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ABSTRACT   

This paper presents a power efficient architecture for a neural spike recording channel. The channel offers a self-
calibration operation mode and can be used both for signal tracking (to raw digitize the acquired neural waveform) and 
feature extraction (to build a PWL approximation of the spikes in order to reduce data bandwidth on the RF-link). The 
neural threshold voltage is adaptively calculated during the spike detection period using basic digital operations. The 
neural input signal is amplified and filtered using a LNA, reconfigurable Band-Pass Filter, followed by a fully 
reconfigurable 8-bit ADC. The key element is the ADC architecture. It is a binary search data converter with a SC-
implementation. Due to its architecture, it can be programmed to work either as a PGA, S&H or ADC. In order to allow 
power saving, inactive blocks are powered off depending on the selected operation mode, ADC sampling frequency is 
reconfigured and bias current is dynamically adapted during the conversion. Due to the ADC low input capacitance, the 
power consumption of the input LNA can be decreased and the overall power consumption of the channel is low. The 
prototype was implemented using a CMOS 0.13um standard process, and it occupies 400um x 400um. Simulations from 
extracted layout show very promising results. The power consumption of the complete channel for the signal tracking 
operations is 2.8uW, and is increased to 3.0uW when the feature extraction operation is performed, one of the lowest 
reported. 

Keywords: Neural recording, spike detection, low-power, low-voltage, ADC, low-noise amplifier. 
 

1. INTRODUCTION  
The design of implantable neural recording microsystems for the wireless transmission of brain activity has focused the 
attention of many research groups during the last years1-4. These microsystems can be very useful both in clinical (as part 
of therapeutic procedures in patients with neurological diseases) and neuroscience applications. Compared to wired 
systems, these solutions provide untethered communications with the external world, allowing for more freedom of 
movement and avoiding the risk of infections associated with percutaneous plugs.  

Wireless connectivity implies two major challenges on the design of implantable biosensors. First, as microsystems are 
powered by small batteries or even rely on transcutaneous inductive links, the need for ultra-low power design strategies 
is mandatory. Second, the data rate that can be transmitted by wireless telemetry circuits is limited and, therefore, some 
data reduction mechanisms must be performed in the implanted device. This is particularly true in the case of 
microsystems mounted on Multi-Electrode Arrays (MEAs) in which, the transmission bandwidth requirement linearly 
increases with the number of recording channels. Then, the objective of these systems is to transmit the minimum 
information necessary about the recorded neural data that allows a reliable spike sorting processing. Most of the works 
reduce the channel data bandwidth by the transmission of just the information of the spikes after performing a spike 
detection processing at cell level1-4. Although it introduces a high reduction in the amount of data transmitted, it can be 
insufficient in those cases where the system is integrated in a big MEA where the transmission channel is completely 
saturated. In these situations, a big reduction of the sent data is needed, and some additional spike feature extraction 
operations are added to the neural channel sensor3. 

In this paper we present a low power neural spike recording channel suitable for raw brain activity acquisition at 
22.5kS/s and on-chip detection/characterization of firing action potentials. This channel is intended to be part of a large 
multi-channel array and uses first-order Piecewise-Linear (PWL) approximations for spike feature extraction. This data 
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compression mechanism could be useful in cortically-controlled neuroprosthetics for spinal cord injured patients. The 
proposed solution employs mixed-signal techniques, and uses a foreground digital calibration process to counteract 
technology process variations and to adaptively calculate the voltage threshold voltage for the spike detection operation. 
The complete channel has been integrated in a CMOS standard 130nm technology and it occupies 400umx400um, thus 
fitting in the pitch of commercially available MEAs1. 

The paper is structured as follows. Section 2 describes the architecture of the channel and its operation modes, while 
Section 3 and Section 4 describe, respectively, two of its basic building blocks, the band-limited low noise amplifier and 
the data converter. Section 5 shows post-layout simulations of the recording channel and summarizes the achieved 
performance. Finally, Section 6 gives some conclusions. 

2. RECORDING CHANNEL ARCHITECTURE 
2.1 General architecture 

Figure 1 shows the block diagram of the proposed neural spike recording channel. It consists of a band-limited fully-
differential Low-Noise Amplifier (LNA), a reconfigurable Analog-to-Digital Converter (ADC) which embeds a 
Programmable Gain Amplifier (PGA), and some digital circuitry for control, spike detection and feature extraction 
purposes. 

