NUMERICAL TREATMENT OF THICK SHELLS WITH HOLES
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A Boundary Integral Equation Method (B.1.E.M.) formulation is presented.
After a general situation of the method among other usual numerical ones,
the possibilities of discretization are developed. As this is done only in
the boundarythe treatment of tridimensional problems is greatly simplified
in comparison with other methods.

Some results on a simple shell with holes are finally presented.
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1. SCHEME OF THE PROBLEM.

Use of thick shells arises naturally in some physical situations either in
strict sense or as a subregion of a general structure. An exemple of the first
situation is provided by some concrete nuclear reactor pressure vessels and
of the second by the zone of some shell dams which are thicker in the interfa-
ce with the soil.

The modelization of general situations is , in addition , generally com-
plicated by the presence of perforations which are necessary for the structu-
re functionalism.

Analytical approaches to actual problems is clearly out of question ,be-
cause the problem geometry is never simple . The classical method of reduced
physical models is also problematic if some information is needed on points
with high stress gradients. (At most the mesure gages can only give a weigh-
ted value of the variable of interest).

Numerical methods appear as the only powerful alternative and that's
the reason why the most famous of them i.e: the Anite Element method ( F.
E. M. ) has been continuosly used.

Nevertheless , F.E.M. has several drawbacks in the particular problem
under study. First of all , the tridimensional character of the model imposes
a very high number of elements and nodal variables if one wishes to obtain
reasoneable results. On the other hand a realist design of high gradient stress
zones imposes the use of a fine mesh near them , and because the special
features of the method , a smooth growth of the element sizes in the neighbour-
hood areas. k

Both reasons contribute to increment the number of equations to be solved
with the result that , even in simple cases , the numerical effort is unproportio-
nally 'big.

Item more , as it is well known , in the stiffnes path of approach , the

degree of accuracy in stresses is always less than in displacements , just

4.154



in a problem which this accuracy is foundamental.

It is then logical to ask oneself about the possibilities of an alternative nu-
merical method without those problems.

The Boundary Integral Equation Method (B.1.E .M.) is, in this respect, a
perfectly suited tool. As we shall show in the next item the discretization is ba-
sed on a formulation established on the boundary domain and this why a three
dimensional problem can be solved with two dimensional elements. The results
are obtained only at the boundary and if some information is needed inside the do-
main, some auxiliar formulaes have to be used. This, that at the first sight is a
drawback, is a very advantageous feature; infact the concentration problems
always happen because of sudden changes in boundary geometry or in boundary
conditions and the inside information provided for instance by the F.E.M. is
generally useless.

If , nevertheless, interior information is sought in some places, there is no
aditional error introduced by the formulaes and the results are, in general, even
better than in the boundary due to the regularity characteristics of the mathemati-
cal operator that represents the physical problem. Puntual (and no wheigthed)
information is then easily obtained with great accuracy. Stress gradients are
also accurately modelled and the size of the problem is greatly reduced, in com-
parison with F .E.M. models,, due to the change 3-D —® 2-D in the elements.

We hzve tried then, to explain how the method can be applied to the problem
expressed by the title and show some simple example which can give and idea of

the enormous possibilies of the relative new procedure.

2. MATHEMATICAL MODEL.
Given the field equation of a problem

Au= £

eeu()
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the weak formulation of it can be established with an inner product

(Au,¢)=(f,¢) . (2)

In the F.E.M. an integration by parts of the left hand side produces a bili-

near form plus some boundary conditions
a(u, gy +b, (u, @) =(f,¢) ..3)

In this process some derivatives are transferred from the field variable
A4 to the auxiliary one ('U, allowing the use of less rectrictive conditions for

the aproximation. At this point a discretization of the kind
UsUp=c ¥, it=4,2,...,1 ... (4)

which approaches the infinite dimensional solution from a finite dimensional sub-
espace produces the typical consistent matrices of the problem.
If the operator is symmetric another series of integrations leads to the

mirror image of (2)

(W, AQ)ab(u @)+ b(u, vy =(f, y) ...(5)

here the conditions on the smoothness of Whave been transfered to ¢’ . Moreover,

if (‘/is chosen in such a way that

Ay=o0 ...(6)

the left hand side of equation (5) is reduced to conditions on the boundary and
the right hand side is a vector of known values. In the homogeneous case -? =0

and equation (5) is written as simple as
Lu,p)+ b, ) =0 (D

It is interesting to notice that this result is nothing new. In potential
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theory equation (3) is the first Green's formula and equation (5) is the second
Green's one.

In elasticity they are respectively the principle of virtual work and the
Maxwell-Betti reciprocity theorem.

