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ABSTRACT 
 

Growing concern about the role of agriculture in the sustainable management of 

natural resources (water, land and atmosphere), combined with the need to 

meet global food demand, creates an immediate need to improve production 

systems. Converting agricultural biosystems into highly efficient, economically 

profitable and sustainable productive elements requires the adoption of 

technology and the use of truthful, repeatable and actionable data. 

In recent years, important technological advances including global positioning 

systems (GPS), yield monitors, variable rate technologies (VRT) and other 

sensors are already being applied and implemented in the field. This technology 

is being incorporated into crop production at all stages: sowing, fertilizing, pest 

and weed control, irrigation, harvesting, etc., so as to obtain the maximum 

information possible from each of them and enable a precise site-specific 

management.  

Advances in different strategies and decisions that are taken daily in production 

systems are key to obtain maximum profitability at the lowest possible cost, 

which is the main objective of any producer. 

The main objective of this doctoral thesis is to develop new site-specific 

information methodologies to characterize the spatial and temporal variability in 

key soil and crop traits in two herbaceous crops of high economic importance in 

Andalusia, autumn sowing sugar beet and winter durum wheat. Since sugar 

beet is an irrigated crop and durum wheat is normally a rainfed crop, this work 

has focused on the development of tools to optimize irrigation management of 

sugar beet and fertilization for durum wheat. 

On the one hand, the feasibility of using an inexpensive and portable hand-held 

optical sensor for (1) estimating wheat yield response to N fertilization and (2) 

generating prescription maps of N application recommendations for commercial 

wheat fields has been evaluated. On the other hand, images captured with a 
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thermal imaging camera mounted on an unmanned aerial vehicle (UAV) were 

used to evaluate their potential to characterize the spatiotemporal variability of 

sugar beet water status when grown under heterogeneous soil and water 

management conditions. 
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1.1. Background and rationale of the research 

This thesis is organized into two research projects "Nuevas Estrategias 

Sostenibles para el Control de la Mala Hierba y Aplicación del Riego en 

Cultivos en Líneas mediante Técnicas de Agricultura de Precisión” (NESAP 

project, P12-AGR-1227, 2013-2016) and “Comparative study between 

applications of variable fertilization and conventional applications through the 

selection of the study plots, the corresponding sampling and the monitoring of 

the harvest” (FIUS: 2556/0332), carried out by the Smart Biosystems 

Laboratory (AGR-278) research team at ETSIA (Escuela Técnica Superior de 

Ingeniería Agronómica) of the University of Sevilla. The first project was funded 

by the Regional Government of Andalusia, and the second project was funded 

by a consortium of agricultural enterprises. 

The world population, with approximately 7.15 billion people currently, increases 

by approximately 240,000 people every day. It is expected to reach 8 billion 

people by 2025 and 9.6 billion people by 2050. Almost all the potentially arable 

land is already being used and estimations say that food production must be 

increased by 70% by approximately 2050 if we want to feed the world 

population (CEMA - European Agricultural Machinery http://www.cema-

agri.org/page/global-food-challenge). 

An important drawback to achieve this objective is fresh water limitation. Only 

2.5% of the existing water on Earth is fresh water, and of that, 0.5% is found in 

underground reservoirs and 0.01% in rivers and lakes. Therefore, only a 

minimal proportion of the Earth's existing water is usable to grow crops, and that 

amount is reduced year by year due to pollution and salinization of groundwater 

of arid zones. At the end of the 20th century, agriculture used on average 70% 

of all the water used and estimations indicate that irrigation will increase by 14 

percent by 2030. By 2050, water consumption is projected to increase by 44 

percent to meet industrial and population demands. Under this scenario, the 

United Nations (World Water Assessment Programme) warns that although 

there is enough water to meet the world's growing needs, it will not be possible 

if we don't radically change the way it is used, managed and shared. The 
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optimization of water use should, therefore, be one of the main concerns of 

agricultural scientists and stakeholders (www.fao.org / 

www.fundacionaquae.org). This is an unprecedented challenge to humanity, 

and there are many limitations to accomplishing such a feat. In Europe, the 

overall objective to cope with this challenge is to develop much-needed 

solutions to improve resource (e.g. water, nutrients) availability and to build 

more sustainable food production systems in a region heavily distressed by 

climate change, urbanisation and population growth (European Parliament - 

Science and Technology Options Assessment, 2nd. STOA Options Brief - Plant 

breeding and innovative agriculture; available at 

http://www.europarl.europa.eu/stoa/cms/home/events/workshops/feeding). To 

achieve this vital objective, the adoption of smarter farming methods, based on 

proximal and remote sensing, can provide new insights for optimizing 

agricultural processes. 

The importance of this thesis lays in the development and assessment of 

precision agriculture methods for sugar beet and wheat, two relevant crops in 

terms of economy and cultivated land in some southern European countries, 

including Spain. Sugar beet was grown on 1.8 million hectares across the EU in 

2017, whereas 310 million tonnes of cereals were produced in Europe in 2017 

(Eurostat, 2018). In particular, Spain is the 8th largest EU sugar-producing 

country, with 3.5% of the total EU sugar beet area (1.5 million hectares). 

Andalusia produces nearly all the autumn-sown sugar beet in Spain. Sevilla 

stands out with 5,739.0 ha / 531,154.00 t and Cádiz with 2795.00 ha / 

210,550.00 t of summer harvesting (data 2013/2014 campaign; 

https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/cultivos-

herbaceos/remolacha-azucarera/default.aspx). Spain is the 4th most productive 

EU producer of wheat, with 23.39 Mt, behind France (55.32 Mt), Germany 

(45.50 Mt) and Poland (30.24 Mt). When considering only winter wheat, the 

most productive countries are in the Mediterranean region, with Italy being the 

first producer, followed by southern Spain and Greece (Eurostat, 2018). In 

Spain, almost 100% of durum wheat production is concentrated between 

Aragon and Andalusia (MAPA 
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https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/cultivos-

herbaceos/cereales/). 

In conventional agriculture, inputs are often distributed evenly throughout the 

field with the same amount of inputs applied per unit area. Best management 

practices for improving fertilizer and water use efficiency dictate the application 

location to maximize uptake, the best application dose to optimize growth, and 

the most appropriate material source (Drechsel et al., 2015). In principle, 

precision farming distributes inputs site specifically to gain marginal yield 

benefits from the same field or to conserve inputs. With a completely 

homogenous field (soil and crop), the potential benefits of site-specific 

application are in principle zero, but with heterogeneous fields, benefits are 

possible according to the variation in the yield potential or input saving potential 

from each field unit (Pedersen and Lind, 2017). 

Presently, fertilizers (wheat) and water (sugar beet) are applied to fields 

uniformly and in quantities sometimes exceeding the amount required by the 

crops. This practice represents both a waste of natural resources and a source 

of environmental pollution. The application of variable rates of water and 

fertilizers has been proposed as a possible solution to optimize their use, and 

for this application, site-specific information on crop status and/or soil conditions 

is a prerequisite. However, although the availability of datasets on the existing 

within-field spatial variability is important (Bramley et al., 2011), it is even more 

important to derive procedures to convert the data into actionable information 

and use this information to determine the most economically efficient variable-

rate input application practice.  

1.1.1 Spatial variability of soil and crops 

To transform conventional agriculture into smart agriculture, it is essential to 

determine the variability of soils (Miller et al., 1988; Schepers et al., 2004; 

Corwin and Lesch, 2005) and crops (Raun et al., 2005; Hall et al., 2008). Soil is 

one of the most important factors of agricultural production and can have a 

dominant effect on crop yields and quality (Eghball et al., 2003). The spatial-

temporal variability in soil properties and crop yields has always been used in 
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conventional agriculture as an important aspect whose knowledge would allow 

for more efficient management practices. Precision agriculture (PA) involves 

optimizing small-scale inputs and managing spatial variability to obtain a 

general increase in profitability and environmental protection. PA contributes to 

sustainable crop production by reducing costs without lowering or even 

increasing production (reduced costs, optimized farm management, increased 

yields and higher quality harvests). The success of PA depends largely on 

highly efficient and reliable methods for collecting and processing site-specific 

field information. 

The spatial variability of physico-chemical soil properties can be characterized 

by various sampling methods that, in combination with the use of global 

navigation satellite systems (GPS) and geostatistical tools (Goovaerts, 1998), 

allow the elaboration of soil variability maps that will later be used for the 

establishment of management zones (Moral et al., 2010). An example of the 

importance that knowledge of the spatial variability of soil and crop properties 

can have on farm management is that described by Arnó et al. (2012) in 

vineyards, who observed an inverse spatial correlation between grape yield and 

some grape quality parameters and showed that the percentage of carbonates 

in the soil had a great influence on grape quality. 

Likewise, Martínez-Casasnovas et al. (2012) demonstrated that management 

zones defined from NDVI vegetation index maps are more effective in 

differentiating areas with different degrees of grape maturity and quality than 

those derived from yield maps. 

1.1.2 Variable rate fertilizer and water application: Map-based 

system 

The variable rate application of inputs, once the spatial variability has been 

characterized, can be addressed through two different approaches: map-based 

and real-time sensor-based systems. Map-based variable rate application 

adjusts the application rate based on an electronic map, also called a 

prescription map or application map (O’Shaughnessy et al., 2015). With map-

based variable rate application, a GNSS receiver locates the applicator’s 
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position on the map and the desired rate is then adjusted based on the 

prescription map as the applicator moves across the field (Grisso et al., 2011). 

Variable rate application of fertilizer implies that the mass flow rate and, 

subsequently, the application rate of fertilizer must be varied quickly as the 

applicator moves across the field. The spinner and pneumatic spreader are 

generally the most commonly used fertilizer application machinery, and fertilizer 

drills are frequently used. In general, the application rate is changed by 

changing the mass flow of fertilizer to the delivery system of the spreader 

(spinning disks or air boom). Current technology allows the rate between 

different swaths and in the longitudinal direction within one swath to be 

changed. 

1.1.3 Variable rate fertilizer and water application: Real-time 

sensor-based system 

While the map–based approach use historical information typically gathered 

with yield monitors, soil sampling and/or with data from sensors, the real-time 

sensor approach use real-time information gathered from sensors mounted on 

agricultural machinery to assess in–season conditions. The sensor–based 

approach therefore uses crop and/or soil properties measurements taken as the 

applicator moves across the field that are processed and interpreted by an on–

board computer that is continuously sending control signals to a rate controller. 

The type of sensors used with this approach can be active or passive, with the 

predominant use of active sensors as they are unaffected by ambient light.  

Within the active sensors, which emit their own source of light and measure the 

reflected light back to them, there are sensors that measure reflected light from 

different viewing angles, i.e. nadir or oblique angles. The sensors that have an 

oblique viewing angle are more suitable for crops in their early stages of 

development or in crops with higher plant spacing. This is the case, for 

example, of the sensors ‘N-Sensor’ (Yara UK Limited, Harvest House Europarc, 

Grimsby) and CropSpec (TopCon Corporation, Tokyo, Japan). On the contrary, 

the sensors that have a nadir viewing angle are more suitable for established 

crops or those with a higher density of foliage. This would be the case of the 
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Greenseeker (Trimble Navigation Ltd., Sunnyvale, CA, USA) and OptRx (Ag 

Leader Technology, Ames, IA, USA) sensors for variable rate application of 

nitrogen. Thermal infrared sensors, proposed for variable rate irrigation 

application by some authors (O’Shaughnessy et al., 2015), are flexible in this 

regard, having the possibility to be mounted with nadir or oblique viewing 

angles. Conversion of sensor readings into an application rate of any input (e.g. 

fertilizers or water in the case of travelling sprinkler systems) requires the use 

algorithms. These algorithms are simply equations that translate sensor 

readings into a signal (application rate) that the controller understands. A first 

step that must be always addressed with sensor-based variable application 

systems is to determine the relationship between the plant property of interest 

and the sensor readings. This is in many cases the main difficulty to be 

overcome, as the lack of this type of locally calibrated relationships for the crop 

of interest prevents the widespread of this type of methodologies. 

