑧 = 2 in Figure 3.13(a) corresponds to the jet-like oil flow 

near the rotating disk where the Kármán boundary layer [127] develops, which is well observed in 

Figure 3.12(a).  The swirl and radial velocity magnitudes are significantly smaller near the interface 

(see the fifth and sixth columns in Table 3.1).  The large value of 𝑅𝑒𝑤 = 4371 is due to the water 

viscosity being smaller by two orders of magnitude compared with the oil viscosity.    

      For the same reason, the disturbance energy in the oil is negligible compared to that in the 

water, as Figure 3.13(a) illustrates.  This explains why in experiment [2], where the oil flow was only 

visualized, no effect was observed of time-oscillating three-dimensional water motion.  

      Figure 3.13(b) is a close-up of Figure 3.13(a) showing the water-flow features in more detail. 

The 𝑣𝑟   profile depicts a well-developed counterflow with inflection points, one near 𝑧 = 0.08 and the 

other at the interface, which is likely responsible for the found instability.  The two local maxima of 

𝐸𝑑, observed in Figure 3.12(b), are located in the two circulation water cells, observed in Figure 

3.12(a). This supports our view that the instability is of shear-layer type. 

3.7. Concluding remarks 

a) This numerical study reveals the flow topology and instability hidden in the experimental 

study [2].  It shows that vortex breakdown occurs in the water flow at the Reynolds number, 

𝑅𝑒𝑜 = 300, which is significantly smaller than 𝑅𝑒𝑜 = 941 corresponding to vortex breakdown 

in the oil flow.   

b) For small 𝑅𝑒𝑜, the bulk oil meridional circulation is clockwise and the water circulation is 

anticlockwise except in small Moffatt eddies occurring near the sidewall-bottom and 

sidewall-interface intersections (Figure 3.2a). The water-flow vortex breakdown causes the 

emergence of clockwise circulation near the bottom center (Figure 3.3).  As 𝑅𝑒𝑜 increases, 

this circulation occupies most of water domain and approaches the interface at 𝑅𝑒𝑜 around 

600 (Figure 3.6).  The anticlockwise water circulation shrinks into a thin layer attached to the 
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entire interface.  

c) The near-axis uprising water flow, emerging due to vortex breakdown, pushes the interface 

up and thus causes its significant deformation near the container axis (Figure 3.8).  

d) At 𝑅𝑒𝑜 = 810, the flow becomes unstable with respect to time-oscillating three-dimensional 

disturbances with the azimuthal wave number 𝑚 = 2 (Table 3.1).  The disturbance energy 

focuses in the water flow near 𝑟𝑚 = 0.714 and 𝑧𝑚 = 0.153 where two cells of clockwise 

circulation develop (Figure 3.12).  The disturbance energy drastically diminishes in the oil 

flow (Figure 3.13).  

e) As the Reynolds number further increases, the vortex breakdown cells in oil and water meet 

at the interface-axis intersection at 𝑅𝑒𝑜  = 1000 and expand in the radial direction, forming 

the flat-top interface shape.  Therefore, the observed topological transformations of water 

flow significantly contribute to the development of flat-top shape (Figure 3.11).   

f) It seems that the water pulsations do not significantly affect the oil motion even for Re 

remarkably larger than 810 since the unsteadiness was not recognized in the experiment [2]. 

Figure 3.13(a) supports this conjecture indicating that Ed is concentrated in the water domain 

and is drastically reduced in the oil flow.  The pulsations are damped by the oil viscosity 

which is 65 times the water viscosity.  This explains why our results describing the topology 

transformations of oil flow agree with experiment. 
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4. METAMORPHOSIS IN A WATER-OIL SWIRLING 

FLOW 

 

 

 

 his chapter reveals the flow topology hidden in the experimental study by Fujimoto & 

Takeda [3].  Water and silicone oil fill a sealed vertical cylindrical container.  The rotating 

top disk induces the meridional circulation and swirl of both fluids. The experiment shows 

a striking deformation of interface as the rotation strength 𝑅𝑒 increases.  Our numerical study reveals 

that the water motion is two-cellular and the upper cell is a thin circulation layer attached to the entire 

interface for 𝑅𝑒 values at which the striking deformation occurs. The layer has an unusual topology 

being a bubble-ring in the range of 𝑅𝑒 specified in the paper. In addition, our study reveals that the 

steady axisymmetric flow suffers from the shear-layer instability before the interface becomes 

remarkably deformed.   

4.1. Introduction 

Swirling two-fluid flows have a number of intriguing and practically important features absent in 

one-fluid flows.  Among them are numerous topological metamorphoses [129], the formation of 

multiple eddies [130] and thin circulation layers [118],[116], [117].  One application is aerial vortex 

bioreactors which is a rapidly developed technology [128],[51],[115].  An advantage of studying 

these flow phenomena in a sealed container is well-defined and controlled boundary conditions 

allowing for meaningful comparisons of experimental and numerical
 
results.    

A topological metamorphosis of a swirling flow, related to the emergence of a local circulation 

cell, which often referred to as vortex breakdown (VB), has attracted the attention of researchers 

starting from 1957 due to its relevance to delta-wing aircraft, combustion, tornadoes, and other 

applications [109].  Many hypotheses have been suggested to interpret the VB nature [110].  A recent 

view is that the swirl-decay mechanism [112] explains why VB occurs and how it can be controlled 

[114],[113].   

In contrast to the long-history studies of VB in a single fluid, two-fluid VB flows have been 

addressed only a few years ago.  An interesting experiment, providing a vivid example of nonlinear 

physics, was performed by Fujimoto and Takeda [3].   They visualized a flow of silicone oil and 

water driven by the rotating lid of a sealed cylindrical container.  As the rotation strength 𝑅e 

increases, the interface becomes significantly deformed taking shapes named by the authors as 

“hump”, “cusp”, “Mt. Fuji” and “bell”.   They also observed generation of water droplets.  Similar 

results were obtained by Tsai et al
 
[2] who also detected vortex breakdown in the upper fluid.  Here 

we show that VB occurs in the lower fluid as well. 

This and some other important topological features of the lower-fluid flow remain uncovered in 

Ref. [3].  This investigation shows that (a) the water flow is two-cellular, (b) the upper cell has a 

bubble-ring shape and (c) the flow suffers from the shear-layer instability.  These features develop at 

smaller values of the Reynolds number 𝑅𝑒 than those at which the interface becomes remarkably 

deformed. They might affect the phenomena observed in Ref. [3].  Our stability analysis of this flow 

has been performed using a novel numerical technique proved its efficiency for a two-fluid flow with 

a curved interface [1].    

T 
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The physical reason for the two-cell water flow is the competing driving factors: (a) swirl and (b) 

meridional velocities of oil at the interface. For small water fraction 𝐻𝑤, factor (b) dominates and the 

bulk water flow circulates in the opposite direction to the oil circulation. As 𝐻𝑤  and 𝑅𝑒 increases, 

factor (a) causes the co-circulation of water near the bottom.  The counter-circulation near the 

interface becomes a thin layer with a paradoxical—bubble-ring—topology.  

The instability emerges near the center of water co-circulation. We argue that this instability 

likely is of the shear-layer kind and caused by inflection points in the radial distribution of axial 

velocity. The instability is time-oscillatory and three-dimensional with the azimuthal wave number m 

= 4. The instability develops at 𝑅𝑒 being around three times smaller than that at which the interface 

becomes of “Mt. Fuji” shape in the experiment [3].  

4.2. Problem formulation 

4.2.1. Flow Geometry 

Figure 4.1 is a schematic of the problem.  The lower part, 0 < 𝑧 < ℎ𝑤, of the cylindrical 

container of radius 𝑅 and height ℎ is filled with water; the upper part, ℎ𝑤 < 𝑧 < ℎ, is filled with 

silicone oil.  With no motion, the interface is flat, 𝑧 = ℎ𝑤 (thin horizontal line in Figure 4.1). When 

the top disk (at 𝑧 = ℎ) rotates with angular velocity 𝜔, while the other walls are stationary, the 

interface becomes deformed, typical of water-spouts, as the curve in Figure 4.1 schematically shows. 

 

Figure 4.1 Schematic of water-spout model. 

       

One control parameter is aspect ratio 𝐻 =  ℎ/𝑅 which is fixed here: 𝐻 = 2.3 that corresponds 

to the results shown in Fig. 2 of Ref. [3].  The dimensionless height of the interface at rest is 𝐻𝑤 =
ℎ𝑤/𝑅.  We vary 𝐻𝑤 in order to explain how the two-cell water flow develops.  Other control 

parameters are the Reynolds number, 𝑅𝑒 = 𝜔𝑅2/𝜈𝑤, characterizing the swirl strength, the Froude 

number, 𝐹𝑟 = 𝜔2𝑅/𝑔 = 𝑎𝑅𝑒2, which is a centrifugal-to-gravity acceleration ratio, and the Weber 

number, 𝑊𝑒 = 𝜌𝑤𝜔2𝑅3/𝜎 = 𝑏𝑅𝑒2, characterizing the effect of surface tension 𝜎 at the interface; 𝑔 

= 9.81 m
2
/s is the gravity acceleration, 𝜌𝑤 is the density of water, 𝑎 = 𝜈𝑤

2/(𝑔𝑅3) and 𝑏 =
𝜌𝑤𝜈𝑤

2/(𝜎𝑅).  As the fluids are specified, coefficients 𝑎 and 𝑏 are fixed while 𝑅𝑒 varies.  

According to Ref. [3], we take 𝑅 = 0.095 m, 𝜌𝑤  = 1000 kg/m
3
, 𝜌𝑜  = 965 kg/m

3
, 𝜈𝑤 = 10

6
 m

2
/s. 

𝜈𝑜 = 137.510
6

 m
2
/s (we use the middle value of the 𝜈𝑜 range indicated in Ref. [3]), and 𝜎 = 0.042 

kg/s
2
. This yields that 𝑎 = 1.1910

10
 and 𝑏 = 2.5110

7
. 

 
Hereafter, subscripts “𝑤” and “𝑜” mean 
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“water” and “oil” respectively. 

4.2.2. Governing equations 

Using 𝑅, 𝜔𝑅, and 𝜌𝑤𝜔2𝑅2 as scales for length, velocity, and pressure, respectively, renders 
all variables dimensionless.  We consider a flow of two viscous incompressible immiscible fluids 

governed by the Navier-Stokes equations [125], 
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𝜕𝜙
+ 𝑤

𝜕𝑣

𝜕𝑧
+

𝑢𝑣

𝑟
= −

𝜌𝑛

𝑟

𝜕𝑝

𝜕𝜙
+

𝜈𝑛

𝑅𝑒
(𝛻2𝑣 −

𝑣

𝑟2
+

2

𝑟2

𝜕𝑢

𝜕𝜙
),   4.3 

     
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+

𝑣

𝑟

𝜕𝑤

𝜕𝜙
+ 𝑤

𝜕𝑤

𝜕𝑧
= −𝜌𝑛

𝜕𝑝

𝜕𝑧
+

𝜈𝑛

𝑅𝑒
𝛻2𝑤,                  4.4 

               

where 𝛻2 ≡
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑟2

𝜕2

𝜕𝜙2 +
𝜕2

𝜕𝑧2 is the Laplace operator for a scalar field, (𝑢, 𝑣, 𝑤) are the 

velocity components in cylindrical coordinates (𝑟, 𝜙, 𝑧), 𝑡 is time, and 𝑝 is pressure.  The 

coefficients, 𝜌𝑛 and 𝜈𝑛, are both equal 1 at 𝑛 = 1 (in water) while 𝜌𝑛 = 𝜌𝑤/𝜌𝑜 and 𝜈𝑛 = 𝜈𝑜/𝜈𝑤  at 𝑛 

= 2 (in silicone oil).   

      We denote the list (𝑢, 𝑣, 𝑤, 𝑝)  as 𝑽, and look for a solution of the system 4.1- 4.4 in the form 

        𝑽 = 𝑽𝑏(𝑟, 𝑧) + 휀𝑽𝑑(𝑟, 𝑧)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐.,                                                4.5 

where subscripts “𝑏” and “𝑑” denote the base flow and a disturbance, respectively; 𝑐. 𝑐.  denotes the 

complex conjugate of the preceding term;  << 1 is an amplitude; integer 𝑚 is an azimuthal wave 

number; and 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 is a complex number to be found, with  frequency 𝜔𝑟 and growth rate of 

disturbance 𝜔𝑖. For a decaying (growing) disturbance, 𝜔𝑖 is negative (positive).  The equations 

governing the base flow result from substituting 4.5 in system 4.1- 4.4 and setting  = 0.  The terms 

of order 𝑂() constitute equations governing infinitesimal disturbances. 

4.2.3. Boundary conditions 

Equations 4.1 - 4.4 are solved under the following boundary conditions:       

(i) Regularity at the axis, 0 < 𝑧 < 𝐻,  𝑟 = 0: 

d) 𝑢 = 𝑣 = 0, 𝜕𝑤/𝜕𝑟 = 0 (base flow and 𝑚 = 0 disturbances), 

e) 𝑤𝑑 = 0, 𝑢𝑑 + 𝑣𝑑 = 0, 𝜕𝑢𝑑/𝜕𝑟 = 0 (𝑚 = 1 disturbances) 

f) 𝑤𝑑 = 𝑢𝑑 = 𝑣𝑑 = 0  (𝑚 >1 disturbances) 

(ii) No-slip at the walls: 𝑢 = 𝑣 = 𝑤 = 0 at the still disk, 0 < 𝑟 < 1, 𝑧 = 0, and at the 

sidewall,  0 < 𝑧 < 𝐻, 𝑟 = 1; 𝑢 = 𝑤 = 0, 𝑣 = 𝑟 at the rotating disk, 0 < 𝑟 < 1, 𝑧 = 𝐻.   

(iii) Continuity of all the velocity and tangential stress components at the interface, 𝑧 =
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𝐹(𝑟, 𝜙, 𝑡).  The balance for the normal stresses yields that 

𝑝𝑤 − 𝑝𝑜 =
1

𝑊𝑒
𝛻. 𝒏 −

1

𝑅𝑒
𝒏. (𝝉𝑤 − 𝜇𝑟𝝉𝑜). 𝒏 −

1

𝐹𝑟
(1 − 𝜌𝑟)𝑧,   4.6 

 

                          

where 𝒏  is the unit vector perpendicular to the interface, 𝝉𝑤  and 𝝉𝑜 are tensors of the 

viscous stresses in the water and oil, respectively, and 𝜇𝑟 and 𝜌𝑟 are the light-to-heavy fluid 

ratios of the dynamic viscosities and densities, respectively. 

(iv) The kinematic equation for the interface shape, 𝑧 = 𝐹(𝑟, 𝜙, 𝑡), yields that 

    

      
𝜕𝐹

𝜕𝑡
− 𝑤 + 𝑢

𝜕𝐹

𝜕𝑟
+

𝑣

𝑟

𝜕𝐹

𝜕𝜙
= 0,     4.7 

and we look for a solution in the form  𝑧 = 𝐹𝑏(𝑟, 𝑧) + 휀𝐹𝑑(𝑟, 𝑧)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐.. 

 

4.3. Numeric Technique 

To simulate the nonlinear problem for the axisymmetric basic flow and the generalized 

eigenvalue problem for disturbances, we use a numerical technique which is a variation of that 

described in detail in Ref. [1].  First, the water and oil regions are mapped onto the standard square 

domain (0 ≤ (w,o) ≤ 1, 0 ≤  ≤ 1) by means of the coordinate transformations (a) w = z/F and  = r 

and (b)ηo = (z−F)/(H−F) and  = r for the water and oil, respectively.  Then, each variable 

(velocities, pressure field and the interface shape) and all its spatial and temporal derivatives, which 

appear in the transformed equations, are composed as a single symbolic vector.  For example, for the 

axial velocity in the water flow we create a vector having 11 components: xw = [ww, ww/w, 

ww/, 
2
ww/

2
, 

2
ww/

2
, 

2
ww/, ww/, 

2
ww/

2
, 

2
ww/, 

2
ww/, ww/t]. The 

next step is to use a symbolic toolbox to calculate the analytical Jacobians of all the equations with 

respect to all the symbolic vectors. Using these analytical Jacobians we generate functions which 

then are evaluated point by point in the square domains. In this procedure, we used the MATLAB 

procedure matlabFunction to convert the symbolic Jacobians in MATLAB functions.      

Then, we carry out the spatial and temporal discretization of the problem. The water and oil 

domains are discretized using a set of nw and no Chebyshev spectral collocation points in the axial 

direction (along the w and o axes, respectively) [126]. The water and oil domains are discretized 

using a set of n Chebyshev spectral collocation points in the radial direction, . The second-order 

backward finite differences are used to compute the time derivatives for the basic flow.  Since the 

basic flow is axisymmetric, all the azimuthal derivatives are set to zero. For disturbances, we obtain 

the temporal and azimuthal derivatives using the representation (5).  

The final step is to set up the numerical matrices allowing us to solve the problem by using a 

Newton procedure for the basic steady flow and by solving a generalized eigenvalue problem for 

disturbances.  Details of this procedure are described in Ref. [1].   

To summarize, the numeric procedure includes the mapping of water and oil regions, the proper 

spatial and temporal discretization creating the discrete Jacobian matrix for the Newton procedure for 

the basic flow and two more matrices for the generalized eigenvalue problem for disturbances.   For 

the basic flow, we get the final steady solution though an unsteady process. Starting from the rest and 

selecting a time step, dt, the solution is advanced in time until a steady state is reached. Since the 

nonlinear procedure used to compute the basic flow is fully implicit, dt can be taken sufficiently large 

to quickly reach the steady solution.  Once the base flow is computed, and given an azimuthal 
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wavenumber m, we use MATLAB subroutine eigs to calculate the eigenvalues () of the system of 

discrete linear equations. 

Most of the simulations presented here are done using nw = 50, no = 25, and n = 40 (standard 

grid), but some runs for flows, having small circulation regions, are performed with more fine grids. 

Since the Chebyshev grid points concentrate near the interface from both sides, the approach is 

adequate to resolve thin circulation layers, located near the interface, even at moderate values of nw, 

no, and n.  

To analyze the flow topology, we use the Stokes stream function , w = r
1
/r and u = 

r
1
/z, and plot streamlines of the meridional motion, i.e., contours  = constant. 

4.4. Topological metamorphoses of water flow 

4.4.1. Creeping flow 

It is instructive to start with a creeping flow, where the flow topology only depends on the fluid 

fractions.  Figure 4.2 depicts streamlines at 𝑅𝑒 = 1, 𝐻 = 2.3 and 𝐻𝑤 = 0.9 (a), 0.93 (b), 0.95 (c).    

 

Figure 4.2 Patterns of creeping flow at water height 𝐻𝑤 = 0.9 (a), 0.93 (b) and 0.95 (c). 

Figure 4.2(a) shows the simplest flow pattern.  The rotating lid pushes the silicon oil to periphery 

and thus drives the clockwise circulation in CRO; CR is an abbreviation for “circulation region” and 

O denotes the oil.  Near the interface, the oil moves toward the container axis.   

The water flow is driven by two factors: (a) swirl and (b) meridional velocities at the interface, 

both provided by the oil motion.  The factors (a) and (b) pushes the water in opposite directions: the 

swirl (meridional) velocity tends to drive the clockwise (anticlockwise) circulation.  For small 𝐻𝑤, 

factor (b) dominates [114], and the bulk water circulation is anticlockwise as Figure 4.2(a) shows in 

CRW1; here W denotes the water flow.   

The water circulation induces the Moffatt eddies (ME) near the sidewall-bottom intersection.  

Moffatt [132] revealed that a flow in a corner (between two inclined planes with a sufficiently small 
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angle) has an infinite set of eddies whose strength and scale diminish to zero as the edge is 

approached.  Since the outmost eddy size is small compared with the cylinder radius, e.g., see ME in 

Figure 4.2(a), the sidewall can be approximated by a tangential plane thus reducing the cylindrical 

geometry to the corner between orthogonal planes. The corner angle, 90, is sufficiently small for the 

Moffatt eddies to occur.  Our numerical grid only resolves the outmost Moffatt eddy: ME in Figure 

4.2(a).   

The water moves upward to the interface near the sidewall and thus blocks the downward transfer 

of the angular momentum there.  The angular momentum is transported toward the axis near the 

interface and then downward near the axis.  Therefore, the swirl effect is the strongest near the axis-

bottom intersection where, as 𝐻𝑤  increases, factor (a) generates CRW2 shown in Figure 4.2(b).  

Interpolating the velocity distribution at the axis yields that CRW2 emerges at 𝐻𝑤 being very close to 

0.93 that explains why CRW2 is so small in Figure 4.2(b). 

 As 𝐻𝑤  further increases, CRW2 and ME expand. They merge into a single region denoted again 

as CRW2 in Figure 4.2(c).  This feature is similar to that described in Ref. [130]. The merger occurs 

at 𝐻𝑤 = 0.938 as interpolation of w(z) yields at r = 0.4. 

4.4.2. Topological changes as rotation speeds up 

Now we fix 𝐻𝑤 = 1 (as in Ref. [3]) and increase 𝑅𝑒.  For convenient comparison with the results 

of Ref. [3], we introduce 𝑅𝑒𝑜 = 𝜔𝑅2/𝜈𝑜 = 𝑅𝑒/137.5 based on the oil viscosity.  Figure 4.3 depicts 

the flow patterns at 𝑅𝑒𝑜 = 1 (a), 𝑅𝑒𝑜 = 50 (b) and 𝑅𝑒𝑜 = 350 (c).  

As 𝑅𝑒 increases, CRW2 expands upward and CRW1 shrinks toward the interface as Figure 4.3 

illustrates. Table 4.1 lists the dependence on 𝑅𝑒𝑜 of the following flow characteristics: the interface 

height at the axis 𝑧𝑖, the CRW1 width at the axis 𝑧𝑖𝑧𝑠  , see Figure 4.3(b), the maximal swirl velocity 

at the interface 𝑣𝑚𝑖, the minimal tangential-meridional velocity at the interface 𝑣𝑡𝑚, and the 

Reynolds number of water flow 𝑅𝑒𝑤 = 𝑣𝑚𝑖  𝑅𝑒; 𝑅𝑒𝑤 is based on the maximal swirl velocity at the 

interface and water viscosity.       

        

Figure 4.3 Flow patterns at water height 𝐻𝑤 = 1 and 𝑅𝑒𝑜 = 1 (a), 50 (b) and 350 (c).  
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   𝑅𝑒𝑜     𝑧𝑖    𝑧𝑖𝑧𝑠     𝑣𝑚𝑖     𝑣𝑡𝑚   𝑅𝑒𝑤 

0 1 0.47719 0.01022 -0.00025           0 

50 1.0004 0.23842 0.01040 -0.00793 73 

100 1.0011 0.12863 0.01235 -0.00933 173 

150 1.0021 0.07607 0.01647 -0.01115 346 

200 1.0044 0.04343 0.02347 -0.01429 657 

250 1.0097 0.02296 0.03423 -0.01847 1198 

300 1.0212 0.00495 0.04817 -0.02333 2023 

350 1.0431 0 0.06296 -0.02692 3085 

400 1.0777 0 0.07571 -0.03451 4240 

Table 4.1 Dependence on 𝑅𝑒𝑜 of interface height 𝑧𝑖, width of CRW1 at the axis 𝑧𝑖𝑧𝑠, maximal 

swirl 𝑣𝑚𝑖  and minimal tangential-meridional 𝑣𝑡𝑚 velocities at the interface and the Reynolds number 

of water flow 𝑅𝑒𝑤. 

 

Figure 4.4 depicts the radial profiles of (a) the tangential-meridional and (b) swirl velocities at the 

interface, normalized by their respectively minimal and maximal values, for the 𝑅𝑒𝑜 values indicated 

on the plots.  Figure 4.4(a) reveals that the profile of the meridional velocity is nearly Re-

independent.  Figure 4.4(b) shows that the location of the maximal swirl velocity shifts closer to the 

axis for large 𝑅𝑒𝑜.   

  

Figure 4.4 Radial distribution at the interface of normalized (a) tangential-meridional 𝑣𝑡𝑛 =
𝑣𝑡/𝑣𝑡𝑚  and (b) swirl 𝑣𝑛 = 𝑣/𝑣𝑚 velocities at 𝑅𝑒𝑜  values shown on the plots. 

4.4.3. Formation of a robust bubble-ring 

A striking feature is the shape of CRW1 for large Re. Figure 4.3(c) shows that CRW1 becomes a 

thin circulation layer (TCL) adjacent to the interface. The third column in Table 4.1 lists values of 

𝑧𝑖𝑧𝑠 which is the 𝑧-extent at the axis of CRW1. As 𝑅𝑒 increases, 𝑧𝑖𝑧𝑠 reduces, becomes zero at 

𝑅𝑒𝑜 = 314 and remains zero for larger 𝑅𝑒𝑜. Therefore, TCL topologically is a bubble for 𝑅𝑒𝑜 < 314 

and a bubble-ring for 𝑅𝑒𝑜  314. Typically, a bubble-ring is a transient shape.  A small variation of a 

control parameter transforms a bubble-ring either in a bubble or in a ring.  However here, CRW1 is a 
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bubble-ring in the range of 𝑅𝑒𝑜  > 314 shown in Table 4.1, i.e., TCL is a robust bubble-ring (RBR).   

      Figure 4.5 confirms that TCL is a bubble-ring at 𝑅𝑒𝑜 = 350 by depicting the distribution of 

velocity at the axis.  The dots show w(z) in the water region and the solid curve shows 𝑤(𝑧) in the 

oil region.  Figure 4.5(b) is a close-up of Fig. 5(a) near the interface.  Figure 4.5 shows that 𝑤(𝑧) is 

zero but not tangent to the 𝑤 = 0 line at 𝑧 = 𝑧𝑖.  The derivative, 𝜕𝑤/𝜕𝑧, has a jump at 𝑧 = 𝑧𝑖 being 

negative (positive) in the water (oil) region.  The jump is due to different densities and viscosities of 

the oil and water.  

         

Figure 4.5(a) Distribution of velocity at the axis for 𝑅𝑒𝑜 = 350, (b) is a close up of (a) near the 

interface, 𝑧 = 𝑧𝑖 = 1.0431. 

 

 

Figure 4.6 Dependence on z of swirl (dashes) and radial (solid curve) velocities in water at 𝑟 = 

0.4 and 𝑅𝑒𝑜 = 350.  

      The TCL is a region of large shear as Figure 4.6 illustrates depicting profiles of swirl 𝑣(𝑧) 

(dashes) and radial 𝑢(𝑧) (sold curve) velocities in water at 𝑟 = 0.4 and 𝑅𝑒𝑜 = 350.  TCL, shown in 

Fig. 3(c), is located between the peak and valley of 𝑢(𝑧) near 𝑧 = 𝑧𝑖 = 1.0431 in Figure 4.6.   The 

swirl velocity also significantly changes within TCL.  The magnitudes of 𝜕𝑢/𝜕𝑧 and 𝜕𝑣/𝜕𝑧 are 

maximal at the interface, 𝑧 = 𝑧𝑖.   

      These large shear stresses likely contribute to the striking shapes of the interface shown in 

Fig. 2 of Ref. [3].   However, before these shapes develop, the steady flow can suffer from an 

instability, because the Reynolds number of the water flow 𝑅𝑒𝑤 is rather large at 𝑅𝑒𝑜  350 

according to the values of 𝑅𝑒𝑤 in the last column of Table 4.1.  In addition, the water flow includes a 

jet forming near the interface as Figure 4.3(c) illustrates at 𝑅𝑒𝑜 = 350.  This jet forms below TCL, 
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goes to the sidewall and then downward near the sidewall and toward the axis near the bottom.  

These features are similar to those observed in Ref. [135].  The solid curve in Figure 4.6 has a 

number of inflection points that typically causes the shear-layer instability.  This motivates us to 

perform a stability study, whose results are reported below. 

4.5. Stability analysis 

4.5.1. Marginal and critical characteristics 

Our simulations show that the most dangerous disturbance corresponds to the azimuthal wave 

number 𝑚 = 4.  Table 4.2 lists eigenvalues, 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖, for a few values of 𝑅𝑒𝑜  at 𝑚 = 4.  

Interpolation yields the critical values: 𝑅𝑒𝑜 = 324, 𝜔𝑟 = 0.0391 and 𝜔𝑖 = 0.  Disturbances with 𝑚 = 

1, 2, and 3 becomes growing for larger 𝑅𝑒𝑜 as Table 4.3 shows listing the marginal (corresponding to 

𝜔𝑖 = 0) values. For 𝑚 > 4, marginal 𝑅𝑒𝑜 values also are larger than the critical Reo at 𝑚 = 4. 

 

𝑅𝑒𝑜 300 336 368 400 

𝜔𝑟 0.0358 0.0407 0.0441 0.0465 

𝜔𝑖 0.000464 0.000245 0.000927 0.001536 

Table 4.2 Dependence of 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 on 𝑅𝑒𝑜 for the most dangerous disturbance at 𝑚 = 4. 

 

𝑅𝑒𝑜 324 368 400 614 

𝜔𝑟 0.0391 0.0318 0.0381 0.0244 

𝑚 4 3 2 1 

Table 4.3 Critical (𝑚 = 4) and marginal (𝑚 = 1, 2 and 3) values of the Reynolds number (𝑅𝑒𝑜)  

and frequency (𝜔𝑟) at 𝜔𝑖 = 0. 

4.5.2. Basic-flow streamlines and disturbance energy contours 
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Figure 4.7 Streamlines of basic flow (a)-(d) and contours of disturbance energy (e)-(f) for 

parameters listed in Table 3: 𝑅𝑒𝑜 = 324 (a, e), 368 (b, f), 400 (c, g) and 614 (d, h).  

Figure 4.7 depicts streamlines of the basic meridional motion, (a)-(d), and contours of disturbance 

energy 𝐸𝑑 = constant for critical, (a, e), and marginal parameter values listed in Table 4.3. Here 

𝐸𝑑 = 〈|𝑢𝑑|2 + |𝑣𝑑|2 + |𝑤𝑑|2〉 where the brackets denote averaging with respect to time and 

azimuthal angle and 𝐸𝑑 is normalized by its maximal value in the entire domain.  

At critical 𝑅𝑒𝑜 = 324, the energy peak is located near the middle of the water domain as Figure 

4.7(e) shows.  The outmost energy contour in the water domain corresponds to 𝐸𝑑 = 0.1, i.e., the 

disturbance energy is focused between the water down-flow, going along the sidewall, and the water 

up-flow, going near 𝑟  0.5 as the pair of arrows indicate in Figure 4.7(a). 

4.5.3. Shear-layer character of instability 

 

Figure 4.8 Radial distribution of the basic-flow axial velocity (solid curve) and energy (dashed 

curve) of critical disturbance at 𝑧 = 0.405, 𝑅𝑒𝑜 = 324 and 𝑚 = 4. 
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Figure 4.8 shows this in more detail by depicting the radial profiles of the basic-flow axial 

velocity 𝑤𝑏(𝑟) (solid curve) and the energy of critical disturbances 𝐸𝑑(𝑟) (dashed curve) at 𝑧 =  𝑧𝑚 

= 0.405 (𝑧𝑚 is the axial coordinate of the 𝐸𝑑 peak in Figure 4.7(e)), 𝑅𝑒𝑜 = 324 and 𝑚 = 4. The 

velocity is normalized by its maximal value for the convenient comparison with 𝐸𝑑(𝑟)  in Figure 4.8.  

The radial location of 𝐸𝑑  peak, 𝑟 =  𝑟𝑒  = 0.714, is close to the inflection point of 𝑤𝑏(𝑟)  located at 

𝑟 =  𝑟𝑖  = 0.76.  This indicates that the instability likely is of shear-layer type, corresponding to the 

inflection point in the counterflow marked in Figure 4.7(a) by the arrows in the water domain.   

      A smaller energy peak exists in the oil domain near the interface, which likely can be related 

to the radial counterflow in the thin circulation layer shown by the dark curves in Figure 4.7(a). As 

𝑅𝑒𝑜 increases, the 𝐸𝑑 peaks shift toward the axis both in the water and oil domains.  An interesting 

feature is the development of vortex breakdown bubble (VBB) in the oil domain shown by the dark 

contours in Fig. 7(d). This VBB development looks similar to that experimentally observed by Tsai 

et al. (Fig. 2 in Ref. [2]). 

4.5.4. Iso-surfaces of critical disturbance vorticity and pressure 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Surfaces of constant (a) azimuthal vorticity and (b) pressure of the critical disturbance 

at 𝑅𝑒𝑜 = 324 and 𝑚 = 4. 

 

Figure 4.9 depicts surfaces of constant (a) azimuthal vorticity and (b) pressure for the critical 

disturbance (the first column in Table 4.3).  The light (dark) color corresponds to the water (oil) 

domain and 0.2 (0.02) values of maximal (a) vorticity and (b) pressure values.  The surfaces visualize 

the four-branch patterns of the 𝑚 = 4 disturbance fields.     