 
Figure 1: Architecture of the neural recording channel 

Three different operation modes can be programmed in the recording channel. They are the calibration, signal tracking 
and feature extraction modes. Depending on the operation mode, idle blocks are total or partially powered off for power 
saving. Active blocks are operated by dedicated clock signals (derived from a master 1.6MHz reference) at frequencies 
that depend on the particular system configuration. 

2.2 Calibration mode 

Calibration is necessary in a multichannel neural sensor in order to counteract process variations, the difference between 
the signal levels of the electrodes and the unequal noise level of the neural signals. It means that in the proposed channel 
we need to calibrate both the low-pass and high-pass frequencies of the BP-LNA, the gain of the PGA, and the threshold 
voltage of the spike detection circuitry. 

Due to the fact that each channel is affected by different process variation parameters and that the signal level of the 
sensed neural signals will depend on the position of the electrodes respect to the neurons, the calibration process has to 
be done on each channel separately. 

We can distinguish between three different calibrations in the neural channel; the calibration of the PGA, the calibration 
of the LNA and the automatically detected threshold voltage for the spike detection5,6. The first two are performed at the 
beginning of the cell operation and its calibration values are stored to be used during the rest of the operation of the 
neural channel. 
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The calibration process will be split in three steps, following the flow shown in Figure 2. First, the input of the system is 
connected to a frequency-controlled signal generator to calibrate the low-pass and high-pass frequencies of the BP-LNA. 
After that, the input of the system is switched to the electrode and the PGA is calibrated to maximize the dynamic range 
of the ADC. During the detection process the adaptive neural threshold detection algorithm is run as a background 
process. These calibrations are explained in detail in the following sub-sections. 

 
Figure 2: Digital flow of the calibration process 

BP-filter calibration 

The objective of this calibration is to set the correct BP-band of the filter shown in Figure 1. As the positions of the zeros 
and the poles depend on the value of pseudo-resistors, (built using pMOS transistors) and capacitors, respectively, 
process variations produce a displacement on the position of the HP and LP filters. In order to compensate these shifts, 
we introduced calibration both in the pseudo-resistors (through 3-bits) and the capacitor (2-bits) to adjust their respective 
values. 

In this step of the calibration flow we will adjust these control bits to set the BP-band at 200Hz-7kHz. For that, we will 
employ the frequency-controlled signal generator shown in Figure 3 as the input of our system. The output frequency of 
this signal generator is adjusted by the input clock signal of the block. This clock signal is used to control the switches 
that charge and discharge a load capacitor using a certain bias current, which is controlled in function of the desired 
output frequency. The circuit generates a triangular wave signal which is passed through an attenuator that divides its 
amplitude by 1000 in order to be used as the input of our neural signal interface. 

The schematic of the signal attenuator is shown in Figure 3a. The attenuation is done by means of a resistive divisor, 
which is preceded by a buffer stage, as Figure 3b shows. The schematic of the charge pump can be seen in Figure 3c, and 
it is basically formed by a biasing circuitry which is adjusted in function of the desired frequency, and a load capacitor 
that is charged or discharged using the generated bias current. 

The process flow of the BP-filter calibration is shown in Figure 4. First, the signal generator is programmed to work at 
the band-pass frequency (around 2kHz). Setting the BP-filter to the widest band, the PGA is calibrated to maximize the 
input dynamic range of the ADC. Once it is finished, the system stores the maximum value of the output signal under 
this configuration, that is, the reference of the BP-band. 

The next step is the calibration of the LP-frequency. The signal generator is configured to create a 7kHz signal and the 
control bits of the LP-filter are configured to set the lowest frequency. The calibration is performed by comparing the 
maximum output value of the system at 7kHz input with the stored BP-band reference. If the drop of the first is 
equivalent or lower than 3dB (70%), the LP-frequency is correct and the calibration ends. In other case, the LP-
frequency is rose to the next step and the comparison is performed again. This routine is repeated either until the drop 
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voltage is lower than 3dB with respect to the stored BP-band reference or the LP-frequency is configured at its widest 
value. 

 

 
Figure 3: Schematic of a) Frequency-controlled signal generator, b) Attenuator, c) Charge pump 

 
Figure 4: Digital flow of the BP-LNA calibration process 

PGA calibration 

The calibration of the PGA starts connecting the signal from the electrode directly to the input of the calibrated BP-LNA 
of the recording system. Then, the system follows the calibration flow shown in Figure 5, in which the gain of the PGA 
is calculated using a successive approximation algorithm similar to that of the SAR ADCs. The 3-bits of control are 
successively set starting with the most significant one and continuing with the rest until the least significant.  