With the data provided by these sensors, a nitrogen prescription is made taking 

into consideration an algorithm or formula, which can operate under different 

agronomic principles. The prescription in real time is calculated by means of a 

formula that considers the input information (by the user and the sensors). 

Different sensors are available to the production sector and have different 

operating principles, some of which are more suitable for use in certain growing 

conditions. 

To measure soil moisture, real-time soil moisture sensors are used; these 

sensors are great tools that provide information on the moisture content in a soil 

profile. The important thing about these systems is that they carry out 

measurements in real time, providing the information needed to make irrigation 

decisions; this information is now sent over the Internet. The main disadvantage 

of these systems, from the point of view of the variable application of water, is 

that they are not remote sensors but must be installed in situ, so it represents a 

very expensive tool for the characterization of spatial variability. There are soil 

moisture probes in the market, such as the Profile Probe PR2 (Delta-T Devices, 

UK) or Diviner 2000 (Sentek Ltd., Australia), which are portable equipments that 

only require the permanent installation of access tubes where the probe will be 
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introduced manually to derive the soil moisture measurement. It is a cheaper 

alternative than having a probe measuring in real time at each specific site, 

however it has the cost of labor required to perform manual moisture 

measurement as main disadvantage. 

Infrared thermography is a methodology that allows remote detection of water 

stress, not detectable visually, from the longwave radiation emitted by 

vegetation. Most of the energy absorbed by vegetation is dissipated in the form 

of latent heat of vaporization. When vegetation experiences some degree of 

water stress, the amount of energy dissipated by latent heat is reduced, 

increasing the temperature of the foliage. The use of infrared thermography to 

determine the water stress of the crop is based on quantifying the level of water 

stress that a plant has from temperature differences between a less-transpiring 

stressed plant and another that is transpiring at a potential rate. 

These sensors can be used both for the determination of prescription maps for 

the application of irrigation and for irrigation management based on point 

sensors installed in certain specific sites of the plot. For the first option, thermal 

cameras represent a very powerful tool, especially when mounted on manned 

or unmanned aerial platforms. By means of image segmentation algorithms and 

subsequent processing of vegetation temperature data, maps of the spatial 

variability of the crop water status can be determined, which can in turn be 

transformed through a subsequent post-process operation in an irrigation 

prescription map. 

1.2 Objectives 

Based on the above information, the main objective of this doctoral thesis is to 

develop precision agriculture methodologies to characterize the spatial and 

temporal variability of key soil and crop traits in two crops of high economic 

importance in Andalusia, such as sugar beet and winter durum wheat. Since 

sugar beet is an irrigated crop and durum wheat is normally a rainfed crop, this 

work has focused on the development of tools to optimize irrigation 

management of sugar beet and fertilization of durum wheat.  

This general objective has been divided into the following specific objectives: 
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Specific Objective 1: To determine the potential of the Normalized Difference 

Vegetation Index (NDVI), obtained by proximal sensing with an affordable hand-

held active sensor, to estimate the spatial and temporal variability of leaf 

nitrogen content in wheat plants. 

Specific Objective 2: To obtain NDVI-based empirical models to predict wheat 

yield as well as its spatial variability under the edaphoclimatic conditions of 

Andalusia. 

Specific Objective 3: To develop variable rate fertilization strategies in 

commercial wheat fields based on either measured (yield monitoring) or 

estimated (NDVI-based statistical models) spatial variability of yield. 

Specific Objective 4: To characterize the spatial variability of soils by means of 

electromagnetic induction sensors as well as the impact of the zones delimited 

by electromagnetic induction sensors on the sugar beet water status. 

Specific Objective 5: To evaluate the use of thermal images taken from low-

altitude drones to predict the spatiotemporal variations in sugar beet water 

status driven by soil variability and irrigation management.  

Specific Objectives 1, 2 and 3 have been addressed in chapter 3 of this doctoral 

thesis, entitled "An Approach to Precise Nitrogen Management Using Hand-

Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a 

Mediterranean Environment". Specific Objectives 4 and 5 have been addressed 

in chapter 4, entitled "Linking Thermal Imaging and Soil Remote Sensing to 

Enhance the Irrigation Management of Sugar Beet". 

1.3 Thesis structure and time-line  

Figure 1.1 shows the structure of the thesis in terms of the different chapters, 

associated objectives, hypothesis and journals in which papers have been 

published. The main objectives of the thesis are addressed in the chapters 3 

and 4, each of one corresponding to a scientific paper. Following the regulation 

of the University of Sevilla (Acuerdo 9.1/CG 19-4-12), which specifies the 

requirements for the thesis based on ‘compendium of articles’ format, each of 
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the focal chapters can be considered a self-contained unit. This means that they 

have an introduction section outlining the specific research context and 

objectives of the chapter, full details of the methods used, results, discussion 

and conclusions. The present chapter represents a general introduction of this 

thesis. Chapter 2 provides an overview of the methods used for the respective 

focal chapters. Finally, in chapter 5, a comprehensive discussion of the results 

obtained in focal chapters 3 and 4 is presented, allowing general conclusions to 

be drawn in relation to each of the objectives of the work. The general 

conclusions of the thesis are presented in chapter 6. 

 
Figure 1.1: Thesis structure 

This thesis was performed within the framework of a 5-year doctoral programme 

(part-time candidate) financed partly by research projects at the University of 

Sevilla and by the doctoral candidate, from September 2014 to March 2019. 

The timeline of the different studies that comprise the thesis is shown in Figure 

1.2. 
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2.1. Thesis workflow 

Within the framework of the two main investigations carried out on both wheat 

and sugar beet, some sensors were used to measure soil and crop vigour 

variability. Finally, numerous sampling techniques and statistical procedures 

were carried out for different purposes using specific software and geostatistical 

methods and specific instruments for each of them.  

2.2. Tests and instrumentation  

2.2.1 Soil sampling, preparation and analysis 

The sugar beet field used in this study was divided into a 60-m grid of 

approximately 0.36 ha/pixel. Thirty-one sampling points were selected within the 

grid for soil samples collection (Figure 2.1b). Soil samples were taken in 

October 2014, using an unaltered soil samples auger to a depth of 30 cm 

(Figure 2.1a), this being the depth of maximum root activity in a sugar beet 

plant. 

The samples were collected in hermetically sealed bags until they reached the 

laboratory so that they would not lose moisture. The samples were weighed as 

soon as they arrived at the laboratory to obtain their fresh weight and 

subsequently dried in an oven (105ºC/48h) to determine soil bulk density and 

volumetric moisture content. The rest of soil analyses were performed at the 

Center for Research, Technology and Innovation (CITIUS laboratory) of the 

University of Seville, and the following parameters were analysed: pH, electrical 

conductivity (EC), oxidizable organic carbon (organic C), organic matter (OM), 

cation exchange capacity (CEC) and soil texture. Systematic sampling was 

performed by maintaining a fixed distance between two sampling points (using 

a net or mesh). All samples were georeferenced using a DGNSS (Differential-

Global Navigation Satellite System) receiver and geographic information system 

(FarmWorks, Trimble Navigation Ltd., Sunnyvale, CA, USA) distribution maps of 

different soil properties compiled using a kriging technique (Goovaerts, 1997).  
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Figure 2.1: Soil sampling (a) and location of samples in the plot (b). 

 

2.2.2 Leaf N test 

To determine the N content of wheat leaves, leaf sampling and laboratory 

analyses were conducted using the protocol of Mills and Jones (1996). The 

leaves were collected with care to manipulate them as little as possible and to 

avoid any loss of dry weight due to decomposition. Since no ears were apparent 

at the time of sampling, the highest (youngest) leaf was taken between leaves 4 

and 5, which is the leaf that best defines the nutritional state of the crop (Mills 

and Jones, 1996). From each sampling location, approximately 50 leaves (one 

per wheat plant) were taken, carefully packaged in clean open paper bags and 

kept in a cool environment (5-7ºC) to avoid any N volatilization during the 

journey to the laboratory. 
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All the leaf samples were duly labelled and marked with their georeference, 

which was determined by means of a DGNSS receiver. The variability maps 

were elaborated with the help of GIS (Farm Works, Trimble Ag Software, 

Sunnyvale, CA, USA) by using the information from the samples and their 

georeferencing. 

2.2.3 Beam-Based volumetric flow yield monitor 

Yield, as a measure of the end product of most agricultural productive systems, 

is one of the most important datasets a producer can have. Commercial yield 

monitors currently available to farmers are based on a wide variety of 

measurement methods including a paddle wheel volume flow sensor (Searcy et 

al., 1989), a momentum plate sensor (Vansichen and De Baerdemaeker, 1991), 

a gamma ray sensor (Massey Ferguson, 1993), strain gage-based impact 

sensors (Borgelt, 1993), and an infrared sensor (Hummel et al., 1995). A grain 

yield monitor was designed to provide a real-time display of yield data and to 

estimate the weight of grain for a specified harvest area. Within the framework 

of this thesis, an optical grain yield monitor (RDS Ceres II, RDS Technology, 

Gloucestershire, UK) was mounted on a combine harvester (Claas-Mega 216, 

Claas Group, Harsewinkel, Germany). The combine, along with the yield 

monitor system, estimated the amount of wheat grain harvested from a specific 

area of the field, and this value was then attributed to a central point calculated 

by a GNSS receiver. This system consisted of a number of permanent sensors 

to measure yield, forward speed, moisture content, hill angle (2 axis) and 

header position (Figure 2.2).  

The performance monitor measured the moisture and performance data, while 

the GNSS receiver used EGNOS to obtain location data with an accuracy of 3 

m. Instant performance, humidity and GNSS data were recorded simultaneously 

at two-second intervals on a secure digital (SD) card installed on the 

performance monitor. The harvester had an effective cutting width of 6 m and 

travelled at an average speed of 4.5 km / h. 

A light source was installed as high as possible on one side of the Ferris wheel 

of the combine, and on the opposite side a photosensor was mounted to 
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determine how much light could be detected from the source. Through this 

system, the height of grain contained in each bucket (Figure 2.2) was indirectly 

measured as the wheel went up (the higher the yield was, the greater the height 

of grain on each bucket and the less time the photosensor detected light when 

the bucket passed). By recording the time that the photosensor did not receive 

light, the computer transformed this time measurement into a value equal to the 

height of the grain on the bucket of the Ferris wheel. Then, the volume of grain 

was calculated by using the known surface area of the bucket. 

 

(a) 
(b) 

Figure 2.2: Photoemitter and photosensor integrated in the buckets conduit to quantify crop 

flow (a) and Capacitive humidity sensor (b). 

2.2.4 On-the-go soil ECa mapping with Dualem 21-S  

Apparent electrical conductivity (ECa) is a frequently used variable in precision 

agriculture (Corwin and Lesch, 2005). The apparent conductivity is influenced 

by a combination of physical-chemical properties so its value has been 

proposed to delimit the zones for variable rate application of inputs.  

The main advantage of this method is the potential of the geophysical sensor to 

effectively characterize the soil spatial variability (moisture, organic matter, EC, 

etc) of a large sampling area in a short time (Pedrera-Parrila, 2014). 

The ECa was measured using a Dualem 21-S EMI sensor (DUALEM, Milton, 

Canada) that operated 75 mm above ground protected in a polyvinyl chloride 

box and was pulled by an all-terrain vehicle (Figure 2.3) and coupled to a real-

time differential global kinematic positioning system (Trimble, Sunnyvale, CA) to 
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collect samples on a 12-hectare strip of land. The sensor operated at a fixed 

frequency of 9 kHz. 

 

 
Figure 2.3 Dualem 21-S sensor working in the field. 