4.6. Concluding remarks 

Our numerical study indicates that the striking shapes of the interface, observed by Fujimoto & 

Takeda [3], develop in unsteady three-dimensional flow states.  The instability develops at 𝑅𝑒𝑜 = 324 

at which the interface deformation is small and has the “hump” shape typical for a slow motion.  This 

instability likely is of the shear-layer type, corresponds to time-oscillating disturbances with the 

azimuthal wave number 𝑚 = 4, and emerges in the lower-fluid (water) domain.  

It is also revealed that even at this rather small 𝑅𝑒𝑜, the water flow has a non-trivial topology, 

consisting of the bulk meridional circulation of the same direction, as the upper-fluid (oil) flow has, 

and a thin counter-circulation region adjacent to the interface.  

It is shown how this topology develops as 𝑅𝑒𝑜 increases starting from the creeping (Reo << 1) 
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flow. The creeping flow is also multicellular and its topology depends of fluid fractions.  

The physical reason for the two-cell bulk water flow is in the competing driving factors: (i) the oil 

meridional circulation which tends to induce the counter-circulation in water and  (ii) the oil  swirl 

which tends to induce the co-circulation in water.  For small water fraction (𝐻𝑤) and slow rotation 

(𝑅𝑒), the meridional driving (i) dominates. As 𝐻𝑤 and 𝑅𝑒 increases, the swirl driving (ii) intensifies, 

causing the water co-circulation.  It emerges near the bottom center, then expands and occupies 

nearly the entire water domain except a thin layer of counter-circulation adjacent to the interface.  

The layer 𝑧-thickness near the axis diminishes to zero at the axis.  The water up-flow, resulting from 

the co-circulation, contributes to the significant rise of the interface near the container axis observed 

in the experiment [3]. 
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5. PATTERNS AND STABILITY OF A WHIRLPOOL 

FLOW 

 

 

 

 his numerical study reveals stable multi-eddy patterns of a steady axisymmetric air-water 

flow driven by the rotating bottom disk in a vertical sealed cylindrical container.  As 

rotation strength Re increases, eddies emerge, coalesce, separate, and disappear in both air 

and water.  The topological scenario varies with water volume fraction 𝐻𝑤  according to the results 

obtained for 𝐻𝑤 = 0.3, 0.5, and 0.8.  Interesting features are (a) zipper-like chains of air and water 

eddies forming near the bent interface and (b) bubble-ring air eddies existing in the Re ranges 

specified in the paper.  The stability analysis, performed with the help of a novel efficient technique 

for two-fluid flows, shows that these multi-eddy motions are stable.  The shear-layer instability 

develops as the interface approaches either the top or bottom of container and some eddies vanish. 

The physical reasoning behind the eddy formation and the flow instability is provided.   The results 

are of fundamental interest and can have applications in bioreactors.   

5.1. Introduction 

An intriguing and important fluid-mechanics phenomenon is the emergence of a local circulation 

cell in a swirling flow, often referred to as vortex breakdown (VB).  VB applications include delta-

wing aircraft, where VB is dangerous causing an abrupt change in lift and drag, combustion 

chambers, where VB is beneficial stabilizing flame, and natural swirling jets like tornadoes, where 

VB decreases the twister strength. Escudier[108] performed a comprehensive review of early VB 

studies.  More recent works, including VB control strategies, are discussed in Shtern [109].    

Vogel [136] and Escudier[121] initiated fundamental VB studies in a sealed cylindrical container 

with one end disk rotating.  An advantage is the closed domain with well-defined and controlled 

boundary conditions allowing for meaningful comparisons of experimental and numerical
 
results.  

They well agree as was first shown by Lopez [137].  The analysis of the Vogel-Escudier flow helps 

understand the VB nature.  A recent view is that VB develops via the swirl-decay mechanism (Shtern 

et al. [109]).  

While one-fluid VB flows have been studied rather in detail, two-fluid VB flows have not 

attracted much attention until recent time.  The situation changed with the development of aerial 

bioreactors where air-water flows are used for the growth of tissue culture [138].  The air flow 

transports the oxygen, required for tissue growth, to the interface and the water circulation enhances 

mixing of the dissolved oxygen with other ingredients.  The tissue fraction is small compared with 

that of water and is neglected in the studies of flow patterns.  The bioreactor applications stimulated 

the experimental investigations by Lo Jacono et al. [115]and the numerical simulations by Liow et 

al. [51], [128].  Early numerical studies modeled the gas-liquid interface as a symmetry plane [139] 

and as a deformable stress-free surface [140].  The first work, which is free from these idealizations 

of the interface, was performed by Brady et al. [116], [117].   

Two-fluid VB flows have a number of unusual features absent in single-fluid flows.  One striking 

feature is the existence of a thin circulation layer (TCL) adjacent to the interface.  A TCL attached to 

the entire interface develops in a water-spout flow [118].  Another striking feature is the emergence 

of an off-axis VB ring in the depth of a lower fluid [141].  Since eddies arise in both fluids, their 

T 
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variety is rich and their transformations are numerous.  For example, eighteen topological 

metamorphoses follow each other as the water volume fraction increases in a truncated conical 

container where a creeping air-water flow is induced by the slowly rotating top disk [129].   

Multiple eddies in both upper and lower fluids in a whirlpool flow driven by the rotation of 

bottom disk in a sealed vertical cylindrical container have not been studied.  Our study partially fills 

this gap describing and explaining the development of VB cells, TCL, and other eddies. We reveal 

two more interesting features: (a) zipper-like chains of near-interface eddies and (b) robust bubble-

rings (RBRs).   

A bubble-ring typically is a transitional state between bubble and ring shapes.  A variation of a 

control parameter transforms a bubble-ring into either a bubble or a ring.  A RBR first was found in a 

creeping water-spout flow [130].  There RBR occurs in some range of water fraction.  The current 

study shows that RBRs also develop as the rotation strength Re increases in the whirlpool flow.  

These RBRs exist in wide ranges of Re, listed in the study.    

The resulting rather complicated topology raises a question about the flow stability.  The stability 

of one-fluid VB flows in a cylindrical container has been investigated rather in detail.  The numerical 

study of Gelfgat et al. [119], [120] showed that the Vogel-Escudier flow can become unstable at 

either smaller or larger Re than that, at which VB emerges, depending on the length-to-radius ratio, 

𝐻.       

The experimental and numerical studies by Escudier [121]and Sorensen et al. [122]–[124] 

documented that, as Re increases, the steady axisymmetric VB bubble first develops for 𝐻 < 3.2.  For 

larger 𝐻, the flow first becomes unstable with respect to 3D time-oscillatory disturbances with 𝑚 = 3 

for 3.2 < 𝐻 < 4.3, 𝑚 = 2 for 4.3 < 𝐻 < 5.2, and 𝑚 = 4 for 5.2 < 𝐻 < 5.5; 𝑚 is the azimuthal wave 

number. Herrada et al. [113] found that this instability is of the shear-layer type developing for 𝐻 > 

5.5 as well.   

Here we consider a two-fluid flow and 𝐻 = 1 because this 𝐻 value is close to that used in 

bioreactors [138].  A technical difficulty of studying the stability of a two-fluid flow is the 

linearization of a rather complicated relation describing the balance of normal stresses at the bent 

interface.  Herrada & Montanero [1]elaborated an efficient routine which resolves this problem and 

facilitates numerical simulations.  The routine includes (i) mappings converting the time-dependent 

upper and lower fluid regions onto fixed squared domains, (ii) a symbolic toolbox to calculate the 

analytical Jacobians, and (iii) the Chebyshev grid in both radial and axial directions.  

The Chebyshev grid, which concentrates near the interface from both sides, helps observe small 

bubbles, bubble-rings, and TCLs.  The grid also concentrates near the axis and all walls.  This helps 

resolve small circulation cells, emerging near the axis and walls, by using a moderate number of grid 

points.  Herrada & Montanero [1]proved the method efficiency in their study of liquid-bridge 

dynamics.  Here this numerical technique is modified and applied for the whirlpool problem that 

helps investigate and understand the base-flow topology and the instability nature.                    

Our study provides physical explanations of different topological scenarios as Re increases at 𝐻𝑤 

= 0.3, 0.5, and 0.8; 𝐻𝑤 is the water volume fraction.  It is found that the instability emerges in a jet-

like flow forming in the water.  This jet originates in the Kármán boundary layer near the rotating 

disk, turns upward along the sidewall and then goes toward the axis near the interface.  As the jet 

meets a VB region, it decelerates, diverges and becomes unstable.      
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5.2. Problem formulation 

5.2.1. Flow geometry 

 

Figure 5.1 Geometry of the whirlpool model. 

 

Figure 5.1 is a schematic of the problem.  With no motion, the lower part, 0 < 𝑧 < ℎ𝑤, of the 

vertical sealed cylindrical container is filled with water, the upper part, ℎ𝑤 < 𝑧 < ℎ, is filled with air.  

The air-water interface is flat, 𝑧 = 𝑧𝑖 = ℎ𝑤, as the thin horizontal line depicts in Figure 5.1; ℎ is the 

cylinder height and 𝑔 is the gravity acceleration.  If the bottom disk (at 𝑧 = 0) rotates with angular 

velocity 𝜔, while the other walls are still, the interface deforms downward near the axis and upward 

near the sidewall, as the curve schematically depicts in Figure 5.1.  Such deformation of interface is 

typical of whirlpools. 

One control parameter is aspect ratio 𝐻 = ℎ/𝑅; 𝑅 is the radius of the cylinder, which serves as a 

length scale here.  Since ℎ and 𝑅 typically are close in bioreactor applications [138], we use 𝐻 = 1.  

The dimensionless height of water at rest is 𝐻𝑤 = ℎ𝑤/ 𝑅, which is also the water volume fraction.  

Other control parameters are the Reynolds number, 𝑅𝑒 = 𝜔𝑅2/𝜈𝑤, characterizing the swirl strength, 

the Froude number, 𝐹𝑟 = 𝜔2𝑅/𝑔, which is a centrifugal-to-gravity acceleration ratio, and the Weber 

number, 𝑊𝑒 = 𝜌𝑤𝜔2𝑅3/𝜎, characterizing the effect of surface tension 𝜎 at the interface.  Here, 𝜈𝑤 

= 10
6

 m
2
/s is the kinematic viscosity of water, 𝜌𝑤  = 1000 kg/m

3
 is the water density, 𝜎 = 0.0715 

kg/s
2
 at T = 300K, and 𝑔 = 9.81 m

2
/s.  We assume that pressure on the interface at rest has its 

atmospheric value and the air density is 𝜌𝑎 = 1.22 kg/m
3
.  

Our numerical simulations model a physical experiment where the all the physical properties are 

fixed while  eventually increases. Therefore, 𝑅𝑒, 𝐹𝑟 = 𝑎𝑅𝑒2, and 𝑊𝑒 = 𝑏𝑅𝑒2 
also increase.  Here 

𝑎 = 𝜈𝑤
2/(𝑔𝑅3) and 𝑏 = 𝜌𝑤𝜈𝑤

2/(𝜎𝑅) are fixed numbers, a = 10
4

 and b = 1.410
5 

[141],
 
while 

𝑅𝑒 varies.  We explore changes in the flow topology as Re increases for the water volume fraction 

𝐻𝑤 = 0.8, 0.5 and 0.3.  In addition, we study the stability of the corresponding flow patterns. 

5.2.2. Governing equations 

Using 𝑅, 1/𝜔, 𝜔𝑅, and 𝜌𝑤𝜔2𝑅2 as scales for length, time, velocity, and pressure, respectively, 

renders all variables dimensionless.  We consider flows of two viscous incompressible immiscible 

fluids governed by the Navier -Stokes equations [125], 

    
1

𝑟

𝜕(𝑟𝑢)

𝜕𝑟
+

1

𝑟

𝜕𝑣

𝜕𝜙
+

𝜕𝑤

𝜕𝑧
= 0,                                                                                  5.1 
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+ 𝑢
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𝜕𝑟
+
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𝑟
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+
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2
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𝑅𝑒
(𝛻2𝑣 −

𝑣

𝑟2
+

2

𝑟2

𝜕𝑢

𝜕𝜙
),   5.3 

     
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+

𝑣

𝑟

𝜕𝑤

𝜕𝜙
+ 𝑤

𝜕𝑤

𝜕𝑧
= −𝜌𝑛

𝜕𝑝

𝜕𝑧
+

𝜈𝑛

𝑅𝑒
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where 𝛻2 ≡
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑟2

𝜕2

𝜕𝜙2
+

𝜕2

𝜕𝑧2
 is the Laplace operator for a scalar field, (𝑢, 𝑣, 𝑤) are the 

velocity components in cylindrical coordinates (𝑟, 𝜙, 𝑧), 𝑡 is time, and 𝑝 is the reduced pressure.  

The coefficients, 𝜌𝑛 and 𝜈𝑛, are both equal 1 at 𝑛 = 1 (for the water flow) while 𝜌𝑛 = 𝜌𝑤/𝜌𝑎 and 

𝜈𝑛 = 𝜈𝑎/𝜈𝑤 at 𝑛 = 2 (for the air flow); 𝜈𝑎  = 15𝜈𝑤 is the kinematic viscosity of air.  

      We denote the list (𝑢, 𝑣, 𝑤, 𝑝) as 𝑽, and look for a solution of the system 5.1- 5.4 in the form 

        𝑽 = 𝑽𝑏(𝑟, 𝑧) + 휀𝑽𝑑(𝑟, 𝑧)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐.,                                                5.5 

where subscripts “𝑏” and “𝑑” denote the base flow and a disturbance, respectively; 𝑐. 𝑐. denotes the 

complex conjugate of the preceding term;   << 1 is an amplitude; integer 𝑚 is an azimuthal wave 

number; and 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 is a complex number to be found, with  frequency 𝜔𝑟 and growth rate of 

disturbance 𝜔𝑖. For a decaying (growing) disturbance, 𝜔𝑖 is negative (positive). Disturbances with 

𝜔𝑖 = 0 are neutral. We are looking for minimal 𝑅𝑒 at 𝜔𝑖 = 0.  The equations governing the base flow 

result from substituting 5.5 in system 5.1- 5.4 and setting  = 0.  The terms of order 𝑂()  constitute 

equations governing infinitesimal disturbances.  

5.2.3. Boundary conditions 

Equations 5.1- 5.4 are solved under the following boundary conditions:       

(i) Regularity at the axis, 0 < 𝑧 < 𝐻,  𝑟 = 0: 

a) 𝑢 = 𝑣 = 0, 𝜕𝑤/𝜕𝑟 = 0 (basic flow and 𝑚 = 0 disturbances), 

b) 𝑤𝑑 = 0, 𝑢𝑑 + 𝑚𝑣𝑑 = 0, 𝜕𝑢𝑑/𝜕𝑟 = 0 (𝑚 = 1 disturbances) 

c) 𝑤𝑑 = 𝑢𝑑 = 𝑣𝑑 = 0  (𝑚 >1 disturbances) 

(ii) No-slip at the walls: 𝑢 = 𝑣 = 𝑤 = 0 at the still disk, 0 < 𝑟 < 1, 𝑧 = 𝐻, and at the 

sidewall, 0 < 𝑧 < 𝐻, 𝑟 = 1; 𝑢 = 𝑤 = 0, 𝑣 = 𝑟 at the rotating disk, 0 < 𝑟 < 1, 𝑧 = 0. 

(iii) Continuity of all the velocity and tangential stress components at the interface, 𝑧 =
𝐹(𝑟, 𝜙, 𝑡).  The balance for the normal stresses yields that 

𝑝𝑤 − 𝑝𝑎 =
1

𝑊𝑒
𝛻. 𝒏 −

1

𝑅𝑒
𝒏. (𝝉𝑤 − 𝜇𝑟𝝉𝑎). 𝒏 −

1

𝐹𝑟
(1 − 𝜌𝑟)𝑧,  5.6 

 

where 𝒏 is the unit vector normal to the interface, 𝝉𝑤  and 𝝉𝑎 are tensors of the viscous 

stresses in the heavy and light fluids, respectively, 𝜇𝑟 and 𝜌𝑟 are the light-to-heavy fluid 

ratios of the dynamic viscosities and densities, respectively. 

(iv) The kinematic equation for the interface shape, 𝑧 = 𝐹(𝑟, 𝜙, 𝑡), is 

      
𝜕𝐹

𝜕𝑡
− 𝑤 + 𝑢

𝜕𝐹

𝜕𝑟
+

𝑣

𝑟

𝜕𝐹

𝜕𝜙
= 0,     5.7 

that provides the water and air mass conservation. We look for a solution of 5.7  in the 

form 
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      𝑧 = 𝐹𝑏(𝑟, 𝑧) + 휀𝐹𝑑(𝑟, 𝑧)𝑒
(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐.     5.8 

In our stability studies, all the boundary conditions, including 5.6 and 5.7 also are linearized by 

using 5.5 and 5.8 and extracting terms of order 𝑂() in the system governing infinitesimal 

disturbances. 

5.3. Numerical technique 

To simulate the nonlinear problem for the basic flow and the generalized eigenvalue problem for 

disturbances, we use a numerical technique which is a variation of that described in detail by Herrada 

& Montanero [1].  First, the heavy-fluid (water) and light-fluid (air) regions are mapped onto the 

standard square domain, 0 ≤ (w,a) ≤ 1, 0 ≤  ≤ 1, by means of the coordinate transformations (a) w = 

z/F and  = r and (b) ηa = (z−F)/(H−F) and  = r for the water and air, respectively.  Then, each 

variable (velocities, pressure and the interface shape) and all its spatial and temporal derivatives, 

which appear in the transformed equations, are composed as a single symbolic vector.  For example, 

for the axial velocity in the water flow, ww, we create a vector having 11 components: xw = [ww, 

ww/w, ww/, 
2
ww/

2
, 

2
ww/

2
, 

2
ww/, ww/, 

2
ww/

2
, 

2
ww/, 

2
ww/, 

ww/t]. The next step is to use a symbolic toolbox to calculate the analytical Jacobians of all the 

equations with respect to all the symbolic vectors. Using these analytical Jacobians we generate 

functions which then are evaluated point by point in the square domains. In this procedure, we used 

the MATLAB tool matlabFunction to convert the symbolic Jacobians in MATLAB functions.      

Then, we carry out the spatial and temporal discretization of the problem. The water and air 

domains are discretized using a set of nw and na Chebychev spectral collocation points in the axial 

direction (along the w and a axes, respectively). Next, the water and air domains are discretized 

using a set of n Chebychev spectral collocation points in the radial direction, . The second-order 

backward finite differences are used to compute the time derivatives for the basic flow.  Since the 

basic flow is axisymmetric, all the azimuthal derivatives are set to zero. For disturbances, we obtain 

the temporal and azimuthal derivatives using (5.5) and (5.8).  

The final step is to set up the numerical matrices allowing us to solve the problem by using a 

Newton procedure for the basic steady flow and by solving the generalized eigenvalue problem for 

disturbances. 

To summarize, the numeric procedure includes the mapping of water and air regions, the proper 

spatial and temporal discretization creating the discrete Jacobian matrix for the Newton procedure for 

the basic flow and two more matrices for the generalized eigenvalue problem for disturbances.   For 

the basic flow, we get the final steady solution though using an unsteady scheme. Starting from the 

rest and selecting a time step, the solution is advanced in time until a steady state is reached. Since 

the nonlinear procedure used to compute the basic flow is fully implicit, the time step can be taken 

sufficiently large to quickly reach the steady solution.  Once the base flow is computed, and given an 

azimuthal wavenumber m, we use MATLAB subroutine eigs to calculate the eigenvalues () of the 

system of discrete linear equations. 

Most of the simulations presented here are done using nw = 25, na = 25, and n = 30 (standard 

grid), but some runs for flows, having small circulation regions, are performed with finer grids. For 

Re > 1000, we use nηw = 35, nηa = 35, and nξ = 50 (fine grid).  Since the Chebyshev grid points 

concentrate near the interface from both sides, the approach is adequate to resolve thin circulation 

layers, located near the interface, even at moderate values of nw, na, and n.  More information on the 

checkup of numerical accuracy is in Appendix. The numerical code also was verified by reproducing 

the results of Mougel et al. [142]. The reproduced base flow and stability characteristics, obtained by 

our code, well agree with those in (Mougel et al. [142]). 
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5.4. Deep whirlpool 

First, we consider the 𝐻𝑤 = 0.8 case and describe changes in the flow topology, occurring as 𝑅𝑒 

increases. Next, we study the nature of instability which develops at larger 𝑅𝑒.  To analyze the flow 

topology we use the Stokes stream function , w = r
1
/r and u = r

1
/z, and plot streamlines 

of the meridional motion, i.e., contours  = constant.   

5.4.1. VB emergence in water depth 

Figure 5.2 depicts the streamline patterns at 𝑅𝑒 = 350 (a) and 360 (b).  The swirling disk (at 𝑧 = 

0) induces the centrifugal force which pushes water to the sidewall near the bottom [127] and thus 

develops the anticlockwise circulation in CR1 of Fig. 2(a); CR is an abbreviation for “circulation 

region”.  This water motion drives the air clockwise circulation in CR2 of Figure 5.2(a).  Hereafter 

the clockwise (anticlockwise) meridional circulation is depicted by light (dark) contours. The pattern 

shown in Figure 5.2(a) remains topologically invariant as 𝑅𝑒 decreases down to zero.  In contrast as 

𝑅𝑒 increases, a VB bubble emerges in the water depth near 𝑟 = 0 and 𝑧 = 0.545 at 𝑅𝑒 = 𝑅𝑒𝑑1= 359.  

This VB bubble is observed as CR3 in Figure 5.2(b) at 𝑅𝑒 = 360.  The meridional circulation in the 

bubble is clockwise and 𝑤 > 0 at 𝑟 = 0 according to the velocity distribution on the axis shown in 

Figure 5.3(a).  The streamline pattern and 𝑤-velocity profile help us to understand the VB nature. 

The physical reasoning behind the VB development is the swirl decay mechanism similar to that 

working in the single-fluid case [109][113]. The near-interface water flow transports the angular 

momentum toward the axis and thus develops a deep local minimum of pressure near the axis-

interface intersection.  The reduced pressure sucks the downstream water that causes the deceleration 

and local reversal of near-axis downflow.  Figure 5.3(a) shows details of the velocity reversal at the 

axis, i.e., the emergence of CR3. 

 

Figure 5.2 Streamline patterns at 𝑅𝑒 = 350 (a) and 360 (b) show appearance of VB region CR3. 
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Figure 5.3 Distributions of velocity on the axis at 𝑅𝑒 = 350-400 illustrate (a) development of VB 

regions in water (CR3) and air (CR4) and (b) development of CR5 and its merging with CR4. 

Figure 5.3 depicts 𝑤1/3 to better observe small 𝑤 in the separation regions.  At 𝑅𝑒 slightly larger 

than 350, a local maximum of 𝑤(𝑧) develops in water near 𝑧 = 0.55.  The maximum value is 

negative for 𝑅𝑒 < 359, zero at 𝑅𝑒 = 359, and positive for 𝑅𝑒 > 359.  As Re increases, the 𝑤 > 0 range 

in the water flow rapidly expands in the 𝑧-direction as cur ves 𝑅𝑒 = 360 and 380 illustrate in Figure 

5.3(a). 

5.4.2. Emergence of two-fluid VB bubble 

At 𝑅𝑒 = 𝑅𝑒𝑑2 = 365, expanding VB bubble CR3 reaches the interface and becomes a corner 

eddy.  This is the second change in the flow topology.  The scenario is similar to that described by 

Brøns et al. [143].  The difference is that here a corner eddy develops in air as well.  Meridional 

velocity at the interface 𝑣𝑡 reverses and becomes positive near the axis for 𝑅𝑒 > 365 as the curves 𝑅𝑒 

= 370 and 𝑅𝑒 = 400 illustrate in Figure 5.4(a).  The reversed 𝑣𝑡 drives CR4 in air, shown at 𝑅𝑒 = 380 

in Figure 5.5(a).  Thus the VB bubble becomes two-fluid.    

 

 

Figure 5.4 Distributions of meridional velocity at the interface (𝑣𝑡) for 𝑅𝑒 from 360 up to 1300 

illustrate (a) the first and (b) the second 𝑣𝑡 reversals near the axis. 
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Figure 5.5 Streamline patterns at 𝑅𝑒 = 380 (a) and 390 (b) show appearance of VB regions CR4 

(a) and CR4* (b) in the air flow.  

Region CR4 in Figure 5.5(a) corresponds to the thin 𝑤 < 0 range of the 𝑅𝑒 = 380 curve in Figure 

5.3(a).  As Re increases, region CR4 expands as comparison of curves at 𝑅𝑒 = 380 and 𝑅𝑒 = 390 in 

Fig. 3(b) illustrates. 

5.4.3. Vortex breakdown near the top disk 

The third change in the flow topology is the emergence of circulation region CR4* near the 

center of the top disk at 𝑅𝑒 = 𝑅𝑒𝑑3= 377.  Figure 5.5(b) depicts CR4* at 𝑅𝑒 = 390.  Physical 

reasoning behind this VB development is the following.  As a rotating fluid meets a normal wall, the 

secondary flow develops which converges to the rotation axis near the wall and goes away from the 

wall near the axis [134]. The secondary flow is weak for small 𝑅𝑒, but becomes stronger and 

overcomes the bulk CR2 circulation near the axis-top intersection as 𝑅𝑒 increases (Figure 5.5).  The 

secondary flow is amplified here by the presence of region CR4 that makes shorter trajectories of 

particles transporting the angular momentum from the interface to the center of top disk.  As 𝑅𝑒 

increases, region CR4* rapidly expands downward. 

 

Figure 5.6 Streamline patterns at Re = 400 (a) and 800 (b) show radial expansion of regions CR3 
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and CR4. 

5.4.4. Merging of near-axis cells in air 

As 𝑅𝑒 increases, regions CR4 and CR4* merge at 𝑅𝑒 = 𝑅𝑒𝑑4= 394.  This is the fourth change in 

the flow topology.  Figure 5.3(b) illustrates this merger: the 𝑤 > 0 range, located near 𝑧 = 1 and 

observed in the 𝑅𝑒 = 390 curve, is absent in the 𝑅𝑒 = 400 curve.  We denote the merged region again 

as CR4.  Figure 5.6 depicts CR4 at 𝑅𝑒 = 400 (a) and 800 (b).  The Bödewadt pumping and the 𝑣𝑡 > 0 

water flow at the interface work together, driving the anticlockwise circulation of air in CR4, 

resulting in its expansion in the radial direction as 𝑅𝑒 increases (Figure 5.6). 

5.4.5. Separation of water VB bubble from axis 

The fifth topological metamorphosis is the separation of CR3 from the axis. The boundary 

between CR1 and CR3 moves up near the axis as 𝑅𝑒 increases (Fig. 6), reaches the interface at 𝑅𝑒 = 

𝑅𝑒𝑑5= 873 and moves away from the axis for larger 𝑅𝑒.  This transformation occurs together with 

the second reversal of the meridional velocity at the interface: 𝑣𝑡 becomes negative for small 𝑟 as 

curve 𝑅𝑒 = 900 in Fig. 4(b) illustrates.  Figure 7(a) depicts the resulting streamline pattern at 𝑅𝑒 = 

1000. 

  

Figure 5.7 Streamline patterns at 𝑅𝑒 = 1000 (a) and 1800 (b) correspond to the transformation of 

region CR5 from a bubble (a) into a bubble-ring (b).  

      The scenario of this VB development in water is similar to that occurring in the one-fluid 

flow with the stress-free fixed upper surface, described and explained by BrØns et al. [143].  The 

difference is that here the VB development in the air flow occurs as well.  This development, in 

particular, includes the appearance of new circulation region CR5 in air depicted in Figure 5.7(a) and 

induced by the second reversal of meridional velocity at the interface shown in Figure 5.4(b).  

Region CR5 emerges as a bubble and then transforms into a bubble-ring, as discussed below in more 

detail. 
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5.4.6. Emergence of the robust bubble-ring 

 

Figure 5.8 Schematics showing the flow topology in (a) Figure 5.7(a) and (b) in Figure 5.7(b). 

 

𝑅𝑒 𝑧𝑖 𝑧𝑠 𝑧𝑠 − 𝑧𝑖 

𝑅𝑒𝑑5 = 873 0.7716 0.7716 0 

950 0.7654 0.7874 0.0220 

1000 0.7609 0.7927 0.0318 

1100 0.7511 0.7939 0.0428 

1200 0.7400 0.7853 0.0454 

1300 0.7274 0.7699 0.0424 

1500 0.6980 0.7246 0.0266 

1700 0.6620 0.6693 0.0073 

𝑅𝑒𝑑6 = 

1779 

0.6459 0.6459 0 

1900 0.6180 0.6180 0 

2000 0.5923 0.5923 0 

2200 0.5344 0.5344 0 

𝑅𝑒𝑑7 = 

2348 

0.482 0.482 0 

2400 0.4574 0.4631 0.0057 

2500 0.4088 0.4256 0.0168 

Table 5.1 Dependence on 𝑅𝑒 of 𝑧𝑖,  𝑧𝑠, and CR5 thickness on axis (𝑧𝑠 − 𝑧𝑖) reveals that CR5 is a 

bubble-ring for 𝑅𝑒𝑑6 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑑7. 

Though Figure 5.7(a) and Figure 5.7(b) look similar, the important difference is that the flow 

pattern, depicted in Figure 5.7(a), corresponds to the schematic shown in Figure 5.8(a) while the 

flow, depicted in Figure 5.7(b), corresponds to the schematic shown in Figure 5.8(b), as it follows 

from Table 5.1.  Accordingly, CR5 is a bubble in Figure 5.7(a) and a bubble-ring in Figure 5.7(b).  

Table 5.1 lists 𝑧-values on the axis for (a) the interface (𝑧𝑖), (b) the boundary, separating regions 

CR4 and CR5 (𝑧𝑠), see Figure 5.7(a), and (c) thickness of CR5 at the axis (𝑧𝑠 − 𝑧𝑖) for 𝑅𝑒 shown in 

the first column.  It is clear from Table 1 that region CR5 is a bubble in the range, 873 = 𝑅𝑒𝑑5 < 𝑅𝑒 < 

𝑅𝑒𝑑6 = 1779, and is a bubble-ring in the range, 𝑅𝑒𝑑6 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑑7 = 2348, because its thickness 

(𝑧𝑠 − 𝑧𝑖) is zero at the axis. The transformation of CR5 from a bubble into a bubble-ring is the sixth 
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topological change.  

 

Figure 5.9 Distribution of velocity on the axis at 𝑅𝑒 = 2200 (solid curve) 2300 (dashes) and 2400 

(dots).  

Figure 5.9 confirms the existence of robust bubble-ring by depicting the profile of velocity 𝑤 at 

the axis for 𝑅𝑒 = 2200 (solid curve) and 𝑅𝑒 = 2300 (dashed curve).   The velocity 𝑤 is negative, i.e., 

directed downward both in water, 0 < 𝑧 < 𝑧𝑖, and in air, 𝑧𝑖 < 𝑧 < 1; being zero only at the bottom, 𝑧 = 

0, interface, 𝑧 = 𝑧𝑖, and top, 𝑧 = 1.  This corresponds to the topological pattern shown in Figure 

5.8(b).  As increasing 𝑅𝑒 passes 𝑅𝑒𝑑7= 2348, the thin 𝑤 > 0 region emerges near the interface in the 

air domain as the dotted curve depicts at 𝑅𝑒 = 2400 in Figure 5.9.  We use 𝑤1/3 to conveniently 

observe the 𝑤 > 0 region in Figure 5.9 where 𝑤 is very small. Therefore, CR5 again becomes a 

bubble corresponding to the schematic shown in Figure 5.8(a). 

5.4.7. Reversal of topological transformations 

The disappearance of the robust bubble-ring at 𝑅𝑒 = 𝑅𝑒𝑑7 = 2348 is the seventh event and the 

first back step among the changes in the flow topology.  The eighth change is the coalescence of 

regions CR2 and CR5, shown in Figure 5.10(a), into new region CR2, which extends up to the axis 

as Figure 5.10(b) depicts.  The transition from the pattern in Figure 5.10(a) to that in Figure 5.10(b) 

has a number of intermediate changes in the flow topology which were systematically described by 

Brøns [144]. We refer a reader to this instructive paper for details. The ninth change is the splitting of 

CR4 into CR4a and CR4b as Figure 5.10(c) illustrates at Re = 2500.  The tenth change is the 

disappearance of CR4b; see Figure 5.10(d). 
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Figure 5.10 Streamline patterns at 𝑅𝑒 = 2200 (a), 2400 (b), 2500 (c) and 2600 (b) show reduction 

of VB regions. 

5.4.8. Instability nature 

Table 5.2 summarizes the instability results for the flow at 𝐻𝑤 = 0.8.  It shows parameter values 

corresponding to the marginal 𝑅𝑒 (minimal at a fixed 𝑚 and 𝜔𝑖 = 0) and the critical 𝑅𝑒 (shown bold 

and minimal among marginal).  The critical 𝑅𝑒 corresponds to single-helix disturbances, i.e., 𝑚 = 1.  