The process of discretization is something different of (4). There ‘}f were
compact support functions in order to produce banded matrices after the scalar
product. Here the ‘.') are solutions of (6) and then extended to the whole domain.
It could seem reagonable to use globally defined trial functions as a basis of the
finite dimensional subspace. This produces a set of equations whose variables

have no physical meaning. So we prefer to use locally based functions

¥, F Y. .o (8

and to establish

uzu, = C‘;‘P‘: ...(9)

It is important to notice that, because (5), any condition of smoothness is
required in the {L and this is because one may use constant ‘Pb elements to inter-
polate the field variable.

The preceeding approach is known as TREFFTZ method. The B.1.E.M.

uses as auxiliar function the solution to

Ay=-8 ...(10)
in place of (6).

That is (|) is taken as the solution to the differential operator. In potential
thecry {s the Coulomb solution of an electrostatic elemental change and in elas-
ticity theory qJ is the point load solution to KELV IN problem,

The equation (7) is transformed then in

u, + b, (u,¢)+ b, (u,¢)- 0 o

where l..l‘P is the field value at the point in which the load is applied . (This point
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is inside the doamin).

In elastostatics equation (11) is the SOMIGLIANAS' identity.

U (x)+ T,-J-( %)u(:})da U( 5)'{()(?)"'"‘; ...(12)

o0 a:z
where
(x4;) (4-9;) %

= ?n E(a-»)r ..(13)

T, (%, 8)et— {(‘-2»)[‘" eg) 3 jom; gy ST

gn((-v)rt

Y.y (%~ Y- X~
+[:(1-zv)59-43(j_gig—ﬁ°’_£"_)_]m.5(§) iy‘éf ...(14)

In equation (13) 0'9 (x) is measured at an interior point X while point Y is
at the boundary. In order to produce equations in terms only of values at the
boundary, it is necessary to establish a limiting process by which equation (12)

moves to

cijxy e Ty (o) ity < Uy Geg) - §C3) day
£ on ...(15)

where both X, 4 éb—Q and for smooth boundaries

A
d 2 S‘J ...(16)

Equation (15) is now ready for discretization.

3. DISCRETIZATION.

As was previously said we are using locally based functions for the interpo-

lation of field values in order to maintain a physical significance of the parameters.
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In a linear triangular element approach, for instance:

u, 1e
uZ
N4:N2}:N3'o'o ,O,o ’ol_o_ 9.3_
T T T P L Vi
u;{vg, oo : OINJ_{Qz_‘ﬂi_?_t_o__l-_ vy } a
R R e e v b I R
O}O{OIO OIO|¢’2,3 ahe
1] 1} | . |
Wz}
Wy
i.e.
_(._L:l_Ut:_Le ...(18)
Similarly
z e
t: '_T = ,’:‘-
2

...(19)

where the Nil Mi are the well known interpolation functions used in F.E.M..
The sustitution of (18) and (19) into (15) enables one to write a system of
3-n equations if n is the number of nodes

é%=§t ...(20)

In a well posed mixed problem and after a reordering of data and unknowns

(20) can be writen in the classical form

_—— =~ .. .(21)
where X is the vector of unknowns (in general with both stresses and displace-
ments) and F collects the data. A routine solution of (21) completes the program,
and the discretization of (12) produces the results at the soght interior points.
Unfortunatly k is neither banded (unless some precautions are taken) nor

symmetric and this probably is the worse drawback of the method.
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4. SAMPLE PROBLEM.

A simple problem has been run in order to show some of the method capabili-
ties. It is a rectangular vessel with to openings, under axial loading.

In figure 1 the discretization used is shown. Rectangular elements of equal
size have been used.The hypothesis of constant values for both stresses and dis-
placements within each element has been done. The results obtained are assumed
at the mid-point of the elements. The elastic characteristics of the material are
V- i. ,é:i and the load is assumed to act regularly with unit intensity in order
to show relative values.

In figure 1 the results of stresses along the horizontal plain of symmetry
are shown. In order to compare the influence of the tridimensional effect we
have also plotted the results got after a plain stress analysis of a simitar pro-
blem. As can be seen due to the relative sizes of hole and shell there is prac-
tically no difference betwen both cases.

In figure 3 we have plotted the results of stresses along different horizontal
and vertical lines. The influence of the isostatics reagroupment is clear near
the corner of the hole.

In figure 4 the displacements at the boundary are shown. Again a comparison

is established with respect to the plane stress case.
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BOUNDARY DISCRETIZATION FOR

SHELL WITH OPENINGS
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VERTICAL STRESSES ALONG HORIZONTAL MIDDLE PLANE
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DISPLACEMENTS
AT THE
BOUNCARY NODES AROUND
THE HOLE
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VERTICAL CISPLACEMENTS AT THE LOWER FREE BOUNDARY
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GENERAL PATTERN
INTERIOR POINTS
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