Measurements were collected in parallel rows spaced 10 m apart from NE to 

SW with the aid of a guidance system; points within a row were separated by 1-

2 m. We also collected samples along 23 rows from NW to SE to increase the 

sample density.  

The application of this technique consists of a system formed by coils or 

solenoids (emitters and receivers that generate a magnetic field when the 

current circulates through them) and a conductive medium (which in this case 

was the ground). The Dualem-21S allows up to 8 simultaneous measurements, 

4 "in phase" (magnetic susceptibility) and 4 "out of phase" (CEa), as it has a 

total of 5 coils with varied separations and orientations (Figure 2.4, Simpson et 

al., 2009) and allows exploration of different depths. The combination of coils in 

the perpendicular position allows a shallower measurement depth, and the 

combination of coils in the perpendicular position with greater separation gives 

the maximum depth of exploration. 
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Figure 2.4 Diagram of coil location and orientation in DUALEM-21-S (Simpson 

et al., 2009). 

The device consisted of a transmitter coil at one end and four receiver coils that 

were separated from the transmitter coil by 1, 1.1, 2 and 2.1 m. The receiver 

coils were oriented in a perpendicular (PrP) or horizontal co-planar (HCP) 

configuration with respect to the transmitter coils. Each combination of 

transmitter and receiver provided integrated ECa values for the corresponding 

volumes of soil scanned; these values depended on the scanning depth of each 

signal. The effective depth of exploration is the depth over which an array 

accumulates 70% of its total sensitivity, which also depends strongly on the soil 

ECa (Callegary et al., 2007).  

The theoretical exploration depths for the combinations of 1.1 and 2.1 m HCP 

and the 1 and 2 m PrP coils were 0.5, 1.0 and 1.6 and 3.2 m, respectively. At 

high real conductivity values, the sensor has a non-linear response, and the 

ECa is increasingly underestimated for a given frequency and intercoil spacing 

(McNeill, 1980). Beamish (2011) proposed a correction procedure involving a 

polynomial of least-squares adjusted to the theoretical deviation of the linear 

relationship between the LIN-approximated ECa and the actual conductivity of 

the coil configurations to allow correction of the LIN approximation breakdown. 

This approach was adopted in this study, and the corrected approximate LIN 

ECa is used below. The coefficients used for polynomial adjustment are 

available in Delefortrie et al. (2014). The final transformation applied to the raw 

ECa data accounted for the soil temperature effects. A reference temperature of 

25°C is generally used (Corwin and Lesch, 2005):  

ECaଶହ ൌ ECa ൤0.447 ൅ 1.4034eିቀ
౐

మల.ఴభఱ
ቁ൨     (2.1) 

Perpendicular
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where ECa25 is the standardized ECa at a temperature of 25ºC, and T is the 

soil temperature in ºC. To simplify the nomenclature, ECa is used as the 

temperature-corrected ECa reading (ECa25).  

The average soil temperature was used at a depth of 0-0.30 m, obtained from 

30 samples collected across the field. Given the high correlations between 

signals observed in the field (correlation coefficients ranging from 0.90 to 0.94), 

the 1.1 HCP signal that best represented the rooting depth of the sugar beet 

crop was used. The FAO has established a range of maximum effective rooting 

depths for sugar beet, i.e. 0.7-1.2 m (Allen et al., 1998).  

The ECa data were filtered to eliminate false errors and interpolated by ordinary 

block kriging into a 2x2 m grid to create maps for the four ECa signals using a 

geostatistical analyst at ArcGIS (ESRI, Redlands, CA). We used an anisotropic 

spherical model to fit the variogram with a lag size of 1.5 m, range of 75 m, sill 

of 1663 (mS m-1)2 and 115º as its main direction. A cross validation of the 

interpolation yielded a root mean squared error of 6.5 mS m-1. 

2.2.5 Remote sensing and vegetation indices (VIs) 

Remotely sensed imagery have multiple applications in agriculture as they can 

help to assess problems or potential problems with soil degradation (Dubovyk, 

2017) or plant growth (Zhang et al., 2018). . In precision agriculture it has also 

demonstrated great potential for delimiting management zones for variable rate 

application in a way that accounts for variation in soil properties (Cilia et al., 

2014). However, interpreting imagery can be challenging because spectral 

reflectance is impacted by many factors, including vegetation density, the 

concentration of pigments (e.g., chlorophyll, carotenoids), canopy structure, soil 

properties (e.g., water, oxidized iron, carbon content), solar intensity, solar 

elevation angle, atmospheric factors and optics of the remote-sensing platform 

(Müller et al., 2015). Vegetation indicies (VIs) are numeric values obtained from 

the combination of two or more reflectance values corresponding to different 

bands of the spectrum (Hall et al., 2002). In practice, different VIs can be used 

to assess temporal and spatial variability of crop traits (Huete et al., 2000). 
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The normalized difference vegetation index (NDVI) (Rouse et al., 1974) is one 

of the most commonly used vegetation indices and is expressed as follows: 

ܫܸܦܰ ൌ
ேூோିோ௘ௗ

ேூோାோ௘ௗ
             (2.2) 

where NIR and Red represent the spectral reflectance in the near-infrared 

(>725 nm) and red (600-725 nm) regions of the spectrum, respectively. 

The commercial portable hand-held device GreenSeeker® (Trimble Navigation 

Ltd., Sunnyvale, CA, USA) is an affordable, easy-to-use measurement 

instrument used to evaluate plant biomass/plant health (Figure 2.5b). The 

sensor emits brief bursts of red light at 660±12 nm and near-infrared light at 

770±12 nm and collects the amount of each type of light reflected from plants, 

which makes the sensor independent of ambient illumination. Once the device 

trigger is pressed, the sensor displays the mean NDVI value on its LCD screen, 

which varies from 0.00 to 0.99. The intensity of the detected light is a direct 

indicator of the health of the crop, i.e., a plant will be healthier and more 

vigorous when the NDVI value is higher (Gutiérrez-Soto et al., 2011).  

Following the manufacturer's recommendations, measurements were taken at a 

vertical viewing angle from a distance of 0.5-0.6 m above the crop to ensure 

accurate readings. The sensor's field of view is an oval that widens as the 

sensor's height above ground increases, and a completely randomized design 

of 30 field test zones was used to perform the NDVI measurements (Figure 

2.5a). 

A field computer (Juno 5D, Trimble Navigation Ltd.) was used to record the 

location, time, date, number of satellites and NDVI reading for each sample in 

the internal memory (Figure 2.5b). The differential satellite receiver uses the 

EGNOS (European Geostationary Navigation Overlay Service) correction 

signals from any source that transmits the signals in the format of the Technical 

Radio communication Commission for Maritime Services (RTCM). 

Some of the advantages of this sensor over other sensors are that this high-

quality optical sensor measures the vigour of a plant instantly by simply 
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activating a trigger, is convenient for manual use, is charged through a USB 

charging port, and the display is easy to read even under direct sunlight. 

 

Figure 2.5 The sensor’s field of view is an oval (a). Hand-held NDVI sampling system in the 

experimental field (b) 

 

2.2.6 Soil moisture sensor 

Soil moisture was measured in the 0-1000 mm soil profile during the study 

period using a multi-sensor PR-2 profile probe (Delta-T Devices, Ltd., 

Cambridge, UK). The advantage of this soil moisture probe is that it allows soil 

water profiles to be monitored with great ease and flexibility. The probe can be 

used in two different ways, (i) portable and (ii) fixed. In the first case, the probe 

is not left permanently installed inside an access tube, but is used to obtain 

point measurements at as many points as access tubes are available. In the 

second case, the probe is permanently installed in an access tube and can be 

used to monitor continuously the soil moisture profile at a single location 

The PR2 soil moisture probe is a polycarbonate bar that has 6 sensors (6 pairs 

of stainless steel rings) that measure soil moisture content at 6 depths up to 100 

cm (i.e. 10, 20, 30, 40, 60 and 100 cm) (Figure 2.6). The measurements are 

made inside an epoxy fibreglass tube with a rubber stopper that has previously 

been installed buried in the ground. 
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Figure 2.6 Profile probe PR-2 (Source: https://www.delta-t.co.uk/product/pr2/). 

The PR-2 probe was calibrated for each one of the two selected zones for soil 

moisture monitoring; a sandy and a clayey zone, respectively. Calibration was 

performed following the manufacter’s recommendations (Qi and Helmers, 

2010), for which the coefficients of the linear equation used to convert the 

refractive index of the soil (;  being the soil permittivity) into volumetric water 

content were derived for each soil type. Calibration was carried out at the end of 

the sugar beet growth cycle, when it was possible to let the soil dry out and thus 

broaden the range of soil moisture conditions used to obtain the calibration 

coefficients. During the dry out period, unaltered soil samples were taken in the 

vicinity of the access tubes so that measured soil moisture contents could be 

related to the corresponding  values measured with the PR-2 probe.  

Soil samples were taken to the laboratory in duly labelled sealed bags. Once in 

the laboratory, gravimetric soil moisture values were determined for each soil 

sample by deriving their fresh and dry (after 48h/105ºC) weights. The dry soil 

bulk density was also determined for each soil sample by dividing soil dry 

weight by bulk volume (known value and equal to the volume of the cylinders of 

the unaltered soil samples auger). Volumetric moisture content was then 

calculated by multiplying gravimetric soil moisture contents by bulk density 

1 m 

Electromagnetic 
fields extend into the 
soil and detect soil 

moisture 
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(Verhoef and Egea, 2013). Once calibrated, soil moisture measurements in the 

0-100 cm soil profile were used to calculate changes in relative extractable 

water (REW) for all experimental plots using the following expression: 

REW ൌ ୖିୖ୫୧୬

ୖ୫ୟ୶ିୖ୫୧୬
            (2.3) 

where R is the soil moisture content, and Rmax and Rmin are the soil moisture 

contents at the field capacity and wilting point, respectively. The values for Rmax 

and Rmin were determined using the Rosetta model (Schaap et al., 1999), which 

is based on the van Genuchten model (Van Genuchten, 1980) and the physical 

properties of the soil measured in each selected zone. 

2.2.7 UAV 

An unmanned aerial vehicle (UAV) was used in the sugar beet experiment to 

carry a thermal camera used to take thermal measurements at plot scale. The 

model of the UAV used is a multi-rotor Phantom2 (SZ DJI Technology Co., Ltd., 

Shenzhen, China) equipped with a GNSS receiver whose main features are 

reflected in Table 2.1. 

Table 2.1 UAV technical data

 UAV features 

Weight (Battery & Propellers included) 1000g 

Hover Accuracy (Ready to Fly) 
Vertical: 0.8m 

Horizontal: 2.5m 

Max Yaw Angular Velocity 200°/s 

Max Tilt Angle 35° 

Max Ascent / Descent Speed Ascent: 6m/s; Descent: 2m/s 

Max Flight Speed 15m/s (Not Recommended) 

Diagonal Length 350mm 

Flight Time 25mins 

Take-off Weight ≤1300g 

Operating Temperature -10°C ~ 50°C 

Supported Battery DJI Smart Battery 

Capacity battery 5200 mAh, 11.1V 

Communication Distance to remote control (open area) 1000 m 
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This UAV has a multifunctional system of four rotors that allows a precise, safe 

and stable flight. The UAV has intelligent batteries that provide about25 min of 

flight autonomy, has a remote control range of 1000 m in open spaces and was 

controlled by the DJI iPad Ground Station application.It can automatically return 

home and land. The GPS with which the UAV is equipped is capable of tracking 

up to 12 satellites in the sky that help the pilot and are able to completely stall 

the device in the sky, even without the pilot touching the control. The GPS 

"locks" the drone in its current position and keeps it stationary. 

2.2.8 Thermal sensor 

A TAU 2324 thermal camera (FLIR Systems, Inc., Oregon, USA) mounted on a 

Phantom2 multi-rotor UAV (SZ DJI Technology Co., Ltd., Shenzhen, China) 

equipped with a GNSS receiver was used as a thermal sensor for this research. 