No instability was found for 𝑚 = 0.  Disturbances with other 𝑚 are less dangerous than those 

presented in Table 2.  Figure 5.11 depicts the streamline pattern at critical 𝑅𝑒 = 2629 and contours of 

critical-disturbance squared velocity modulus, 𝐸𝑑 = constant; 𝐸𝑑 is averaged with respect to time 

and azimuthal angle and normalized by its maximal value, 𝐸𝑑𝑚. 

𝑅𝑒 2629 2664 2715 2667 

𝑚 1 2 3 4 

𝜔𝑟 0.204 0.615 1.054 1.376 

Table 5.2 Critical (bold) and marginal parameters of the flow instability at 𝐻𝑤  = 0.8. 
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Figure 5.11 Streamline pattern (a) and disturbance energy contours (b) at critical 𝑅𝑒 = 2629 for 

𝐻𝑤= 0.8.  

      The 𝐸𝑑 peak is located in the water domain at 𝑟 = 𝑟𝑚  = 0.298 and 𝑧 = 𝑧𝑚 = 0.437.  𝐸𝑑 is 

localized near the peak: the outmost 𝐸𝑑 contour corresponds to 𝐸𝑑𝑚/10 in Figure 5.11(b).  These 

features help understand the instability nature.  The flow pattern in Figure 5.11(a) visualizes the jet 

development near the rotating bottom disk where streamlines are packed.  This jet forms in the 

Kármán boundary layer, turns upward and goes near the sidewall, reaches the interface and turns 

toward the axis along the interface.  The convergence to the axis accelerates the jet that compensates 

the entrainment-caused widening thus making the jet width nearly constant as Figure 5.11(a) shows 

near the interface middle.  The situation changes as the jet approaches the VB bubble.  The jet turns 

down and away from the axis and diverges where the disturbance energy peaks.  We guess that these 

jet deceleration and divergence near the VB region cause the shear-layer instability typical of jet 

flows [109].   

 

Figure 5.12 Profiles of the disturbance energy (solid curve) and base-flow velocity (dashed 

curve) at 𝑧 = 𝑧𝑚. Both energy and velocity are normalized by their maximum values. 

      Figure 5.12 supports this conjecture by depicting the 𝑟-distribution of the disturbance energy 
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𝐸𝑑 (solid curve) and the base-flow 𝑤-velocity (dashed curve) at 𝑧 = 𝑧𝑚.  Since the jet is directed 

downward near the interface, we depict 𝑤, normalized by its maximal magnitude, for convenient 

discussion of Figure 5.12.  The 𝑤-profile indeed has a jet-like shape near 𝑟 = 0.4 with inflection 

points located near 𝑟 = 0.3 and 𝑟 = 0.5 in Figure 5.12.  The disturbance energy peaks near the 𝑟 = 0.3 

inflection point and has a local maximum near the 𝑟 = 0.5 inflection point.   These features indicate 

that the instability likely is of the shear-layer type.  

      The multi-helix instability with 𝑚 = 2 and 4 develop for higher 𝑅𝑒 than that with 𝑚 = 1 

according to Table 5.2, but the marginal 𝑅𝑒 values are close to the critical 𝑅𝑒.  This can lead to 

polygonal patterns observed in experiments ([145], [146], see also references there). For this reason, 

Figure 5.13 depicts the Ed distribution for the marginal disturbances with 𝑚 = 2 and 4 presented in 

Table 5.2.  The energy of these disturbances is less localized (especially at 𝑚 = 2) than that for the 𝑚 

= 1 disturbance as comparison of Figure 5.11(b) and Figure 5.13 illustrates.  Nevertheless, the 

marginal disturbance also located in the water domain, where the jet “reflects” from the VB region in 

Figure 5.11(a). 

      To summarize, the stability results reveal that the topological metamorphoses occur in the 

stable steady axisymmetric flow.  The instability develops as the interface becomes strongly 

deformed and approaches the top disk of container (Figure 5.11(a)).  The analysis of the base-flow 

pattern and the energy distribution at the critical 𝑅𝑒 indicates that the instability likely is of the shear-

layer type.  

 

Figure 5.13 Energy contours for marginal disturbance with 𝑚 = 2 (a) and 4 (b) at 𝐻𝑤 = 0.8. 

5.5. Moderately deep whirlpool 

Now we describe changes in the flow topology occurring as 𝑅𝑒 increases at the equal volumes of 

water and air, 𝐻𝑤 = 0.5, and examine the flow stability.  

5.5.1. Flow reversal near the interface 

Figure 5.14 depicts the streamlines patterns at 𝑅𝑒 = 250 (a) and 300 (b).  The pattern shown in 

Figure 5.14(a) is similar to that shown in Figure 5.2(a). The difference is that the outmost Moffatt 

eddy ME is observed in Figure 5.14while it is not seen in Figure 5.2 being unresolved by our 

standard grid.  

Moffatt [132]
 
revealed that a flow in a corner (between two inclined planes with a sufficiently 

small angle) has an infinite set of eddies whose strength and scale diminish to zero as the edge is 
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approached.  Since the eddy size is small compared with the cylinder radius (see ME in Figure 5.14), 

the sidewall can be approximated by a tangential plane thus reducing the cylindrical geometry to the 

corner between orthogonal planes.   

The corner angle, 90, is sufficiently small for the Moffatt eddies to occur.   The air circulation in 

CR2 generates the Moffatt corner eddies.  Among them, only the outmost eddy is resolved by our 

standard grid and denoted as ME in the upper-right corner of the air flow in Figure 5.14.     

 

    

Figure 5.14 Streamline patterns at 𝐻𝑤 = 0.5 for 𝑅𝑒 = 250 (a) and 300 (b) show the outmost 

Moffatt eddy ME and the emergence of  circulation regions CR3 and CR4. 

 

 

Figure 5.15 Distributions of velocity 𝑤 at the axis, 𝑟 = 0, for 𝑅𝑒 = 250 (dashed curve) and 300 

(solid curve) show the emergence of circulation regions CR3 and CR4, see Fig. 14(b), in the water 

(air) region 0 < 𝑧 < 𝑧𝑖 (𝑧𝑖 < 𝑧 < 1); 𝑧𝑖  = 0.497 (0.495) at 𝑅𝑒 = 250 (300). 

 

The Moffatt eddies can also develop in a flow inside a cone if cone half-angle c < 80.9 [147].  

A cone becomes a plane at c = 90.  This angle is too large for the Moffatt eddies to occur.  

Accordingly, no eddy exists near the top disk and axis intersection.       
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Figure 5.16 Profiles of meridional velocity on the interface 𝑣𝑡 at 𝑅𝑒 = 250, 300, and 400 illustrate 

the emergence and radial expansion of regions CR3 and CR4 (where 𝑣𝑡 > 0) as 𝑅𝑒 increases. 

Figure 5.14(a) remains topologically invariant as 𝑅𝑒 decreases down to zero.  In contrast as 𝑅𝑒 

increases, a local flow reversal occurs near the axis-interface intersection point, 𝑟 = 0 and 𝑧 = 𝑧𝑖 = 

0.497, and a two-fluid VB bubble, CR3 and CR4, emerges as Figure 5.14(b) shows.  The topological 

scenarios differ: the VB occurs in the water depth for 𝐻𝑤 = 0.8, but at the interface for 𝐻𝑤 = 0.5. 

Figure 5.15 depicts the distribution on the axis of velocity 𝑤 for 𝑅𝑒 values shown near the curves.  

At 𝑅𝑒 = 250, the velocity is negative in the range, 0 < 𝑧 < 𝑧𝑖, that corresponds to water region CR1, 

and positive in the range, 𝑧𝑖 < 𝑧 < 1 that corresponds to air region CR2 in Figure 5.14(a).   

At 𝑅𝑒 = 300, 𝑤 changes its signs near the interface in both water, 0.33 < 𝑧 < 𝑧𝑖 = 0.495, and air, 

𝑧𝑖 < 𝑧 < 0.551, flows.  These 𝑧-ranges respectively correspond to CR3 and CR4 shown in Figure 

5.14(b).  Interpolating yields that CR3 and CR4 simultaneously emerge at 𝑅𝑒 = 𝑅𝑒1𝑚= 257.  The 

leading event is the appearance of region CR3 in water which is a corner bubble.  The emergence of 

region CR4 in air is a sequence of 𝑣𝑡 reversal near the axis which accompanies the CR3 

development.  Figure 5.16 depicts 𝑣𝑡
1/3 to better observe small positive values of 𝑣𝑡 near the axis at 

𝑅𝑒 = 300 (curve 2) and 400 (curve 3).  Velocity 𝑣𝑡 becomes positive for 𝑅𝑒 > 257 and the 𝑣𝑡 > 0 

range, corresponding to CR3 and CR4 in Figure 5.14(b), expands as 𝑅𝑒 increases (Figure 5.16).  The 

emergence of the two-fluid VB bubble is the first change in the flow topology at 𝐻𝑤  = 0.5. 

5.5.2. Flow reversal near the upper wall 

 

Figure 5.17 Streamline patterns at (a) 𝑅𝑒 = 350 and (b) 400 shows (a) the emergence of 

circulation region CR4* and (b) merger of CR4 and CR4*. 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1

vt
1/3 

r 

250

300

400



66                            

 

Global stability analysis of two-fluid flows 

 

Figure 5.18 Distributions of velocity 𝑤 at the axis at 𝑅𝑒 = 300, 350, and 400 illustrate the 

emergence of circulation region CR4* (curves 300 and 350) and merging of CR4 and CR4* (curves 

350 and 400, see also Fig. 17). 

 

The second change in the flow topology as 𝑅𝑒 increases is the development of local counter-

circulation of air near the center of the top disk at 𝑅𝑒 = 𝑅𝑒2𝑚= 347.  Figure 5.17(a) depicts this 

region (CR4*) at 𝑅𝑒 = 350.  The physical reasoning for CR4* emergence is the Bödewadt pumping 

similar to that in the 𝐻𝑤= 0.8 case.   

Figure 5.18 depicts the distribution of velocity 𝑤 at the axis at 𝑅𝑒 = 300, 350 and 400.  We plot 

𝑤1/3
 to better observe circulation region CR4 (in the range 0.495 < 𝑧 < 0.632 for curve 350) and the 

emergence of circulation region CR4* (in the range 0.947 < 𝑧 < 1 for curve 350) where |𝑤| is small.  

Comparison of curves 300 and 350 in Figure 5.18 helps understand how region CR4* emerges. 

5.5.3. Merging of anticlockwise circultation regions in air flow 

The third change in the flow topology as Re increases is the merging of regions CR4 and CR4* at 

𝑅𝑒 = 𝑅𝑒3𝑚 = 393.  The two saddle stagnation points in Figure 5.17(a), located on the axis between 

regions (i) CR2 and CR4 and (ii) CR2 and CR4*, coalesce at 𝑅𝑒 = 393 in one saddle point S, which 

separates from the axis for 𝑅𝑒 > 393 as Figure 5.17(b) shows at 𝑅𝑒 = 400.  The merged region, 

denoted again as CR4, extends from the interface up to the top disk for 𝑅𝑒 > 393.   

Comparison of Figure 5.17(a) and Figure 5.17(b) shows how the streamline pattern changes.  

Figure 5.18 depicts the corresponding change in the velocity distribution at the axis: ranges CR4 and 

CR4*, where 𝑤 < 0 in the air flow (curve 350), merge into the range, 𝑧𝑖 < 𝑧 < 1 (curve 400), as 𝑅𝑒 

increases.        

The anticlockwise circulation in the merged region CR4 in Figure 5.19(a) is driven by two 

factors: (i) positive meridional velocity at the interface, 𝑣𝑡 > 0, and (ii) Bödewadt pumping. In 

contrast to the opposite effects of 𝑣𝑡 and swirl in region CR2 for 𝑅𝑒 < 325, factors (i) and (ii) 

cooperate in region CR4 for 𝑅𝑒 > 303 and result in the radial expansion of CR4 as Figure 5.19 

illustrates.  Saddle S and center C stagnation points of the meridional flow in Figure 5.19(a) merge 

and disappear in Figure 5.19(b) via the saddle-center bifurcation [144]. 
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Figure 5.19 Streamline patterns at (a) 𝑅𝑒 = 450 and (b) 1000 show the separation of region CR3 

from axis and the emergence of region CR5. 

5.5.4. Separation of water VB region from the axis 

The forth change in the flow topology is the separation of water VB region CR3 from the axis at 

𝑅𝑒 = 𝑅𝑒4𝑚 = 434. Comparison of Figure 5.17(a) and Figure 5.17(b) shows that the boundary 

between regions CR1 and CR3 moves upward near the axis as 𝑅𝑒 increases.  The boundary reaches 

the interface at 𝑅𝑒 = 434 and the separation occurs.  Figure 5.19(a) depicts the streamline pattern and 

separated region CR3 at 𝑅𝑒 = 450.    

  

 

Figure 5.20 Distribution of meridional velocity on the interface 𝑣𝑡 at 𝑅𝑒 = 400 (dotted curve), 

450 (solid curve), and 1000 (dashed curve) shows the emergence (solid curve) and expansion 

(dashed curve) of region CR5 shown in Fig. 19(b). 

Figure 5.20 depicts the distribution of meridional velocity at the interface 𝑣𝑡 at 𝑅𝑒 = 400 (dotted 

curve), 450 (solid curve), and 1000 (dashed curve), and illustrates one more reversal of 𝑣𝑡 which 

becomes negative near the axis for 𝑅𝑒 > 434.  The 𝑣𝑡 > 0 range of curve 2 in Figure 5.20 

corresponds to region CR3 in Figure 5.19(a) and the left 𝑣𝑡 < 0 range verifies that region CR3 is 

indeed separated from the axis at 𝑅𝑒 = 450.  

This near-axis 𝑣𝑡 < 0 range corresponds to new region CR5 which radially expands as 𝑅𝑒 
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increases (curve 1000 in Figure 5.20).  Region CR5, located in the air flow above the interface, is so 

thin, that it is invisible in Figure 5.19(a), and hardly observed in the streamline pattern even at 𝑅𝑒 = 

1000 as Figure 5.19(b) illustrates.  Figure 5.8(a) schematically shows the arrangement of regions 

CR1-CR5 in the range 434 = 𝑅𝑒4𝑚 < 𝑅𝑒 < 𝑅𝑒5𝑚 = 1183.  

The negative 𝑣𝑡 near the sidewall, 𝑟 = 1, (Figure 5.20) agrees with the clockwise circulation of air 

in region CR2 (Figure 5.14(a)).  In contrast, the negative 𝑣𝑡 near the axis (solid and dashed curves in 

Figure 5.20) corresponds to a counter flow with respect to the anticlockwise circulation of air in 

region CR4 as Figure 5.19(a) shows.  Therefore, one more circulation region (CR5) must exist in air, 

separating regions CR1 and CR4 as Figure 5.8(a) schematically depicts.   

 

𝑅𝑒 𝑧𝑖  𝑧𝑠  𝑧𝑠 − 𝑧𝑖  

𝑅𝑒4𝑚 = 434 0.4898 0.489

8 

0 

450 0.4879 0.491

6 

0.0037 

525 0.4820 0.502

0 

0.0020 

600 0.4762 0.502

0 

0.0257 

1000 0.4219 0.439

0 

0.0171 

1100 0.4030 0.413

6 

0.0106 

𝑅𝑒5𝑚 = 1183 0.3927 0.392

7 

0 

1300 0.3582 0.242

3 
0.1159 

1500 0.3020 0.130

3 
0.1715 

1800 0.185 0.087

4 
0.0978 

Table 5.3 Values of 𝑧 for the interface (𝑧𝑖) and separatrix (𝑧𝑠) on the axis, and axial range 

(𝑧𝑠 − 𝑧𝑖) of CR5 for 𝑅𝑒4𝑚 < 𝑅𝑒 < 𝑅𝑒5𝑚 and of CR6 for 𝑅𝑒 > 𝑅𝑒5𝑚. 

Table 5.3 lists values of 𝑧 on the axis, corresponding to the interface (𝑧𝑖) and the boundary 

separating regions CR4 and CR5 (𝑧𝑠).  In addition, the axial extent of region CR5 (𝑧𝑠 − 𝑧𝑖) is shown 

in range 434 = 𝑅𝑒4𝑚 < Re < 𝑅𝑒5𝑚 = 1183.   

The flow topology, depicted in Figure 5.19 and Figure 5.8(a), remains unchanged in the range, 

434 < 𝑅𝑒 < 1183.  Figure 5.8(a) shows thin curves, separating regions (a) CR4 and CR5, (b) CR1 

and CR3, and (c) CR2 and CR4, which can be considered as parts of the united curve, “separatrix”.   

The separatrix originates on the axis at 𝑧 = 𝑧𝑠 and twice intersects the interface in Figure 5.8(a).  The 

number of separatrix-interface intersections grows as 𝑅𝑒 increases, as shown below. 

5.5.5. Emergence of the second VB region in water 

The fifth change in the flow topology is the development of the second vortex breakdown bubble 

(CR6) in the water flow near the axis-interface intersection at 𝑅𝑒 = 𝑅𝑒5𝑚 = 1183. This development 

at 𝐻𝑤 = 0.5 differs with that at 𝐻𝑤  = 0.8.  Figure 5.21 is a schematic showing the flow topology for 

𝑅𝑒 > 1183.  Table 5.3 indicates that 𝑧𝑠 decreases and becomes smaller than 𝑧𝑖  for 𝑅𝑒 > 1183 

(compare Figure 5.8(a) and Figure 5.21).  Figure 5.22 (Figure 5.23) depicts the streamline pattern 

(𝑣𝑡) at 𝑅𝑒 = 1500 where circulation region CR6 is well observed.    
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Figure 5.21Schematic of circulation regions CR1-CR6 at 𝑅𝑒 > 𝑅𝑒5𝑚 = 1183 (see Figure 5.22). 

The bold line denotes the interface, the thin curve is separatrix, and the arrows show flow directions. 

 

Figure 5.22 Streamline patterns at 𝑅𝑒 = 1500 corresponds to schematic in Figure 5.21.  

The axial extent of region CR6 (𝑧𝑖 − 𝑧𝑠) is shown in Table 5.3 for 𝑅𝑒 > 1183.  Water VB cells 

CR3 and CR6 are wide while air cell CR5 is thin in the 𝑧-direction (Figure 5.22).  This feature is due 

to CR3 and CR6 are generated by the water rotation while CR5 is generated by 𝑣𝑡.  Figure 5.23 

indicates that 𝑣𝑡 is very small in CR5 that explains why CR5 is thin.  Thus, a chain of near-interface 

cells develops depicted in Figure 5.21 and Figure 5.22.   

 

Figure 5.23Distribution of meridional velocity at the interface 𝑣𝑡 at 𝑅𝑒 = 1500 characterizes local 

circulation regions, CR3 (𝑣𝑡 > 0), CR5  (𝑣𝑡 < 0), and CR6 (𝑣𝑡> 0), adjacent to interface (Figure 5.21 

and Figure 5.22). 
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5.5.6. Reduction of VB cells in the air flow 

Figure 5.24 depicts the further flow transformations as 𝑅𝑒 increases. Regions CR2 and CR5, 

shown in Figure 5.22, approach each other (Figure 5.24(a)), touch, and merge (Figure 5.24(b), the 

seventh change).  The transition from the pattern in Figure 5.24(a) to that in Figure 5.24(b) have 

similar intermediate changes in the flow topology as those for the transition from Figure 5.10(a) to 

Figure 5.10(b) [144]. Next, region CR4, shown in Figure 5.22, separates into the upper and lower 

parts (Figure 5.24(c), the eighth change) and the lower part shrinks and disappears (Figure 5.24(d), 

the ninth change).  These transformations at 𝐻𝑤 = 0.5 are similar to those at 𝐻𝑤 = 0.8.  Figure 

5.24(d) corresponds to the critical 𝑅𝑒 according to Table 5.4. 

        

Figure 5.24 Streamline patterns at Re = 1700 (a), 1800 (b), 1900 (c) and 1950 (d). 

5.5.7. Instability of Hw =  0.5 flow 

In addition to the critical instability with respect to single-helix disturbances, there is the marginal 

instability with respect to two-helix disturbances, according to Table 5.4.  For larger 𝑅𝑒, the interface 

reaches the bottom.  Our numerical procedure is not applicable for such flow patterns.   Figure 5.25 

shows Ed contours for the critical disturbance.   
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𝑅𝑒 1950 2088 

𝑚 1 2 

𝜔𝑟  0.259 0.994 

Table 5.4 Critical (bold) and marginal parameters of the flow instability at 𝐻𝑤  = 0.5. 

 
 

Figure 5.25 Energy contours indicate where the critical disturbance mostly grows in the flow 

depicted in Fig. 24(d). 

 

The  energy peak is located at 𝑟 = 0.296 and 𝑧 = 0.222 that is very close  to the interface where 

the jet-like water flow converging toward the axis along the interface meets the VB bubble (Figure 

5.24(d)).  This feature is similar to that at 𝐻𝑤 = 0.8.  The outmost contour in Figure 5.25 corresponds 

to 0.1 of the energy maximal value and therefore the disturbance energy is localized near its peak. 

5.6. Shallow whirlpool 

Here we describe changes in the flow topology occurring as 𝑅𝑒 increases in the shallow 

whirlpool at 𝐻𝑤= 0.3 and examine the flow stability.   

5.6.1. Flow reversal near the top disk 

The streamline pattern at 𝑅𝑒 = 150, depicted in Figure 5.26(a), is similar to that shown in Figure 

5.14(a) and remains topologically invariant as 𝑅𝑒 diminishes to zero.  In contrast as 𝑅𝑒 increases, 

VB emerges in the air domain near the center of the top disk at 𝑅𝑒 = 𝑅𝑒𝑠1  = 174.  Figure 5.26(b) 

depicts the new-born VB region CR3 at 𝑅𝑒 = 200.  The arrows show the flow direction.  
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Figure 5.26 Streamline patterns at Re = 150 (a) and 200 illustrate the emergence of CR3.   

      The physical reasoning behind the CR3 development is the Bödewadt pumping similar to that 

discussed in section 5.4.3.  As 𝑅𝑒 increases, this pumping enlarges region CR3 in the radial and axial 

directions.  Expanding downward, region CR3 touches the interface at the axis resulting in that 

region CR2 transforms from a bubble into a bubble-ring as discussed in more detail below. 

5.6.2. Development of the first robust bubble-ring 

To detect robust bubble rings (RBRs) we analyze (a) streamline patterns, (b) distribution of 

meridional velocity at the interface 𝑣𝑡(𝑟), (c) distribution of velocity 𝑤(𝑧) on the axis, and (d) 

numerical values of 𝑧𝑖 and 𝑧𝑠 where 𝑤 = 0 at 𝑟 = 0.  Table 5.5 lists values of 𝑧 at which the axis 

intersects the interface (𝑧𝑖) and the boundary separating regions CR2 and CR3 (𝑧𝑠) as shown in 

Figure 5.26(b).  The (a)-(d) results help us to recognize the existence of RBRs in the ranges of 𝑅𝑒 

specified below.   

As 𝑅𝑒 increases, CR3 expands downward according to Table 5.5, which shows that 𝑧𝑠 − 𝑧𝑖 

decreases and becomes zero at 𝑅𝑒 = 𝑅𝑒𝑠2 = 690.  At this 𝑅𝑒, region CR3 touches the interface at the 

axis.  Near the entire interface, the flow is still directed toward the axis (i.e., 𝑣𝑡(𝑟) < 0 in the entire 

range, 0 < 𝑟 < 1, at 𝑅𝑒 = 690) driven by the Kármán pumping in CR1.  The converging-to-axis water 

flow entrains adjacent air resulting in that the interface remains to be the boundary between regions 

CR1 and CR2 only.  Therefore, region CR2 continues to be extended from the sidewall up to the axis 

and touches the axis at the single point, 𝑧 = 𝑧𝑖, at 𝑅𝑒 = 690.  This proves that region CR2 is a bubble 

for 𝑅𝑒 < 690 and becomes a bubble-ring at 𝑅𝑒 = 690.   

Now consider what occurs for 𝑅𝑒 > 690.  According to the algebra rule, two real roots of a 

smooth function (here 𝑤(𝑧)) typically disappear (become complex) after merging.  However in a 

two-fluid flow, 𝑧𝑖  cannot disappear due to the physical limitation that the interface cannot detach 

from the axis except at the end disks.  Under this limitation, there are three options: roots  
𝑧𝑖 and 𝑧𝑠 can (i) split back to their 𝑅𝑒 < 690 arrangement, (ii) separate reversing their positions and 

(iii) stay merged.  Case (i) is not observed in this paper.  Case (ii) is described in section  5.5.3, where 

𝑧𝑠 − 𝑧𝑖 changes its sign as 𝑅𝑒 increases (Table 5.3).  Case (iii) is achieved here as Table 5.5 shows 

that 𝑧𝑖 = 𝑧𝑠  in the wide range, 690 ≤ 𝑅𝑒 ≤ 1500. 
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𝑅𝑒 𝑧𝑖  𝑧𝑠  𝑧𝑠 − 𝑧𝑖  

0 0.3 1 0.7 

𝑅𝑒𝑠1 = 174 0.2969 1 0.7031 

200 0.2949 0.9134 0.6185 

250 0.2925 0.3510 0.0585 

300 0.2896 0.3198 0.0302 

400 0.2822 0.2967 0.0144 

600 0.2599 0.2637 0.0038 

𝑅𝑒𝑠2 = 690 0.2449 0.2449 0 

𝑅𝑒𝑠3 = 829 0.2216 0.2216 0 

900 0.2067 0.2067 0 

1100 0.1571 0.1571 0 

1300 0.0946 0.0946 0 

𝑅𝑒𝑠5 =1500 0.0174 0.0174 0 

Table 5.5 Axial values for the interface-axis (𝑧𝑖) and separatrix-axis (𝑧𝑠) intersections.  Value of ( 
𝑧𝑠 − 𝑧𝑖) is the 𝑧-extent of CR2 at the axis for 𝑅𝑒 < 829.  

Table 5.5 and the feature that 𝑣𝑡 < 0 at the entire interface indicate that region CR2 remains to be 

a bubble-ring for 𝑅𝑒 > 690 as well.  Figure 5.27(a) depicts the streamline pattern at 𝑅𝑒 = 700 where 

region CR2 is the new-born bubble-ring.  Region CR2 extends from the sidewall up to the axis being 

a very thin layer in the range 0 < 𝑟 < 0.35 where it separates regions CR1 and CR3 in Figure 5.27(a) 

(see also Figure 5.37(a)).  It is explained below why this layer is so thin that it is invisible in Figure 

5.27(a).   

 

Figure 5.27 Streamline patterns at 𝑅𝑒 = 700 (a) and 900 (b) illustrate how CR2 transforms from 

bubble (Figure 5.26) in bubble-ring (a) and then in ring (b).  Emergence of off-axis VB region CR4 is 

also shown. 

The important difference in the VB scenarios for 𝐻𝑤 = 0.5 and 𝐻𝑤 = 0.3 is that  
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𝑧𝑠 − 𝑧𝑖 becomes (does not become) negative as 𝑅𝑒 increases according to Table 5.3 (Table 5.5).  

Physical reasoning behind this difference is that an air (water) flow cannot (can) easily reverse a 

water (air) flow due to the small density ratio, 𝜌𝑟 = 0.00122.  For 𝑅𝑒 slightly exceeding 690, the air 

flow in region CR3, shown in Figure 5.27(a), is not capable to reverse the interface meridional 

motion, which is driven by the water flow.  For this reason, region CR3 touches the interface only at 

a single point, namely at the axis, where 𝑣𝑡 = 0.  The Bödewadt pumping extends region CR3 from 

the axis along the interface in Figure 5.27(a), but cannot overcome the converging motion at the 

interface, leaving a thin layer of CR2 region, where the air meridional velocity reverses from being 

directed toward the axis at the interface into being directed away from the axis at the CR3 lower 

boundary.  

To mathematically investigate, why region CR2 is thin between CR1 and CR3 in Figure 5.27(a), 

consider the Stokes stream function, , near the axis-interface intersection.  With no loss of 

generality, we can apply the representation, 

 = r
2
[zF(r)]1(r,z),  5.9 

     

where 1 is a bounded function.   

Presentation (5.9) takes into account the boundary conditions at the axis, 𝑟 = 0, and the interface, 

𝑧 =  𝐹(𝑟).  Since the axis is a streamline, we can put  = 0 at 𝑟 = 0. The regularity requirement 

yields that /r = 0 at 𝑟 = 0 and, therefore,  is proportional to 𝑟2.  The interface, 𝑧 =  𝐹(𝑟), is a 

stream surface, where  = 0, that explains the presence of expression in the rectangular brackets in 

(8).  The boundary between regions CR2 and CR3, e. g., in Figure 5.27(a), z = Fs(r), is also a stream 

surface where  = 0.  Therefore for 𝑅𝑒 > 𝑅𝑒𝑠1 = 174, we can use the presentation, 1(r,z) = 

[zFs(r)]2(r,z), where 2 is a bounded function. 

Due to the axial symmetry, both F(r) and Fs(r) are even functions of r and their power-law 

expansions are F(r) = zi+air
2
+O(r

4
) for the interface and Fs(r) = zs+asr

2
+O(r

4
) for separatrix near the 

axis, where r << 1.  Here subscripts “i” and “s” denote the interface and separatrix, respectively.   

Both the interface and separatrix are normal to the axis at the intersection points, 𝑟 = 0, 𝑧 = 𝑧𝑖 and 

𝑧 = 𝑧𝑠, where 𝑤 = 0.  This feature remains valid after merging of 𝑧𝑖 and 𝑧𝑠, i.e., the interface and 

separatrix are tangential at r = 0.  This tangency is a mathematical reason why region CR2 is thin 

near the axis in Figure 5.27(a).   

 

 

Figure 5.28 Profiles of velocity 𝑤 on axis show how 𝑤 > 0 range shrinks as 𝑅𝑒 increases from 

200 (solid curve) to 250 (dashed curve).     
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Figure 5.28 and Figure 5.29 depict how the distribution of velocity on the axis, 𝑤(𝑧) at 𝑟 = 0, 

changes as the roots 𝑧𝑖 and 𝑧𝑠 merge.  At 𝑅𝑒 = 200 (the solid curve in Figure 5.28), 𝑤 is positive in 

the air flow, corresponding to the CR2 circulation, except in the 𝑤 < 0 range, 0.9134 = 𝑧𝑠 < 𝑧 < 1, 

corresponding to the CR3 circulation in Figure 5.26(b).    

 

  

Figure 5.29 (a) Velocity on axis at 𝑅𝑒 = 700, (b) close up of interface (𝑧𝑖) vicinity.   

 

  

Figure 5.30 (a) Distributions of swirl 𝑣 and meridional 𝑣𝑡 velocities at the interface at 𝑅𝑒 = 800 

(dotted curves), 900 (solid curves), and 1100 (dashed curves); (b) distributions of 𝑣𝑡
1/3 

reveal the 

appearance of 𝑣𝑡 > 0 range, CR4 and CR5 as Re increases. 

 

The boundary, separating CR2 and CR3 (referred to as “separatrix” here), intersects the axis at 

𝑧 = 𝑧𝑠.  At Re = 250 (dashed curve in Figure 5.28), the 𝑤 > 0 range, 𝑧𝑖 < 𝑧 < 𝑧𝑠 (corresponding to 

CR2), is small compared with the w < 0 range, 𝑧𝑠 < 𝑧 < 1 (corresponding to CR3).  The 𝑤 > 0 range 

collapses at 𝑅𝑒 = 𝑅𝑒𝑠2 = 690. 

  Figure 5.29 depicts the velocity distribution on the axis at 𝑅𝑒 = 700 where 𝑧𝑖 and 𝑧𝑠 are merged 

(Table 5.5).  The dashed (solid) curves correspond to the water (air) flow in Figure 5.29.  Curve w(z) 

looks tangential to line 𝑤 = 0 at 𝑧 = 𝑧𝑖 in Figure 5.29(a).  However, the close up of the interface 

vicinity, depicted in Figure 5.29(b), reveals that the curve and the line are indeed not tangential.  

Despite the curve does touch the line at 𝑧 = 𝑧𝑖, the derivative, w/z, is not zero and has a jump at 𝑧 = 

𝑧𝑖.    
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  The jump follows from the normal stress balance (equation 5.6) and the different properties of 

air and water.  A jump in w/z at the interface is a specific feature occurring in a two-fluid flow 

where the fluid density and viscosity are not continuous at the interface.  

  The presence of region CR2 (or other flow cells described below) is necessary in order to 

separate CR1 and CR3 which have the same circulation direction and therefore can only touch each 

other at a saddle point on the interface.  One such point is located at the axis in Figure 5.27(a).  Other 

saddle points, located away from the axis for 𝑅𝑒  𝑅𝑒𝑠3 = 829, are discussed below.   

