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Summary. The paper presents the application of B.EM.
to elastodynamic problems. Both the transient and steady
state solutions are presented as well as some techniques to
simplify problems with a free-stress boundary.

Introduction
As is well known B.E.M. is obtained as a mixture of
the integral representation formula of classical elasticity and
the discretization philosophy of the finite element method
(F.E.M.).
Several books have been pubhshed on the technique (1))
((2)(3) {(4))whose main attractive feature is the reduction by
one of the dimensionality of the problem. In this way com-
plex tridimensional problems need to be discretized only at
its two-dimensional boundary. Also interesting is the inclu-
sion of the decay properties at infinity inside the fundamen-

tal solution used in the reciprocity theorem, which avoids the

truncation problems that in dynamic
when using the F.E.M.

The discretization is done by assuming polinomial inter-
polation inside each clement for the geometry, displacements
and tractions. Although the degree of these interpolations
can be in principle independent it is usual to adopt a kind of
"isoparametric" technique. Sometimes also it is better to
usc elements to simulate special characteristics. for instance
singular behaviour near and end crack, and it is always inte-
resting to choose & furdamental solution suited to the problem
on hand. The generally adopted solution is the Kelvin-type
load in the complete space which is a good alternative for in-
stance when treating for deep buried cavities. A lot of prob-
lems in engineering are however best modelled in terms of a
half-space geometry. In this are included the usual soil-
structure interaction problems that-appear in machine foun-
dations or in nuclear power plants. In thesc cases it is de—
sirable to use Mindlin-type solutions in order to discretize
only the interface. Nevertheless this solution is difficult to
incorporate in the integrals and some compromise alternatives
have been proposed. The most obvious one is the truncation
of the discretized area outside the interface((5,6))which pro-
duces surprisingly good results with a very rough discretiza-
tion. Another technique is the use of the method of images to
sweep out the most influencing terms from outside the inter—
face,

In this paper we present an appraisal of the method with
some applications of it to the steady-state case as well as a
compariscn between the truncation procedures outlined above.

cases are present

Transient problems
The representation is obtained by using the response to
an impulse P(t) acting in direction a at point ;

_ff(>_<,4=)=2~P(4=) S(x-%) o

and the Betti-Rayleigh dynamic reciprocal identity((9}
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Where T ,f ) are respectively the traction vector, the
body force vector and the displacement vector of a dynamic
state whose initial conditions are

The ¥ represents convolution products and the primes are
assigned to a different state.
The fundamental solution can be written((9,10) as
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when the load is directed along the Xk axis and its point of
application is ‘; .

QUbstltutlng (4} in (2) the Wheeler and Sternberg formu

lae is obtamed.
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Using a limiting process, well documented in((11)} it is
possible to write a Somigliana~type formulae for points at
the boundary
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where C is a matrix depending on the local smoothness pro-
perties of the boundary and R_ collects the two last integrals
in (5). -

The discretization can be done((11))by taking J nodes
on the boundary and a set lrtm" m-Ai“, 'h:.{,...,/\/f of equal
ly spaced pieces of time and putting
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Substitution in (6) produces the system
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By successively putting n=¢,2 ... J(9) is solved-for the un-

known coefficients progressing along the time axis. Due to
properties of symmetry only NI 2 kernels have to be calcu-
lated. -

Steady-state problems

The steady-state case is interesting, because some
problems are best treated in the frequency domain. Using
the Fourier transformation indicated by a X the reciprocity
relationship can be written as
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If the primes are reserved to a fundamental solution (10) can
be written as
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where 2/ and T are the displacements and stresses produ-
ced by the fundamental load. ,-‘-‘.,A
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For instance the KELVIN type load.({1,10).

If P is at the boundary the left-hand side of the equa-
tion (11) has to be modified in a way consistent with the boun-
dary smocthness. Since then the discretization is done as
in an elastostatic problem
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where N are the interpolation function and [._Tlthe Jacobian
of the transofrmation.

A simple axample is shown in fig.1. which shows a
plate under uniform harmonic tractions on two opposite sides
without transverse motions. Due to the boundary conditis
only P waves are expected. In 1.b we can see the motion
of the boundary versus frequency presenting resonance for
a frequency well in agreement with the theoretical one

G _(5397.12) X _

S6519 r=d ferec
yA 0.3

a)z

Elsewhere we have presented((5,6,10) the application of the
method to soil-structure interaction problems, following the
lines established by Dominguez {12,13). In them the surface

of the half-space was applied when calculating the dynamic
impedances of embedded foundations in the form

Kij= K’zf (%94—’: a, Ci; ) 13)
where

Q, = WB/C&

-b = half-width of the foundation

In fig.2.b we present the solutior; obtained with several lires
of discretization and for different frequencies.

The previous experience has shown that discrepancies
grow with the value of the frequency and this is why a use of
the method of images has been proposed recently((7,8)L

The idea is to analyze matrix T in the light of the arti-
symmetric situation provoked by the images method. 1t is
easy to see that for nodes on 2.0 , T has the form

o O T3 (4.
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for every element on that plane, thus reducing the influence
to contributions that, on physical grounds, are small. This
allows the reduction of the discretization on the surface. A



typical result can be seen in Fig. 4 where the influence on
the static K and dynamic parts 3 Cy; is reported. As

can be seen !f!ne static part is strongly affected by the discre=

tization when the single Kelvin point solution is used while
the dynamic parts behave quite differently for the ¥-X dis~
placement while the stiffness is well approximated the damp-
ing is underestimated.
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