The accuracy of thermal measurements made with this type of camera mounted 

on a UAV has been reported to be approximately 1 K (Berni et al., 2009). 

The camera was installed in a vertical orientation in the centre of the lower part 

of the UAV (Figure 2.7).  

 
Figure 2.7 Thermal camera mounted on UAV 
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The flights were conducted on sunny days at solar noon. Thermal imaging was 

used to calculate the average sugar beet temperature in each experimental plot. 

The UAV was flown across the experimental field on six days of clear sky during 

the period within the days of the year (DOY) 86 to 167. The flights measured 

the surface temperature over four selected experimental plots at various heights 

(5 m, 10 m, 20 m, 30 and 40 m) above ground level. The flight time over the 

different experimental plots and at different heights did not exceed 30-40 

minutes (to minimize differences in weather conditions during the measurement 

period). The thermal images were acquired at a speed of 9 frames per second 

and were stored on board in a raw format with 14-bits radiometric resolution. A 

total of 50 selected thermal images per experimental plot were analyzed during 

the growth season. 

The thermal images captured by the UAV were used to calculate the mean 

sugar beet temperature of each experimental plot by averaging the temperature 

of the pure vegetation pixels. Pure vegetation pixels were extracted from the 

thermal image using a segmentation algorithm written in R (R Core Team, 

2015) and based on a histogram analysis of pixels from each thermal image 

and the "full width to half maximum" rule (FWHM). The FWHM rule allows the 

identification of pixels with a high probability of being pure vegetation, as 

described elsewhere (Rud et al., 2015; Käthner et al., 2017). In addition to the 

work scale, assessment of crop water status from thermal imaging is, against 

traditional leaf water potential measured with pressure bomb, a preferred and 

more informative option for many crops that present isohydric behavior, that is 

relatively steady leaf water potential values during water stress due to a strong 

stomatal regulation of water losses.  

The assessment of crop water status was based on the difference between the 

average crop temperature and the prevailing air temperature at the time of flight 

(∆T), measured using the air temperature sensor (model HMP45C Vaisala, 

Helsinki, Finland) installed at the nearby weather station (absolute accuracy of 

±0.2ºC) belonging to the Agroclimatic Information Network of the Andalusia 

government (36º 43’ 08’’ N, 06º 19’ 48’’ W). The ∆T values can be used to 

assess differences in crop water status between plots if ∆T values are 
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measured under the same environmental conditions (e.g. solar radiation, vapor 

pressure deficit) (Maes and Steppe, 2012). In order to use ∆T to assess 

variations in crop water status throughout a multi-temporal series of thermal 

images, it is required to normalize ∆T values into an index of the type of CWSI 

described below. The ∆T values were also used to determine a cumulative 

water stress integral of the crop throughout the irrigation season. To accomplish 

this, an expression analogous to the water stress integral (WSI), originally 

proposed by Myers (1988) for predawn leaf water potential measurements, was 

used to determine the cumulative integral of water stress throughout the 

irrigation season: 

WSI	ሺºC	dayሻ ൌ ∑ ൫∆T୧,୧ାଵ െ C୧,୧ାଵ൯n
୧ୀ୲
୧ୀ଴         (2.4) 

where t represents the number of measurements ∆T (t=6), in agreement with 

the number of flights conducted; ∆Ti, i+1 is the ∆T average for any interval i, i+1; 

Ci, i+1 is the average of the non-water-stressed ∆T values for any period i, i+1; 

and n is the number of days in the interval. The c values were obtained from the 

non-water-stressed baseline (NWSB) derived by Idso (1982) to calculate the 

CWSI for sugar beet: 

ci= a+bVPDi                 (2.5) 

where VPDi represents the prevailing vapour pressure deficit (kPa) at the time 

of flight on the ith measurement day, and a and b are two parameters obtained 

empirically for each species under specific environmental conditions. The 

values a and b for sugar beet on sunny days are 2.50 and -1.92, respectively 

(Idso, 1982). The VPD and air temperature data at a height of 2 m were 

obtained from a nearby weather station belonging to the Agroclimatic 

Information Network of the Andalusia government. 

The NWSB from IDSO (1982) was also used to calculate the CWSI of the ith day 

of sampling as follows: 

CWSI ൌ ∆୘୧ିୡ୧

∆୘ౚ౨౯,౟	ିୡ୧
          (2.6) 
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where ∆Tdry,i represents the ∆T maximum, which corresponds to a non-

transpiring canopy. In this case study, it was found that sugar beet leaf 

temperature could reach up to 8°C above the air temperature; consequently, a 

constant ∆Tdry,i = 8°C was used. Similar ∆Tdry,i values have been found for other 

herbaceous crop species (Rud et al., 2014). 

2.3. Data Management  

The data obtained with the different methods used in the various experiments 

carried out in this Doctoral Thesis were managed and analyzed with the help of 

geographical information systems and statistical methods. 

2.3.1 Geographical Information Systems (GIS)  

GIS are information systems capable of integrating, storing, editing, analysing, 

sharing and displaying geographically referenced information. In a more generic 

sense, GIS are tools that allow users to create interactive queries, analyse 

spatial information, edit data, draw maps and present the results of all these 

operations. 

GIS operate as a geographic database associated with existing objects in a 

digital map, and respond to interactive queries of users by analysing and 

relating different types of information with a single geographic location, that is, 

connecting maps with databases. Basically, the functioning of a GIS goes 

through the following phases: 

-  Entry of information into the system (digital or pending digitalization) 

- Storing and updating databases geographically, i.e., georeferencing 

information using latitude and longitude geographic coordinates. 

-  Analysis and interpretation of georeferenced data. 

-  Output of information in the form of different products depending on the user's 

needs. 
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GIS facilitate the work of the professional, since they separate the information in 

thematic layers and store them in an independent way, making the final task of 

relating the existing information to obtain results faster and easier. 

The Agricultural Geographic Information System (Farm Works TM, Trimble 

Navigation Ltd., Sunnyvale, CA, USA) software package was used to facilitate 

the development of plans and maps that highlighted different features for the 

design of applications in the study area and to incorporate all the field data. The 

recorded data from the Juno 5D differential GNSS receiver were imported into 

the Farm Works TM software package to create different maps and 

applications. The inverse distance weighting (IDW) method implemented in the 

AgGIS (ESRI, Redlands, CA) software package was used for interpolation. 

2.3.2 Data analysis 

Once the data from all the trials were obtained, it was important before drawing 

conclusions to perform a statistical analysis using the R software package (R 

Core Team). R is a free software package for statistical computing and 

visualization that is distributed under the terms of the Free Software 

Foundation’s GNU General Public License in source code form. This software is 

valued for its large variety of statistical methods and visualization capabilities. 

In the statistical analysis, Pearson’s coefficient, which is an index that measures 

the degree of covariance between linearly related variables and which ranges 

between −1 and +1, was obtained, and relationships between NDVI and wheat 

yield and NDVI and leaf N content were determined using the method of 

ordinary least squares. 

Analysis of variance (ANOVA) were also performed with the statistical package 

Statgraphics (Statgraphics Centurion XV) and used to compare yield 

components and yield between treatments. The relationships between yield 

components and the water stress integrals were evaluated using linear 

regression analysis in Statgraphics software. 

 



Chapter 3 

33 

 

 

Chapter 3: Publication (I) 
 

An Approach to Precise Nitrogen 
Management Using Hand-Held Crop Sensor 

Measurements and Winter Wheat Yield 
Mapping in a Mediterranean Environment 

Lucía Quebrajo 1, Manuel Pérez-Ruiz 1,*, Antonio Rodriguez-Lizana 1 and Juan 
Agüera 2 

1 Aerospace Engineering and Fluids Mechanics Department, University of Seville,  
Ctra. Sevilla-Utrera km. 1, Seville 41013, Spain; E-Mails: lquebrajo@us.es (L.Q.); 
arodriguez2@us.es (A.R.-L.) 

2 Rural Engineering Department, University of Cordoba, Córdoba 14071, Spain;  
E-Mail: jaguera@uco.es 

 
 

Published in: 

Sensors 2015, 15, 5504-5517 

doi: 10.3390/s150305504 

Received: December 29, 2014; Accepted: February 27, 2015; Published: March 6, 2015 

Impact factor (JCR 2015): 2.033 

Rank: 12/56 Instrument (Q1) 



An approach to precise Nitrogen management using hand-held crop sensor measurements and winter 

wheat yield mapping in a Mediterranean environment 

34 

  



Chapter 3 

35 

ABSTRACT 

Regardless of the crop production system, nutrients inputs must be controlled at 

or below a certain economic threshold to achieve an acceptable level of 

profitability. The use of management zones and variable-rate fertilizer 

applications is gaining popularity in precision agriculture. Many researchers 

have evaluated the application of final yield maps and geo-referenced 

geophysical measurements (e.g., apparent soil electrical conductivity-ECa) as a 

method of establishing relatively homogeneous management zones within the 

same plot. Yield estimation models based on crop conditions at certain growth 

stages, soil nutrient statuses, agronomic factors, moisture statuses, and 

weed/pest pressures are a primary goal in precision agriculture. This study 

attempted to achieve the following objectives: (1) to investigate the potential for 

predicting winter wheat yields using vegetation measurements (the Normalized 

Difference Vegetation Index—NDVI) at the beginning of the season, thereby 

allowing for a yield response to nitrogen (N) fertilizer, and (2) evaluate the 

feasibility of using inexpensive optical sensor measurements in a Mediterranean 

environment. A field experiment was conducted in two commercial wheat fields 

near Seville, in southwestern Spain. Yield data were collected at harvest using 

a yield monitoring system (RDS Ceres II-volumetric meter) installed on a 

combine. Wheat yield and NDVI values of 3,498 ± 481 kg ha−1 and 0.67 ± 0.04 

nm nm−1 (field 1) and 3221 ± 531 kg ha−1 and 0.68 ± 0.05 nm nm−1 (field 2) 

were obtained. In both fields, the yield and NDVI exhibited a strong Pearson 

correlation, with rxy = 0.64 and p < 10−4 in field 1 and rxy = 0.78 and p < 10−4 in 

field 2. The preliminary results indicate that hand-held crop sensor-based N 

management can be applied to wheat production in Spain and has the potential 

to increase agronomic N-use efficiency on a long-term basis. 

 

Keywords: NDVI; yield estimation; winter wheat 
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3.1. Introduction 

The goal of site-specific management practices is to enable more efficient 

use of fertilizers, pesticides, fuel, management and labor inputs. Most farming 

systems use spatial variability information related to crop status and soil 

characteristics to implement innovative management strategies to achieve a 

site-specific scenario. This new method of implementing agriculture is being 

bolstered by emerging cost-effective remote sensing techniques. Field crops 

must receive appropriate rates of nitrogen (N) fertilizer to achieve optimal yields; 

both underfertilization and overfertilization can negatively affect the desired 

growth pattern of plants and reduce yields. Furthermore, repeated machinery 

passes for N applications increase driving distances, require more time, 

increase soil compaction, consume more farming inputs and increase the 

environmental load (Oksanen et al., 2013). 

Andalusia, in southern Spain, serves as an example of high agricultural value 

and represents 62% of the area (197,826.00 ha) used for and more than 80% of 

the national production of winter wheat, with an average yield of 3.11 t ha−1 

(MAGRAMA, advancing production and area, July 2014). Using the average N 

fertilization application rate of 120 kg ha−1 per year and a price of 8–9 € ha−1 for 

application by a contractor company (two passes per fertilization) at 110 € t−1 of 

urea with 46% N amounts to a cost of 46.5 € ha−1 cost per year (fertilizer plus 

application). As much as 20% of inputs can be saved with the use of precision 

farming techniques and variable rate fertilizer application using proper 

machinery and precision application in areas with good yields and reduced 

inputs in areas with low yields (in which the lower yield may be due to soil 

limitations rather than insufficient N fertilization).  