In this case, the system sets the MSB of the PGA gain control bits to ‘1’, while the others remain to ‘0’. Then, the ouput 
of the recording channel is analyzed during a certain time in order to detect if the signal is saturated (it exceeds the 90% 
of the full-scale) or not. In the first case, the MSB is switched to ‘0’; otherwise, it is kept to ‘1’. The next iteration starts 
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switching the next bit to ‘1’ and, hereinafter, the same analysis is performed. The calibration ends repeating the 
explained algorithm for the third bit. 

 
Figure 5: Digital flow of the PGA calibration process 

Adaptive neural threshold voltage 

The threshold voltage of the neural signal for spike detection is continuously calculated during the operation of the 
neural spike recording channel. 

The objective of the algorithm is to measure the mean of the noise level and multiply it by a certain factor in order to get 
the desired threshold voltage. There is a big number of works that present different solutions5-10. One of the methods that 
have been proven as efficient and easily implementable is the mean deviation (MD)10, which can be calculated as: 

1

1( )
N

i
i

MD x x
N =

= ∑  

According to a published study5, it is more efficient to calculate a double threshold (positive and negative) rather than a 
global one. Then, the system evaluates if the input values are either negative or positive, calculates the mean using N 
elements for both cases and multiplies it by a factor of 4.5, which has been calculated as the optimum one6. 

Both the number of elements in the summary and the multiplying factor are programmable in order to have a better 
control during the detection process. 

2.3 Tracking mode 

During the tracking mode, the signal captured by the neural electrode is conditioned by the LNA and 8-bits digitized by 
the ADC at a 22.5kS/s throughput rate. The output of the ADC is serially read out at a rate of 1.6MHz to allow for real-
time external reconstruction of the neural data. This mode is always preceded by the calibration process in order to adjust 
the correct band-pass frequency of the filter and the gain of the PGA. As the spike detection is not performed during this 
mode, the adaptive threshold voltage calculation is disabled. 

2.4 Feature extraction mode 

This mode provides a data compressing mechanism to reduce the bandwidth of the information transmitted from the 
channel. Two phases can be distinguished in this operation mode which are referred to as spike detection and spike 
processing. 

During spike detection, the ADC is configured to sample the neural data at 22.5kS/s. The digital logic detects if there is 
any spike in function of the calculated adaptive threshold voltage. Once the input voltage goes over the threshold 
voltage, the system assumes that there is a spike, switches the sampling rate of the ADC to 90kS/s and starts the spike 
processing phase. The objective of this phase is to create a PWL approximation biphasic peak by means of two time 
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segments (one for the peak position, Δ1, and the other for the position of the second peak, Δ2) and the magnitude of these 
two peaks (Vpmax and Vpmin). Additionally, information about the threshold voltage (Vth) and the magnitude of the end of 
the spike, Vend (which is supposed to have a fixed duration from the first peak, given by a programmable variable tspike) is 
also provided (see Figure 6). All the variables are codified into 8-bit digital vectors, which mean a total of 48-bits to 
characterize each spike. As the sampling rate of the ADC is four times larger during this mode than on the normal 
operation, only one of each four samples are taken to calculate the threshold voltage for spike detection. 

 
Figure 6: PWL approximation performed by the feature extraction 

3. LOW-NOISE AMPLIFIER 
The LNA must be able to boost the weak signals detected by the microelectrodes and filter out the undesired frequency 
components11-13. Our proposed LNA follows the capacitive feedback structure12 but it introduces three main 
modifications for improved performance. First, it uses a fully-differential architecture, shown in Figure 7a, to increase 
the dynamic range of the amplifier and improve PSRR. Second, the Operational Transconductance Amplifier (OTA) 
uses a high output swing two-stage topology with feedforward capacitive compensation, shown in Figure 7b, to obtain a 
higher low-pass filter rejection of -40dB/dec. Third, the first stage of the OTA uses a complementary input differential 
pair to reuse the tail current and nearly double the achieved transconductance14. 