5.6.3. Off-axis vortex breakdown in water flow 

The third topological transformation is the VB emergence in water away from the axis at 𝑅𝑒 = 

𝑅𝑒𝑠3 = 829.  This topological change occurs due to the air flow which locally reverses the meridional 

velocity at the interface, 𝑣𝑡.  Figure 5.30 depicts the distributions of swirl 𝑣 and meridional 𝑣𝑡 

velocities at the interface at 𝑅𝑒 = 800 (dotted curves), 900 (solid curves), and 1100 (dashed curves).  

For 𝑅𝑒 < 829, the meridional velocity is directed toward the axis: 𝑣𝑡  < 0 in 0 < 𝑟 < 1, as the dotted 

curves in Figure 5.30 show.  For 𝑅𝑒 > 829, a range of 𝑣𝑡  > 0 exists.  We reveal this by plotting 𝑣𝑡
1/3

 

in Figure 5.30(b) in order to better observe regions CR4 and CR5, located in the range 0 < 𝑟 < 0.4, 

where 𝑣𝑡 is very small in Fig. 30(a).               

                               

Figure 5.31 Schematics show the flow topology at 𝑅𝑒 = 829 (a) and 𝑅𝑒 > 829 (b). The bold lines 

denote the interface and the arrows indicate the flow direction. 

Figure 5.30(a) shows that the distribution of swirl velocity 𝑣 is nearly linear (solid-body-rotation) 

and meridional velocity 𝑣𝑡 is negligibly small compared with 𝑣 in the range, 0 < 𝑟 < 0.4.  Therefore, 

this part of the interface acts like a rotating disk for adjacent air.  The Kármán pumping pushes air 

away from the axis near the interface.  The air meridional velocity is maximal near 𝑟 = 0.35, where 

air-flow streamlines converge and are maximally close to the interface in region CR3 (Figure 5.27).  

This explains why the air flow reverses 𝑣𝑡 and a small portion of the water flow near 𝑟 = 0.35 as 

𝑅𝑒 increases. 

Figure 5.30(b) shows that there is a local maximum of 𝑣𝑡 near 𝑟 = 0.35, whose value is negative 

at 𝑅𝑒 = 800 and positive at 𝑅𝑒 = 900.  Interpolation yields that the maximum value is zero at 𝑅𝑒 = 

𝑅𝑒𝑠3 = 829.  At this 𝑅𝑒, the boundary between regions CR2 and CR3 touches the interface at point 

SP as Figure 5.31(a) schematically shows.  SP is a saddle point where the meridional motion 

stagnates, 𝑣𝑡 = 0, but 𝑣  0.  CR2 becomes divided into two regions: (i) near-sidewall part (denoted 

again as CR2) which has the ring shape, as Figure 5.27(b) shows, and (ii) near-axis part denoted as 

CR2a in Figure 5.31(a) which inherits the bubble-ring shape.  

At 𝑅𝑒 > 829, SP splits in two saddle points SP1 and SP2, located on the interface as Figure 

5.31(b) shows.  The interval between SP1 and SP2, where the flow goes away from the axis in 

Figure 5.31(b), corresponds to the 𝑣𝑡 > 0 range in Figure 5.30.  The 𝑣𝑡 reversal results in the 

appearance of two new cells: CR4 in water and CR5 in air existing for Re > 829 as Figure 5.31(b) 
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illustrates.  Thus, an off-axis VB occurs resulting in the emergence of VB ring CR4 which expands 

as 𝑅𝑒 increases being well observed at 𝑅𝑒 = 900 in Figure 5.27(b).   

 

 

Figure 5.32 Distribution of meridional velocity on the interface at 𝑅𝑒 = 1400 and 1450 shows 

reversal of 𝑣𝑡 near axis and appearance of region CR6. 

 

In contrast, region CR5 (former region CR2a) remains thin; it is a near–axis part separated from 

former region CR2 shown in Figure 5.27(a).  Region CR5 is depicted large in Figure 5.31(b) just for 

convenient observation.  Indeed, region CR5 is so thin that it is not visible at 𝑅𝑒 = 900 in Figure 

5.27(b).  The CR5 existence follows from the above analysis of flow topology for 𝑅𝑒 > 829 and from 

the 𝑣𝑡  distribution depicted in Figure 5.30(b), where region CR5 corresponds to the near-axis range 

where 𝑣𝑡 < 0.  Thus, the third change in the flow topology transforms CR2 from a bubble-ring into a 

ring and results in the emergence of two new circulation regions: (i) VB ring CR4 in water and (ii) 

bubble-ring CR5 in air. 

5.6.4. Chain of VB regions 

The fourth and fifth topology transformations occur as the interface approaches the bottom disk.  

Figure 5.32 depicts the second reversal of the meridional velocity on the interface, which occurs near 

the axis at 𝑅𝑒 = 𝑅𝑒𝑠4  1440.  This reversal results in the appearance of the 𝑣𝑡 > 0 near-axis range, 

CR6, in Figure 5.32 and the second VB bubble, CR6, in water.   

As Re exceeds 𝑅𝑒𝑠5, which is slightly less than 1500, the third reversal of the meridional velocity 

separates region CR6 from the axis, where the new 𝑣𝑡 < 0 range, CR7, emerges, as Figure 5.33 

depicts.  Figure 5.34 shows the streamline patterns at (a) 𝑅𝑒 = 1300 (as a reference) and (b) 𝑅𝑒 = 

1500 where the new-born VB ring CR6 is observed in the water flow. 
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Figure 5.33 Distribution of meridional velocity on the interface at 𝑅𝑒 = 1500 shows the 

appearance of region CR7. 

Thin circulation layers CR5 and CR7, located in air, are not visible in Figure 5.34(b).  They are 

much thinner than water VB cells CR4 and CR6 due to the small air-to-water density ratio, 𝜌𝑟 = 

0.00122.  Being a close-up of Fig. 34(b), Figure 5.34(c) reveals layer CR5, but its resolution is poor 

despite we use the fine grid here.  Region CR7 is too thin to be observed even in Figure 5.34(c); its 

existence follows from the 𝑣𝑡 distribution depicted in Figure 5.33.   

 

Figure 5.34 Streamline patterns at 𝑅𝑒 = 1300 (a) and 1500 (b) show appearance of circulation 

region CR6; (c) is close-up of (b) visualizing region CR5. 

Based on the above analysis, we interpret the flow pattern in the left-lower corner of Figure 

5.34(b) as the zipper-like near-interface chain of VB regions schematically shown in Figure 5.35.  

The chain develops as the interface approaches the bottom disk similar to the chain development at 

𝐻𝑤 = 0.5 (Figure 5.21 and Figure 5.22).   
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Figure 5.35 Schematic shows the zipper-like topology of shallow whirlpool for 𝑅𝑒  1500 (see 

Figure 5.33). The bold line is the interface and arrows indicate flow direction. 

5.6.5. Reduction of VB cells by interface deformation 

As the interface deformation becomes remarkable, it reduces vortex breakdown cells in both 

fluids.  Figure 5.34 illustrates this effect: region CR4 shrinks as 𝑅𝑒 increases from 1300 in Figure 

5.34(a) to 1500 in Figure 5.34(b).  The physical reasoning behind this trend is the swirl decay 

mechanism (Shtern et al. [114]).  The interface deformation enlarges the axial extent of both air and 

water domains.  The enlarged axial extent increases the trajectory length and travel time of fluid 

particles transporting the angular momentum from the rotating disk to the interface in the water flow 

and from the interface to the axis in the air flow.  This enhances the momentum losses due to viscous 

diffusion and friction, thus weakening the mechanism of vortex breakdown development. 

5.6.6. Instability of Hw = 0.3 flow 

Similarly to the 𝐻𝑤  = 0.5 case, the 𝐻𝑤  = 0.3 flow has the critical instability with respect to single-

helix (𝑚 = 1) disturbances and the marginal instability with respect to two-helix (𝑚 = 2) 

disturbances, according to Table 5.6.  For larger Re, the interface reaches the bottom near the axis 

that makes our numerical technique inapplicable.   

      Figure 5.36 shows (a) base-flow streamlines and (b) energy contours for the critical 

disturbance at critical 𝑅𝑒 = 1547.  The  energy peak is located at 𝑟 = 0.383 and 𝑧 = 0.1295 that is 

very close to the interface where the jet-like water flow, converging toward the axis along the 

interface, meets the VB bubble (Figure 5.36).  This feature is similar to that at 𝐻𝑤 = 0.8 and 0.5.   

 

𝑅𝑒 1547 1583 

𝑚 1 2 

𝜔𝑟  0.673 1.297 

Table 5.6 Critical (bold) and marginal parameters of the flow instability at 𝐻𝑤  = 0.3. 
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Figure 5.36 (a) Base-flow streamlines and (b) energy contours of critical disturbance at 𝐻𝑤 = 0.3 

and Re = 1547. 

5.7. Conclusions 

5.7.1. Robust bubble-rings 

An interesting finding of this paper is that robust bubble-ring circulation cells (RBRs) emerge in 

a whirlpool flow as the rotation speeds up.  In general, a bubble-ring is a transitional shape.  A 

variation of a control parameter (e.g., 𝑅𝑒) typically transforms a bubble-ring into a bubble or into a 

ring.  In contrast in the whirlpool flow, we have revealed a few RBRs, existing in the ranges of 𝑅𝑒 

listed below.  The bubble-rings are robust here because of (a) the physical limitation that the interface 

cannot separate from the axis away from the end disks and (b) an air flow cannot easily reverse a 

water flow due to small air-to-water density ratio.  The RBRs are found in the deep (𝐻𝑤 = 0.8) and 

shallow (𝐻𝑤 = 0.3) whirlpools.  

In the 𝐻𝑤 = 0.8 whirlpool, bubble-ring CR5, schematically shown in Figure 5.8(a), exists for 

1779 < 𝑅𝑒 < 2348 (Table 5.1).  In the 𝐻𝑤 = 0.3 whirlpool, the first RBR, CR2 in Figure 5.27(a), is 

observed in the range, 690 < 𝑅𝑒 < 829 (Table 5.5).  The second RBR (CR5) emerges at 𝑅𝑒 = 829 

being separated from CR2 by a local reversal of meridional velocity on the axis (Figure 5.31 and 

Figure 5.32).  The third RBR (CR7) emerges near the interface-axis intersection at 𝑅𝑒 = 𝑅𝑒𝑠5  1500 

(Figure 5.33 and Figure 5.35).  All these RBRs (CR2, CR5, and CR7) occur in the air flow and are 

adjacent to the interface.    

 

Figure 5.37 (a) Global CR2 and (b) local CR5 kinds of bubble-ring cells. The bold curves depict 

the interface and the bold lines depict the sidewall. 
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Two kinds of RBRs are observed: (a) global, extending from the axis up to the sidewall, CR2 in 

Figure 5.27(a) and Figure 5.37(a), and (b) local, bounded by the interface and separatrix, CR5 in 

Figure 5.37(b).  The bold curves (vertical lines) denote the interface (sidewall) and the thin curves 

denote the boundaries between CR2 and CR3 in Figure 5.37(a), and CR4 and CR5 in Figure 5.37(b).  

The local RBR is shown large for convenient observation in Figure 5.37(b), but the radial extent of a 

local RBR can be small, e.g., 0 < 𝑟 < 0.011 for region CR7 at 𝑅𝑒 = 1500 (Figure 5.33 and Figure 

5.35). 

5.7.2. Multiple changes in flow topology 

N Re Event Figure 

1 359 Emergence of VB bubble CR3 deep in water Figure 5.2 

2 365 Emergence of two-fluid VB bubble CR3-CR4  Figure 5.5(a) 

3 377 Emergence  of VB bubble CR4* in air   Figure 5.5(b) 

4 394 Merger of CR4 and CR4* in air Figure 5.6(a) 

5 873 Separation of CR3 from the axis Figure 5.7(a) 

6 1779 Emergence of RBR CR5 in air Figure 5.7(b) and Figure 5.8  

7 2348 Transformation of RBR CR5 into a bubble Figure 5.9 

8  2400 Merger of CR2 and CR5 Figure 5.10(b)  

9  2450 Splitting of CR4 into CR4a and CR4b Figure 5.10(c) 

10  2600 Disappearance of CR4b Figure 5.10(d)  

 2629 Instability development Figure 5.11 

Table 5.7 Changes in flow topology as 𝑅𝑒 increases at 𝐻𝑤 = 0.8. 

The second interesting finding is a rich variety of topological metamorphoses in the whirlpool 

flow.  Topological scenarios depend on the water volume fraction 𝐻𝑤.  Vortex breakdown (VB) first 

emerges in (i) the air flow near the top disk center at 𝐻𝑤 = 0.3, (ii) at the interface-axis intersection at 

𝐻𝑤 = 0.5, and (iii) deep in water near the axis at 𝐻𝑤 = 0.8.  

Table 5.7 Changes in flow topology as 𝑅𝑒 increases at 𝐻𝑤 = 0.8. lists the ten flow topological 

transformations found as Re increases in the deep whirlpool, 𝐻𝑤 = 0.8.  We also found the nine (five) 

transformations at 𝐻𝑤 = 0.5 (𝐻𝑤 = 0.3); the number of topological changes increases with 𝐻𝑤.  The 

plurality of metamorphoses is due to flow cells emerge, change, and disappear in both fluids.  

5.7.3. Chain of VB regions 

The third interesting finding is the development of VB cell chain adjacent to the interface as the 

water depth near the axis becomes small.  At 𝐻𝑤 = 0.3, there are four VB cells arranged in a zipper-

like pattern attached to the interface near the axis (Figure 5.35). At 𝐻𝑤 = 0.5, the chain consists of 

three VB cells (Figure 5.22).  At 𝐻𝑤 = 0.8, the chain consists of two VB cells observed in Figure 

5.10(a). 
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5.7.4. Effect of large deformation of the interface 

 

Figure 5.38 Dependence on 𝑅𝑒 of the maximal magnitudes of meridional 𝑣𝑚 and swirl 𝑣𝑠 

velocities at the interface.  Curve 𝑧𝑖 shows the interface height at the axis. 𝐻𝑤 = 0.5. 

The forth interesting finding is that the interface deformation (ID), when it becomes remarkable, 

suppresses VB in both fluids.  Figure 5.10 illustrates this effect: VB region CR3 shrinks as ID 

increases.  The physical reasoning behind this feature is the swirl decay mechanism (SDM) (Shtern 

et al. [114]). SDM plays an important role in the development of vortex breakdown, counterflows, 

and double counterflows in vortex devices ([109]).  According to SDM, a value of Re, at which VB 

emerges, increases together with the aspect ratio.    

The aspect-ratio and ID effects are analogous because ID enlarges the axial extent of both lower 

and upper fluid domains.  The enlarged axial extent increases the trajectory length and travel time of 

fluid particles transporting the angular momentum from the rotating disk to the interface near the 

sidewall.  This enhances the momentum losses due to viscous friction and diffusion, thus reducing 

the maximal velocity magnitude at the interface and weakening the mechanism of VB development.   

The largest increase in the axial extent of air and water domains occurs at 𝐻𝑤 = 0.5.  Figure 5.38 

illustrates the ID effect at 𝐻𝑤 = 0.5 by depicting the dependence on the Reynolds number of the 

maximal magnitudes of meridional 𝑣𝑚 and swirl 𝑣𝑠 velocities at the interface as well as the interface 

height at the axis 𝑧𝑖.  As 𝑅𝑒 increases from zero, 𝑣𝑚 and 𝑣𝑠 initially grow because the convective 

transport intensifies while viscous losses remain nearly the same.  As 𝑅𝑒 further increases and 𝑧𝑖  

becomes remarkably reduced compared with its no-flow value 0.5, the amplified ID makes larger the 

trajectory lengths and, therefore, viscous losses.  For this reason, first 𝑣𝑚 and then 𝑣𝑠  start to 

decrease. 

5.7.5. Instability 

The instability develops in the water flow because the kinematic viscosity of air is fifteen times 

that of water and the maximal velocity of air motion (achieved at the interface) is significantly 

smaller than that of water (achieved at the rotating disk) as Figure 5.38 illustrates.  

      It is striking that the multi-cellular flows, studied here are stable.  The instability develops 

when the number of flow cells decreases as the interface becomes significantly deformed and 

approaches either the top (at 𝐻𝑤 = 0.8) or bottom (at 𝐻𝑤 = 0.3 and 0.5) disk.  The instability occurs 

with respect to helical disturbances with the azimuthal wave number 𝑚 = 1, 2, 3 and 4. The critical 
Re values (Table 5.8) correspond to 𝑚 = 1 disturbances. 

 

0

0.1

0.2

0.3

0.4

0.5

0 800 1600 2400

zi 

vs 

vm 

Re 

vm , vs , zi 



Patterns and stability of a whirlpool flow 

 

83 

 

 

 

      

 

 

 

Table 5.8 Dependence on water fraction of critical parameters of the whirlpool instability. 

       

As Table 5.8 shows, the critical Reynolds number grows and the disturbance frequency drops as 

the water volume fraction 𝐻𝑤 increases.  The instability develops in a jet-like boundary layer. It 

originates near the rotating disk, propagates along the sidewall and goes to the axis near the interface, 

e.g., see Figure 5.11(a).  The critical disturbance starts to grow where the jet meets VB region, 

decelerates and diverges.  The disturbance energy peaks are located near the jet inflection points 

(Figure 5.12). This indicates that the instability likely is of shear-layer type.   

The obtained results seem of fundamental interest and might be useful for aerial bioreactors. 

 

𝐻𝑤 0.3 0.5 0.8 

𝑅𝑒 1547 1950 2628 

𝜔𝑟  0.673 0.259 0.204 

𝑚 1 1 1 
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6. STABILITY OF AN AIR-WATER FLOW IN A 

SEMISPHERICAL CONTAINER 

 

 

 

 his numerical study analyzes the stability of a steady axisymmetric air-water flow driven 

by a rotating top disk in a sealed semispherical container. A motivation is possible 

applications in aerial bioreactors. The centrifugal force pushes the air to periphery near the 

disk, downward near sidewall, toward the axis near the interface, and upward near the axis. This 

meridional circulation of air drives the water counter-circulation while the centrifugal force tends to 

induce the water co-circulation. Their competition results in the development of a three-eddy pattern 

as the rotation intensifies. The air circulation and the water co-circulation are separated by a thin 

layer of water counter-circulation.  It is shown that the time-oscillatory helical instability emerges 

when the three-eddy pattern is well formed.  The azimuthal wave number is 𝑚 = 1 in the shallow-

water case and 𝑚 = 2 otherwise.  The analysis of flow patterns and critical-disturbance energy 

distributions indicates that the instability emerges in the air domain and likely is of the shear-layer 

type.   

6.1. Introduction 

An intriguing and important fluid-mechanics phenomenon is the emergence of a local circulation 

cell in a swirling flow, often referred to as vortex breakdown (VB).  VB applications include delta-

wing aircraft, where VB is dangerous causing an abrupt change in lift and drag, combustion 

chambers, where VB is beneficial stabilizing flame, and natural swirling jets like tornadoes, where 

VB decreases the twister strength. Escudier [108] performed a comprehensive review of early VB 

studies.  More recent works, including VB control strategies, are discussed in Ref. [109].    

      Vogel [136]and Escudier [121] initiated fundamental VB studies in a sealed cylindrical 

container with one end disk rotating.  An advantage is the closed domain with well-defined and 

controlled boundary conditions allowing for meaningful comparisons of experimental and numerical
 

results.  They well agree as was first shown by Lopez [137].  The analysis of the Vogel-Escudier 

flow helps understand the VB nature.  A recent view is that VB develops via the swirl-decay 

mechanism [113], [114].  

      While single-fluid VB flows have been studied rather in detail, two-fluid VB flows have not 

attracted much attention until recent time.  The situation changed with the development of aerial 

bioreactors where air-water flows are used for the growth of tissue culture [138].  The air flow 

transports the oxygen, required for tissue growth, to the interface and the water circulation enhances 

mixing of the dissolved oxygen with other ingredients.  The tissue fraction is small compared with 

that of water and is neglected in the studies of flow patterns.  The bioreactor applications stimulated 

the experimental investigations by Lo Jacono et al. [115]and the numerical simulations by Liow et 

al. [51], [128].  Early numerical studies modeled the gas-liquid interface as a symmetry plane [139] 

and as a deformable stress-free surface [140].  The first work, which is free from these idealizations 

of the interface, was performed by Brady et al. [116], [117].   

      Further research has revealed that two-fluid VB flows have a number of interesting features 

absent in single-fluid flows.  One striking feature, observed also in the current study, is the existence 

of a thin circulation layer (TCL) adjacent to the interface.  A TCL attached to the entire interface 

T 



Stability of an air-water flow in a semispherical container 

 

85 

from below was found in water-spout flows occurring in cylindrical [118] and semispherical [148] 

containers. 

      Another striking feature is the emergence of an off-axis VB ring in the depth of a lower fluid 

away from the interface, axis, and walls [141].  Since eddies arise in both fluids, their variety is rich 

and transformations are numerous. For example, eighteen topological metamorphoses follow each 

other as the water volume fraction increases in a truncated conical container where a creeping air-

water flow is induced by the slowly rotating top disk [129].  The diversity of flow cells and their 

metamorphoses is even more enriched by the Moffatt eddies [132], which develop near intersections 

of the end and side walls [130].  

      The resulting rather complicated topology raises a question about the flow stability.  The 

stability of one-fluid VB flows in a cylindrical container has been investigated rather in detail.  The 

numerical study of Gelfgat et al. [119], [120] showed that the Vogel-Escudier flow can become 

unstable at either smaller or larger Re than that, at which VB emerges, depending on the length-to-

radius ratio, H.  The experimental and numerical studies by Escudier [121] and Sorensen et al. 

[122]–[124] documented that, as Re increases, the steady axisymmetric VB bubble first develops for 

H < 3.2.  For larger H, the flow first becomes unstable with respect to 3D time-oscillatory 

disturbances with 𝑚 = 3 for 3.2 < H < 4.3, 𝑚 = 2 for 4.3 < H < 5.2, and 𝑚 = 4 for 5.2 < 𝐻 < 5.5; 𝑚 

is the azimuthal wave number.  Herrada et al. [113] found that this instability is of the shear-layer 

type developing for  H  > 5.5 as well. Unsteady three-dimensional flows resulting from the instability 

were studied in Refs. [149]–[151].   

      Here we numerically investigate the stability of air-water flow in a semispherical container 

studied by Balci et al. [148]. This flow seems the most appropriate for bioreactor applications since 

the number of eddies, which can damage the tissue, is minimal here. In the cylindrical bioreactors 

[115],[51], [128],[139], a set of eddies is located near the sidewall-bottom intersection [118].  This 

eddies are absent in a semispherical container. One more advantage is that semispherical geometry 

enhances the streamline convergence toward the axis. This convergence strengthens swirl and 

therefore the centrifugal force, which drives the meridional circulation. Thus, the near-stagnant 

corner region is removed and the global circulation of ingredients is enhanced.  

      There is a technical difficulty of studying the stability of a two-fluid flow: the linearization of 

a rather complicated relation describing the balance of normal stresses at the bent interface.  To 

overcome this problem, an efficient routine was elaborated [1], which in addition facilitates 

numerical simulations.  The routine includes (i) mappings, converting the time-dependent upper and 

lower fluid regions onto fixed squared domains, (ii) a symbolic toolbox to calculate the analytical 

Jacobians, and (iii) the Chebyshev grid in both radial and axial directions. Herrada & Montanero 

proved the method efficiency in their study of liquid-bridge dynamics [1].  Here this numerical 

technique, being modified and applied for the hemispherical problem, helps investigate and 

understand the instability nature.                    
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6.2.       Problem formulation 

6.2.1. Flow geometry 

 

Figure 6.1 Schematic of the problem.  The lid only rotates. 

 

Figure 6.1 is a problem schematic.  The lower part, 0 < 𝑧 < ℎ𝑤, of the semispherical container is 

filled with water, the upper part, ℎ𝑤 < 𝑧 < 𝑅, is filled with air; 𝑟, 𝜙, and 𝑧 are cylindrical 

coordinates; and 𝒈 is the gravitational acceleration.  The interface is depicted by the thin horizontal 

line, 𝑧 = ℎ𝑤.  The semispherical wall is stationary. The disk lid, located at 𝑧 = 𝑅, rotates with 

angular velocity ; 𝑅 is the disk and hemisphere radius, which serves as a length scale.  The 

dimensionless control parameters are the water fraction, characterized by the water height 𝐻𝑤 =
ℎ𝑤/𝑅, and the Reynolds number, 𝑅𝑒 = 𝑅2/𝜈𝑤, characterizing the rotation strength; 𝜈𝑤 is the 

kinematic viscosity of water.  One our goal is to explore (i) the development of flow instability, as  

𝑅𝑒 increases at a fixed 𝐻𝑤, and (ii) how the critical parameters depend on the water fraction.  To this 

end, we consider 𝐻𝑤 = 0.2, 0.4, 0.6, and 0.8. 

6.2.2. Governing equations 

Using 𝑅, 1/, 𝑅, and 𝜌𝑤
2𝑅2 as scales for length, time, velocity, and pressure, respectively, 

renders all variables dimensionless.  We consider a flow of two viscous incompressible immiscible 

fluids governed by the Navier-Stokes equations, 
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where𝛻2 ≡
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑟2

𝜕2

𝜕𝜙2 +
𝜕2

𝜕𝑧2  is the Laplace operator for a scalar field, (𝑢, 𝑣, 𝑤) are the 

velocity components in cylindrical coordinates (𝑟, 𝜙, 𝑧), 𝑡  is time, and 𝑝 is pressure.  The 

coefficients, 𝜌𝑛 and 𝜈𝑛, are both equal 1 at 𝑛 = 1 (in the water) while 𝜌𝑛 = 𝜌𝑤/𝜌𝑎 and 𝜈𝑛 = 𝜈𝑎/𝜈𝑤  

at 𝑛 = 2 (in the air).   

      We denote the list (𝑢, 𝑣, 𝑤, 𝑝)  as 𝑽, and look for a solution of the system (6.1)-(6.4) in the 

form 

  𝑽 = 𝑽𝑏(𝑟, 𝑧) + 휀𝑽𝑑(𝑟, 𝑧)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐., 6.5 

where subscripts “𝑏” and “𝑑” denote the base flow and a disturbance, respectively; 𝑐. 𝑐.  denotes the 

complex conjugate of the preceding term;  << 1 is an amplitude; integer 𝑚 is an azimuthal wave 

number; and 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 is a complex number to be found, with  frequency 𝜔𝑟 and growth rate of 

disturbance 𝜔𝑖. For a decaying (growing) disturbance, 𝜔𝑖 is negative (positive).  The equations 

governing the base flow result from substituting (6.5) in system (6.1)-(6.4) and setting  = 0.  The 

terms of order 𝑂() constitute equations governing infinitesimal disturbances. 

6.2.3. Boundary conditions 

Equations (6.1)-(6.4) are solved under the following boundary conditions:       

(i) Regularity at the axis, 0 < 𝑧 < 𝑅,  𝑟 = 0: 

a)  𝑢 = 𝑣 = 0, 𝜕𝑤/𝜕𝑟 = 0 (basic flow and 𝑚 = 0 disturbances), 

b)  𝑤𝑑 = 0, 𝑢𝑑 + 𝑚𝑣𝑑 = 0, 𝜕𝑢𝑑/𝜕𝑟 = 0 (𝑚 = 1 disturbances) 

c) 𝑤𝑑 = 𝑢𝑑 = 𝑣𝑑 = 0  (𝑚 >1 disturbances) 

 

(ii) No-slip at the walls: 𝑢 = 𝑣 = 𝑤 = 0 at the spherical wall, 0 < r < 1, z = 1 (1 r
2
)
1/2

     

and 𝑢 = 𝑤 = 0, 𝑣 = 𝑟 at the rotating disk, 0 < 𝑟 < 1, 𝑧 = 𝑅.   

(iii) Continuity of all the velocity and stress components at the interface.  In particular, the 

balance for the normal stresses yields that        

𝑝𝑤 − 𝑝𝑎 =
1

𝑊𝑒
𝛻. 𝒏 −

1

𝑅𝑒
𝒏. (𝝉𝑤 − 𝜇𝑟𝝉𝑎). 𝒏 −

1

𝐹𝑟
(1 − 𝜌𝑟)𝑧, 6.6 

 

where 𝒏  is the unit vector perpendicular to the interface, 𝝉𝑤  and 𝝉𝑎 are tensors of the 

viscous stresses in the heavy and light fluids, respectively, and 𝜇𝑟 and 𝜌𝑟 are the light-

to-heavy fluid ratios of the dynamic viscosities and densities, respectively.  

(iv) The kinematic equation for the interface shape, 𝑧𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝐺(𝑠, 𝜙, 𝑡) and 

𝑟𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝐹(𝑠, 𝜙, 𝑡),
  
are: 

 ( 𝑢 −
𝜕𝐹

𝜕𝑡
)

𝜕𝐺

𝜕𝑠
− (𝑤 −

𝜕𝐺

𝜕𝑡
)

𝜕𝐹

𝜕𝑠
+

𝑣

𝐹
(

𝜕𝐺

𝜕𝜙

𝜕𝑓

𝜕𝑠
−

𝜕𝐹

𝜕𝜙

𝜕𝐺

𝜕𝑠
) = 0,        6.7 

 

   
𝜕𝐺

𝜕𝑠
 
𝜕2𝐺

𝜕𝑠2 +
𝜕𝐹

𝜕𝑠
 
𝜕2𝐹

𝜕𝑠2  = 0 ,                6.8 

where s is the arc length coordinate along the interface. We look for a solution in the 

form 

 𝑧𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝐺𝑏(𝑠) + 휀𝐺𝑑(𝑠)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐, 𝑟𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝐹𝑏(𝑠) + 휀𝐹𝑑(𝑠)𝑒(𝑖𝑚𝜙−𝑖𝜔𝑡) + 𝑐. 𝑐. 
6.9 
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6.3. Numerical procedure 

6.3.1. Approach 

The numerical scheme used to simulate both the nonlinear problem for the basic flow and the 

generalized eigenvalue problem for disturbance is a variation of that described in [1].  It includes first 

the mapping of water and air regions onto standard square domains, 0 ≤ 𝜂(𝑤,𝑎) ≤ 1, 0 ≤  𝑠 ≤  1, 

by means of  two coordinate transformations (see Section 6.3.2). Then, each variable (velocities, 

pressure, and the two variables, G and F, required to describe the interface shape) and all its temporal 

and spatial derivatives, which appear in the transformed equations, are composed as a single 

symbolic vector. The next step is to use a symbolic toolbox to calculate the analytical Jacobians of all 

the equations with respect to the symbolic vectors.  MATLAB tool matlabFunction is used to convert 

these symbolic Jacobians and equations into MATLAB functions.  These functions are evaluated 

point-by-point in the squared domains every time when it is required to compute either the numerical 

Jacobian, used in the Newton procedure to solve the nonlinear problem of the basic flow, or the 

matrices associated with the eigenvalue problem. The structure of these matrices is determined by the 

spatial and temporal discretization of the derivatives of the variables in the numerical domains.  In 

this work, the water and air domains are discretized using forth order finites differences in a set of 𝑛𝑤 

and 𝑛𝑎 collocation points in the 𝜂 direction (along the 𝜂𝑤 and 𝜂𝑎 axes, respectively). By the other 

hand, the domains are also discretized using forth order finites differences in a set of 𝑛𝑠 collocation 

points in the 𝑠 direction. The second-order backward finite differences are used to compute the time 

derivatives for the basic flow. Since the basic flow is axisymmetric, all the azimuthal derivatives are 

set to zero. For disturbances, we obtain the temporal and azimuthal derivatives using the 

representation (equation 6.5).  

To summarize, the numeric procedure includes the mapping of water and air regions, the proper 

spatial and temporal discretization, creating the discrete Jacobian matrix for the Newton procedure 

for the basic flow and two more matrices for the generalized eigenvalue problem for disturbances. 

For the basic flow, we get the final steady solution though using an unsteady process. Starting from 

the rest and selecting a time step, 𝑑𝑡, the solution is advanced in time until a steady state is reached. 

Since the nonlinear procedure used to compute the basic flow is fully implicit, 𝑑𝑡 can be taken 

sufficiently large to quickly reach the steady solution.  Once the base flow is computed, at given an 

azimuthal wave number 𝑚, we use MATLAB subroutine eigs to calculate the eigenvalues () of the 

system of discrete linear equations. 

Most of the simulations presented here are done using 𝑛𝑤 = 111, 𝑛𝑎 = 41, and 𝑛𝑠 = 111 (standard 

grid) and 𝑑𝑡 = 10, 20 and 50, but some runs for flows, having small circulation regions, are 

performed with more fine grids.  

To analyze the flow topology, we use the Stokes stream function, 𝑤 =
1

𝑟
/𝑟 and 𝑢 =

 
1

𝑟
/𝑧, and plot streamlines of the meridional motion, i.e., contours  = constant. 