In this case, the cost would be 37.2 € ha−1 per year for the same yield at the 

end of the season. Andalusia could save approximately 1.8 M € using precision 

agricultural techniques for N application. Raun and Johnson (1999) reported 

that conventional N management strategies in world cereal production systems 

have resulted in a lower percentage of applied fertilizer N being recovered in the 

aboveground crop biomass during the growing season; they estimate that an 

average of only 33% of fertilizer N is recovered. Although it is impossible to 
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achieve 100% efficiency of N fertilizer use in any production system worldwide, 

the use of large amounts of N fertilizer suggests that there is a significant 

opportunity for reducing N losses associated with conventional practices. 

Detailed knowledge of the relationship between applied fertilizer and crop 

yield in a zone under given soil conditions may be obtained through numerical 

approximations. Crop production models can be characterized as empirical and 

mechanistic (process-oriented) models. Empirical models directly employ a 

relationship between model variables and model outputs without requiring a 

description of fundamental (physical) processes. These models are usually site 

specific. Mechanistic models are often more complex because they describe 

known physical and biological processes in crops and soils. There are several 

models, such as the NDICEA model (Van der Burgt et al., 2006) that explore 

the relationship between applied N levels and their relationship to crop yield. 

The Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model, 

which is based on both theoretical and empirical relationships.  

Janssen et al. (1990), showed that N applications improve crop yields (Liu et 

al., 2006), which is in agreement with the empirical results obtained by Wild 

(1992) and González-Fernández (2004) for wheat under various soil 

management systems. The use of these and other models may be of interest 

from an agronomic and environmental perspective because they improve on the 

traditional method of trial and error, which is more time consuming, and 

contribute to better decision making by farmers, thus resulting in savings in 

terms of fertilizer applied to the crop. 

Remote sensing information is an integrated manifestation of the effects of 

on-field factors, such as soil texture, pH, biological and chemical factors, and of 

external factors, such as farming practices and weather conditions, on crop 

growth; therefore, remote sensing can have a substantial impact in improving 

yield estimation (Wheeler et al., 1996; Evans et al., 1997). Indirect sensing 

methods for measuring the ratio of vegetation indices (VIs) have been widely 

used to quantify crop variables such as yield and biomass; such methods may 

be available at different levels, depending on the type of platform that carries 

the imaging sensor, i.e., satellite (Yang et al., 2006), aerial (Ballesteros et al., 

2014) or ground (Stamatiadis et al., 2010) vehicles. Farmers who can distribute 
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the additional cost of improved management over a large operation can better 

absorb the high costs of satellite images (large-scale observation). Platforms 

that assess crop vigor cannot typically be used by small and mid-size 

agricultural operations because their costs can be very high and thus 

unprofitable for small-scale crops. The intrinsic drawback associated with 

satellite observations is the temporal frequency of satellite data. The degree of 

correspondence between the temporal frequencies of passive satellite remote 

sensor data collections and varying processes or crop statuses can significantly 

impact the accuracy of change detection monitoring efforts. Furthermore, the 

presence of clouds can reduce the number of opportunities for satellite data 

collection (Lunetta et al., 2004). 

Small, unmanned aircraft systems and ground-based remote sensing hold 

great promise for small and mid-sized farmers because of their rapid 

development and decreasing costs (Peña et al., 2013; Wang et al., 2014). For 

ground-based images or the determination of VIs, an optical sensor with a 

computer recording sensor output may be mounted on the implement/tractor, or 

it may be used in survey mode (by hand); the global navigation satellite system 

(GNSS) field position is provided in both situations. The use of hand-held 

sensors can provide similar results at a much lower cost, which would make 

crops profitable and precision nutrient management (e.g., N) possible on small 

scales.  

The spectral reflectance determined from image data has been used to 

calculate various Vis, such as the normalized difference vegetation index 

(NDVI), which is calculated by dividing the difference between the reflectances 

of the NIR and red bands by the sum of the reflectances of the NIR and red 

bands, i.e., NDVI = (NIR − Red)/(NIR + Red). A variety of VIs, including 

reflectance band ratios and individual band reflectance, have also been used for 

crop management and yield prediction (Sobrino et al., 2000; Thomasson and 

Sui, 2009). 

In terms of the N content, Tarpley et al. (2000) found that reflectance ratios 

calculated by dividing cotton leaf reflectances at 700 or 760 nm by a higher 

wavelength reflectance (755 to 920 nm) can provide accurate predictions of N 

concentrations. Furthermore, Shanahan et al. (2008) and Zarco-Tejada et al. 
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(2005) reported that N-status remote sensing is feasible for cereals and cotton, 

respectively. 

The objectives of this work can be summarized as follows: 

 - To measure the NDVI of a winter wheat field under commercial 

management using a hand-held active remote sensing device and to determine 

the real wheat N content in collected leaf samples using laboratory analysis. 

The yield information (field level) will be obtained using a commercially available 

grain yield monitor. 

 - To determine the extent of spatial variability and co-variation between the 

wheat yield, N content and NDVI in two conventionally managed commercial 

fields used for wheat production. 

3.2. Materials and Methods 

This study was performed in two experimental plots (plot 1: 1.60 ha and plot 

2: 1.21 ha) located in the western half of Andalusia (Southern Spain) in an area 

called the Countryside of Seville (Latitude: 37.4555477 N, Longitude: 

5.4336677 W). The climate in this area is generally considered to be 

Mediterranean (summers that are dry and hot, low rainfall and strong 

evaporation demand). Typical crops in this area are arable crops and olive 

groves; therefore, we will study winter wheat because it is one of the most 

widespread crops in this area. In this case, the variety of wheat being grown is 

called COREL. 

The soil is a vertisol, chromic haploxerert (Soil Survey Staff, 2014), formed 

on a Miocene marl. Clay is the predominant soil, with 64% in the 0–0.25 m 

layer, while sand makes up only 8% of the soil. The high carbonate content, 

6.80%, results in a high pH value of 8.3. The available P content is 17.9 mg    

kg-1, and the oxidizable organic matter is 1.65%. The ratio C/N is 9.82. 

A typical wheat crop management scheme in this area consists of the 

following steps (and dates): basal fertilization on 22 December 2013; sowing on 

24 December 2013; nitrogen fertilizer application on 3 February 2014; Herbicide 

treatment on 6 March 2014; fungicide treatment on 9 April 2014 and harvest on 

5 June 2014.  
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3.2.1. Hand-held Optical Sensor and GNSS Control Unit 

A commercial portable hand-held device (GreenSeeker®, Trimble Navigation 

Ltd., Sunnyvale, CA, USA) was used to measure the spectral NDVI of field-

grown wheat leaves. The optical sensor emits a brief burst of radiation from red 

(Red; 660 ± 15 nm) and near-infrared (NIR; 770 ± 15 nm) light-emitting diodes 

(LEDs) to collect reflectance data that are independent of the solar conditions. 

The specific optical sensor was chosen because of its affordability and easy 

handling by field technicians and farmers. 

The device measures the NDVI with a push of a button. The NDVI values 

range from 0.00 to 0.99. The liquid crystal display (LCD) provides the NDVI 

reading, with higher values indicating a more vigorous and healthy crop 

(Gutierrez-Soto et al., 2011). Following the manufacturer recommendations, 

measurements were taken at a vertical viewing angle from a distance of 0.5–0.6 

m above the crop to ensure accurate readings. The sensor’s field of view is an 

oval which, and it widens as the height of the sensor above the ground 

increases. A completely randomized design of 30 field-testing zones was used 

to perform the NDVI measurements. 

A field computer (Juno 5D, Trimble Navigation Ltd.) was used to record the 

location of the technician at all times. This computer recorded the location, time, 

date, number of satellites and NDVI reading in the internal memory. The Juno 

5D differential GNSS receiver utilizes a technology that combines a GNSS 

receiver, a differential beacon receiver and differential satellite receiver in the 

same housing. The satellite differential receiver uses EGNOS (European 

Geostationary Navigation Overlay Service) correction signals from any source 

that transmits the signals in Radio Technical Commission for Maritime Services 

(RTCM) format (Figure 3.1).  
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Figure 3.1 Hand-held NDVI sampling system in the experimental field. 

3.2.2. Yield monitoring System 

An RDS Ceres II yield monitoring system and an RDS GPS 16 receiver were 

installed on a Claas-Mega 216 combine harvester to estimate and record the 

yield and positional data, respectively. The yield monitor measured the moisture 

and yield data, whereas the GNSS receiver used EGNOS to obtain location 

data to within 3 m. The instantaneous yield, moisture, and GNSS data were 

simultaneously logged at two-second intervals onto a Secure Digital (SD) card 

installed on the yield monitor. The combine had an effective cutting width of 6 m 

and traveled at an average speed of 4.5 km/h. Therefore, approximately one 

sample was collected from a 15-m2 area. 

The optical sensor used to measure the grain yield was fitted onto the upper 

part of the clean grain conveyor just before the grain was dropped into the grain 

tank. An infrared light beam was transmitted across the elevator paddles from 

one side to the other. A receiver detected when the light beam was blocked and 

when it was clear. As each paddle passed the sensor, the beam was blocked. 

The more grain there was on the paddle, the longer the beam was blocked. The 

transmitter and receiver, together with their lenses and lens holders, were each 

secured to a hinged mounting bracket that was attached to the elevator 

housing. The sensor operation was indicated by an LED on the end of each 

sensor. Figure 3.2 presents the linkages and setup of the sensor. 
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Figure 3.2 A block diagram of the yield monitoring system components. 

3.2.3. Leaf N Test and Field Experiments 

To determine the real wheat N content, leaf sample collection and laboratory 

analyses were conducted using the protocol of Mills and Jones (1996). The 

leaves were collected and specially handled to ensure that no loss in dry weight 

from decomposition occurred because such loss would significantly impact the 

plant analysis results. All the leaf samples were geo-referenced using a Juno 

5D differential GNSS receiver; placed in open, clean paper bags; and kept in a 

cool (5–7 °C), environment during shipment to the laboratory to prevent N 

volatilization. 

At the time of leaf sampling, ear emergence had not occurred; therefore, in 

accordance with Mills and Jones (1996), between the 4th and 5th leaf, the 

highest, i.e., the youngest, leaf was taken because this leaf best defines the 

nutritional status of the crop. For each location sample, approximately 50 leaves 

(one per wheat plant) and 20 samples per field (two fields) were taken. Each 

field was homogeneous in terms of the soil and crop management. The N 
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content was determined at the CITIUS laboratory (University of Seville, Seville, 

Spain) using the LECO CNS-2000 instrument (LECO Corp., St. Joseph, MI, 

USA).  

Field tests were performed during the spring of 2014 at a commercial wheat 

field (Latitude: 37.4555477 N, Longitude: 5.4336677 W). On 25 March 2014 (at 

the early growth), the NDVI measurements and leaf sample collection were 

obtained from two fields (1.60 ha and 1.21 ha). The NDVI values for each 350-

m grid cell and the N percentage of leaves in 700-m grid cells within the study 

area were determined. On 2 June 2014, the harvest was conducted with the 

yield monitor system in place. The standard harvest procedures were slightly 

modified for calibration purposes to obtain accurate and completely site-specific 

yield information using the monitoring system. 

3.2.4. AgGIS Software and Data Analysis 

The Agricultural Geographic Information System (Farm Works TM, Trimble 

Navigation Ltd., Sunnyvale, CA, USA) software package was used to facilitate 

the development of plans and maps that highlighted different features for the 

design of applications in the study area and to incorporate all the field data. The 

recorded data from the Juno 5D differential GNSS receiver were imported into 

the Farm Works TM software package to create different maps and 

applications.  