The high-pass and low-pass frequency corners of the characteristic are 2-bits adjustable, by programming the value of 
the feedback resistors (control word [b2r,b1r]) and the load capacitor (control word [b2c,b1c]), respectively. Figure 7c 
shows the structure of the feedback resistors. They are formed by as many pseudo-resistors in series as determined by the 
1-out-4 code c =[c1, ..., c4] defined, in turn, by the control word [b2r,b1r]. The schematic of the pseudo-resistors is 
shown in Figure 7c14. They are formed by eight MOS-bipolar devices in series to reduce distortion for large output 
signals. Mismatch effects and leakage currents have been carefully simulated to ensure feasibility. 

Figure 8a shows the transfer characteristics of the LNA for different programming configurations. A mid-band gain of 
about 47.5dB is achieved by means of the capacitors ratio Ci/Cf. Figure 8b depicts the input-referred voltage noise 
spectrum for a nominal passband of 217Hz - 7.16kHz. Integration under this curve yields an rms noise voltage of 
2.84uVrms. Considering that the power consumption of the amplifier is 1.92uW including CMFB circuits, the Noise 
Efficiency Factor (NEF)12 of the LNA is 1.62 (1.75 when the biasing circuitry is also considered). 

4. PGA AND ADC 
The proposed ADC follows a binary search algorithm for data conversion but, instead of using a SAR architecture1-3, it 
employs the SC structure of Figure 9a15. The circuit contains two active blocks, an S&H programmable gain 
amplifier/integrator and a comparator, as well as a conventional SAR register (not shown in the figure). Circuit operation 
is as follows. The signal is first sampled and stored in the integrator by transferring charge from capacitor Cin to Cint. 
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Figure 7: a) Schematic of the BP-LNA, b) Schematic of the OTA, c) Schematic of the programmable resistor chain 

 

Figure 8: a) Transfer characteristic of the BP-LNA from post-layout simulations, b) Input-referred voltage noise 
spectrum of the BP-LNA 

Afterwards, the conversion phase starts. It is simply realized by successively comparing the integrated voltage with 
Vref/2n, where Vref is the full-scale reference voltage of the converter, and index n =1, ..., N, indicates the conversion step 
(N represents the converter resolution). The weighted voltages Vref/2n are generated by a passive SC arrangement (shaded 
area in Figure 9a). If the integrated voltage is larger (alt., smaller) than Vref/2n the comparator sets to ‘1’ (alt., ‘0’) the n-th 
bit of the conversion, and the integrator is updated by subtracting (adding) such increment. As illustrated in the timing 
diagram of Figure 9b, conversion takes N+1 clock cycles. Depending on the operation mode, the circuit is clocked at 
100, 200 or 800kHz. 

The value of the input capacitor Cin is 3-bits digitally programmable, so it implements a Programmable Gain Amplifier 
(PGA) during the sampling of the input voltage. The gain of the PGA can be adjusted from 0 to 18dB at discrete steps of 
3dB (this gives a total gain for the channel front-end of 48-66dB, including the LNA contribution) by 3-bits 
programming the input capacitance. 

Figure 10a shows the schematic of the fully differential OTA in the ADC+PGA. It is a folded-cascode topology with a 
SC-based common-mode feedback circuit (not shown). The OTA uses a dynamic biasing scheme in which the tail 
current of the block is adjusted according to the slew-rate demand (it decreases along the conversion process, as shown 
in Figure 9b) and the selected operation mode. This is accomplished by controlling the widths of transistors M3-M7. 
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Figure 10b shows the schematic of the comparator. It is a current-controlled dynamic-latch buffered with class-A 
amplifiers. As in the OTA, the bias current is adapted according to the selected sampling frequency. 

 
Figure 9: a) SC-based reconfigurable ADC, b) ADC signal waveform 

 

Figure 10: a) Schematic of the FD-OTA used in the SC-ADC, b) Schematic of the comparator 
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Figure 11: FFT spectrums of the SC-ADC at sampling rates of: a) 22.5kS/s, b) 90kS/s 

Figure 11 shows two FFT analyses of the ADC at sampling rates of 90kS/s and 22.5kS/s obtained from a post-layout 
analysis. The SFDR and SNDR of the converter are approximately 62dB and 50dB along the whole Nyquist band, 
respectively. This corresponds to an ENOB of almost 8 bits. These features remain unaltered regardless of the gain 
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setting of the embedded PGA. The average power consumption of the ADC is 500nW at 22.5kS/S sampling mode and 
1.8uW at 90kS/s. 

5. POST-LAYOUT SIMULATION RESULTS 
Figure 12 shows the layout of the complete neural spike recording cell. It has been implemented in a 130nm CMOS 
technology and occupies 400um x 400um. 