6.3.2. Mapping 

In the water region the following mapping has been applied 

 

𝑧 =  𝐺(𝑠, , 𝑡)
𝑤
, 𝑟 =  𝐹(𝑠, , 𝑡)

𝑤
+ 𝑠[𝑠𝑖𝑛(𝑎𝑐𝑜𝑠{1 − 𝑔0𝑤

}) − 𝑓0𝑤
], 

6.10 
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where 𝑔0 = 𝐺(𝑠 = 1, , 𝑡), and 𝑓0 =  𝑠𝑖𝑛(𝑎𝑐𝑜𝑠{1 − 𝑔0}).  

      By the other hand, the air region the following mapping has been used 

𝑧 = 𝐺(𝑠, , 𝑡)(1 − 𝑎) + 𝑎 , 𝑟 = 𝐹(𝑠, , 𝑡)𝑎 + 𝑠[𝑠𝑖𝑛(𝑎𝑐𝑜𝑠{1 − 𝑔0𝑎}) − 𝑓0𝑎] 
6.11 

 

Note that both mappings are defined by variables F and G which describe the radial and axial 

position of the interface as a function of the arc length s (0 ≤ 𝑠 ≤1) and by variables 
𝑤
,  (0 ≤


𝑤

≤ 1)  and 
𝑎
,  (0 ≤ 

𝑎
≤ 1).  Equations (6.7) and (6.8) allow the determination of F and G.   

Note that in the case of a completely flat interface, G = Hw and F = 𝑓0𝑠 , the mapping in the water 

region becomes 

𝑧 = 𝐻𝑤
𝑤
, 𝑟 = 𝑠[𝑠𝑖𝑛(𝑎𝑐𝑜𝑠{1 − 𝐻𝑤

𝑤
})],     6.12 

 

      while in the gas region   

𝑧 = 𝐻w(1 − 
𝑎
) + 

𝑎
, 𝑟 = 𝑠[𝑠𝑖𝑛(𝑎𝑐𝑜𝑠{1 − 𝐻𝑤

𝑎
})] 6.13 

 

 Figure 6.2 shows an example of mesh generated by the mapping for a case with a deformable 

artificial interface (F and G given by the  red line ) 

 

 

Figure 6.2 Mesh generated using 
𝑤

= 25,
𝑎

= 25, 𝑛𝑠 = 20  with G(s) = 0.5-cos( s) and 

F(s)= 𝑓0𝑠. 

6.4. Discussion of stability results 

6.4.1. Deep-water flow at Hw = 0.8 

It is reasonable to start the stability analysis with the case  𝐻𝑤 = 0.8, where the base flow was 

investigated in Ref. [148]. Figure 9(a) of Ref. [148]shows that the creeping flow has the four-eddy 

pattern with one large cell and one small cell in each of the water and air domains.  All four cells are 

adjacent to the interface. As 𝑅𝑒  increases, the small air cell shrinks and disappears, while the small 

water cell extends along the entire interface forming a thin counter-circulation layer. Thus, the four-
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eddy pattern of the creeping flow transforms into the three-eddy pattern, as the disk rotation speeds 

up. Figures 9(c) and 9(d) of Ref. [148] show this pattern at 𝑅𝑒 = 10000 and 18000 respectively.  

Figure 6.3(a) of our study depicts the three-eddy pattern at 𝑅𝑒 = 55700, at which the interface is 

remarkably deformed upward near the axis and downward near the sidewall, and the flow becomes 

unstable. 

 

Figure 6.3 (a) The base-flow pattern and (b) critical-disturbance energy distribution at 𝐻𝑤 = 0.8.  

The critical characteristics are found using the interpolation as Figure 6.4 illustrates for the 

critical 𝑅𝑒.  The cross symbols correspond to the numerical results, the curve and formula show the 

fitting polynomial. The critical value is determined as the polynomial root where 𝜔𝑖 = 0. A similar 

procedure is used to find the critical value of 𝜔𝑟. The obtained critical characteristics are: 𝑚 = 2, 𝑅𝑒 

= 55700, 𝜔𝑟 = 0.0176, 𝜔𝑖 = 0, 𝑅𝑒𝑎 = 3713, and 𝑅𝑒𝑤= 813.   

In addition to 𝑅𝑒, which is convenient to use in the numerical procedure, we calculate the 

Reynolds number, 𝑅𝑒𝑎 = 𝑅𝑒/𝜈𝑛, based on the air viscosity and therefore characterizing the strength 

of the air flow; 𝜈𝑛 = 15 is the air-to-water kinematic viscosity ratio. To characterize the strength of 

the water flow, we also calculate 𝑅𝑒𝑤 = 𝑣𝑠𝑖𝑅𝑒; 𝑣𝑠𝑖 is the maximal (dimensionless) swirl velocity at 

the interface. Here 𝑣𝑠𝑖 = 0.0146 is small compared with 1, which is the maximum velocity of the 

rotating disk.       

 

  

Figure 6.4 Finding the critical 𝑅𝑒 by interpolation. The crosses present the numerical results. The 

curve and formula show the fitting polynomial.   
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Figure 6.5 (a) The 𝑧-profiles of the base-flow radial velocity 𝑢 (solid curve) and 𝐸𝑑 (dashed 

curve) near the lid at 𝑟 = 0.618 𝐻𝑤 = 0.8. The dotted curve depicts the Kármán solution for 𝑢. (b) 

Contours of the disturbance axial velocity at the interface (color online).        

This small value of 𝑣𝑠𝑖 results in that 𝑅𝑒𝑎 > 𝑅𝑒𝑤 that helps explain why the critical disturbance is 

focused in the air domain, as Figure 6.3(b) illustrates.  It depicts contours of squared velocity 

magnitude, 𝐸𝑑(𝑟, 𝑧) = constant, calculated for the critical disturbance; 𝐸𝑑 =< |𝑢𝑑|2 + |𝑣𝑑|2 +
|𝑤𝑑|2 > is normalized by its maximal value in the air and water domains respectively; brackets, < >, 

denote averaging with respect to 𝑡 and 𝜙.   

We depict a few contours of Ed with the outermost contour corresponding to 𝐸𝑑 = 0.1𝐸𝑑𝑚𝑎𝑥. 

This contour encompasses a flow region where the disturbance energy mostly is focused.  In Figure 

6.3(b), 𝐸𝑑 reaches its peak value at 𝑟 =  𝑟𝑚  = 0.618 and 𝑧 =  𝑧𝑚  = 0.957, i.e., near the rotating 

lid.    

At 𝑟 =  𝑟𝑚, Figure 6.5(a) depicts the axial distribution of the base-flow radial velocity 𝑢 (solid 

curve) and of 𝐸𝑑 (dashed curve) near the lid. For convenient presentation, 𝑢 is normalized by its 

maximal value, 𝑢𝑚 = 0.1065, in Figure 6.5(a), which reveals that both 𝑢 and 𝐸𝑑 are very small in the 

water flow (for 𝑧 < 0.8) compared with their maximal values in the air flow.   

The profile of 𝑢 in Figure 6.5(a) agrees with the streamline pattern in Figure 6.3(a).  The rotating 

disk pushes the air to the periphery (the Kármán pump) forming a jet-like motion near the lid. The 

dotted curve in Figure 6.5(a) corresponds to the Kármán boundary layer solution as 𝑅𝑒𝑎   [127].  

The near-lid parts (up to the 𝑢 peak) of the boundary layer and numerical solutions are close. For 

smaller 𝑧, the effect of the air circulation (the counterflow in  Figure 6.5(a)) makes the difference.  

The fact that the 𝐸𝑑 peak is located near the inflection point of 𝑢(𝑧) in Figure 6.5(a) indicates that 

the instability likely is of the shear-layer type.    

The 𝐸𝑑  distribution in Figure 6.5(a) suggests that the air-flow instability does not necessarily 

disturb the water flow.  A reason could be the large water-to-air density ratio.  The 𝐸𝑑 contours 

shown in Figure 6.3(b) reveal that the 𝐸𝑑 peak in the water domain is located far away from the 𝐸𝑑 

peak in the air domain. The 𝐸𝑑 peak in the water is likely induced by the counterflow in the thin 

water cell observed in Figure 6.3(a). Figure 6.5(b) depicts contours of critical-disturbance axial 

velocity at the interface. The bright (orange online) and dark (blue online) regions correspond to the 

interface deformation upward and downward, respectively.  The locations of maximal |wd| in Figure 

6.5(b) agree with the location of 𝐸𝑑 peak in the water in Figure 6.3(b). According to  𝑚 = 2, Figure 

6.5(b) corresponds to two bumps and two dimples at the interface. As time increases, the picture in 

Figure 6.5(b) makes precession around the axis with the angular velocity r/m in the direction 

opposite to the base-flow rotation. 
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6.4.2. Flow at Hw = 0.6 

          

Figure 6.6 (a) The base-flow streamlines and (b) critical disturbance energy contours at 𝐻𝑤 = 0.6.  

 

Figure 6.7 (a) The 𝑧-profiles of the base-flow radial velocity 𝑢 (solid curve) and 𝐸𝑑 (dashed 

curve) in the air domain at 𝑟 = 0.76 and 𝐻𝑤 = 0.6. The dotted curve depicts the Kármán solution for 

𝑢.  (b) Contours of the disturbance axial velocity at the interface (color online). 

At 𝐻𝑤 = 0.6, the critical parameters are 𝑅𝑒 = 76430, 𝜔𝑟 = 0.01295, 𝜔𝑖 = 0, 𝑚 = 2, 𝑅𝑒𝑎 = 5095, 

and 𝑅𝑒𝑤 = 876.  The critical Reynolds numbers increase at 𝐻𝑤 = 0.6 compared to those at 𝐻𝑤 = 0.8.  

Figure 6.6(a) depicts the base-flow pattern at the critical 𝑅𝑒 and reveals that the Kármán boundary 

layer near the lid, where streamlines are packed, is now well separated, by a large region of slowly 

ascending air, from the near-interface boundary layer, corresponding to the radially converging jet-

like air flow, where streamlines also are parked.   

The 𝑧-profile of 𝑢 in Figure 6.7(a) has the jet-like peak, corresponding to the Kármán boundary 

layer (dotted curve) near the lid and a jet-like valley, corresponding to the near-interface boundary 

layer. Figure 6.6(b) reveals that  𝐸𝑑 has peaks in both boundary layers near their inflection points of 

the u profile that indicates the shear-layer nature of instability.  The near-interface jet diverges near 

the 𝐸𝑑  peak that stimulates the shear-layer instability [109].  Closer to the axis, this divergence is 

compensated by the radially converging motion. This explains why the 𝐸𝑑  peak in the near-interface 

jet is located close to the sidewall. Figure 6.7(b) depicts contours of critical-disturbance axial velocity 

at the interface whose features are similar to those in Figure 6.5(b). 
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6.4.3. Flow at Hw = 0.4 

 

Figure 6.8 (a) The base-flow streamlines and (b) critical disturbance energy contours at 𝐻𝑤 = 0.4. 

At 𝐻𝑤 = 0.4, the critical parameters are 𝑅𝑒 = 100620, 𝜔𝑟 = 0.0113, 𝜔𝑖 = 0, 𝑚 = 2, 𝑅𝑒𝑎 = 6708, 

and 𝑅𝑒𝑤 = 1078.  The critical 𝑅𝑒 numbers increase at 𝐻𝑤 = 0.4 compared to those at 𝐻𝑤 = 0.6.  

Figure 6.8(a) depicts the base-flow pattern at the critical Re. It reveals that the Kármán boundary 

layer near the lid, where streamlines are packed, is now even more, than in the 𝐻𝑤 = 0.6 case, 

separated from the near-interface boundary layer.  There is the axially elongated region in Figure 

6.8(a) where the air streamlines are nearly parallel to the 𝑧 = axis.  This motion is induced by the 

Kármán boundary layer [127], which sucks the ambient air.  

 

Figure 6.9 The 𝑧-profiles of the base-flow radial velocity 𝑢 (solid curve) and 𝐸𝑑 (dashed curve) 

in the air domain at 𝑟 = 0.469 and 𝐻𝑤 = 0.4. (b) Contours of the disturbance axial velocity at the 

interface (color online). 

Figure 6.9(a) depicts the 𝑧-profile of radial velocity 𝑢, normalized by its maximal value, 𝑢𝑚 = 

0.0676, at 𝑟 = 0.469 and 𝐻𝑤 = 0.4. Near the interface, at z > 0.41, the multi-layer counterflow of air 

is formed where 𝑢 oscillates.  The nature of these oscillations is similar to that for the secondary flow 

near a wall normal to a rotating fluid, first described by Bödewadt [134].   
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Figure 6.10 The 𝑟-profiles of the base-flow azimuthal 𝑣 and meridional 𝑣𝑡 velocities at the 

interface for 𝐻𝑤 = 0.4. 

Since both azimuthal and meridional velocities are very small at the interface compared with 

their maximal magnitudes, as Figure 6.10 illustrates, the interface acts as a wall for the air flow. 

Away from the interface, the radial pressure gradient is balanced by the centrifugal force, p/r = 

ʋ
2
/r.  Near the interface, the centrifugal force is drastically reduced while the pressure gradient is 

not and, being unbalanced by the centrifugal force, pushes the fluid to the axis. The radial 

convergence of air accumulates the swirl vorticity near the axis that develops a local minimum of 

pressure. The minimal pressure sucks the ambient fluid, decelerates the downstream air flow, and 

reverses the radial velocity (see the peak of 𝑢 near 𝑧 = 0.5 in Figure 6.9(a)), i.e., the swirl-decay 

mechanism [113] works, generating the oscillations of 𝑢.  

The jet-like air flow near 𝑧 = 0.5 in Figure 6.9(a) has (i) inflection points and (ii) radially 

diverges.  These two features, (i) and (ii), cause the strong shear-layer instability [109] that helps 

explains the location of the 𝐸𝑑 peak in Figure 6.8(b), where 𝑟𝑚  = 0.469 and 𝑧𝑚 = = 0.572, and in 

Figure 6.9(a), where the 𝐸𝑑 peak is located near the inflection point where 𝑢 is positive. Figure 6.9(b) 

depicts contours of critical-disturbance axial velocity at the interface whose features are similar to 

those in Figure 6.5(b). 

6.4.4. Flow at Hw = 0.2 

         

Figure 6.11 (a) The base-flow streamlines and (b) critical disturbance energy contours at 𝐻𝑤 = 

0.2. 

In the shallow-water case, 𝐻𝑤 = 0.2, the disturbance with 𝑚 = 1 becomes the most dangerous 

with the critical values: 𝑅𝑒 = 95350, 𝜔𝑟 = 0.842, 𝜔𝑖 = 0, 𝑅𝑒𝑎 = 6357, and 𝑅𝑒𝑤 = 713.  
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Disturbances with 𝑚 = 2 and 𝑚 = 3 also become growing, but for larger values of 𝑅𝑒. The critical 

𝑅𝑒 numbers slightly decrease at 𝐻𝑤 = 0.2 compared to those at 𝐻𝑤 = 0.4.  Figure 6.11(a) depicts the 

base-flow pattern at the critical 𝑅𝑒.   

 

Figure 6.12 (a) The r-profiles of the base-flow normalized axial velocity 𝑤 (solid curve) and 𝐸𝑑 

(dashed curve) in the air domain at 𝑧 = 0.289 and 𝐻𝑤 = 0.2. (b) Contours of the disturbance axial 

velocity at the interface (color online). 

Figure 6.11(b) depicts the 𝐸𝑑  distribution and reveals that the growing disturbance now is focused 

in the region where the near-wall jet-like air flow approaches the interface and decelerates.  The 

deceleration enhances the shear-layer instability [109]. The 𝐸𝑑  peak is located at 𝑟 =  𝑟𝑚 = 0.638 

and 𝑧 =  𝑧𝑚 = 0.289.  Figure 6.12(a) shows the radial distribution of 𝐸𝑑 (dashed curve) and the axial 

velocity 𝑤, normalized by its minimal value, 𝑤𝑚𝑖𝑛 = 0.0532, (solid curve) at 𝑧 =  𝑧𝑚.  The 𝐸𝑑  

peak is located near the inflection point of 𝑤(𝑟) that indicates the shear-layer nature of the 

instability. Figure 6.12(b) depicts contours of critical-disturbance axial velocity at the interface.  This 

pattern is spiral with the most high and low points located near the axis.  

6.5. Concluding remarks 

The goal of this study is to explore the instability nature of the air-water flow in the semispherical 

container driven by the rotating lid.  The study reveals that the instability develops in the air domain. 

The disturbance energy 𝐸𝑑 in the water is very small compared with the 𝐸𝑑 maximal magnitude in 

the air flow.  At critical values of the Reynolds number, the flow has the well-developed three-eddy 

pattern: (i) the global meridional circulation of air is separated from (ii) the water co-circulation by 

(iii) the thin layer of water counter-circulation, which serves as a liquid bearing. The air circulation is 

concentrated in the jet-like boundary layer, (a) radially diverging near the lid (the Kármán flow), (b) 

descending near the sidewall, and (c) radially converging near the interface. The instability is caused 

by the inflection points in the boundary-layer velocity profile enhanced by the jet divergence and 

deceleration.  The location of 𝐸𝑑 peak depends on the water volume fraction characterized by the 

depth-to-radius ratio 𝐻𝑤 .  For the deep water, the instability focuses near the rotating lid (Section 

6.4.1). As 𝐻𝑤 decreases, the 𝐸𝑑 peak shifts downward (Sections 6.4.2 and 6.4.3) and concentrates 

near the interface-sidewall intersection for the shallow water (Section 6.4.4).  The instability is time-

oscillatory and helical with the azimuthal wave number 𝑚 = 2 except in the shallow water case, 

where 𝑚 = 1. Since 𝐸𝑑 drastically drops below the interface, it is not expected that the air-flow 

instability can significantly affect the bulk water motion. The results could have possible applications 

for aerial bio-reactors. 
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7. MEAN FLOW PRODUCED BY SMALL-
AMPLITUDE VIBRATIONS OF A LIQUID BRIDGE 

WITH ITS FREE SURFACE COVERED WITH AN 

INSOBLUBLE SURFACTANT 

 

 

 

s is well known, confined fluid systems subject to forced vibrations produce mean flows, 

called in this context streaming flows. These mean flows promote an overall mass 

transport in the fluid that has consequences in the transport of passive scalars and 

surfactants, when these are present in a fluid interface. Such transport causes surfactant concentration 

inhomogeneities that are to be counterbalanced by Marangoni elasticity. Therefore, the interaction of 

streaming flows and Marangoni convection is expected to produce new flow structures that are 

different from those resulting when only one of these effects is present. The present chapter focuses 

on this interaction using the liquid bridge geometry as a paradigmatic system for the analysis. Such 

analysis is based on an appropriate post-processing of the results obtained via direct numerical 

simulation of the system for moderately small viscosity, a condition consistent with typical 

experiments of vibrated millimetric liquid bridges. It is seen that the flow patterns show a 

nonmonotone behavior as the Marangoni number is increased. In addition, the strength of the mean 

flow at the free surface exhibits two well-defined regimes as the forcing amplitude increases. These 

regimes show fairly universal power-law behaviors.   

7.1. Introduction 

Oscillatory flows in confined and low-viscosity fluid systems develop oscillatory boundary layers 

near solid walls and interfaces. Reynolds stresses exhibit nonzero temporal mean values in these 

layers, where they drive a mean flow. This interesting effect was first shown in a pioneering work by 

Lord Rayleigh [152] when explaining the anomalous sand accumulation at the bottom of a vertically 

vibrated container, observed 50 years earlier by Faraday [153]. Rayleigh also noted that the same 

mechanism was seemingly responsible for nonuniform dust accumulation (known as Kundt figures) 

at the walls of sound tubes [154] and for the formation of steady vortical structures in vibrated soap 

films, already observed by Sedley Taylor [155]. This latter problem has been more recently studied 

by Vega et al. [156]. They concluded that, under reasonableassumptions and according to Rayleigh’s 

insight, the observed vortical structures are most seemingly due to the streaming flow in the air 

surrounding the soap film. Rayleigh made a careful analysis of the (nowadays called) boundary layer 

attached to a (no-slip) solid boundary, obtaining the steady mean flow responsible for sand or dust 

nonuniform accumulation near the boundary. Rayleigh’s work was completed 50 years later by 

Schlichting [157] (see also Ref. [158]), who noticed that the streaming flow velocity was nonzero at 

the internal edge of the boundary layer, which is a driving mechanism for the generation of mean 

flows in the fluid bulk. Longuet-Higgins [159] made a similar analysis for the streaming flow within 

the boundary layer attached to a free surface, which again was nonzero at the internal edge of the 

layer and thus also responsible for the generation of a global mean flow in the bulk. An important 

well-known property is that the time-averaged velocity or stress converges to a generally nonzero 

A 
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value as viscosity goes to zero, while it would vanish if viscosity were identically zero (i.e., when the 

boundary layer is absent) [125]. This seemingly surprising effect is explained by the singular 

perturbation character of the inviscid limit. 

More recently, the mean flow (also called steady or acoustic streaming [160], [161]) has been 

studied in various contexts. In particular, the streaming flow induced by no-slip boundaries has been 

studied in connection with flows in blood vessels [162], generation of mean motions in the ear [163], 

interaction of sound waves with bodies [164], flows around vibrating bodies [165], and streaming-

flow-jets produced by acoustic waves [166]. On the other hand, the streaming flow produced in the 

boundary layer attached to a vibrating free surface has an effect on the dynamics of oscillating 

bubbles [167], is of interest in water wave theory [168]–[172], and has been shown to play a role in 

the instability of the ocean Langmuir circulations [173]. In different contexts, the streaming flow has 

been studied in microfluidic systems [174] and in conjunction with thermal effects for various 

purposes, including the control of thermocapillary convection at low viscosity [175]–[178] and 

cooling in narrow channels [179]. For nearly resonant systems at small viscosity, the streaming flow 

is not just a byproduct of the primary waves, but generally affects the dynamics of those waves, as 

repeatedly shown for various flow configurations and vibrating devices [180]–[184]. This is because 

the streaming flow velocity scales with the square of the wave amplitude and produces an effect in 

the amplitude equations governing the dynamics of the primary waves that is proportional to the 

product of the primary waves amplitude and the streaming flow velocity. Thus, this latter effect 

scales as the cube of the primary waves amplitude, which is the order of magnitude of the cubic 

nonlinearity that saturates the dynamics in these systems [185]. 

The streaming flow is responsible for the effective mass transport in the fluid system and, in 

particular, for the overall motion of passive scalars and surfactants. Therefore, the mean flow is 

expected to exhibit a nontrivial interaction with Marangoni convection. The understanding of this 

interaction has been pursued in a number of papers. For instance, Martin and Vega [186] included 

the effect of Marangoni elasticity in a previous theory for clean free surfaces [182] to study the drift 

stability of standing Faraday waves in annular containers, previously found experimentally by 

Douady et al. [187]. More recently, Strickland et al. [188] have pointed out that materials (such as 

crude oil, biogenic slicks, or industrial and medical surfactants) absorbed at the fluid free surface are 

expected to move in response to surface waves. They have experimentally studied such effect for 

Faraday waves in a shallow cylindrical container with an insoluble surfactant monolayer. They 

distinguished the effects of the meniscus waves near the boundaries and the travelling waves in the 

far field, which resulted in very complex spatiotemporal patterns. The case of Faraday waves in a 

rectangular container was considered in Ref. [189], where no specific surfactant was added. In this 

study, surface contamination was seemingly present due to the use of tap water, which is easily 

contaminated. In fact, water contamination was also most probably responsible for some striking 

mean flow effects due to wave-maker oscillations that have been recently reported [190]. 

The streaming flow theory and systems mentioned above all deal with the low-viscosity limit, in 

which the thickness of the oscillatory boundary layers is very small compared to the characteristic 

lengths of the primary surface waves. This sets an upper limit to the surface waves oscillation 

frequency. If that condition does not hold, the streaming flow can still be analyzed by appropriate 

time-averaging of the trajectories of fluid elements calculated via direct numerical simulation. This 

task has not been addressed in the literature, to our knowledge. 

As mentioned above, Faraday waves in vibrating containers may produce meniscus oscillations 

that further complicate the dynamics, and may mask the interaction between the streaming flow and 

Marangoni convection. To overcome this difficulty, we consider a vibrating liquid bridge with the 

contact lines attached to the edges of the supporting disks, as we have done in other related works 

dealing with surfactant monolayer dynamics [191], [192]. This geometry has the additional 

advantage that direct numerical simulation is feasible at a reasonable computational price. The liquid 

bridge geometry has already been considered in connection with the streaming flow produced by 

vibrations, focusing on weakly nonlinear oscillations [193] and the effect of free surface waves 

[194]. However, these studies dealt with the low viscosity limit. On the contrary, viscosity is not 
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necessarily small in the present study. Our analysis is based on direct numerical simulation for 

arbitrary values of that parameter. 

Concerning the interaction of the streaming flow with Marangoni convection, we may anticipate 

here that there is a tradeoff between both. Without Marangoni elasticity (the surfactant is treated as a 

passive scalar), the surfactant is transported by the streaming flow, which gives rise to nonuniform 

passive scalar concentrations at the free surface. However, Marangoni elasticity reacts against 

surfactant concentration gradients, decreasing the tangential velocity at the free surface and 

counterbalancing the effect of the streaming flow alone. Thus, the resulting streaming flow patterns 

are expected to be highly affected by Marangoni stresses, at least near the free surface. 

The main object of this investigation is to analyze the interaction between the streaming flow and 

Marangoni elasticity in a vibrated liquid bridge using direct numerical simulation. For simplicity, we 

consider an insoluble surfactant monolayer on top of the interface of a vibrating liquid bridge. We 

ignore gravity, consider the symmetric case in which the disks supporting the bridge have equal radii, 

and neglect surface viscosities. The streaming flow velocity and the time average of both the liquid 

bridge shape and the surfactant distribution will be calculated in two ways, one asymptotic assuming 

that the oscillatory flow intensity goes to zero, and another “exact” that does not take that assumption 

into account. In the former case, the streaming flow velocity is calculated as the sum of the mean 

Eulerian velocity and the Stokes drift, while in the latter case that velocity is obtained through the 

time-averaging of the trajectories of the fluid elements. These two approaches rely on the appropriate 

post-processing of the results obtained by direct numerical simulation, and their outcomes will be 

used for cross-checking. 

7.2. Theoretical background 

As anticipated, the analysis of the interaction between the streaming flow and Marangoni stress 

will be conducted by post-processing “exact results” obtained upon direct numerical simulation. The 

theoretical background in Sec. 7.2.1 includes the problem formulation, the description of the 

numerical solver, and the nondimensional parameter range considered. The post-processing formulas 

to compute the streaming flow is derived and discussed in Sec. 7.2.2. 

7.2.1. Governing equations and numerical solver 

We consider a liquid bridge (sketched in Figure 7.1) of length 𝐿 and volume 𝒱, held between two 

circular disks of equal radius 𝑅, and surrounded by another fluid medium of negligible density and 

viscosity. Nondimensionalization of the governing equations is made by using R and 𝑡0  =
 (𝜌𝑅3/𝜎0)

1/2 as units for length and time, respectively, where 𝜌 is the liquid density and 𝜎0 is the 

equilibrium (initial) surface tension. For axisymmetric flows, the incompressible Navier-Stokes 

equations are 

(𝑟𝑢)𝑟 + 𝑟𝑤𝑟 = 0 
(7.1) 

𝑢𝑡 + 𝑢𝑢𝑟 + 𝑤𝑢𝑧 = −𝑝𝑟 + 𝐶 [𝑢𝑟𝑟 + (
𝑢

𝑟
)
𝑟
+ 𝑢𝑧𝑧] 

(7.2) 

𝑤𝑡 + 𝑢𝑤𝑟 + 𝑤𝑤𝑧 = −𝑝𝑧 + 𝐶 [𝑤𝑟𝑟 +
𝑤𝑟

𝑟
+ 𝑤𝑧𝑧] 

(7.3) 

 

where r and z are the radial and axial cylindrical coordinates, respectively, t is the time variable, the  
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Figure 7.1 Liquid bridge configuration 

subscripts 𝑟, 𝑧, and 𝑡 denote hereinafter partial derivatives with respect to those variables, 𝑢 and 𝑤 

are the radial and axial velocity components, respectively, 𝑝 is the (hydrostatic) reduced pressure, 

and 𝐶 =  𝜇(𝜌𝜎0𝑅)−1/2 is the volumetric Ohnesorge number defined in terms of the bulk viscosity 

𝜇. 

As boundary conditions, we consider the regularity conditions 𝑢 = 𝑤𝑟 = 𝑝𝑟 = 0 at the 

symmetry axis 𝑟 = 0, as well as the kinematic compatibility condition 

𝑓𝑡 + 𝑓𝑧𝑤 − 𝑢 = 0 
(7.4) 

and the equilibrium of normal and tangential stresses, 

𝑝 − 𝐵(𝑡)𝑧 − �̂�𝜅 −
2𝐶[𝑢𝑟 − 𝑓𝑧(𝑤𝑟 + 𝑢𝑧) + 𝑓𝑧

2𝑤𝑧]

1 + 𝑓𝑧
2 = 0 (7.5) 

𝐶
[1 − 𝑓𝑧

2](𝑤𝑟 + 𝑢𝑧) + 2𝑓𝑧(𝑢𝑟 − 𝑤𝑧)

1 + 𝑓𝑧
2 = 

�̂�𝑧

√1 + 𝑓𝑧
2

 (7.6) 

at the free surface, 𝑟 =  𝑓 (𝑧, 𝑡). It must be noted that these boundary conditions do not apply if 

overturning takes place, which may occur just before the pinch-off for vibration amplitudes larger 

than those considered in this paper. In the above equations, 

𝜅 =
1 + 𝑓𝑧

2 − 𝑓𝑓𝑧𝑧

𝑓(1 + 𝑓𝑧
2)

3/2
 (7.7) 

is (twice) the mean curvature of the free surface, 𝐵(𝑡) is the unsteady Bond number defined in Eq. 

(7.12), and  �̂� =  𝜎/𝜎0 is the ratio of the local surface tension value 𝜎 to its equilibrium value 𝜎0. 

The dependence of the surface tension on the surfactant concentration obeys differentrelationships, 

depending on the surfactant. Here, we shall use the Szyskowski-Frumkin equation of state [195], 

�̂� = 1 + 𝑀𝑎 𝑙𝑛 (
1 − 𝛾

1 − 𝛾0
) (7.8) 

where  𝛾  =  𝛾/𝛾∞ and  𝛾0  =  𝛾0/𝛾∞ are the local surface coverage and the equilibrium surface 

coverage, respectively. These quantities are defined in terms of the local surfactant surface 

concentration 𝛾, its equilibrium value 𝛾0, and its maximum value 𝛾∞ corresponding to the maximum 
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surfactant packing density. In addition, 𝑀𝑎 =  𝛾∞𝑅𝑔𝑇𝑒/𝜎0 is the (Marangoni) elasticity number 

defined in terms of 𝛾∞, the gas constant 𝑅𝑔, the temperature 𝑇𝑒, and the equilibrium surface tension 

𝜎0. On the other hand, the surfactant concentration along the free surface must obey the surfactant 

conservation equation [192], 

[𝑓(1 + 𝑓𝑧
2)

1/2
𝛾]

𝑡
+ [𝑓(1 + 𝑓𝑧

2)
1/2

𝑤𝛾]
𝑧
=

[
 
 
 

𝑓

𝑃𝑒𝑆

𝛾𝑧

√1 + 𝑓𝑧
2

]
 
 
 

𝑧

𝑎𝑡 𝑟 = 𝑓(𝑧, 𝑡),  
(7.9) 

where 𝑃𝑒𝑆  =  𝑅2/(𝑡0𝐷
𝑆) is the surface Peclet number, and 𝐷𝑆 is the surface diffusion coefficient. 

The boundary condition Eq. (7.5) and the conservation Eq. (7.9) must be complemented with the 

anchoring condition for the free surface and impenetrability of the surfactant at the liquid bridge 

disks, 

𝑓 = 1 𝑎𝑛𝑑  𝛾𝑧  =  0 𝑎𝑡 𝑧 =  0 𝑎𝑛𝑑 2Λ, 
(7.10) 

where Λ =  𝐿/(2𝑅) is the slenderness. Also, the nondimensional volume 𝑉 ≡ 𝒱/(𝜋𝑅2𝐿) and the 

total amount of surfactant are both conserved, namely 

∫ 𝑓2𝑑𝑧 =
2Λ

0

∫ 𝑓0
2𝑑𝑧 = 2ΛV ,

2Λ

0

   ∫ √1 + 𝑓𝑧
2𝑓𝛾𝑑𝑧 = √1 + 𝑓𝑧

2𝑓0𝛾0𝑑𝑧 ,
2Λ

0

 (7.11) 

where 𝑓0 is the initial value of the free surface position. 