The inverse distance weighting (IDW) method implemented in the AgGIS 

software package was used for interpolation. It was assumed that spatial 

distribution variable, Z, decreased linearly (n = 1) with distance. The size of the 

neighborhood and number of neighbors are also relevant to the accuracy of the 

results (N = 12).  

Zo =
∑ zi.di

-nN
i=1

∑ di
-nN

i=1

 (3.1) 

The variables in the above equation are the following: 

Zo = the estimated value of the variable z at point i, 

zi = the sample value at point i, 
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di = the distance from one sample point to an estimated point, 

n = the coefficient that determines the weight based on a distance, and 

N = the total number of predictions for each validation case. 

Once the data from all the trials were obtained, it was important to perform a 

statistical analysis before drawing conclusions using the R software package (R 

Core Team, 2014). R is a free software package for statistical computing and 

visualization that is distributed under the terms of the Free Software 

Foundation’s GNU General Public License in source code form. This software is 

valued for its large variety of statistical methods and visualization capabilities. 

In the statistical analysis, Pearson’s coefficient, which is an index that 

measures the degree of covariance between linearly related variables and 

which ranges between −1 and +1, was obtained, and relationships between 

NDVI and wheat yield and NDVI and leaf N content were determined using the 

method of ordinary least squares. 

 

3.3. Results and Discussion 

In Andalusia, Spain, the spatial statistical analysis of yield-monitored data 

has become relatively common for hand-harvested crops. This region is 

characterized by medium-large fields with homogeneous crops, and yield 

monitoring is often considered to be the main entry-level technology for use in 

precision agriculture. Spatial differences in wheat yields reflect differences in 

soil conditions that can, for instance, be repaired with fertilizer. These conditions 

are structural and are often reflected in the same patterns in the yields. 

3.3.1. Yield Sensor Calibration and Yield Mesurement 

Achieving accurate wheat yield measurements is challenging, and calibration 

effects the yield measurements. RDS Ceres operates with a light barrier in the 

upper part of the feed-flow side of the clean grain elevator. The grain piles on 

the elevator paddles interrupt the light beam. The zero tare value is obtained 

from the darkening rate when the elevator is running empty. Each day, taring 

was performed for both the combined yield sensor and moisture sensor. The 
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new calibration factor used in the yield monitoring in this study was calculated 

using the following, as proposed by Demmel et al. (2001): 

Calibration factor yield = 
ሺExisting factor × Weight measuredሻ

Weight from the console
 (3.2) 

The mean relative error represents a measure of the calibration quality. It 

should ideally be zero, or at least near zero. In this study, the (average) relative 

calibration error was −3.1%, with a standard deviation of 4.2% (5 repetitions). 

This error was primarily due to the different specific weights of the wheat grains 

from different parts of the field. These values are very similar to those obtained 

by Demmel et al. (2013), with a mean of −0.14% and a standard deviation of 

3.43%. Calibration is an important step for verifying the yield sensor output. 

3.3.2. Relationship between the Wheat Yield and NDVI 

The values of the wheat yield and NDVI for both fields were, respectively 

3498 ± 481 kg ha−1 and 0.67 ± 0.04 nm nm−1 (field 1) and 3221 ± 531 kg ha−1 

and 0.68 ± 0.05 nm nm−1 (field 2) (Figure 3.3). In both fields, the yield and NDVI 

exhibited a strong Pearson’s correlation, with rxy = 0.64 and p < 10−4 for field 1 

and rxy = 0.78 and p < 10−4 for field 2 (Figure 3.4). According to the 

categorizations by Dancey and Reidy (2004), these results denote a strong 

correlation between the yield and NDVI for both fields. The strong correlation 

suggests that NDVI measurements can be used for delineating management 

zones across a field, and such reliable and precise fertilizer (N) application has 

the potential to increase capacities in our agricultural environment. The visual 

similarity of the spatial distributions of the NDVI (Figure 3.5) and wheat yield 

confirms the close relationship between the two factors.  
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(b) 

(a) (c) 

Figure 3.3 (a) Map of the wheat yield and two NDVI sampling sites; (b) plot 1 and (c) plot 2. 

 

(a) (b) 

Figure 3.4 (a) Relationship between the NDVI measurements and wheat yield (a) 

for field 1 and (b) for field 2. 
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(a) (b) 

Figure 3.5 Spatial distribution of NDVI in both fields: (a) field 1 and (b) field 2.  

3.3.3. Relationship between Optical Sensor Measurements and 

Percentage of leaf N Content 

Two field experiments were designed to determine the relationship between 

optical sensor measurement and the percentage of leaf N content. The 

measurements included 35 wheat leaf N content values (n = 17 for field 1 and  

n = 18 for field 2). The leaf N (%) values were 4.2% ± 0.44% (field 1) and 3.6% 

± 0.24% (field 2). Figure 3.6 indicates a strong linear correlation between the N 

percentage content and NDVI measurements, which results in the following 

values: rxy = 0.71 and p < 10−4 for field 1 and rxy = 0.89 and p < 10−4 for field 2. 

 

(a) (b) 

Figure 3.6 (a) The relationship between the NDVI measurements and leaf N content (a) for 

field 1 and (b) for field 2. 
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3.3.4. Potential Value of Variable Rate N Application 

A potential application of the NDVI sensor is to perform variable-rate N 

management for winter wheat, as shown in Figure 3.6. Currently, the method for 

determining the N (e.g., urea) requirements of wheat is to use the N-balance 

method; in some cases, estimation of the N application needed per hectare is 

based on the technician’s and producer’s experience. 

In the same campaign and field, previous work evaluated N response tests 

with total N rates of 55, 150, 190, 225 and 250 kg ha−1 to determine the 

relationship between the NDVI measurements and total N. This relationship 

revealed a clear exponential regression in the measurements (rxy = 0.99 and p < 

10−4). The exponential regression was as follows 

ݕ ൌ 15.573݁ସ.ଶ଻ଽହ௫ (3.3) 

where the variables are as follows:  

y = Total N (kg ha−1) 

x = NDVI sensor measurements 

The use of optical sensors resulted in NDVI measurements that ranged 

between 0.60 and 0.78 in both fields. This information, along with the standard 

spatial interpolation method of IDW, allowed for variable-rate N prescription 

maps to be generated (Burrough and McDonnell, 1998). Figure 3.7 exhibits a 

preliminary approach to applying N at variable rates in fields to meet the 

predicted wheat N needs; however, it is important to note that the spatial 

patterns of optimum N rates for the same field can vary from year to year. 

According by Pedroso et al. (2010), for a field with precision farming, 

segmentation methods exist, and interest in such methods among researchers 

is increasing. 



An approach to precise Nitrogen management using hand-held crop sensor measurements and winter 

wheat yield mapping in a Mediterranean environment 

50 

(a) (b) 

(c) (d) 

Figure 3.7 Site-specific precise nitrogen management units for two fields: (b) and (d) 

conservative application, and (a) and (c) risky application. 

 

Figure 3.7 shows two theoretical farmer scenarios for variable-rate N 

application, conservative and risk taking, based on the number of N units to be 

distributed in the field. Usually, the farmer is reluctant to distribute fewer units 

than his experience would indicate are needed per hectare; therefore, a 

conservative scenario is necessary when the customary N units that are used in 

the area are distributed more in areas where higher yields are expected and 

less in areas with lower yield potential. With an average value of 240 kg N per 

hectare, Figure 3.7 b,d represent the conservative scenario; the average per 

hectare units are maintained to be equal to the rates that are used without 

precision farming tools (in Figure 3.7 b,d, max = 288 kg ha−1, med = 240 kg 

ha−1, and min = 192 kg ha−1). The significant savings occur in the risk-taking 
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scenario, in which a producer decides to apply an average value of 240 kg N 

ha−1 in areas with the greatest potential and reduce the amount in areas with 

lower potential (in Figure 3.7 a, max = 240 kg ha−1, med = 220 kg ha−1, and min 

= 200 kg ha−1; and Figure 3.7 c, max = 240 kg ha−1, med = 225 kg ha−1, and 

min = 210 kg ha−1). The risk-taking strategy for variable-rate application of N 

reduce costs by approximately 20%. The risk taking strategy can be improved, 

for example, in cases in which the soil is the limitation to achieving higher 

yields.  

All of maps shown in Figure 3.7 were generated on an appropriate grid (12 m 

× 12 m) using field positions from a GNSS receiver and a map of the desired 

application rate; the input rate changed as the spreader moved through the 

field. The N VRA (Variable rate application) machine should exhibit the highest 

real-time accuracy, but we observe that the mechanical nature of the application 

machine requires consideration of its limitations in the following areas: the 

working width (e.g., 12 m), minimum dose, maximum dose and time actuator 

settings. Another possible source of error is related to the characteristics of the 

applied material, e.g., the density and fluidity, which can change throughout the 

day; consequently, it is very important that the on-board equipment is well 

calibrated. 

3.4. Conclusions 

This ongoing research seeks new and improved tools to contribute to 

decision-making about the correct amount of N fertilizer to apply to winter wheat 

fields in a Mediterranean environment in a particular year. Until now, the 

adoption of VRA N management by producers has been very low, despite the 

potential economic and environmental benefits of this practice. Our major 

contributions are as follows: 

 The average percentage error of yield monitoring for detecting the actual 

mass flow rate was −3.1% with a standard deviation of 4.2%. This monitoring 

enabled an assessment of the relationship between the yield data and NDVI 

measurements (r2 = 0.64 and 0.78) for fields 1 and 2. 
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 An assessment of the relationship between the wheat leaf N content and 

NDVI measurements from optical sensor values revealed coefficients of 

determination greater than 0.9 when measured with the sensor. 

 An appropriate and inexpensive portable hand-held optical sensor 

(GreenSeeker®, Trimble Navigation Ltd., Sunnyvale, CA, USA) could 

satisfactorily help operators predict and generate a map of N application 

recommendations for fields. Wheat canopy greenness may not always be the 

result of a certain N content (e.g., available water or temperature may also 

affect the greenness). If the greenness is not related to the N content, then N 

inputs are based on an erroneous indicator. 

- N recommendation maps were developed, and accurate N 

recommendations for sub-regions of fields were produced. The recommended 

N maps based on this technique may help operators use accurate and efficient 

application rates from year to year. 
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ABSTRACT 

The use of reliable information and data that are rapidly and easily acquired is 

essential for farm water management and appropriate irrigation strategies. Over 

the past decade, new advances have been made in irrigation technology, such 

as platforms that continuously transmit data between irrigation controllers and 

field sensors, mobile apps, and equipment for variable rate irrigation. In this 

study, images captured with a thermal imaging camera mounted on an 

unmanned aerial vehicle (UAV) were used to evaluate the water status of sugar 

beet plants in a plot with large spatial variability in terms of soil properties. The 

results were compared with those of soil moisture measurements. No direct 

relationship was observed between the water status of the soil and that of the 

crops. However, the fresh root mass and sugar content tended to decrease 

when higher levels of water stress were detected in the crop using thermal 

imaging, with coefficients of determination of 0.28 and 0.94 for fresh root mass 

and sugar content, respectively. Differences were observed between different 

soil types, and therefore different irrigation strategies are needed in highly 

heterogeneous plots. 

Keywords: Remote sensing, Unmanned aerial vehicle (UAV), Precision 

agriculture, Aerial image, Crop water stress index (CWSI) 
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4.1. Introduction 

Farmers, cooperatives and agricultural consultants are facing radical 

changes regarding the methods employed to collect, analyse, and use 

information to add value to their production outputs. Over the past 20 years, we 

have observed increasing interest in farm- and block-level precision agriculture 

(Blackmore et al., 2003; Zude-Sasse et al., 2016); however, the next 20 years 

will give rise to canopy-, branch-, and even fruit-level production practices that 

will demand a new farming mentality (Krishna, 2016). Field sensors will provide 

terabytes of quantitative and qualitative information about crops, such as 

nutrients levels and plant and soil moisture status, and about orchards, such as 

the three-dimensional canopy shape, the mass and size of each fruit, as well as 

the number of fruits per plant. Amassing this information into a coherent 

database that can be rapidly and easily used to make informed decisions on 

what, when, where, and how to plant, irrigate, prune, thin, treat and harvest 

each crop will soon be one of the fundamental challenges for farmers to 

address (Cox, 1996). This scenario allows farmers to move from intuitive 

decision making to analytical decision making. 

