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1. Introductory remarks

The application of the Boundary Element Method (BEM) to dynamic
problems is especially well suited for several situations arising
in soil-structure interaction. In those problems, the interest is
generally focused on the structure while the soil is only interes
ting because of the effects that it introduces to the structure.
The first application of the direct BEM to 3-D problems was pre-
sented in 1978 [1], for 2-D problems in 1980 [2] and [3], and se-
veral successive applications have been presented since then [4],
[5], [5], etc. Because of the additional reduction in dimensions
due to the symmetry, it is tempting to treat axisymmetric problems
with the BEM. In this way, three-dimensional problems can be trea
ted with monpdimensional elements. The most direct way to accom-
plish this is to use a fundamental solution composed of rings of
unit loads. For static problems, this was the direction taken in
references [7], [8], etc. Our experience with the fundamental axi
symmetric solution is,ynevertheless, a bit discouraging due to -
the difficulties of integration produced by the complication of -
the fundamental solution. On the other hand, several studies de-
veloped with the 3-D fundamental solution have allowed us to appre
.clate the advantages of robustness and simplicity involved in it.
In this paper, we shall present some of the results obtained using
the 3-D dynamic fundamental solution as a weighting function, whi-
le maintaining the axisymmetric approach to the representation of

geometry and interpolating functions.



2. Statement of the problem

To the best of our knowledge, the first author applying the 3-D
fundamental solution to dynamic problems was F. CHAPEL [9]. The
idea is to change the basic BEM equation:
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where T and g are the matrices representing the stresses and dis-
placements produced by the fundamental solution applied in P and
the superscript c means "cartesian", %(P), %(Q), and E(Q) are -
written in cylindrical coordinates by using rotation matrices -

where the superscript "p” is for "polar":
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The new equation. written in cylindrical coordinates is now:
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because Q' is constant (that is, it depends only on the colloca-
tion point P) and can be introduced inside the integrals. As dis-
cused by CHAPEL, P can be selected in several positions. For 620,

for instance:
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The interpolation functions are chosen by developing in series in
the classical Fourier approach for this type of problems. In the

following discussion, we are going to describe in detail the pro-
blem for the typical soil-structure situation where a rigid foun-
dation is given vertical, horizontal, rocking and yawing displa-

cements in order to determine the stiffness of the foundation. It
can be shown that vertical and yawing displacements can be treated

simultaneously by the equations:
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(where the integrations are done in 0£6<m), while the horizontal

and rocking displacements follow as interpolation laws:
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producing the following system:
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where S=sinf; C=cosf and the second equation has been established
by locating P in 6= -~ %.
The integrals are done numerically except when working in the -
same annular area containing the collocation point. In those ca-
ses, the static solution is substracted from the numerical solu-
tion and an analytical computation of the singularity is added -
"a posteriori".



For the numerical integration, we are using a 2x10 Gauss quadra-
ture on every semiring, but in order to weigh the influence of -
the collocation point, a parabolic transformation has been super-
imposed to accumulate points near P, i.e., we are using the follo

wing rule.
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The transformation is essential in order to improve the accuracy
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3. Examples

Fig. 1 shows the solution obtained for the torsional response of

an elastic homogeneous halfspace, compared to LUCO's, et al. [10]
solution, while Fig. 2 represents the horizontal response as com—
pared to the one by VELETSOS [11]. In both cases v=1/3, a= %ﬁ
where is the excitation frequency, r the radius of the footing -

and CS the celerity of S waves in the medium. The discretization

was of only 8 elements under the footing. Fig. 3 presents the sa-
me results for a hysteretically damped halfspace with £=0.15 aga-
inst the results by VELETSOS et al [12]. Finally, Fig. 4 treats

a more complicated case previously studied by CHAPEL [9]. It can

be seen in the figures that all results are excellent.

4. Conclusions

The use of a 3-D fundamental solution is some axisymmetric problems
is straightforward. The resulting algorithms seem to work better
than the usual ones (at least for static solutions) and for dyna-
mic cases, than those presented in the previous paragraph. The -
robustness of the method allows the computations for very high -
and very low frequencies without any noticeable difficulty.
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ADIMENSIONAL FUNCTIONS FOR TORSIONALLY EXCITED DISK
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FUNCTIONS k, AND ¢, FOR HORIZONTALLY EXCITED DISK

FIGURE 2
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HORIZONTAL IMPEDANCE FUNCTIONS FOR A HYSTERETICALLY
DAMPED HALF-SPACE (a=1/3)
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