The initial liquid bridge shape is calculated by integrating the Young-Laplace equation, and the 

initial surfactant concentration is set as spatially constant. For 𝑡 ≥ 0, a rigid-solid acceleration with 

magnitude 𝑎𝜔2𝑒𝑖𝜔𝑡 + 𝑐. 𝑐. is applied, where 𝑎 and 𝜔 are the forcing amplitude and frequency, 

respectively, 𝑖 is the imaginary unit, and 𝑐. 𝑐. stands hereinafter for the complex conjugate. 

Therefore, the unsteady Bond number becomes 

𝐵(𝑡)  =  �̂�𝑒𝑖𝜔𝑡 + 𝑐. 𝑐., (7.12) 

where �̂� = 𝜌𝑎𝜔2𝑅2/𝜎0 is the dynamical Bond number. The above theoretical model is formulated 

in terms of the eight nondimensional parameters: 

Λ, 𝑉, 𝐶, 𝑃𝑒𝑆, 𝑀𝑎, 𝛾0, 𝜔, 𝑎𝑛𝑑 �̂�. (7.13) 

We have selected the values of those parameters according to the following considerations: 

(i) Because of the large dimension of the parameter space, the analysis will be restricted to 

(equilibrium) cylindrical shapes (𝑉 = 1) with  Λ = 1.25. 

(ii) The volumetric Ohnesorge number will be selected as 𝐶 = 0.01, which corresponds to a 

typical experimental realization with millimetric water liquid bridges. To analyze the 

influence of the liquid viscosity, the volumetric Ohnesorge number 𝐶 = 0.001 will be 

considered too. 

(iii) The surfactant surface diffusivity is typically of the order of 10
−10

–10
−9

 mm
2
/s [195], 

which leads to surface Peclet numbers in the range 10
5
–10

6
 when those surfactants are 

added to millimetric liquid bridges. Thus, the influence of surface diffusion on the liquid 

bridge dynamics can be ignored. However, ignoring surface diffusion makes the 

surfactant conservation Eq. (7.9) (hyperbolic and) quite stiff. Because the physics of the 

high-Peclet-number limit is well captured using much smaller values of 𝑃𝑒𝑆, we will 
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consider 𝑃𝑒𝑆 = 1000 in the numerical simulations. 

(iv) The elasticity number 𝑀𝑎 = 1 corresponds to a strong surfactant. For this reason, we will 

consider the interval 0 ≤  𝑀𝑎 ≤  1. 

(v) The formation of micelles for  𝛾 ≥ 1 may add rheological effects not considered in this 

paper. For this reason, the value  𝛾0 = 0.5 will be selected as typical for the surfactant 

concentration. 

(vi) The main goal of this paper is the analysis of the influence of the Marangoni convection 

on the streaming flow caused by the liquid bridge oscillation modes. However, both the 

thickness of the boundary layers and the axial characteristic length decrease as the 

oscillation frequency increases, which leads to a considerable increase of the spatial 

resolution required in the simulations. For this reason, all the calculations will be made 

for forcing frequencies around the first resonance frequency of the liquid bridge. The 

value of this quantity is about 2.1 for the equilibrium shape considered in the first item. 

(vii) The strength of the oscillation must be not too large for the quasi-linear theory developed 

in this paper to be valid. In particular, the steepness of the free surface deflection must be 

sufficiently small. Taking into account these considerations, 0 < �̂� < 0.05 is an 

appropriate range for the dynamical Bond number. 

Summarizing the above, the following values of the nondimensional parameters listed in Eq. 

(7.13) will be considered in most of this chapter: 

Λ = 1, 𝑉 = 1, 𝐶 = 0.01 𝑜𝑟 0.001, 𝑃𝑒𝑆 = 1000, 0 ≤  𝑀𝑎 ≤  1, 𝛾0 = 0.5, 

 2 ≤ 𝜔 ≤ 2.2, 𝑎𝑛𝑑 0 < �̂� < 0.05. 

(7.14) 

 

Figure 7.2 Time evolution of the axial component w of the velocity numerically calculated (solid 

line) and of the axial component 𝑤𝐿 of the Lagrangian mean velocity (dots). These quantities were 

evaluated at the liquid bridge position (𝑟 =  1, 𝑧 =  3Λ/2). The component 𝑤𝐿 was obtained from 

the difference between the fluid element positions at the instants 𝑡 and 𝑡 −  𝑇 [Eq. (7.24)]. The 

simulation was conducted for Λ = 1.25, 𝑉 = 1, 𝐶 = 0.01, 𝑀𝑎 = 0, 𝜔 = 2.1, and �̂� = 0.005. 

 

The problem formulated above will be solved with the numerical method recently proposed in 

Ref. [1]. The timedependent fluid domain is mapped onto a fixed rectangular domain (0 ≤ 𝜂 ≤
1, 0 ≤ 𝑧 ≤ 2Λ) through the radial coordinate transformation 𝜂 =  𝑟/𝑓(𝑧, 𝑡). The numerical domain 

is discretized (after some calibration) using 𝑛𝜂 = 41 and 𝑛𝑧 = 101 grid points along the 𝜂 and 𝑧 

directions, respectively. The spatial derivatives are calculated with fourth-order finite differences. 

The (implicit) time advancement is performed using second-order backward-differences with a fixed 
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time step 𝑡 =  𝑇/80, where 𝑇 =  2𝜋/𝜔 is the period of the forced oscillation. At each time step, 

the resulting set of algebraic equations are solved with the iterative Newton-Raphson technique. The 

elements of the Jacobian of the discretized system of equations are computed via standard symbolic 

software at the outset, before running the simulation. These functions are evaluated numerically in 

the Newton-Raphson iterations to find the solution at each time step, which reduces considerably the 

required CPU time. The initial guess for the iterations at each time step is the solution at the previous 

instant. 

7.2.2. Streaming flow 

Under the conditions mentioned above, we assume that the oscillatory flow velocity and free 

surface deflection are both conveniently small. Thus, after a transient stage (see Fig. 2), this flow is 

assumed to be quasilinear, periodic, and quasimonochromatic with the forcing frequency ω. To the 

approximation relevant in this paper, the velocity components, the free surface deflection, and the 

surfactant concentration can be written as 

(𝑢, 𝑤) = 휀[(𝑈(𝑟, 𝑧),𝑊(𝑟, 𝑧))𝑒𝑖𝜔𝑡 + 𝑐. 𝑐] + 휀2[(𝑈2(𝑟, 𝑧),𝑊2(𝑟, 𝑧))𝑒
2𝑖𝜔𝑡 + 𝑐. 𝑐 +

(𝑢𝑚(𝑟, 𝑧), 𝑤𝑚(𝑟, 𝑧))] + (𝑂휀3), 
(7.15) 

𝑓 − 𝑓0 = 휀𝐹(𝑧)𝑒𝑖𝜔𝑡 + 𝑐. 𝑐.  +  휀2[𝐹2(𝑧)𝑒
2𝑖𝜔𝑡 + 𝑐. 𝑐 + 𝑓𝑚(𝑧)] + (𝑂휀3), (7.16) 

𝛾 − 𝛾0 = 휀Γ̂(𝑧)𝑒𝑖𝜔𝑡 + 𝑐. 𝑐.  +  휀2[�̂�2(𝑧)𝑒
2𝑖𝜔𝑡 + 𝑐. 𝑐 + 𝛾𝑚(𝑧)] + (𝑂휀3), (7.17) 

where 휀 is small. The leading-order terms collect the “exact” first harmonic of the periodic 

oscillation, which can be computed from the exact solution as 

휀(𝑈(𝑟, 𝑧),𝑊(𝑟, 𝑧)) =
1

𝑇
∫ (𝑢(𝑟, 𝑧, 𝑡), 𝑤(𝑟, 𝑧, 𝑡))𝑒−𝑖𝜔𝑡𝑑𝑡

𝑇

0

, (7.18) 

휀 (𝐹(𝑧), Γ̂(𝑧)) =
1

𝑇
∫ (𝑓(𝑧, 𝑡), 𝛾(𝑧, 𝑡))𝑒−𝑖𝜔𝑡𝑑𝑡

𝑇

0

, (7.19) 

In addition to the second harmonic, the second-order terms in Eqs. (7.15) – (7.17) comprise the 

mean values of the velocity field, 휀2(𝑢𝑚(𝑟, 𝑧),𝑤𝑚(𝑟, 𝑧)), the free surface deflection, 휀2𝑓𝑚(𝑧), and 

the surfactant concentration 휀2𝛾𝑚(𝑧). These mean values are calculated in terms of the exact fields 

as 

(𝑢𝐸 , 𝑤𝐸) = 휀2(𝑢𝑚(𝑟, 𝑧), 𝑤𝑚(𝑟, 𝑧)) =
1

𝑇
∫ (𝑢(𝑟, 𝑧, 𝑡), 𝑤(𝑟, 𝑧, 𝑡))𝑑𝑡

𝑇

0

, (7.20) 

(𝑓𝐸 , 𝛾𝐸) = 휀2(𝑓𝑚(𝑧), 𝛾𝑚(𝑧)) =
1

𝑇
∫ (𝑓(𝑧, 𝑡) − 𝑓0(𝑧), 𝛾(𝑧, 𝑡) − 𝛾0(𝑧))𝑑𝑡

𝑇

0

, (7.21) 

As can be seen, computing these values requires an accuracy 0(휀2) in the numerical solver. 

Equation (7.20) defines the components (𝑢𝐸 , 𝑤𝐸) of the mean Eulerian velocity. However, the 

effective mass transport is not given by that quantity, but by the mean Lagrangian velocity defined as 

the time-averaged velocity along the trajectories of the fluid elements, namely, 

(𝑢𝐿(𝑟0, 𝑧0),𝑤
𝐿(𝑟0, 𝑧0)) =

1

𝑇
∫ (𝑟′(𝑡), 𝑧′(𝑡))𝑑𝑡

𝑇

0

, (7.22) 
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Here, (𝑟0, 𝑧0) is the point where the mean Lagrangian velocity is calculated, and the primes denote 

the time derivatives. The trajectory (𝑟(𝑡), 𝑧(𝑡))of the fluid element passing through (𝑟0, 𝑧0) is 

calculated by integrating the kinematic equations for the velocity field, 

(𝑢, 𝑤)  =  (𝑢(𝑟, 𝑧, 𝑡), 𝑤(𝑟, 𝑧, 𝑡)), as 

𝑟′(𝑡) = 𝑢(𝑟(𝑡), 𝑧(𝑡), 𝑡),    𝑟𝑧′(𝑡) = 𝑤(𝑟(𝑡), 𝑧(𝑡), 𝑡),   𝑟(0) = 𝑟0 𝑎𝑛𝑑  𝑧(0) = 𝑧0 
(7.23) 

Equation (7.22) shows that the exact value of the mean Lagrangian velocity is 

(𝑢𝐿(𝑟0, 𝑧0),𝑤
𝐿(𝑟0, 𝑧0)) =

(𝑟(𝑇) − 𝑟0, 𝑧(𝑇) − 𝑧0)

𝑇
 (7.24) 

However, and as explained below, this is not a good equation to obtain that quantity. Instead, we 

may perform a classical asymptotic analysis (as the intensity of the oscillatory flow goes to zero) 

considering Eq. (7.22) and the Taylor expansions of the right-hand sides of the kinematic Eqs. (7.23), 

namely, 

𝑟′(𝑡) = 𝑢(𝑟0, 𝑧0, 𝑡) + 𝑢𝑟(𝑟0, 𝑧0, 𝑡)[𝑟(𝑡) − 𝑟0] + 𝑢𝑧(𝑟0, 𝑧0, 𝑡)[𝑧(𝑡) − 𝑧0] + ⋯, 
(7.25) 

𝑧′(𝑡) = 𝑤(𝑟0, 𝑧0, 𝑡) + 𝑤𝑟(𝑟0, 𝑧0, 𝑡)[𝑟(𝑡) − 𝑟0] + 𝑤𝑧(𝑟0, 𝑧0, 𝑡)[𝑧(𝑡) − 𝑧0] + ⋯, 
(7.26) 

Substituting Eq. (7.15) into Eqs. (7.25) and (7.26), replacing the resulting equations into Eq. 

(7.23), and integrating the result gives 

𝑟(𝑡) − 𝑟0 = 휀𝑈(𝑟0, 𝑧0)
𝑒𝑖𝜔𝑡 − 1

𝑖𝜔
+ 𝑐. 𝑐. +𝑂(휀2) (7.27) 

𝑧(𝑡) − 𝑟0 = 휀𝑊(𝑟0, 𝑧0)
𝑒𝑖𝜔𝑡 − 1

𝑖𝜔
+ 𝑐. 𝑐. +𝑂(휀2) (7.28) 

where only the leading order terms have been retained. These equations show that |𝑟(𝑇 )  −
 𝑟(0)|  ∼  |𝑧(𝑇 )  −  𝑧(0)|  ∼  휀2. In other words, calculating the “exact” mean Lagrangian velocity 

via Eq. (7.24) is a difficult task because it requires computations that are exact to this order (errors 

small compared to ε2). Instead, we may complete the asymptotic calculation by substituting Eqs. 

(7.27), (7.28), and (7.15) into Eqs. (7.25) and (7.26), and the resulting equation into Eq. (7.22), which 

yields 

(𝑢𝐿 , 𝑤𝐿) = 휀2(𝑢𝑚, 𝑤𝑚) + 휀2 [
1

𝑖𝜔
(�̅�𝑟𝑈 + �̅�𝑧𝑊, �̅�𝑟𝑈 + �̅�𝑧𝑊) + 𝑐. 𝑐. ] + 𝑂(휀3) (7.29) 

Hereinafter, the overbar stands for the complex conjugate. In addition, we have taken into 

account that 

∫ 𝑒𝑚𝜔𝑡𝑑𝑡 = 0     𝑖𝑓  𝑚 = ±1, ±2,…
𝑇

0

 (7.30) 

Equation (7.29) is a classical result: the mean Lagrangian velocity equals the mean Eulerian 

velocity plus the Stokes drift [196], i.e., 

(𝑢𝐿 , 𝑤𝐿) = (𝑢𝐸 , 𝑤𝐸) + (𝑢𝑆𝐷 , 𝑤𝑆𝐷) 
(7.31) 

where the Stokes drift velocity components are given by 
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(𝑢𝑆𝐷 , 𝑤𝑆𝐷) ≡
휀2

𝑖𝜔
(�̅�𝑟𝑈 + �̅�𝑧𝑊, �̅�𝑟𝑈 + �̅�𝑧𝑊) + 𝑐. 𝑐. (7.32) 

In contrast to most works mentioned above, the formulas derived here does not rely on the nearly 

inviscid approximation, but only on the quasilinear approximation Eqs. (7.15)–(7.17), which only 

requires that the oscillatory field be small. In this approximation, the mean Lagrangian velocity field 

is given to the leading order by Eq. (7.29) with (𝑈,𝑊) and (𝑢𝑚, 𝑤𝑚) calculated in terms of the 

(numerically computed) unsteady velocity components (𝑢, 𝑤) from Eqs. (7.18) and (7.20), 

respectively. Alternatively, the mean Lagrangian velocity can be calculated using Eq. (7.24), which 

is much more computationally demanding. This calculation will be used for the validation of the 

asymptotic formulas. Similarly, the mean values of the free surface deflection and the surfactant 

concentration along the free surface are given by Eq. (7.21).  

Using the formulas derived above in the computational domain is somewhat tricky. Note that the 

calculation of the mean Langrangian velocity must be performed within the physical domain 

0 ≤  𝑟 ≤  𝑓0 + 𝑓𝐸, which corresponds to the time-averaged liquid bridge shape. In addition, such 

calculation must be done for fixed 𝑟 and 𝑧, which requires the time-dependent interpolation from the 

computational domain to the physical one. On the other hand, the computation of the fluid element 

trajectory used in Eq. (7.24) requires a double time-dependent interpolation: one to calculate the 

velocity field at (𝑟(𝑡), 𝑧(𝑡)) from the velocities at the nodes of the fixed computational mesh, and 

another to integrate the kinematic equations in the (𝑟, 𝑧) plane. These details are described in the 

Appendix. 

To illustrate the formulas derived above, we calculated the streaming flow for 𝐶 = 0.01, 𝑀𝑎 = 0, 

𝜔 = 2.1, and �̂� = 0.005. We considered a moderately small viscosity, and ignored the Marangoni 

stress for simplicity. In addition, we selected a representative value of the forcing frequency 𝜔 and 

amplitude �̂� . Figure 7.2 shows the time evolution of the axial component of both the actual time-

dependent velocity numerically calculated and the mean Lagrangian velocity. These quantities are 

evaluated at a representative point next to the mean free surface. As can be seen, the time-dependent 

velocity reaches a strictly periodic state after the transient stage 0 ≤  𝑡 ≤ 100, while the mean 

Lagrangian velocity becomes stationary for 𝑡 ≥ 50. Consistently with the quasilinear assumption 

implicit in Eq. (7.15), 𝑤 ∼  휀 ∼  0.05 is small, and 𝑤𝐿 ∼ 휀2 is much smaller than w in the periodic 

regime. Interestingly, the Lagrangian flow reaches its asymptotic value somewhat before the time-

dependent velocity becomes periodic, which implies that the mean flow is not a slave of the surface 

waves. This seemingly means that the streaming flow does affect the dynamics of the primary 

surface waves, as shown in Refs. [180]–[184] for small viscosity. 

The remaining calculations in this chapter will be conducted in the periodic regime arising after 

the initial transient stage, whose length varies from one case to another. The spatial structure of the 

streaming flow in the periodic regime is considered in Figure 7.3, where a comparison between the 

“exact” and asymptotic formulas [Eqs. (7.24) and (7.29), respectively] is made. The results 

calculated in these two ways are consistent with each other, which constitutes a stringent test for the 

numerical procedure. It must be noted that nothing similar to these computations has been performed 

so far, to our knowledge. As can be seen in Figure 7.3(a), the streaming flow is reflection-symmetric 

in about the mean plane 𝑧 = 1.25, which is consistent with the invariance of the governing equations 

under this symmetry. Also, the streamlines show six counter-rotating vortices where the forcing 

effect of the boundary layers near the disks and the free surface is evident. The free surface boundary 

layer produces four vortices, which is consistent with the fact that Eq. (7.29) is quadratic in 𝑈 and 𝑊. 

The first resonant mode of the liquid bridge was excited in this case owing to the selected value of 

the forcing frequency 𝜔. This mode exhibits two time-dependent vortices associated with the free 

surface oscillation. As can be seen, quadratic effects double the number of vortices appearing in the 

streaming flow. The thickness of the boundary layers scales as √𝐶/𝜔 ∼ 0.07 in the present case. 

This value is not small enough for the asymptotic formulas commonly used in the literature to apply. 

On the other hand, the blow ups in Figs. Figure 7.3(b)–Figure 7.3(d) illustrate how elongated the 
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fluid trajectories can be, and how small the drift is compared to the widths of those trajectories. 

These remarks are consistent with the above mentioned difficulties encountered in these 

computations. 

 

Figure 7.3 (a) Streamlines of the mean Lagrangian velocity field.The cyan lines (first, third, and 

fifth vortex starting from the left) and gray lines (second, fourth, and sixth vortex starting from the 

left) indicate clockwise and anticlockwise rotations, respectively. The arrows are the mean 

Lagrangian velocities calculated from Eq. (7.24). (b) Magnification of plot (a) near the point 

(𝑟 =  0.85, 𝑧 =  0.9).The black lines indicate the time-dependent trajectories of the fluid particles 

A and B calculated from the integration of Eqs. (7.23). (c and d) Magnification of plot (b) to show 

the trajectories of the fluid particles A and B. The subindexes 𝑖 and 𝑓 indicate the initial and final 

positions of the fluid particles in a cycle, respectively. The maximum value of the velocity field is 

𝑣𝑚𝑎𝑥 = 1.77 × 10
−4

. The velocity magnitude at the points P, A, and B are 0.92𝑣𝑚𝑎𝑥, 0.98𝑣𝑚𝑎𝑥, and 

0.43𝑣𝑚𝑎𝑥, respectively. The values of the governing parameters are the same as those in Figure 7.2, 

namely, Λ = 1.25, 𝑉 = 1, 𝐶 = 0.01,  𝛾0 = 0.5, 𝑀𝑎 = 0, 𝜔 = 2.1, and �̂� = 0.005. 

 

The mean free surface deflection and the mean surfactant concentration for the case analyzed in 

Figure 7.3 are given in Figure 7.4. Note that both are reflection symmetric about the mean plane  = Λ 

, which is consistent with the invariance of the problem under this symmetry. The left plot indicates 

that the free surface position is no longer uniform due to the oscillations, although the induced 

deformation is small. In fact, the mean free surface deflection plays only a secondary role in the 

context of this paper, and thus it will not be further considered for the sake of brevity. It is interesting 

to note that 𝑓𝐸  (𝑧) < 0 for all 𝑧, which could be seen as surprising if one takes the conservation of 

volume into account. However, the liquid bridge volume depends quadratically on 𝑓 [see Eq. (7.11)], 

which means that the time-averaged volume (which must be conserved) does not generally coincide 

with the volume of the time-averaged free surface location. This well-known artifact produced by 

nonlinear terms is, in fact, similar to what happens with the time-averaged velocity, which is 

generally nonzero and produces the streaming flow. Note that the volume of the time-averaged free 

surface location is smaller than its initial value in the present case. The mean surfactant concentration 

peaks at the liquid bridge center and at the supporting disks and exhibits two minima near 𝑧 =  Λ/2 

and 3Λ/2 (right plot). This behavior is consistent with Figure 7.3, which shows that convection 

caused by the streaming flow vortices empties the free surface in the regions 𝑧 ≅ Λ/2 and 3Λ/2 and 

fills both the central part of the liquid bridge and the sorroundings of the supporting disks. 
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Figure 7.4 Mean free surface deflection 𝑓𝐸(𝑧) (left) and mean surfactant concentration  𝛾𝐸(𝑧) 

(right). The values of the governing parameters are the same as those in Fig. 2, namely, Λ = 1.25, 𝑉 = 

1, 𝐶 = 0.01,  𝛾0 = 0.5, 𝑀𝑎 = 0, 𝜔 = 2.1, and �̂� = 0.005. 

 

The simulation illustrated in Figs. Figure 7.3 and Figure 7.4 was conducted for Ma = 0. 

Therefore, the surfactant does not alter the surface tension and behaves as a passive scalar in that 

case. If the scalar were a surface active substance (𝑀𝑎 >  0), then this concentration distribution 

would cause Marangoni convection in the direction opposite to that of the streaming flow, which 

would alter significantly both the mean surfactant concentration distribution and the mean flow 

pattern. This effect will be analyzed in the next section. 

7.3. Results on the interaction of the streaming flow and Marangoni convection 

All the results shown in this section were obtained for the values Eq. (7.14) of the governing 

parameters. The strength of the oscillatory and mean flows are measured using RMS values instead 

of values at particular points, which would be less robust and less appropriate to obtain scaling laws 

when different configurations are considered. Specifically, the intensity of the oscillatory flow is 

defined as 

𝐼𝑜𝑠𝑐
𝑏𝑢𝑙𝑘 = √

1

Λ𝑉
∫ ∫ [|𝑈(𝑟, 𝑧)|2 + |𝑊(𝑟, 𝑧)|2]𝑟𝑑𝑟𝑑𝑧

𝑓𝐸

0

2Λ

0

 
(7.33) 

where 𝑈 and 𝑊 are given by Eq. (7.18). The counterpart of Eq. (7.33) for the streaming flow in the 

bulk is defined as 

𝐼𝑚𝑓
𝑏𝑢𝑙𝑘 = √

1

Λ𝑉
∫ ∫ [|𝑢𝐿(𝑟, 𝑧)|2 + |𝑤𝐿(𝑟, 𝑧)|2]𝑟𝑑𝑟𝑑𝑧

𝑓𝐸

0

2Λ

0

 
(7.34) 

In addition, the intensity of the mean flow in the free surface is defined as 

𝐼𝑚𝑓
𝑖𝑛𝑡𝑒𝑟𝑓

= √
1

𝐿𝑠
∫ [|𝑢𝐿|2 + |𝑤𝐿|2]𝑟=𝑓𝐸𝑑𝑧

2Λ

0

 
(7.35) 

where 
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𝐿𝑠 = ∫ √1 + |𝑓𝑧
𝐸|2𝑑𝑧

2Λ

0

 (7.36) 

is the length of the time-averaged free surface. Finally, the strength of the mean flow along the axial 

coordinate is given by 

𝐼𝑚𝑓
𝑎𝑥𝑖𝑎𝑙(𝑧) = √2 ∫ [|𝑢𝐿(𝑟, 𝑧)|2 + |𝑤𝐿(𝑟, 𝑧)|2]𝑟𝑑𝑟

𝑓𝐸

0

 
(7.37) 

The components uL and wL of the mean Lagragian velocities in Eqs. (7.34), (7.35), and (7.37) are 

given by Eq. (7.29). 

In the following two subsections, we consider the influence on the streaming flow of the two 

main parameters: the Marangoni number and the strength of the oscillatory flow. As will be seen, the 

Marangoni number affects the shape of the flow patterns, while the strength of the oscillatory flow 

influences quantitatively the intensity of the mean flow. We aim at uncovering the main physical 

effects of Marangoni convection on the streaming flow, rather than a full account of the results 

obtained as the values of the governing parameters are varied. 

7.3.1. Influence of the Marangoni number on the flow patterns 

In this section, we consider the dependence of the streaming flow on the Marangoni number for 

the parameter values listed in Eq. (7.14). We are mainly interested in illustrating how Marangoni 

stresses completely change the streaming flow pattern, without intending an exhaustive description 

of those patterns. For this reason, we will restrict ourselves to the Ohnesorge number 𝐶 = 0.01 and 

the forcing frequency 𝜔 = 2.1. Smaller values of 𝐶 would give flow patterns that are more 

concentrated near the disks and the free surface. The forcing frequency 𝜔 = 2.1 is close (but not 

equal) to the first resonance frequency of the liquid bridge for 𝑀𝑎 = 0, which means that the 

oscillatory flow intensity is very sensitive to the value of the dynamical Bond number �̂� . After some 

calibration, �̂� has been chosen such that the maximum over a cycle of 휀𝑊𝑒𝑖𝜔𝑡 + 𝑐. 𝑐. at the center of 

the liquid bridge is 0.05. This choice makes the intensity of the streaming flow for 𝑀𝑎 = 0 

comparable to the strength of the Marangoni convection in the considered range of Ma. It must be 

noted that the values of �̂� resulting from this criterion are physically realistic since they correspond 

to accelerations that can be easily produced in experiments [197]. 

Figure 7.5 shows the counterpart of Figure 7.3 for the indicated values of the Marangoni number. 

As can be seen, all the flow patterns are reflection-symmetric about the mid plane of the liquid 

bridge. However, and surprisingly at first sight, the streaming flow patterns do not show a monotone 

behavior as 𝑀𝑎 increases. Instead, the six counter-rotating eddies that are present for 𝑀𝑎 = 0 first 

merge for 𝑀𝑎 = 0.001, 0.005, and 0.05, and then give rise to just two counter-rotating eddies for 𝑀𝑎 

= 0.1 and 0.2. As Ma increases further, new eddies appear leading to a flow pattern for 𝑀𝑎 = 1 (very 

strong Marangoni stress) that is qualitatively similar to that obtained for amuch smaller value 𝑀𝑎 = 

0.001. This unexpected behavior is a consequence of the trade off between two mechanisms: 

nonuniformities in the surfactant concentration at the free surface, and the intensity of the oscillatory 

flow. 
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Figure 7.5 Counterpart of Fig. 3 for different Marangoni numbers as indicated by the labels in the 

figure. The values of the governing parameters are Λ = 1.25, 𝑉 = 1, 𝐶 = 0.01,  𝛾0= 0.5, and 𝜔 = 2.1 

 

 

Figure 7.6 Mean surfactant concentration  𝛾𝐸(𝑧). The colors (and types of lines) correspond to 

the different Marangoni numbers as indicated in the left-hand graph. The values of the rest of 

governing parameters are Λ = 1.25, 𝑉 = 1, 𝐶 = 0.01,  𝛾0 = 0.5, and 𝜔 = 2.1 

 

The surfactant concentration along the free surface is shown in Figure 7.6 for the same values of 



Mean flow produced by small-amplitude vibrations of a liquid bridge with its free surface 

covered with an insobluble surfactant 

 

109 

the Marangoni number considered in Figure 7.5. As can be seen, the surfactant concentration 

becomes almost spatially uniform for very small Marangoni stress. This is due to the strong 

stabilizing effect of this stress, and is consistent with our guess at the end of Sec. 7.2.2. This behavior 

explains the streaming flow patterns shown in Figure 7.5 for 𝑀𝑎 = 0.001, 0.005, and 0.05. However, 

as 𝑀𝑎 is increased further, the strength of the oscillatory flow increases, peaks at 𝑀𝑎 ≅ 0.2, and 

decreases again [Figure 7.7(a)]. This is due to the fact that the forcing frequency matches the 

resonance frequency of the contaminated liquid bridge for 𝑀𝑎 ≅ 0.2. Since the intensity of the 

streaming flow depends on that of the oscillatory flow, they follow similar trends, as the comparison 

between Fig. Figure 7.7(a) and Figs. Figure 7.7(b) and Figure 7.7(c) shows. 

 

 

Figure 7.7 Intensities 𝐼𝑜𝑠𝑐
𝑏𝑢𝑙𝑘 (a), 𝐼𝑚𝑓

𝑏𝑢𝑙𝑘 (b), and 𝐼𝑚𝑓
𝑖𝑛𝑡𝑒𝑟𝑓

 (c) of the oscillatory flow, the mean flow in 

the bulk and the mean flow in the interface, respectively, for the Marangoni numbers considered in 

Figure 7.5. The values of the rest of governing parameters are Λ = 1.25, 𝑉 = 1, 𝐶 = 0.01,  𝛾0 = 0.5, 

and 𝜔 = 2.1. 

Summarizing the above, the Marangoni stress has a great quantitative and qualitative influence 

on the streaming flow patterns. As 𝑀𝑎 increases, these patterns do not behave monotonously due to 

the fairly complex behavior of both the surfactant concentration at the free surface and the strength of 

the nearly resonant oscillation. 

7.3.2. Influence of the oscillatory flow intensity 

In this section, we analyze the influence of the oscillatory flow intensity on the streaming flow 

intensity for the parameter values listed in Eq. (7.14). This analysis is more involved than that 

presented in the previous section due to the larger number of parameters considered, and the fact that 

hysteresis could be present because viscous effects are small and the forcing frequency is close to the 
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resonant one. The results are obtained by varying the dynamical Bond number. However, and to 

uncover the underlying scaling laws for the intensity of streaming flow in the bulk and the interface, 

these quantities are plotted in terms of the oscillatory flow intensity. 

 

Figure 7.8 𝐼𝑚𝑓
𝑏𝑢𝑙𝑘 (left) and 𝐼𝑚𝑓

𝑖𝑛𝑡𝑒𝑟𝑓
 (right) vs. 𝐼𝑜𝑠𝑐

𝑏𝑢𝑙𝑘for the indicated Marangoni numbers. The 

values of the rest of governing parameters are Λ = 1.25, 𝑉 = 1, 𝐶 = 0.01,  𝛾0 = 0.5, and 𝜔 = 2.1. 

Figure 7.8 shows the influence of 𝐼𝑜𝑠𝑐
𝑏𝑢𝑙𝑘 on 𝐼𝑚𝑓

𝑏𝑢𝑙𝑘 and 𝐼𝑚𝑓
𝑖𝑛𝑡𝑒𝑟𝑓

for the indicated Marangoni 

numbers, 𝐶 = 0.01 and 𝜔 = 2.1. As can be seen, 𝐼𝑚𝑓
𝑏𝑢𝑙𝑘 scales as (𝐼𝑜𝑠𝑐

𝑏𝑢𝑙𝑘)2 for all values of 𝑀𝑎. This 

quadratic scaling law can be expected in view of Eq. (7.29). The curves 𝐼𝑚𝑓
𝑏𝑢𝑙𝑘 versus 𝐼𝑜𝑠𝑐

𝑏𝑢𝑙𝑘 are 

parallel to each other. The maximum and minimum values of the scaling factor differ by one order of 

magnitude. This factor does not behave monotonously as 𝑀𝑎 increases, but first decreases and then 

increases. This is consistent with the non-monotone behavior of the streaming flow patterns as 𝑀𝑎 

increases (Figure 7.5). The curves 𝐼𝑚𝑓
𝑖𝑛𝑡𝑒𝑟𝑓

versus 𝐼𝑜𝑠𝑐
𝑏𝑢𝑙𝑘 clearly show two power-law regimes: one for 

small 𝐼𝑜𝑠𝑐
𝑏𝑢𝑙𝑘 and another for large 𝐼𝑜𝑠𝑐

𝑏𝑢𝑙𝑘, with a fairly well defined threshold at 𝐼𝑜𝑠𝑐
𝑏𝑢𝑙𝑘 ≅ 0.02. 