Irrigation uses 70% of the freshwater (watercourses and groundwater) used 

worldwide, which is three times more than 50 years ago. During recent 

droughts, such as those in California (from 2013 to 2015) or Spain, continuous 

water deficits have increased from 15 to 60 months (López-Moreno et al., 

2009); these droughts highlight the need for precision irrigation techniques to 

improve water use efficiency so that the resource is applied exactly at the right 

location, time and rate. The possibilities introduced by the use of remote 

sensing include precise water management within a plot. Therefore, different 

irrigation strategies can be followed based on the spatial variability of the soil 

and crop conditions. Because of this variability, the actual water requirements of 

crops may change within the same plot. In this case, the challenge for precision 

irrigation is the development of methodologies to acquire the required 

information that will allow uniform management within demarcated areas in the 

plots and the validation of protocols that enable precise irrigation in various sub-

units. 
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Soil moisture monitoring through instruments placed in a few locations in a 

field has been argued to have important disadvantages that are primarily related 

to representativeness and the fact that crop water status depends on other 

factors in addition to soil moisture content (Jones, 2004). The water status of 

plant tissues, which is commonly measured in terms of water potential (Jones, 

1992), can be used as a precise indicator for irrigation scheduling (Jones, 

2004). Pressure chambers (Scholander et al., 1965) have been widely 

employed to measure leaf water potential for water deficit determination and 

irrigation scheduling. Although this method is a reliable measure of plant water 

status, it is highly time consuming and labour intensive, which results in 

inadequate sampling (Cohen et al., 2005). Moreover, this method is not feasible 

for measuring the water potential of certain leaf types, such as those of sugar 

beet.  

Measurement of canopy temperature has been proposed as an alternative 

method of determining water potential (Bellvert et al., 2016). As water stress is 

induced, the stomata close, transpiration rates decrease and evapotranspirative 

cooling is reduced, causing leaf temperatures to increase (Maes and Steppe, 

2012). Idso et al. (1981) and Jackson et al. (1981) suggested the use of the 

crop water stress index (CWSI) as an indicator of plant water stress. Sensing 

the canopy temperature using infrared sensors or imaging has shown good 

potential for calculating the CWSI and estimating the plant water status for 

irrigation scheduling in cotton, corn, sunflower, grapevine, and pistachios 

(Gonzalez-Dugo et al., 2006; Payero et al., 2006; Möller et al., 2007; Testi et al., 

2008; Taghvaeian et al., 2014). Although a non-water-stressed baseline, i.e., a 

wet reference, to calculate the CWSI was reported for sugar beet (Idso, 1982), 

the upper baseline, i.e., a water-stressed baseline or dry reference, contains 

some uncertainty, with most studies assuming a rather arbitrary fixed 

temperature increment above air temperature to represent the temperature of 

non-transpiring leaves; values approximately 5ºC above air temperature are 

often used. Alternatively, the degrees above non-stressed (DANS) index, which 

is a simplified version of the CWSI that is based only on the difference between 

the stressed and non-stressed canopy temperatures, can be used (DeJonge et 

al., 2015; Taghvaeian et al., 2014). However, to the best of our knowledge, 
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thermal sensing has not been applied to optimize sugar beet irrigation. The 

sugar beet is considered a high water-consuming crop (Fabeiro et al., 2003), 

and its future in drought-prone areas with limited water resources could be 

compromised if crop productivity is not maintained under expected reductions in 

available irrigation water. To attain this objective farmers are obliged to 

implement precision irrigation tools, such as thermal-based crop stress sensing, 

which may overcome the drawbacks of soil moisture and leaf water status 

monitoring, especially when remotely monitoring large areas of crops. 

The earth-emitted thermal energy is a function of the surface temperature 

(Ts) and the surface emissivity, where emissivity is a material property that 

ranges in value from 0 to 1 (Snyder and Wan, 1998). Since remote sensors can 

detect and quantify the heat emitted from the earth, the surface temperature 

can be easily determined. Thermal images captured using micro-unmanned 

aerial vehicles (UAVs) have considerable advantages over manual infrared 

thermometers, which require considerable effort and have low representation of 

measurements, and thermal imaging satellite data in which the spatial and 

temporal resolution is not sufficient for most irrigation applications. For small- 

and medium-sized plots, UAVs have a competitive advantage over large, 

autonomous aerial platforms, such as manned aircrafts carrying considerable 

amounts of remote sensing equipment. 

The goal of this study was to evaluate the use of thermal images captured 

using a micro-UAV to predict variations in crop water use due to soil variability 

and irrigation management. This method can subsequently be used as a 

decision support tool for the efficient irrigation management of sugar beet. 

 

4.2. Materials and methods 

4.2.1. Field description and esperimental conditions 

Field tests were conducted in a commercial sugar beet field (Beta vulgaris L., 

ssp. vulgaris var. altissima) during the 2014/2015 growing cycle (i.e., from 

October to July). The field was located in Cadiz, SW Spain (Latitude, 

36.6965397º N; Longitude, 6.3184375º W). The experimental field covered an 



Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet 

60 

area of approximately 12 ha and was irrigated with a sprinkler system consisting 

of a triangular arrangement of emitters spaced 12 m apart along the laterals; the 

laterals were also spaced 12 m apart. The sprinkler wetting radius was 

approximately 12 m at a working pressure head of 30 m. In southern Spain, 

sugar beet is sown in autumn. In the experimental field, the crop was planted in 

mid-November at a depth of 25 mm with 120 mm between plants and 500 mm 

between plant rows. The climate of the study area is Mediterranean, with rainfall 

occurring normally from late September to May. The average annual reference 

evapotranspiration (ET0) and precipitation values calculated for the 2012-2015 

period from data recorded at a nearby weather station belonging to the 

Agroclimatic Information Network of the Andalusia government (36º 43' 08'' N, 

06º 19' 48'' W) were 1273 mm and 471 mm, respectively. Table 4.1 shows the 

weather data recorded over the experimental growth season (2014-2015). 

Table 4.1 Monthly meteorological variables measured during the 2014/2015 sugar beet growing 

season at a nearby standard weather station of the Agroclimatic Information Network of the 

Andalusia government. P (mm): rainfall; Tm (ºC): mean air temperature; RHm (%), mean 

relative humidity; u (m s-1), mean wind speed; Rs (MJ m-2 day-1), solar radiation; ET0 (mm 

day-1), mean FAO-Penman Monteith reference crop evapotranspiration.  

Date P Tm RHm u Rs ET0 

 mm °C % m s-1 MJ m-2 day-1 mm day-1

Oct-14 66 20.5 71.3 2.1 15.0 3.4 

Nov-14 185 15.4 82.2 2.7 9.8 1.9 

Dec-14 49 9.9 87.9 2.3 8.7 1.2 

Jan-15 151 9.7 85.4 2.9 10.3 1.5 

Feb-15 17 10.9 77.9 3.3 13.2 2.2 

Mar-15 50 13.1 79.1 2.3 17.4 3.0 

Apr-15 35 16.3 76.3 3.2 21.5 4.1 

May-15 7 20.7 59.8 2.6 27.2 6.2 

Jun-15 9 22.4 60.4 2.5 26.8 6.2 

Jul-15 9 24.7 69.0 1.8 28.7 6.3 
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4.2.2. Soil characteristics and variability 

Soil variability was characterized by conducting two complementary tests. 

Soil texture was measured based on thirty soil samples collected at a depth of 

300 mm using a soil auger. Soil analyses were performed in the Centre for 

Research, Technology and Innovation (CITIUS Laboratory) at the University of 

Seville. Systematic sampling was performed by maintaining a fixed distance 

between two sampling points (using a net or mesh). All samples were 

georeferenced using a differential-global navigation satellite system (DGNSS) 

receiver and geographic information system (FarmWorks, Trimble Navigation 

Ltd., Sunnyvale, CA, USA) distribution maps of different soil properties compiled 

using a kriging technique (Goovaerts, 1997).  

Apparent electrical conductivity (ECa) was measured using an EMI Dualem-

21S sensor (DUALEM, Milton, Canada) operated at a height of 75 mm above 

the soil surface and sheltered in a customized polyvinyl chloride case. The 

equipment was pulled by an all-terrain vehicle (Figure 4.1a) and was coupled to 

a real-time kinematic differential global positioning system (Trimble, Sunnyvale, 

CA) to collect samples over a 12 ha swath of the field site. Measurements were 

collected in parallel swaths from NE to SW separated by 10 m with the aid of a 

guidance system; points within a swath were separated by 1-2 m. We also 

collected samples along 23 NW to SE swaths to increase the sample density. 

The sensor was operated at a fixed frequency of 9 kHz and consisted of a 

transmitter coil at one end and four receiver coils that were separated from the 

transmitter coil by 1, 1.1, 2, and 2.1 m. The receiver coils were oriented in a 

perpendicular (PrP) or horizontal co-planar (HCP) configuration with respect to 

the transmitter coils. Each transmitter-receiver combination provided integrated 

ECa values for the corresponding explored soil volumes; these values 

depended on the exploration depth of each signal. The effective depth of 

exploration is the depth over which an array accumulates 70% of its total 

sensitivity, which also depends strongly on the ECa of the soil (Callegary et al., 

2007). The theoretical exploration depths for the 1.1 and 2.1 m HCP and the 1 

and 2 m PrP coil combinations were 0.5, 1.0 and 1.6 and 3.2 m, respectively. At 

high values of true conductivity, the sensor has a non-linear response, and ECa 

is increasingly underestimated for a given frequency and intercoil spacing 
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(McNeill, 1980). Beamish (2011) proposed a correction procedure involving a 

least-squares polynomial fitted to the theoretical deviation of the linear 

relationship between LIN-approximated ECa and the true conductivity of the coil 

configurations to allow for the correction of the LIN approximation breakdown. 

This approach was adopted in this study, and the corrected LIN-approximated 

ECa is used hereafter. The coefficients used for the polynomial fitting are 

available in Delefortrie et al. (2014). The final transformation applied to the raw 

ECa data accounted for the soil temperature effects. A reference temperature of 

25°C is typically used (Corwin and Lesch, 2005): 

ECaଶହ ൌ ECa ൤0.447 ൅ 1.4034eିቀ
౐

మల.ఴభఱ
ቁ൨                                          (4.1) 

where ECa25 is the standardized ECa at a temperature of 25°C, and T is the 

soil temperature in °C. To simplify the nomenclature, we use ECa as the 

temperature-corrected ECa (ECa25) reading. The average soil temperature at a 

depth of 0-0.30 m, obtained from 30 samples collected across the field, was 

used. Given the high correlations between signals observed in the field 

(correlation coefficients ranging from 0.9 to 0.94), we used the 1.1 HCP signal 

that best represented the rooting depth of the sugar beet crop. The FAO has 

established a range of maximum effective rooting depths for sugar beet, i.e., 

0.7-1.2 m (Allen et al., 1998). The ECa data were filtered to remove spurious 

errors and were interpolated by means of ordinary block kriging on a 2 x 2 m 

grid to create maps for the four ECa signals using the geostatistical analyst in 

ArcGIS (ESRI, Redlands, CA) (Figure 4.1b). We used an anisotropic spherical 

model to fit the variogram with a lag size of 1.5 m, range of 75 m, sill of       

1663 (mS m-1)2 and 115° as its main direction. A cross validation of the 

interpolation yielded a root mean squared error of 6.5 mS m-1. 
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(a) (b) 

 

(c) 

Figure 4.1 a) Dualem sensor. b) CEa map obtained at a depth of 1000 mm. c) Clay and sand 

content maps. The squares indicate the selected zones. 