DIGITAL CIRCUIT

PROGRAMMABLE
SAMPLE & HOLD

AND
ANALOG-TO-DIGITAL

CONVERTER

PAD

BIAS CURRENT
REFERENCE PROGRAMMABLE

LOW-NOISE
AMPLIFIER

DECOUPLING 
CAPACITORS

400 m  
Figure 12: Layout of the neural recording cell 

Figure 14 illustrates the operation of the proposed neural recording channel in feature extraction mode. The plot at the 
top is an exemplary synthesized spike-controlled neural sequence which has been built using three different spikes from 
a real database as the measured local activity. The background noise is generated using a bigger database to simulate the 
behavior of the distant neurons16, while the local spikes are positioned using a Poisson distribution. The SNR of this 60 
seconds generated sequence is 10dB.  
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Figure 13: Quality of the spike detection in function of the SNR of the input signal 

The plots at the bottom illustrate the result of the spike sorting operation performed using the information provided by 
the system after the feature extraction. The spikes are sorted comparing their features by means of the Euclidean 
distance17. When a new spike comes, its Euclidean distance is evaluated with the rest of the stored spikes. If some of 
them are below a certain threshold, the spike is sorted with it. If not, it is classified as a new spike.  
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As can be extracted from the presented analysis, the proposed feature extraction method is able to provide the enough 
information to perform a spike sorting operation. 

The performance of the spike detection operation and the adaptive neural threshold voltage is illustrated in Figure 13 
through the probability of detection and false alarm for different SNRs. The first one is defined as the ratio between the 
number of true detected spikes and the total number of spikes introduced in the processed sample. The second one is 
defined as the ratio between the number of false spikes detected and the total number of spikes detected by the system. 
We can see that the performance of the spike detection algorithm is good while the SNR of the neural data keep above 
0dB, with a high probability of detection and a low probability of false alarm. 

Table 1 summarizes the performance of the presented neural spike recording channel. The power consumption depends 
on the selected operation mode. During signal tracking, only the band-limited LNA and the ADC with a throughput rate 
of 22.5kS/s are enabled, and the overall power consumption of the channel is 2.8uW, also including the dissipation of the 
biasing circuitry. During the feature extraction mode, the average power consumption is of abut 3uW, assuming that the 
spike detection phase takes the 95% of the total evaluation time, while the remaining 5% is employed for spike 
processing. 

6. CONCLUSIONS 
A neural spike recording channel with feature extraction capabilities has been presented. The complete channel has been 
integrated in a CMOS standard 130nm technology and it occupies 400umx400um. The circuit is reconfigurable and 
offers different operation modes, including foreground self-calibration, adaptive threshold voltage, signal tracking and 
feature extraction using first-order PWL approximations. The performed feature extraction reduces the data bandwidth 
by nearly the 90% and simulation results confirm that the chosen PWL approximation reconstruction allows an effective 
spike sorting. Power-down strategies and frequency adaptation techniques are adopted in the chip for power saving. The 
channel consumes 2.8uW during signal tracking at 22.5kS/s, and 3.0uW average when performing feature extraction 
operation. 

Table 1.  Performance of the neural spike recording channel. 

Operation Mode Spike detection Feature Extraction 
Band-Pass Low-Noise Amplifier 

Input-referred noise 2.84uVrms 
Nominal passband 217Hz – 7.16kHz 
Low frequency corner 20-400Hz (3-bits tunable) 
High frequency corner 6.25-12.6kHz (2-bits tunable) 
THD (2mVpp input) 0.04% 
Power Consumption 2.17uW (including biasing circuitry) 
NEF 1.75 (including biasing circuitry) 

PGA and Analog-to-Digital Converter 
Sampling Rate 22.5kS/s 90kS/s 
ENOB 7.98-bits 7.96-bits 
SNDR 49.8dB 49.68dB 
Power Consumption 500nW 1.8uW 

Neural Recording Channel 
Process Standard CMOS 0.13um 
Supply Voltage 1.2 V 
Overall Gain 47.5 – 65.5dB (3dB step) 
Power consumption 2.8uW 4.1uW 
Die Area 0.0160mm2 (400um x 400um) 
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Figure 14: Spike sorting classification using the PWL approximation provide by the neural cell. The first row illustrates 

the raw generated spike-controlled data, while the second row shows the three different spike shapes used in the 
generated data. Third row plots the PWL approximation of the detected spikes and the last row shows the result of the 

spike sorting algorithm. 
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