Morover, the curves for 𝑀𝑎 > 0 are very close to each other, and clearly deviate from that for 𝑀𝑎 = 

0. 

 

Figure 7.9 Counterpart of Figure 7.8 for the indicated oscillation frequencies. The values of the 

rest of governing parameters are Λ = 1.25, 𝑉 = 1, 𝐶 = 0.01,  𝛾0 = 0.5, and 𝑀𝑎 = 0.2. 
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Figure 7.10 Counterpart of Figure 7.8 for the indicated values of 𝐶. The values of the rest of 

governing parameters are Λ = 1.25, 𝑉 = 1, 𝛾0 = 0.5, 𝑀𝑎 = 0.2, and 𝜔 = 2.1. 

The same behavior is found for other forcing frequencies, as shown in Figure 7.9 for 𝑀𝑎 = 0.2. 

As in the previous cases, this figure shows a unique scaling law for 𝐼𝑚𝑓
𝑏𝑢𝑙𝑘 and two scaling laws for 

𝐼𝑚𝑓
𝑏𝑢𝑙𝑘 with a well defined threshold in 𝐼𝑜𝑠𝑐

𝑏𝑢𝑙𝑘. This threshold is very close to that in Figure 7.8. In 

addition, the scaling laws almost coincide for the three values of 𝜔, which suggests that these laws 

show a fairly weak dependence on the forcing frequency. 

The scaling behavior found in Figs. Figure 7.8 and Figure 7.9 is also present for smaller values of 

𝐶, as shown in Figure 7.10. As can be seen, the scaling laws for 𝐼𝑚𝑓
𝑏𝑢𝑙𝑘 and 𝐼𝑚𝑓

𝑖𝑛𝑡𝑒𝑟𝑓
 coincide with their 

counterparts in the previous cases. Moreover, the curve 𝐼𝑚𝑓
𝑏𝑢𝑙𝑘 versus 𝐼𝑜𝑠𝑐

𝑏𝑢𝑙𝑘 almost coincide for the 

two values of 𝐶, in spite of the fact that these are disparate. On the other hand, the curves 𝐼𝑚𝑓
𝑖𝑛𝑡𝑒𝑟𝑓

 

versus 𝐼𝑜𝑠𝑐
𝑏𝑢𝑙𝑘 slightly deviate from each other. The transition between the two scaling behaviors is less 

sharp for the smallest value of 𝐶. 

Summarizing the above, the intensity of the streaming flow in the interface shows two well 

defined power-law behaviors, one for small oscillatory flow intensity and another for larger values of 

this quantity. These behaviors are fairly universal, since they show the same exponents and the same 

transition threshold for the considered values of the Marangoni number, forcing frequency, and 

Ohnesorge number. Such regimes are reminiscent of those found in Ref. [189] (see Fig. 4 in that 

paper) for the streaming flow produced by Faraday waves in a rectangular container with tap water. 

However, we cannot ensure that there is a plain analogy between our problem and those experiments 

for two reasons. First, the data in Ref. [[189], Fig. 4] were not plotted on log-log scale, meaning that 

the power law for small oscillatory flow intensity could not be uncovered in that paper. In addition, 

tap water was most seemingly contaminated with a soluble surfactant in those experiments. 

Finally, we aim at elucidating whether hystheresis is present as the dynamic Bond number is 

varied. As already mentioned, this could occur since viscous effects are weak and the forcing 

frequency is close to the first resonant frequency. Figure 7.11 shows the intensities of the oscillatory 

and mean flows in the bulk obtained when the periodic regime is reached starting from equilibrium, 

as well as starting from the previous point while increasing or decreasing progressively the 

dynamical Bond number �̂� . As can be seen, the liquid bridge oscillations do not not exhibit 

hystheresis, i.e., they do not depend on the liquid bridge history. 
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Figure 7.11 𝐼𝑜𝑠𝑐
𝑏𝑢𝑙𝑘 and 𝐼𝑚𝑓

𝑏𝑢𝑙𝑘 as a function of the dynamical Bond number �̂� starting from 

equilibrium, as well as starting from the previous point while increasing (up) and decreasing (down) 

progressively the dynamical Bond number. The symbols overlap. The values of the governing 

parameters are Λ = 1.25, 𝑉 = 1, 𝐶 = 0.01,  𝛾0 = 0.5, 𝑀𝑎 = 0.2, and 𝜔 = 2.1. 

7.4. Conclusions 

We have developed a consistent theory of the interaction between the streaming flow produced 

by axial vibrations in a liquid bridge and Marangoni convection due to the presence of an insoluble 

surfactant monolayer. In contrast to previous papers in the field, this theory does not rely on any 

nearly inviscid formulation, but only on the assumption that the forcing amplitude is sufficiently low 

for the steepness of the free surface deflection to be small. The streaming flow intensities have been 

calculated from fully nonlinear direct numerical simulations. Two sets of formulas have been derived 

and used for cross-checking: one “exact” and based on the average along the trajectories of the fluid 

elements and another asymptotic and based on the addition of the Eulerian mean velocity and Stokes 

drift. After validation, the (computationally cheaper) asymptotic formulas have been used in the rest 

of computations. The main results of this investigation were obtained for a realistic set of parameter 

values. In particular, the forcing frequency was very close to the first resonant frequency of the liquid 

bridge.  

The following general conclusions can be established: 

(i) The streaming flow pattern is highly affected by Marangoni stress even for very small values 

of Ma. Moreover, the flow patterns show a nonmonotonous behavior as 𝑀𝑎 is increased, which is 

seemingly due to two main effects: the tendency of Marangoni stresses to oppose any surfactant 

inhomogeneities in the free surface and the nonmonotonous oscillatory response of the liquid bridge 

due to resonance peaks whose frequencies depend on 𝑀𝑎. 

(ii) The strength of the streaming flow shows a “universal” behavior with a unique power law for 

the intensity in the bulk and a transition between two power laws for the intensity in the free surface. 

This could be seen as somewhat similar to some recent findings in the literature [189]. 

The above conclusions are expected to apply to other vibrating systems despite the peculiarities 

of the primary oscillating flow producing the mean flow. In fact, we have selected the liquid bridge 

geometry only because it shows fairly simple oscillatory flow patterns when the first resonant mode 

is excited. This allowed us to focus on the main involved physical mechanisms. 

The scaling laws obtained in the present analysis require that the forcing amplitude be small. For 

larger amplitudes, the dynamics are fully nonlinear and much more complex. In this case, the 
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oscillatory and mean flow components of the state variables are not expected to be related by simple 

laws. On the other hand, the somewhat small viscous effects considered in this paper might also play 

a role. Although the quadratic dependence of the mean flow on the vibrating amplitude also holds for 

more viscous fluids, the interaction with Marangoni convection may change that dependence for not 

too small vibrating amplitudes. The analysis of this possibility is beyond the scope of this study, 

where only realistic values of the parameters have been considered. 

Most of surface-active substances in nature are water-soluble. Surfactant solubility makes our 

analysis less general and does affect the results of the study quantitatively (in particular, the scaling 

laws). However, there is a large set of surfactants characterized by adsorption and desorption time 

scales much larger than the liquid bridge capillary time. The results presented here can be extended 

to such substances. In any case, the fact that Marangoni elasticity opposes surfactant inhomogeneities 

produced by the streaming flow remains valid for soluble surfactants as well. 

7.5. Appendix: Computation of the lagrangian mean velocities in the numerical 
domain 

As explained in Sec. 7.2.1, the computational spatial coordinates are 𝜂 ≡  𝑟/𝑓(𝑧, 𝑡) and 𝑧. The 

counterparts of Eqs. (7.15), (7.18), and (7.20) for the velocity components are 

(�̃�, �̃�) = 휀[(�̃�(𝜂, 𝑧), �̃�(𝜂, 𝑧))𝑒𝑖𝜔𝑡 + 𝑐. 𝑐] + 휀2[(�̃�2(𝜂, 𝑧), �̃�2(𝜂, 𝑧))𝑒2𝑖𝜔𝑡 + 𝑐. 𝑐 +

(�̃�𝑚(𝜂, 𝑧), �̃�𝑚(𝜂, 𝑧))] + (𝑂휀3), 
(7.38) 

휀(�̃�(𝜂, 𝑧), �̃�(𝜂, 𝑧)) =
1

𝑇
∫ (�̃�(𝜂, 𝑧, 𝑡), �̃�(𝜂, 𝑧, 𝑡))𝑒−𝑖𝜔𝑡𝑑𝑡

𝑇

0

 (7.39) 

휀2(�̃�2(𝜂, 𝑧), �̃�2(𝜂, 𝑧)) =
1

𝑇
∫ (�̃�(𝜂, 𝑧, 𝑡), �̃�(𝜂, 𝑧, 𝑡))𝑑𝑡

𝑇

0

 (7.40) 

where the tilde indicates that the quantity is evaluated in the fixed numerical domain. In addition, Eq. 

(7.16) implies that 

𝜂 =
𝑟

𝑓
=

𝑟

𝑓0
− 휀 [

𝑟𝐹

𝑓0
2 𝑒𝑖𝜔𝑡 + 𝑐. 𝑐. ] + (𝑂휀2) (7.41) 

The Eulearian mean velocity at a fixed point (𝑟, 𝑧) can be calculated from the velocity field in the 

numerical domain as 

(𝑢𝐸(𝑟, 𝑧), 𝑤𝐸(𝑟, 𝑧)) =
1

𝑇
∫ (�̃�(𝑟/𝑓(𝑡), 𝑧, 𝑡), �̃�(𝑟/𝑓(𝑡), 𝑧, 𝑡))𝑑𝑡

𝑇

0

 (7.42) 

This calculation involves the evaluation of the velocity field at a moving point (r/f (t),z) of the 

numerical domain in the course of the oscillation. To avoid this evaluation, the above integral is 

expanded in the following way 
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1

𝑇
∫ (�̃�(𝑟/𝑓(𝑡), 𝑧, 𝑡), �̃�(𝑟/𝑓(𝑡), 𝑧, 𝑡))𝑑𝑡

𝑇

0

=
1

𝑇
∫ (�̃� (

𝑟

𝑓0
, 𝑧, 𝑡) , �̃� (

𝑟

𝑓0
, 𝑧, 𝑡)) 𝑑𝑡

𝑇

0

− 휀2 [
𝑟�̅�(𝑧)

𝑓0
2 (𝑈𝜂 (

𝑟

𝑓0
, 𝑧) ,𝑊𝜂 (

𝑟

𝑓0
, 𝑧)) + 𝑐. 𝑐] + (𝑂휀3) 

(7.43) 

Therefore, the Eulearian mean velocity at a fixed point (𝑟, 𝑧) can be obtained as 

 

(𝑢𝐸 , 𝑤𝐸) = 휀2 [(�̃�𝑚(𝜂0, 𝑧), �̃�
𝑚(𝜂0, 𝑧)) −

𝜂0�̅�(𝑧)

𝑓0(𝑧)
(�̃�𝜂(𝜂0, 𝑧), �̃�𝜂(𝜂0, 𝑧)) + 𝑐. 𝑐]

+ (𝑂휀3) 

(7.44) 

where 𝜂0 ≡ 𝑟/𝑓0(𝑧) is a fixed coordinate in the numerical domain. To leading order, �̃�(𝑟/𝑓, 𝑧)  =
 �̃�(𝑟/𝑓0, 𝑧) and �̃�(𝑟/𝑓, 𝑧) = �̃�(𝑟/𝑓0, 𝑧). Therefore, the Lagrangian mean velocity at a fixed point 

(𝑟, 𝑧) can be calculated as 

(𝑢𝐿 , 𝑤𝐿) = 휀2(�̃�𝑚, �̃�𝑚)

+ 휀2 [−
𝜂0�̅�

𝑓0
(�̃�𝜂 , �̃�𝜂) +

1

𝑖𝜔
(�̃�𝜂�̃� + �̅̃�𝑧�̃�, �̅̃�𝜂�̃� + �̅̃�𝑧�̃�) + 𝑐. 𝑐. ]

+ 𝑂(휀3) 

(7.45) 

where all the functions are evaluated at (𝜂0, 𝑧). Finally, the kinematic Eqs. (7.23) are rewritten as 

𝑑𝜂

𝑑𝑡
=

�̃�(𝜂, 𝑧, 𝑡)

𝑓(𝑧, 𝑡)
−

𝜂𝑓𝑧(𝑧, 𝑡)�̃�(𝜂, 𝑧, 𝑡)

𝑓(𝑧, 𝑡)
−

𝜂𝑓𝑡(𝑧, 𝑡)

𝑓(𝑧, 𝑡)
,     

𝑑𝑧

𝑑𝑡
= �̃�(𝜂, 𝑧, 𝑡) (7.46) 
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8. INFLUENCE OF THE DYNAMICAL FREE 

SURFACE DEFORMATION ON THE STABILITY OF 

THERMAL CONVECTION IN HIGH-PRANDTL-
NUMBER LIQUID BRIDGES 

 

 

 

 

e analyze theoretically the stability of the thermal convection in high-Prandtl-number 

liquid bridges. The steady axisymmetric base flow, as well as its corresponding linear 

non-axisymmetric eigenmodes, are calculated taking into account the free surface 

deformation caused by both that flow and the perturbations. The stability limits and the oscillation 

frequencies obtained from the linear stability analysis satisfactorily agree with previous experimental 

data. The dynamical free surface deformation produced by the base flow approximately coincides 

with that measured in the experiments. When the deformations are normalized with their 

corresponding values of the Capillary number, they collapse onto a single curve. The dependence of 

the free surface oscillation amplitude with respect to the axial coordinate approximately also 

coincides with that measured in previous experiments under similar conditions. Our results show that 

the dynamical free surface deformation has very little effect on the eigenvalues, and, therefore, on the 

stability limits.  

8.1. Introduction 

Convective flows in systems with free surfaces have attracted attention both at the fundamental 

and practical levels over the last decades. A good example of this is the thermocapillary convection 

in liquid bridges under microgravity conditions, where flow sets in due to variations of the surface 

tension along the free surface caused by the temperature difference ∆𝑇 applied between the two 

supporting rods. For small ∆𝑇, an axisymmetric steady flow evolves driven by thermocapillarity. For 

∆𝑇 >  ∆𝑇𝑐 and high-Prandtl-number liquids, this flow bifurcates into a three-dimensional oscillatory 

one (Velten et al., [198]). 

There have been numerous both theoretical and experimental studies of thermocapillary 

convection in cylindrical liquid bridges. Attention has mainly been paid to the examination of the 

onset of instability and, more recently, the formation of Particle Accumulation Structures (PAS) 

(Schwabe et al., [199]).  Direct numerical simulations of the three-dimensional, time-dependent 

problem (Shevtsova et al., [200]) have enabled the description of the supercritical regimes arising as 

∆T increases above its critical value. These studies have been extended to normal gravity conditions 

and non-cylindrical volumes (𝒱 ≠ 1,𝒱 being the liquid bridge volume divided by that of the 

cylinder enclosed by the supporting rods). In almost all the cases, the numerical simulations have 

been conducted with a statically deformed free surface calculated for ∆𝑇 = 0 from the equilibrium 

Young-Laplace equation. For high-Prandtl-number liquids, one typically obtains a stability diagram 

∆𝑇𝑐(𝒱 ) which consists of two branches that approach each other at very high values of the critical 

temperature difference ∆𝑇𝑐 when the liquid bridge volume 𝒱 tends to a value around unity. 

W 
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The approximation of static free surface deformation is expected to be valid only for small 

enough values of the Capillary number, defined as the ratio of the dynamical to the capillary 

pressure. The free surface deformation induced by the flow, the so-called dynamical free 

deformation, has received some attention over the last years. In fact, the roled played by this factor in 

the instability mechanisms is still a subject of discussion for high Prandtl numbers. It has been 

speculated that both the formation caused by the underlying base flow and the free surface oscillation 

are important in the development of the oscillatory instability for high-Prandtl numbers fluids. In this 

case, the main driving force is confined within a small region near the hot corner, where the free 

surface temperature gradient considerably increases. It is believed that this force may be significantly 

disturbed by small-amplitude deformations of the free surface (Komatoni et al.,[201]). Komatoni et 

al. [202] have shown experimentally that the heat loss across the free surface considerably affects the 

critical temperature difference of the thermocapillary convection in high-Prandtl-number liquids, and 

have suggested that the dynamic free surface deformation near the hot wall may be responsible for 

that effect too. 

Kuhlmann and Nienhuser [203] have studied theoretically the dynamic free surface deformation 

induced by thermocapillarity in low-Prandtl-number liquid bridges in the limit of small Capillary 

numbers. They concluded that the leading-order dynamic deformation does not feed back to the 

leading-order thermocapillary flow. The dynamic free surface deformation induced by a 

thermocapillary flow was qualitatively measured by Li et al. [204] using interferometry. Montanero 

et al. [205] and Ferrera et at. [206] were probably the first to measure quantitatively the free surface 

perturbation associated with the axisymmetric base flow and oscillations, respectively. Yano et al. 

[207] have recently determined the amplitude of the free surface oscillatons arising in microgravity 

experiments on board of the International Space Station (ISS). These oscillatons resulted from both 

the oscillatory Marangoni convection and g-jitter, whose effects on the liquid bridge behavior  can be 

noticeable due to large sensitivity of the centimeter liquid bridges formed in space (Ferrera et al. 

[208]). Direct numerical simulations have considered the steady dynamic free surface deformation 

both in the absence (Zhou and Huai, [209]; Yang et al., [210]) and in the presence ((Herrada et al., 

[211]; Matsunaga et al., [212]; Yang et al., [213], [214]) of an external air flow. This latter factor has 

been proposed as a way to control the threshold of the oscillatory flow (Shevtsova et al., [215]). 

Marangoni shear stresses and/or those exerted by the downwards outer stream drive the liquid 

towards the bottom (cold) solid end, increasing the hydrostatic pressure there. As a result, the liquid 

bridge bulges in that region, and shrinks in the upper part. 

Linear stability analysis has demonstrated to be a useful tool to describe the instability of the 

thermal convection in liquid bridges (Neitzel et al., [216]; Kuhlmann and Rath, [217]; Wanschura et 

al., [218], [219]; Ermakov and Ermakova, [220]; Xun et al., [221]; Nishino et al., [222]). Wanschura 

et al. [219] showed that the character of this instability in weightless cylindrical liquid bridges 

depends on the Prandtl number: the bifurcation is stationary for low values of this parameter, while a 

pair of counter-propagating hydrothermal waves arises in the opposite case. Kuhlmann and Rath 

[217] examined the linear stability of the thermal convection in cylindrical liquid bridges with a rigid 

free surface. They analyzed the influence on the stability boundaries of the heat transfer across the 

free surface, the liquid bridge aspect ratio, and the buoyancy force. This last factor stabilizes the 

axisymmetric flow in high-Prandtl-number liquids for both heating and cooling from below 

(Wanschura et al., [218]). It is well known that the equilibrium free surface deformation has a 

pronounced effect on the stability of the thermocapillary convection in liquid bridges (Sumner et al., 

[223]). Ermakov and Ermakova [220] reproduced the two branches of the stability diagram ∆𝑇𝑐(𝒱 )  

from the linear stability analysis of the thermocapillary convection in liquid bridges with highly 

deformed free surfaces. These theoretical results are also in good agreement with experimental data 

measured under microgravity conditions (Nishino et al., [222]). 

In all the theoretical analyses mentioned above, the free surface deformation was that given by 

the liquid bridge equilibrium shape. In this work, we analyze, for the first time, the linear stability 

analysis of the thermal convection in liquid bridges with a high Prandtl number including the effects 

of the dynamical free surface deformation. We will quantify this deformation and will examine its 
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effect on the flow stability. The spatial structure of the dominant eigenmode will be studied, 

including the shape of the supercritical free surface oscillations. 

8.2. Formulation of the problem 

The liquid bridge configuration considered in this work (Figure 8.1) is a drop of liquid of volume 

�̃� delimited by two coaxial supporting rods of diameter 𝐷 and placed a distance 𝐿 apart. The triple 

contact lines anchor perfectly to the edges of those rods. The force of gravity acts along the liquid 

bridge axis, 𝑔 being its magnitude per unit mass. The dynamical effects of the outer medium are 

neglected. The lower and upper solid supports are kept at the temperatures 𝑇0 and 𝑇0 + ∆𝑇 (∆𝑇 >
 0), respectively. In most experimental runs, the liquid bridge upper rod is progressively heated up 

while keeping the lower rod temperature constant, so that a certain range of ∆𝑇 values is covered. 

For this reason, we choose 𝑇0 as the reference temperature of the problem. The heat flux 𝑞′ across the 

free surface is given by the expression 𝑞′ =  ℎ(𝑇𝑠 − 𝑇𝑎𝑚𝑏), where ℎ is the (constant) heat flux 

coefficient, 𝑇𝑠 is the free surface element temperature, and 𝑇𝑎𝑚𝑏 is the ambient temperature. The 

center of the lower rod is chosen as the origin of the cylindrical coordinate system ( �̃�;  𝜃;  �̃�). The 

function �̃� (𝜃; �̃�; �̃�) measures the distance between a free surface element and liquid bridge axis (�̃� 

axis) at the instant  �̃�. 

The liquid thermal conductivity 𝜅 and diffusivity are assumed to be constant. The dependence of 

the liquid density 𝜌 and surface tension 𝜎 upon the liquid temperature 𝑇 are given by the linear 

functions 

𝜌 = 𝜌0[1 − 𝛽(𝑇 − 𝑇0)],             𝜎 =  𝜎0 − 𝜎𝑇(𝑇 − 𝑇0) 
(8.1) 

 

Figure 8.1 Liquid bridge configuration. The dynamical free surface deformation has been 

exaggerated. 

 

where 𝜌0 and 𝜎0 are the values of these properties at the reference temperature 𝑇0, while and 𝛽 and 

𝜎𝑇 are the thermal expansion and surface tension coefficients, respectively. The temperature 

dependence of the kinematic viscosity 𝜈 is given by the nonlinear function Nishino et al. [222] 

𝜈 = 𝜈0𝑓
(𝜈),             𝑓(𝜈) =  𝑒𝑥𝑝 (−𝛼𝜈

𝑇 − 𝑇0

𝑇
) (8.2) 
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whose linearization around 𝑇 = 𝑇0 gives  

𝜈 = 𝜈0 −
𝜈0𝛼𝜈

𝑇0

(𝑇 − 𝑇0) (8.3) 

Following Ref. Ermakov and Ermakova [220], we choose the characteristic length, time, pressure 

and temperature as 𝐿, 𝐿2/𝜈0,  𝜌0𝜈0
2/𝐿2 and ∆𝑇, respectively. According to this choice, the problem is 

formulated in terms of the dimensionless volume 𝒱 = 4�̃�/(𝜋𝐷2𝐿), aspect ratio 𝐴𝑅 = 𝐿/𝐷, Prandtl 

number 𝑃𝑟 = 𝜈0/𝛼, Froude number 𝐹𝑟 = 𝑔𝐿3/𝜈0
2, Biot number 𝐵𝑖 = ℎ𝐿/𝜅, Weber number 

𝑊𝑒 = 𝜌0𝜈0
2/(𝜎0𝐿), temperature difference Θ𝑎𝑚𝑏 = (𝑇𝑎𝑚𝑏 − 𝑇0)/∆𝑇, Grashof number 𝐺𝑟 =

𝑔𝛽∆𝑇𝐿3/𝜈0
2, and Reynolds number 𝑅𝑒 = 𝜎𝑇∆𝑇𝐿/(𝜌0𝜈0

2). The viscosity function can be re-written 

as 

𝑓(𝜈) = 𝑒𝑥𝑝 (−𝛼𝜈

Θ

Θ + 𝑇0
∗) (8.4) 

Where Θ = (𝑇 − 𝑇0)/∆𝑇 is the temperature difference field, and 𝑇0
∗ = 𝑇0/∆𝑇. The linearization 

(8.3) of the function involves the single dimensionless parameter 𝑅𝜈 ≡
𝛼𝜈

𝑇0
∗ =

𝛼𝜈∆𝑇

𝑇0
. The resulting set 

of governing parameters is {𝒱, 𝐴𝑅, 𝑃𝑟, 𝐹𝑟, 𝐵𝑖,𝑊𝑒, 𝛼𝜈 , Θ𝑎𝑚𝑏 , 𝐺𝑟, 𝑅𝑒, 𝑇0
∗}. The four last parameters 

involve the driving temperature difference ∆𝑇. 

8.3. Governing equations and numerical method 

8.3.1. Governing equations 

The liquid bridge motion is described by the Boussinesq approximation: 

(𝑟𝑈)𝑟

𝑟
+

𝑉𝜃

𝑟
+ 𝑊𝑧 = 0 (8.5) 

𝑈𝑡 + 𝑈𝑈𝑟 + 𝑉
𝑈𝜃

𝑟
+ 𝑊𝑈𝑧 −

𝑉2

𝑟

= −𝑝𝑟 + 𝑓(𝜈) [
(𝑟𝑈𝑟)𝑟

𝑟
+

𝑈𝜃𝜃

𝑟2
+ 𝑈𝑧𝑧 −

𝑈

𝑟2
−

2𝑉𝜃

𝑟2
] + 𝐴𝑟 

(8.6) 

𝑉𝑡 + 𝑈𝑉𝑟 +
𝑈𝑉

𝑟
+ 𝑉

𝑉𝜃

𝑟
+ 𝑊𝑉𝑧

= −𝑝𝜃 + 𝑓(𝜈) [
(𝑟𝑉𝑟)𝑟

𝑟
+

𝑉𝜃𝜃

𝑟2
+ 𝑉𝑧𝑧 −

𝑉

𝑟2
+

2𝑈𝜃

𝑟2
] + 𝐴𝜃 

(8.7) 

𝑊𝑡 + 𝑈𝑊𝑟 + 𝑉
𝑊𝜃

𝑟
+ 𝑊𝑊𝑧 = −𝑝𝑧 + 𝑓(𝜈) [

(𝑟𝑊𝑟)𝑟

𝑟
+

𝑊𝜃𝜃

𝑟2
+ 𝑊𝑧𝑧] + 𝐺𝑟Θ + 𝐴𝑧 (8.8) 

Θ𝑡 + 𝑈Θ𝑟 + 𝑉
Θ𝜃

𝑟
+ 𝑊Θ𝑧 =

1

𝑃𝑟
[
(𝑟Θ𝑟)𝑟

𝑟
+

Θ𝜃𝜃

𝑟2
+ Θ𝑧𝑧] (8.9) 

 

where 𝑟 ≡ �̃�/𝐿, 𝑧 ≡ �̃�/𝐿 and 𝑡 ≡ �̃�𝜈0/𝐿
2 are the dimensionless spatial and temporal coordinates, 

𝐯(𝑟, 𝑧, 𝜃; 𝑡) = 𝑈(𝑟, 𝑧, 𝜃; 𝑡)𝐞𝒓 + 𝑉(𝑟, 𝑧, 𝜃; 𝑡)𝐞𝜽 + 𝑊(𝑟, 𝑧, 𝜃; 𝑡)𝐞𝒛 and 𝑝(𝑟, 𝑧, 𝜃; 𝑡) = 𝑃(𝑟, 𝑧, 𝜃; 𝑡) +
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𝐹𝑟 𝑧 are the velocity and reduced pressure fields, respectively, and 𝑃(𝑟, 𝑧, 𝜃; 𝑡)the hydrostatic 

pressure. In addition, the subscripts stand for the partial derivatives with respect to the corresponding 

variables. The terms 𝐴𝑟, 𝐴𝑧 and 𝐴𝜃 account for the viscosity spatial variations, and are given by the 

expressions 

𝐴𝑟 = 2𝑓Θ
(𝜈)

Θ𝑟𝑈𝑟 +
𝑓Θ

(𝜈)
Θ𝜃

𝑟
(
𝑈𝜃

𝑟
+ 𝑉𝑟 −

𝑉

𝑟
) + 𝑓Θ

(𝜈)
Θ𝑧(𝑈𝑧 + 𝑊𝑟) 

(8.10) 

𝐴𝜃 = 𝑓Θ
(𝜈)

Θ𝑟 (
𝑈𝜃

𝑟
+ 𝑉𝑟 −

𝑉

𝑟
) +

2

𝑟2
𝑓Θ

(𝜈)
Θ𝜃(𝑉𝜃 + 𝑈) + 𝑓Θ

(𝜈)
Θ𝑧 (𝑉𝑧 +

𝑊𝜃

𝑟
) (8.11) 

𝐴𝑧 = 𝑓Θ
(𝜈)

Θ𝑟(𝑈𝑧 + 𝑊𝑟) +
𝑓Θ

(𝜈)
Θ𝜃

𝑟
(𝑉𝑧 +

𝑊𝜃

𝑟
) + 2𝑓Θ

(𝜈)
Θ𝑧𝑊𝑧 

(8.12) 

where 𝑓Θ
(𝜈)

≡d𝑓(𝜈)/𝑑Θ. 

The above equations are integrated considering the kinematic compatibility condition at the 

dimensionless free surface position 𝑟 = 𝐹(𝜃, 𝑧; 𝑡) (𝐹 ≡ �̃�/𝐿): 

𝐹𝑡 − 𝑈 +
𝐹𝜃

𝐹
𝑉 + 𝐹𝑧𝑊 = 0 (8.13) 

The equilibrium of both normal and tangential stresses on the two sides of the free surface yields 

𝜏𝑛 = (
1

𝑊𝑒
− 𝑅𝑒 Θ) ∇. 𝐞𝒏 ,         𝜏𝑡1 =

𝑅𝑒 Θ𝑧

𝐶𝑡
 ,         𝜏𝑡2 =

𝑅𝑒 Θ𝜃

𝐶𝜃
 (8.14) 

Here, 𝜏𝑛, 𝜏𝑡1 and 𝜏𝑡2 are the sum of hydrostatic pressure and viscous stresses on the inner side of the 

free surface along the normal and two tangential directions, respectively. These stresses are given by 

the expressions 

𝜏𝑛 = 𝑝 − 𝐹𝑟 𝑧 −
2𝑓(𝜈)

𝐶𝑛
2

{𝑈𝑟 + 𝐹𝑧(𝐹𝑧𝑊𝑧 − 𝑈𝑧 − 𝑊𝑟)

−
𝐹𝜃

𝐹
[−

𝐹𝜃

𝐹2
(𝑈 + 𝑉𝜃) +

𝑈𝜃

𝐹
+ 𝑉𝑟 −

𝑉

𝐹
− 𝐹𝑧 (𝑉𝑧 +

𝑊𝜃

𝐹
)]}  

(8.15) 

𝜏𝑡1 =
𝑓(𝜈)

𝐶𝑛𝐶𝑡
{2𝐹𝑧(𝑈𝑟 − 𝑊𝑧) + (1 − 𝐹𝑧

2)(𝑊𝑟 + 𝑈𝑧)

−
𝐹𝜃

𝐹
[𝑉𝑧 +

𝑊𝜃

𝐹
+ 𝐹𝑧 (

𝑈𝜃

𝐹
+ 𝑉𝑟 −

𝑉

𝐹
)]} 

(8.16) 

𝜏𝑡2 =
𝑓(𝜈)

𝐶𝑛
2𝐶𝑡

{
2𝐹𝜃

𝐹
[𝑈𝑟 − (1 + 𝐹𝑧

2)
𝑈 + 𝑉𝜃

𝐹
+ 𝐹𝑧(𝐹𝑧𝑊𝑧 − 𝑈𝑧 − 𝑊𝑟)]

+ (1 + 𝐹𝑧
2 −

𝐹𝜃
2

𝐹2
) [

𝑈𝜃

𝐹
+ 𝑉𝑟 −

𝑉

𝐹
− 𝐹𝑧 (𝑉𝑧 +

𝑊𝜃

𝐹
)]} 

(8.17) 

where 𝐶𝑛, 𝐶𝑡, 𝐶𝜃 are functions of the instantaneous liquid bridge shape given by the equations 

𝐶𝑛 = (1 + 𝐹𝑧
2 +

𝐹𝜃
2

𝐹2
)

1/2

 ,         𝐶𝑡 = (1 + 𝐹𝑧
2)1/2 ,         𝐶𝜃 = (1 +

𝐹𝜃
2

𝐹2
)

1/2

 
(8.18) 
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In addition, 𝐞𝒏 =
1

𝐹𝐶𝑛
[(𝐹𝜃𝑠𝑖𝑛𝜃 + 𝐹𝑐𝑜𝑠𝜃)𝐞𝒓 − (𝐹𝜃𝑐𝑜𝑠𝜃 + 𝐹𝑠𝑖𝑛𝜃)𝐞𝜽 − 𝐹𝐹𝑧𝐞𝒛] is the outward unit 

vector perpendicular to the free surface, and 

∇. 𝐞𝒏 =
1

𝐹𝐶𝑛
+

1

𝐹𝐶𝑛
3 [

𝐹𝜃

𝐹
(
𝐹𝜃

𝐹
+ 2𝐹𝑧𝐹𝜃𝑧) − 𝐶𝑡

2
𝐹𝜃𝜃

𝐹
− 𝐶𝜃

2𝐹𝐹𝑧𝑧] (8.19) 

is the local mean curvature. The condition for the temperature at the free surface is 

∇Θ. 𝐞𝒏 + 𝐵𝑖(Θ − Θ𝑎𝑚𝑏) 
(8.20) 

The anchorage, no-slip and temperature boundary conditions,  

𝐹(𝜃, 0; 𝑡) = 𝐹(𝜃, 𝐿; 𝑡) = (2 𝐴𝑅)−1 
(8.21) 

𝐯(𝑟, 0, 𝜃; 𝑡) = 𝐯(𝑟, 𝐿, 𝜃; 𝑡) = 0 
(8.22) 

Θ(𝑟, 0, 𝜃; 𝑡) = 0, Θ(𝑟, 𝐿, 𝜃; 𝑡) = 1 
(8.23) 

are imposed at the solid supports. Finally, periodic boundary conditions in the angular direction are 

prescribed for all the variables.  

The steady axisymmetric base flow is characterized by the velocity 𝐯𝒃(𝑟, 𝑧) = 𝑈𝑏(𝑟, 𝑧)𝐞𝒓 +
𝑊𝑏(𝑟, 𝑧)𝐞𝒛, reduced pressure 𝑝𝑏(𝑟, 𝑧) and temperature Θ𝑏(𝑟, 𝑧) fields. The function 𝐹𝑏(𝑟, 𝑧) is the 

distance between a surface element and the 𝑧 axis, and allows one to calculate the liquid bridge 

volume  

𝒱 = 4 𝐴𝑅2 ∫ 𝐹𝑏
2𝑑𝑧

1

0

 (8.24) 

To calculate the linear global modes, one assumes the spatio-temporal dependence 

𝑈(𝑟, 𝑧, 𝜃; 𝑡) = 𝑈𝑏(𝑟, 𝑧) + 𝜖�̂�(𝑟, 𝑧)𝑒−𝑖𝜔𝑡+𝑚𝜃 (8.25) 

𝑉(𝑟, 𝑧, 𝜃; 𝑡) = 𝑉𝑏(𝑟, 𝑧) + 𝜖�̂�(𝑟, 𝑧)𝑒−𝑖𝜔𝑡+𝑚𝜃 (8.26) 

𝑊(𝑟, 𝑧, 𝜃; 𝑡) = 𝑊𝑏(𝑟, 𝑧) + 𝜖�̂�(𝑟, 𝑧)𝑒−𝑖𝜔𝑡+𝑚𝜃 (8.27) 

𝑝(𝑟, 𝑧, 𝜃; 𝑡) = 𝑝𝑏(𝑟, 𝑧) + 𝜖�̂�(𝑟, 𝑧)𝑒−𝑖𝜔𝑡+𝑚𝜃 (8.28) 

Θ(𝑟, 𝑧, 𝜃; 𝑡) = Θ𝑏(𝑟, 𝑧) + 𝜖Θ̂(𝑟, 𝑧)𝑒−𝑖𝜔𝑡+𝑚𝜃 (8.29) 

𝐹(𝑧, 𝜃; 𝑡) = 𝐹𝑏(𝑧) + 𝜖�̂�(𝑧)𝑒−𝑖𝜔𝑡+𝑚𝜃 (8.30) 

where 𝜖 ≪  1, {�̂�, �̂� , �̂� , �̂�, Θ̂, �̂�} stand for the eigenmode spatial dependence of the corresponding 

quantities, while 𝜔 =  𝜔𝑟 + 𝑖𝜔𝑖 is the eigenfrequency and 𝑚 is the azimuthal wave number. The 

eigenmode regularity conditions at the symmetry axis 𝑟 = 0 are 

�̂�(0, 𝑧) = �̂�(0, 𝑧) = �̂�𝑟(0, 𝑧) = Θ̂𝑟(0, 𝑧) = 0    𝑓𝑜𝑟   𝑚 = 0 (8.31) 
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�̂�(0, 𝑧) + 𝑖�̂�(0, 𝑧) = �̂�(0, 𝑧) = Θ̂(0, 𝑧) = 0    𝑓𝑜𝑟   𝑚 = 1 (8.32) 

�̂�(0, 𝑧) = �̂�(0, 𝑧) = �̂�(0, 𝑧) = Θ̂(0, 𝑧) = 0    𝑓𝑜𝑟   𝑚 ≥ 2 (8.33) 

Both the eigenfrequencies and the corresponding eigenmodes are calculated as a function of the 

governing parameters. The dominant eigenmode is that with the largest growth factor 𝜔𝑖. If that 

growth factor is positive, the base flow is unstable. For sufficiently large temperature differences, the 

axisymmetric flow becomes unstable and gives rise to an unsteady three-dimensional motion. 

In the previous works, the linear stability analyses have been conducted by assuming that the 

liquid bridge free surface is rigid, i.e., it does not deform due to the flow. To take this approximation, 

we replace 𝐹(𝜃, 𝑧; 𝑡) with the equilibrium free surface contour 𝐹0(𝑧) calculated from the Young-

Laplace and volume equations 

𝑝 − 𝐹𝑟 𝑧 = 𝑊𝑒−1∇. 𝐞𝒏  ,           𝒱 = 4 𝐴𝑅2 ∫ 𝐹0
2𝑑𝑧

1

0

 (8.34) 

and eliminate both the kinematic compatibility condition [Eq. (8.13)] and the balance of normal 

stresses at the free surface [Eq. (8.14)-left] from the system of equations. This is equivalent to take an 

infinitely small (large) value of the Weber number 𝑊𝑒 (equilibrium surface tension 𝜎0) with a finite 

Bond number 𝐵 = 𝐹𝑟𝑊𝑒 = 𝜌𝑔𝐿2/𝜎0.  

8.3.2. Numerical method 

In order to calculate both the base flows and the corresponding eigenmodes, we apply the 

boundary fitted method. The liquid domain is mapped onto a quadrangular domain through a time-

dependent coordinate transformation which accounts for the instantaneous location of the liquid 

bridge free surface. The hydrodynamic equations are discretized in the radial and axial directions 

using fourth-order finite differences with 91 points. These points are accumulated near the two solid 

surfaces and the free surface (Figure 8.2) where the gradients of the hydrodynamic quantities are 

expected to increase. The accumulation of grid points next to the upper (hot) solid rod is especially 

important due to the flow complexity in that region. 

 

Figure 8.2 Details of the grid used in the simulations 

Consider the Jacobian ℐ(𝑝,𝑞) corresponding to the discretized system of equations ℐ(𝑝,𝑞)𝒰𝑏
(𝑞)

=

ℱ(𝑝), where 𝒰𝑏
(𝑞)

 (𝑞 = 1,2, … , 𝑛 ×  𝑁) stand for the values of the 𝑛 base flow unknowns at the 𝑁 
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grid points, and ℱ(𝑝) represents the inhomogeneous part of the equations. Both the elements of ℐ(𝑝,𝑞) 

and ℱ(𝑝) are computed analytically before running the simulation using a symbolic software. The 

resulting functions are evaluated numerically over the Newton-Raphson iterations, which greatly 

reduces the CPU time. In each of those iterations, one first evaluates the Jacobian ℐ𝑏
(𝑝,𝑞)

=

ℐ(𝑝,𝑞)(𝒰𝑏
(𝑞)

) and the inhomogeneous part ℱ𝑏
(𝑝)

(𝒰𝑏
(𝑞)

) for the updated value of 𝒰𝑏
(𝑞)

. Then, one 

calculates the inverse matrix ℐ𝑏
−1(𝑝,𝑞)

 with an algorithm which takes advantage of the high sparsity of 

the matrix. Finally, the correction vector 𝛿𝒰𝑏
(𝑞)

 is obtained as 𝛿𝒰𝑏
(𝑞)

= −ℐ𝑏
−1(𝑝,𝑞)

ℱ𝑏
(𝑝)

. 

The above numerical procedure can be easily adapted to solve the eigenvalue problem which 

determines the linear modes of the system. The spatial dependence of the linear perturbation �̂�(𝑞) is 

the solution to the generalized eigenvalue problem ℐ𝑏
(𝑝,𝑞)

�̂�(𝑞) = 𝑖𝜔𝒬(𝑝,𝑞)�̂�(𝑞), where ℐ𝑏
(𝑝,𝑞)

 is the 

Jacobian of the system evaluated with the base solution 𝒰𝑏
(𝑞)

, and 𝒬(𝑝,𝑞) accounts for the temporal 

dependence of the problem. This matrix is calculated with essentially the same procedure as that for 

ℐ𝑏
(𝑝,𝑞)

. Therefore, the numerical algorithm developed for the base flow problem can also be applied 

to the linear stability analysis. More details of the numerical method can be found elsewhere 

(Herrada and Montanero, [1]). 

We have validated the numerical method from comparison with previous simulation results for a 

rigid free surface. The average difference between the critical Reynolds numbers and oscillation 

frequencies shown in Tables 1 and 3 of Ref. Shevtsova et al. [200] and our corresponding values are 

0.2% and 0.6%, respectively. The difference between the critical Rayleigh number shown in Table 1 

of Ref. Kuhlmann and Rath [217] for the natural convection in a liquid bridge with 𝐴𝑅 = 0.5 and 

that predicted by our simulation is less than 0.5%. Finally, the difference between the critical 

Reynolds number shown in Table 1 of Ref. (Prange et al., [224]) in the absence of a magnetic field 

and our result is less than 0.5%. 

8.4. Results 

It is believed that the onset of instability under microgravity conditions is determined by the 

Marangoni 𝑀𝑎 = 𝑅𝑒𝑃𝑟 = 𝜎𝑇∆𝑇𝐿/(𝜌0𝜈0𝛼).  and Capillary 𝐶𝑎 = 𝑅𝑒𝑊𝑒 = 𝜎𝑇∆𝑇/𝜎0 numbers 

rather than by the Reynolds and Weber numbers, which naturally arise from the characteristic 

quantities introduced in Sec. 8.2. For this reason, we will adopt 

{𝒱, 𝐴𝑅, 𝑃𝑟, 𝐹𝑟, 𝐵𝑖, 𝛼𝜈 , Θ𝑎𝑚𝑏 , 𝐺𝑟,𝑀𝑎, 𝐶𝑎, 𝑇0
∗} 

(8.35) 

as the set of governing parameters. The last five numbers involve the temperature difference ∆𝑇. 

Now, the Capillary number is the single parameter that includes the equilibrium surface tension 𝜎0, 

and, therefore, it can be regarded as a measure of the free surface rigidity. In fact, the limit 𝐶𝑎 → 0 

(𝜎0 → ∞) corresponds to the rigid free surface approximation commonly made in the theoretical 

analyses. 

Given the large dimension of the parameter space, we will restrict ourselves to liquid bridges of 5-cSt 

silicone oil, characterized by a high Prandtl number (𝑃𝑟 =67) and very frequently used in 

experiments. The physical properties of this liquid measured at 𝑇0 = 25 
o
C by Nishino et al. ([206]): 

𝜌0 = 915 kg/m
3
, 𝛽 = 1.09 × 10

−3
 1/K, 𝜈0= 5.0 × 10

−6
 m

2
/s, 𝛼𝜈 = 5.892, 𝜎0 = 19.7 × 10

−3
 N/m, 𝜎𝑇 = 

6.58 × 10
−5

 N/(m·K), 𝜅 = 0.12 W/(m·K) and 𝛼 = 7.46 × 10
−8

 m
2
/s. 

Figure 8.3 shows a comparison between the experimental values and our numerical predictions 

for the critical Marangoni number 𝑀𝑎∗ = 𝜎𝑇∆𝑇(
𝐷

2
)/(𝜌�̅�𝛼) and the dimensionless oscillation 

frequency 𝜔𝑟
∗ = �̃�𝑟 (

𝐷

2
)
2

/(𝛼√𝑀𝑎∗) of liquid bridges with different aspect ratios under 

microgravity conditions (𝐹𝑟 = 𝐺𝑟 =0) (Fig. 6 of Ref. Nishino et al. ([206])). Here, �̅� and �̃�𝑟 are the 
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kinematic viscosity for 𝑇 = 𝑇0 + ∆𝑇/2 and the dimensional oscillation frequency, respectively. In 

our simulations, the instability for 𝐴𝑅= 0.17 and 0.325 was caused by the growth of the 𝑚 = 2 mode, 

while the dominant mode for the rest of aspect ratios was that with 𝑚 = 1. There is good agreement 

between the theoretical and experimental results for the Biot numbers 𝐵𝑖 = 0.15 and 0.3 proposed by 

Nishino et al. [206]. This agreement is similar to that exhibited by the linear stability analysis 

presented by in that work. In particular, the simulation reproduces the sharp decrease of the 

oscillation frequency for 𝐴𝑅= 1.25. 

 

Figure 8.3 Experimental (solid symbols) and numerical (open symbols) values of the critical 

Marangoni number 𝑀𝑎∗ (left-hand graph) and the oscillation frequency 𝜔𝑟
∗ (right-hand graph) for 

liquid bridges with different aspect ratios AR under microgravity conditions (𝐹𝑟 = 𝐺𝑟 = 0) (see 

Fig. 6 of Ref. (Nishino et al., [206])). The circles and triangles correspond to the numerical results 

calculated with 𝐵𝑖 = 0.15 and 0.3, respectively. 

 

Montanero et al. [205] studied experimentally the dynamical free surface deformation arising in 

the thermal convection of 5-cSt silicone oil liquid bridges. In those experimental runs, the liquid 

bridge was formed at the ambient temperature 𝑇𝑎𝑚𝑏= 25
o
C, and then the upper rod was progressively 

heated up while keeping the lower rod temperature 𝑇0 = 25
o
C constant, so that a certain range of ∆T 

values was covered. The dimensionless number {𝐴𝑅 = 0.615, 𝑃𝑟 = 67, 𝛼𝜈 = 5.892, 𝐹𝑟 =
1.973 × 104, Θ𝑎𝑚𝑏 = 0} were kept constant, while {𝒱, 𝐺𝑟,𝑀𝑎, 𝐶𝑎, 𝑇0

∗} varied with ∆𝑇. The free 

surface location was accurately measured in the course of the experiment with a sub-pixel resolution 

technique. The liquid thermal expansion produced variations of the liquid bridge volume ∆𝒱 ∼
 10−2, which caused free surface deformations comparable to those produced by the flow. We will 

devote the rest of this section to examine numerically the first experimental run conducted in that 

work (the other produced very similar results). In that case, the instability was caused by the 𝑚 = 1 

mode for ∆𝑇 = 16.8
o
C, which corresponds to a critical Marangoni number 𝑀𝑎 = 1.196 × 10

4
. In 

order to take into account thermal expansion, our simulations were conducted with the liquid bridge 

volumes measured in the experiment for the corresponding value of ∆𝑇 (see Fig. 10b of Ref. 

(Montanero et al., [205])). 

Figure 8.4 shows the base flows corresponding to the experimental run I in Ref. Montanero et al. 

[205] with ∆𝑇 = 15.20 and 21.76
o
C, which correspond to subcritical and supercritical conditions, 

respectively. In both cases, the streamlines show the formation of four vortices. The two 

anticlockwise vortices near the free surface are driven by the Marangoni stress, while the other two 

clockwise rotations are caused by the buoyancy force. A thin recirculation cell arises in contact with 

the upper rod, where the temperature gradient reaches higher values. As can be observed, a large 

number of grid points are required in that region and next to the free surface to reproduce the flow 

accurately. The only qualitative difference between the flow patterns in the subcritical and 

supercritical cases is the growth of the vortex next to the center of the lower rod as the temperature 

difference increases. 
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We have verified that neither the base flow nor its linear stability are significantly affected by the 

Biot number. Specifically, the critical Marangoni number 𝑀𝑎 = 1.159 × 10
4
 calculated for 𝐵𝑖=0.15 

differed in less than 0.5% from that calculated for 𝐵𝑖=0.3. Those values deviated in less than 3.6% 

from that measured in the experiment. We will set 𝐵𝑖=0.15 in the rest of the simulations. As occurred 

in the experiment, instability was caused by the 𝑚 = 1 mode. 

 

 

Figure 8.4 Streamlines (left) and temperature isolines (right) for {𝐴𝑅 = 0.615, 𝑃𝑟 = 67, 𝛼𝜈 =
5.892, 𝐹𝑟 = 1.973 × 104, Θ𝑎𝑚𝑏 = 0, 𝐵𝑖 = 0.15} and {𝒱 = 0.8265, 𝐺𝑟 = 326.9,𝑀𝑎 =

1.082𝑥104, 𝐶𝑎 = 0.0508, 𝑇0
∗ = 1.645}(left) and {𝒱 = 0.8298, 𝐺𝑟 = 468,𝑀𝑎 = 1.549𝑥104        

 𝐶𝑎 = 0.0727, 𝑇0
∗ = 1.149} (right). The blue and cyan lines in the left-hand figure indicate 

clockwise and anticlockwise rotations, respectively. 

 

As mentioned above, Montanero et al. [205] described the free surface deformation of a 5-cSt 

silicone oil liquid bridge when a temperature difference ∆T was applied between two solid supports 

of the same diameter. For ∆𝑇 = 0, the equilibrium liquid bridge contour is characterized by the 

function 𝐹0(𝑧) which obeys the Young-Laplace equation (8.34). The deformation 𝐹0(𝑧) −
(2 𝐴𝑅)−1 with respect to the cylinder delimited by the two supports results from the competition 

between gravity and surface tension, and from the difference between the liquid bridge volume and 

that of the cylinder. An axisymmetric steady flow arises in the liquid bridge when a temperature 

difference ∆𝑇 is applied between the supports. The corresponding free surface contour 𝐹𝑏(𝑧) differs 

from the equilibrium shape 𝐹0(𝑧) by the perturbation 𝐹𝑏(𝑧) − 𝐹0(𝑧), which is at least one order of 

magnitude smaller than the deformation 𝐹0(𝑧) − (2 𝐴𝑅)−1 at equilibrium under normal gravity 

conditions (Montanero et al., [205]). This perturbation is caused by the liquid thermal expansion, the 

surface tension variation over the free surface, and the hydrodynamic effects on that surface. The 

three effects are commensurate with each other. When ∆𝑇 exceeds a certain critical value ∆𝑇𝑐, the 

axisymmetric steady flow evolves towards a non-axisymmetric oscillatory regime. In this regime, the 

free surface contour 𝐹(𝜃, 𝑧; 𝑡) can be seen as the sum of those corresponding to the underlying base 

flow, 𝐹𝑏(𝑧), and to the oscillations. In the experiments, the oscillation contribution 𝐹(𝜃, 𝑧; 𝑡) −
𝐹𝑏(𝑧) was a periodic or quasi-periodic function of time, and at least one order of magnitude smaller 

than 𝐹𝑏(𝑧) − 𝐹0(𝑧) for the range of ∆𝑇 explored (Ferrera et al., [206]). The underlying base flow 

contour 𝐹𝑏(𝑧) for ∆𝑇 > ∆𝑇𝑐 can be approximately measured by averaging 𝐹(𝜃, 𝑧; 𝑡) over an 

oscillation cycle (Montanero et al., [205]). 

To summarize, one must bear in mind the following hierarchy of deformations for the thermal 

convection in liquid bridges: 

|𝐹(𝜃, 𝑧; 𝑡) − 𝐹𝑏(𝑧)| ≪ |𝐹𝑏(𝑧) − 𝐹0(𝑧)| ≪ |𝐹0(𝑧) − (2 𝐴𝑅)−1| ≪ (2 𝐴𝑅)−1 
(8.36) 
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Figure 8.5 Experimental (open symbols) and numerical (solid symbols) free Surface deformation 

𝐹𝑏 − 𝐹0 of the base flow {𝐴𝑅 = 0.615, 𝑃𝑟 = 67, 𝛼𝜈 = 5.892, 𝐹𝑟 = 1.973 × 104, Θ𝑎𝑚𝑏 =
0, 𝐵𝑖 = 0.15} and {𝒱 = 0.8200, 𝐺𝑟 = 117.4,𝑀𝑎 = 3.885𝑥103, 𝐶𝑎 = 0.0182, 𝑇0

∗ = 4.579} 
(diamonds), {𝒱 = 0.8241, 𝐺𝑟 = 237.7,𝑀𝑎 = 7.863𝑥103, 𝐶𝑎 = 0.0369, 𝑇0

∗ = 2.262} (down-

triangles), {𝒱 = 0.8265, 𝐺𝑟 = 326.9,𝑀𝑎 = 1.082𝑥104, 𝐶𝑎 = 0.0508, 𝑇0
∗ = 1.645} (up-

triangles), {𝒱 = 0.8298, 𝐺𝑟 = 468,𝑀𝑎 = 1.549𝑥104, 𝐶𝑎 = 0.0727, 𝑇0
∗ = 1.149} (circles) and 

{𝒱 = 0.8405, 𝐺𝑟 = 544.8,𝑀𝑎 = 1.803𝑥104, 𝐶𝑎 = 0.0846, 𝑇0
∗ = 0.987} (squares). 

 

Figure 8.5 shows 𝐹𝑏(𝑧) − 𝐹0(𝑧) both measured experimentally (Montanero et al., [205]) and 

obtained from our numerical simulations. As mentioned above, the simulation was conducted with 

the liquid bridge volume determined in the experiment for the corresponding value of ∆𝑇 to account 

for thermal expansion. In both the experiments and simulations, the function 𝐹0(𝑧) was calculated 

from the integration of the Young-Laplace equation (8.34) with that volume and the surface tension 

value 𝜎0. Therefore, 𝐹𝑏(𝑧) − 𝐹0(𝑧) indicates the free surface deformation caused by the surface 

tension variation over the free surface and the hydrodynamic effects on that surface. There is good 

agreement between the theoretical predictions and experiments. In all the cases, the deviation of the 

numerical contour from its experimental counterpart is smaller than the (dimensionless) size 2.3 x 10
-

3
 of the pixels in the images acquired in the experiments (Montanero et al., [205]). Part of that 

deviation can be attributed to the small differences between the nominal geometry and the real one 

(eccentricity, difference between the diameters of the rods, . . .), which may commensurate with the 

dynamical perturbation 𝐹𝑏(𝑧) − 𝐹0(𝑧)  [Eq. (8.36)]. 

The free surface deformation induced by the base flow exhibits similar shapes for the temperature 

differences considered in Figure 8.5. In fact, the maximum and minimum deformations are reached 

at practically the same heights. This can be clearly appreciated in Figure 8.6, where the free surface 

deformation has been divided by the Capillary number. As can be seen, the maximum free surface 

deformation is one order of magnitude smaller than the corresponding value of the Capillary number. 

The normalized deformations do not perfectly match probably due to the influence of the liquid 

bridge equilibrium shape 𝐹0(𝑧). This shape is different in each case due to the thermal expansion, as 

quantified by the volume  . To verify this hypothesis, we have run all the simulations keeping 

constant that parameter, and, therefore, the equilibrium contour 𝐹0(𝑧). The results are shown in the 

right-hand graph of Figure 8.6. The normalized free surface deformations fall on a single curve 

ℱ(𝑧), which indicates that 𝐹𝑏(𝑧) − 𝐹0(𝑧) = 𝐶𝑎 ℱ for 𝐶𝑎 ≲ 0.1 (provided that the volume remains 

constant). This means that the dynamical free surface deformation can be seen as a linear steady 

perturbation with respect to the liquid bridge equilibrium shape. We have explored the validity of the 

above linear relationship by conducting simulations with larger values of the Capillary number 
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(applied temperature difference). The above linear law underestimates the dynamical free surface 

deformation for 𝐶𝑎 ≳ 0.15, which corresponds to the supercritical regime. 

tr 

Figure 8.6 (Left) Free Surface deformation normalized with the Capillary number, (𝐹𝑏 − 𝐹0)/
𝐶𝑎, for the configurations considered in Figure 8.5: {𝐴𝑅 = 0.615, 𝑃𝑟 = 67, 𝛼𝜈 = 5.892, 𝐹𝑟 =
1.973 × 104, Θ𝑎𝑚𝑏 = 0, 𝐵𝑖 = 0.15} and {𝒱 = 0.8200, 𝐺𝑟 = 117.4,𝑀𝑎 = 3.885𝑥103, 𝐶𝑎 =

0.0182, 𝑇0
∗ = 4.579} (diamonds), {𝒱 = 0.8241, 𝐺𝑟 = 237.7,𝑀𝑎 = 7.863𝑥103, 𝐶𝑎 =

0.0369, 𝑇0
∗ = 2.262} (down-triangles), {𝒱 = 0.8265, 𝐺𝑟 = 326.9,𝑀𝑎 = 1.082𝑥104, 𝐶𝑎 =

0.0508, 𝑇0
∗ = 1.645} (up-triangles), {𝒱 = 0.8298, 𝐺𝑟 = 468,𝑀𝑎 = 1.549𝑥104, 𝐶𝑎 =

0.0727, 𝑇0
∗ = 1.149} (circles) and {𝒱 = 0.8405, 𝐺𝑟 = 544.8,𝑀𝑎 = 1.803𝑥104, 𝐶𝑎 =

0.0846, 𝑇0
∗ = 0.987} (squares). 

 

 

Figure 8.7. (Left-hand image) Isolines of kinetic energy 1/2(�̂�2 + �̂�2 + �̂�2) (left) and 

magnitude of |�̂�| of reduced pressure (right). (Right-hand image) Isolines of magnitude of the 

temperature field, |Θ̂̂(𝑟, 𝑧)| (left), and amplitude |�̂�(𝑧)| of the free surface oscillation. The latter has 

been magnified to show clearly its axial dependence. The results correspond to the eigenmode 

𝑚 = 1 responsible for instability at  {𝐴𝑅 = 0.615, 𝑃𝑟 = 67, 𝛼𝜈 = 5.892, 𝐹𝑟 = 1.973 ×
104, Θ𝑎𝑚𝑏 = 0, 𝐵𝑖 = 0.15} and {𝒱 = 0.828, 𝐺𝑟 = 350.2,𝑀𝑎 = 1.159𝑥104, 𝐶𝑎 = 0.0544, 𝑇0

∗ =
1.535} 

 

Figure 7 shows the spatial structure of the dominant eigenmode for the marginally stable base 

flow of the experimental run analyzed in this section. The perturbation kinetic energy sharply 

increases in the region next to the free surface where the liquid flows between the two vortices driven 

by the Marangoni stress (Figure 8.4). The magnitude of the reduced pressure perturbation increases 

close to the triple contact line anchored to the upper rod. The upper part of the free surface oscillates 

more than the lower part. The shape of the free surface oscillation amplitude is very akin to that 

measured experimentally by Ferrera et al. [206] under similar conditions (see Fig. 9 of that 
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reference). It also resembles the experimental results obtained more recently by Yano et al. [207] for 

the oscillatory Marangoni convection under microgravity conditions (see Fig. 10 of that reference). It 

must be pointed out that the linear stability analysis cannot predict the magnitude of the free surface 

oscillations, but only the relative dependence of the amplitude with respect to the axial coordinate. 

 

Figure 8.8 Eigenvalues characterizing the m=1 (circles) and 2 (triangles) linear modes for the 

configurations considered in Figure 8.5: {𝐴𝑅 = 0.615, 𝑃𝑟 = 67, 𝛼𝜈 = 5.892, 𝐹𝑟 = 1.973 ×
104, Θ𝑎𝑚𝑏 = 0, 𝐵𝑖 = 0.15} and {𝒱 = 0.8200, 𝐺𝑟 = 117.4,𝑀𝑎 = 3.885𝑥103, 𝐶𝑎 =

0.0182, 𝑇0
∗ = 4.579} , {𝒱 = 0.8241, 𝐺𝑟 = 237.7,𝑀𝑎 = 7.863𝑥103, 𝐶𝑎 = 0.0369, 𝑇0

∗ = 2.262} 

, {𝒱 = 0.8265, 𝐺𝑟 = 326.9,𝑀𝑎 = 1.082𝑥104, 𝐶𝑎 = 0.0508, 𝑇0
∗ = 1.645}, {𝒱 = 0.8298, 𝐺𝑟 =

468,𝑀𝑎 = 1.549𝑥104, 𝐶𝑎 = 0.0727, 𝑇0
∗ = 1.149} and {𝒱 = 0.8405, 𝐺𝑟 = 544.8,𝑀𝑎 =

1.803𝑥104, 𝐶𝑎 = 0.0846, 𝑇0
∗ = 0.987}. The open and solid symbols were calculated with 

dynamical free surface deformation and the equilibrium contour, respectively. 

Figure 8.8 shows the eigenvalues characterizing the 𝑚 = 1 and 2 linear modes for the liquid 

bridge in Figure 8.5 at the marginal stability. The solid symbols are the results calculated when the 

free surface contour is assumed to be rigid and the same as that at equilibrium (∆𝑇 =  0). As can be 

observed, there is no signicant influence of the dynamical free surface deformation on the liquid 

bridge stability: the growth factors of both the 𝑚 = 1 and 𝑚 = 2 modes are hardly affected by that 

deformation. 

In order to extend our analysis to a variety of liquid bridge shapes, we simulated the same 

experimental run as that analyzed in this section but with different diameters of the supporting rods 

(aspect ratios) and the same dimensionless volume 𝒱 = 1 (neglecting the increase of volume due to 

thermal expansion). 

Figure 8.9 shows the spatial dependence of both the temperature field perturbation and the 

amplitude of the free surface oscillation for marginally stable liquid bridges. The location of the 

temperature perturbation maximum moves away from the upper rod as the aspect ratio decreases for 

𝐴𝑅 ≥ 0.75 (lower graphs). However, the height of that point exhibits a non-monotonous behavior 

for 𝐴𝑅 ≤ 0.615. The amplitude of the free surface oscillation in the liquid bridge upper part 

increases with 𝐴𝑅, i.e., with the deformation of the base flow free surface with respect to the 

cylinder. In fact, the upper part of the free surface oscillates more than the lower part for well-

deformed equilibrium shapes (large values of 𝐴𝑅). 

Finally, we verified whether the dynamical free surface deformation affects the thermal 

convection stability for different aspect ratios. Figure 8.10 shows the critical Marangoni number and 

oscillation frequency obtained with both the dynamical free surface deformation and the rigid free 

surface approximation. As can be observed, there is little influence of the dynamical free surface 

deformation on the liquid bridge stability for the all the aspect ratios considered. 
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Figure 8.9 Spatial dependence of the temperature field perturbation and free surface oscillation 

amplitude for marginally stable liquid bridges with different aspect ratios. The calculations were 

conducted for 5-cSt silicone oil liquid bridges with 𝐿 = 3.69 mm and 𝒱 = 1. The free surface 

oscillation amplitude has been magnified to show clearly its axial dependence. 

 

Figure 8.10 Critical Marangoni number 𝑀𝑎 (circles) and oscillation frequency 𝜔𝑟(triangles) as a 

function of the aspect ratio 𝐴𝑅 for 5-cSt silicone oil liquid bridges with 𝐿 = 3.69 mm and 𝒱 = 1. The 

results were calculated with the dynamical free surface deformation (open symbols) and the rigid free 

surface approximation (solid symbols). 
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8.5. Conclusions 

In this investigation, we have studied numerically the thermal convection in liquid bridges with 

high Prandtl numbers. Both the base flow and its eigenmodes have been calculated accounting for 

the effect of the dynamical free surface deformation. This includes not only the steady axisymmetric 

deformation caused by the base flow, but also the small-amplitude non-axisymmetric oscillations 

produced by the growth/decay of the linear modes. We have restricted ourselves to the parameter 

space corresponding to 5-cSt silicone oil liquid bridges due to its popularity among experimentalists. 

The comparison between the linear stability analysis predictions and the experimental results 

measured on board of the ISS (Nishino et al., [222]) shows reasonable agreement, similar to that 

exhibited by the numerical calculations of Nishino et al. [222]. 

Our efforts have mainly focused on reproducing a representative experimental run among those 

conducted in Ref. (Montanero et al., [205]), where the dynamical free surface deformation was 

accurately measured. We find good agreement between the numerical and experimental results for 

both the dynamical free surface deformation and the critical Marangoni number. If the deformations 

caused by the base flows are normalized with the corresponding values of the Capillary number, they 

approximately collapse onto a single curve. This means that the dynamical free surface deformation 

can be seen as a steady perturbation with respect to the equilibrium shape, which increases linearly 

with the Capillary number. 

We have described the complex spatial structure of the dominant eigenmode responsible for 

instability. The amplitude of the free surface oscillation is very similar to that measured by Ferrera et 

al. [206]. We have described the dependence of both the temperature field perturbation and free 

surface oscillation amplitude upon the liquid bridge aspect ratio. 

One of the major conclusions of the present work is the fact that the dynamical free surface 

deformation has little effect on the eigenvalues characterizing the linear modes, and, therefore, on the 

thermal convection stability. Considering the liquid bridge free surface as a rigid boundary 

constitutes an accurate approximation. This conclusion must not be necessarily expected given the 

complex structure of the base flow next to the free surface, especially in the vicinity of the upper hot 

rod.  
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