4.2.3. Mapping soil heterogeneity and selection of experimental 

plots 

The soil texture maps generated using Farm Works (Trimble Navigation Ltd.) 

mapping software (Figure 4.1c) showed strong soil variability. Two zones of 

extremely high soil texture variability were identified; one with prevailing clayey 

soil, and the other with sandy soil (Figure 4.1c). Within each of the selected 

areas (clayey and sandy zones), two experimental plots (4 in total) covering an 

area of approximately 72 m2 (i.e., the area within three adjacent sprinklers, 
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considering that a triangular arrangement of sprinklers was established) were 

established. The visual confirmation of the ECa maps (Figure 4.1b) with the soil 

texture maps confirmed that the selected clayey and sandy zones presented 

relatively uniform medium and low range ECa values, respectively. 

4.2.4. Soil moisture measurements 

Soil moisture was measured in the 0-1000-mm soil profile during the study 

period using a multi-sensor PR-2 profile probe (Delta-T Devices, Ltd., 

Cambridge, UK). Two epoxy-fibreglass access tubes with a rubber-sealing plug 

were buried in each experimental plot. The PR-2 is a polycarbonate rod with six 

pairs of stainless steel rings at 100, 200, 300, 400, 600 and 1000 mm, and soil 

moisture was measured at these depths. The PR-2 probe was calibrated for 

each soil zone (i.e., the selected clayey and sandy zones), and the 

manufacturer’s equation (Qi and Helmers, 2010) was applied to convert the 

permittivity into volumetric soil water content. For the calibration, undisturbed 

soil samples were collected near the access tubes at the end of the growing 

cycle over several days to ensure a broad range of soil moisture conditions. 

Bulk density and volumetric moisture content were determined for each sample. 

The moisture measurements collected using the PR-2 probe and those 

obtained in the laboratory were used to determine the calibration curves for 

each soil type. Once calibrated, the soil moisture measurements in the 0-1000-

mm soil profile were used to calculate changes in the relative extractable water 

(REW) for all experimental plots using the following expression: 

REW ൌ ୖିୖౣ౟౤

ୖౣ౗౮ିୖౣ౟౤
                                                                          (4.2) 

where R is the soil moisture content, and Rmax and Rmin are the soil moisture 

contents at the field capacity and wilting point, respectively. Rmax and Rmin were 

determined using the Rosetta model, which is based on the van Genuchten 

model (Van Genuchten, 1980), and the soil physical properties measured in 

each selected zone (i.e., sand, clay and silt fraction; bulk density). 
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4.2.5. Thermal imaging and Unmanned aerial vehicle 

description 

Thermal images of the sugar beet fields were acquired using an uncooled 

Tau 2 324 thermal camera (FLIR Systems, Inc., Oregon, USA). The main 

characteristics of the camera are summarized in Table 4.2. The accuracy of 

thermal measurements performed using this type of camera mounted on a UAV 

has been reported to be approximately 1K (Berni et al., 2009). 

The camera was installed in a vertical orientation in the middle of the bottom 

of the UAV, which was a small Phantom 2 multi-rotor copter (SZ DJI 

Technology Co., Ltd., Shenzhen, China) equipped with a GNSS receiver. The 

UAV, which had a flight duration of 25 min and a remote control range of 1,000 

m in open spaces, was controlled by the DJI iPad Ground Station application.  

The UAV was flown across the experimental field on six clear-sky days over 

the period from day of year (DOY) 86 to DOY 167. The flights, which were 

performed at solar noon, measured surface temperature over the four 

experimental plots at several heights (5 m, 10 m, 20 m, 30 m and 40 m) above 

the ground level. The flight time over the different experimental plots and at 

several heights did not exceed 30-40 min in order to minimize the differences in 

weather conditions during the period of measurement. The thermal images 

were acquired at a rate of 9 frames per second and were stored on-board in a 

raw format with 14-bit radiometric resolution. A total number of 50 selected 

thermal images were analysed during the growth season. 

Table 4.2 Thermal camera technical data. 

Camera Features 

Scene range -25 ˚C to 135 ˚C 

Detector 
Vanadium Oxide (VOx) 

microbolometer 

FPA / video display format 324 x 256 pixels 

Infrared lens  9 mm f/1.25 

Temperature sensitivity <50 mK 

Wide field of view 48º x 37º 

Full frame rates: 30/60 Hz 

Pixel pitch 25 µm  
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The thermal images captured by the UAV were used to calculate the mean 

sugar beet temperature of each experimental plot by averaging the temperature 

of the pure vegetation pixels. Pure vegetation pixels were extracted from the 

thermal image using a segmentation algorithm written in R (R Core Team, 

2015) and based on a histogram analysis of pixels from each thermal image 

(Figure 4.2) and the ‘full width at half maximum’ (FWHM) rule. The FWHM rule 

allows identification of pixels with high probability of being pure vegetation, as 

described elsewhere (Rud et al., 2015; Käthner et al., 2017). The assessment 

of crop water status was based on the difference between the average 

temperature of the vegetation cover and the prevailing air temperature at the 

time of flight (∆T), measured using the air temperature sensor (model HMP45C, 

Vaisala, Helsinki, Finland) installed at the nearby weather station (absolute 

precision of ±0.2ºC). Values of ∆T were also used to determine a cumulative 

integral of the degree of crop water stress throughout the irrigation season. The 

difference between ∆T and the corresponding value for a non-stressed canopy 

provides the difference in canopy temperature, or degree of stress, for a specific 

sampling date. This indicator, DANS, was adapted by DeJonge et al. (2015) to 

integrate the impact of water stress throughout a whole day. In this study, an 

expression analogous to the water stress integral (WSI), originally proposed by 

Myers (1988) for predawn leaf water potential measurements, was used to 

determine the cumulative integral of water stress over the entire irrigation 

season as measured by differences in canopy temperature: 

WSI	ሺ°C	dayሻ ൌ ∑ ൫ΔT୧,୧ାଵ െ c୧,୧ାଵ൯n
୧ୀ୲
୧ୀ଴                                                (4.3) 

where t represents the number of ∆T measurements (t=6), in agreement with 

the number of flights conducted ); ∆Ti,i+1 is the average ∆T for any interval i, i + 

1; ci,i+1 is the average of the non-water-stressed ∆T values for any period i, i + 

1; and n is the number of days in the interval. The c values were obtained from 

the non-water-stressed baseline (NWSB) derived by Idso (1982) to calculate the 

CWSI for sugar beet: 

c୧ ൌ a ൅ bVPD୧                                                                                     (4.4) 

where VPDi represents the prevailing vapour pressure deficit (kPa) at the 

time of flight on the ith measurement day, and a and b are two parameters 
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obtained empirically for each species under specific environmental conditions. 

The a and b values for sugar beet on sunny days are a 2.50 and -1.92, 

respectively (Idso, 1982). The VPD and air temperature data at a height of 2 m 

were obtained from a nearby weather station belonging to the Agroclimatic 

Information Network of the Andalusia government. 

The Idso (1982) NWSB was also used to calculate the CWSI of the ith 

sampling day as follows: 

                                               (4.5) 

 

where ∆Tdry,i represents the maximum ∆T, which corresponds to a non-

transpiring canopy. In this case study, it was found that the sugar beet leaf 

temperature could reach up to 8ºC above air temperature; consequently, a 

constant ∆Tdry,i = 8ºC was considered. Similar ∆Tdry,i values have been found 

for other herbaceous crop species (Rud et al., 2014). 

 

Figure 4.2 Thermal image processing performed in this field trial to derive the mean sugar beet 

temperature in each experimental plot. The segmentation algorithm is based on a histogram 

analysis and the FWHM rule. (A) Thermal image of a sugar beet field plot; (B) distribution of 

temperature in the thermal image depicted as a density histogram; (C) segmented thermal 

image in which the regions of interest have been selected. 
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4.2.6. Irrigation strategy 

Two experimental plots were established in each of the selected soil zones, 

i.e., the clayey and sandy areas of the experiment. In each soil zone, one of the 

plots was irrigated following the criteria used by local farmers (WW to indicate 

presumably well-watered conditions), and in the other experimental plot, two 

water stress cycles were imposed by withholding irrigation through nozzle 

blinding of adjacent sprinklers for approximately three weeks per cycle (WS to 

indicate water-stressed conditions). A recovery period of 24 days was 

established between both water deficit cycles. The irrigation depths applied to 

the WW and WS plots over the entire growing season were 320 mm and 170 

mm, respectively. The irrigation depth applied during each irrigation event was 

30 mm, except one where 20 mm was applied. Irrigation frequencies were 

determined from the cumulative crop water requirements calculated following 

the FAO-Penman-Monteith method (Allen et al., 1998). 

4.2.7. Production 

Sugar beet yield was evaluated in the four experimental plots by manual 

harvesting six samples per experimental plot at the end of the growing season 

(early July). Fresh root mass (t ha-1), sugar recovery (%) and sugar content      

(t ha-1) were determined for each sample. 

4.2.8. Statistical analyses 

Analysis of variance (ANOVA) performed with the statistical package 

Statgraphics (Statgraphics Centurion XV) was used to compare the yield 

components and yield between treatments. The relationships between yield, 

components and the water stress integral were evaluated using linear 

regression analysis in Statgraphics software. 

4.3. Results 

4.3.1. Soil moisture 

The soil moisture dynamics of the four selected plots are shown in Figure 

4.3. The WWSand plot maintained REW values close to one (field capacity) 
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throughout the study period. However, the WWClay plot could not maintain field 

capacity conditions throughout the irrigation season, and REW decreased to 

approximately 0.6 during the period from DOY 80 to 125 even though the 

irrigation scheduling in both the WWClay and WWSand plots was similar.  

 

Figure 4.3 Seasonal time courses of the relative extractable water fraction (REW) in the 0-

1000-mm soil profile of the four study plots. Each point represents the average of two 

measurements per plot. The hatched areas indicate the periods during which irrigation was 

withheld in the WSClay and WSSand plots. Definition of symbols: filled triangles (WSClay), hollow 

triangles (WSSand), filled circles (WWClay), hollow circles (WWSand). 

The REW dynamics in the WSSand and WSClay plots were similar throughout 

the study period, although WSClay exhibited REW values that were consistently 

15-20% lower than those observed in WSSand (Figure 4.3). The restitution of 

irrigation after the first water deficit cycle in the WS treatments did not allow soil 

moisture values to reach those of the WW treatments in any of the study plots.  

4.3.2. Crop temperature 

The crop temperatures determined from thermal imaging for all experimental 

plots at various flight altitudes and on six sampling dates during the irrigation 

season were averaged for each flight altitude to analyse the effect of height 

(from 5 to 40 m) on the estimated crop temperature. The mean crop 

temperatures of the four experimental plots averaged across the six flight dates 

were similar (P>0.05) within the 5-40-m height range (Figure 4.4). 
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Figure 4.4 Crop temperatures determined at flight altitudes from 5 to 40 m. Each point 

represents the six-flight average of mean crop temperature determined for the four experimental 

plots. The error bars indicate the standard error of the mean. 

The mean crop temperatures at 30 m were used to calculate the crop-air 

temperature differences (∆T) and CWSI for each experimental plot throughout 

the study period (Figure 4.5). A comparison of the ∆T dynamics derived for 

WWClay and WWSand showed that WWSand had lower ∆T values than WWClay at 

the beginning of the trial (DOY 85-115) and higher ∆T values from DOY 130 

onwards (Figure 4.5a). In the plots with irrigation deficits (WS), WSSand had 

lower ∆T values than those of WSClay at the beginning of the trial (DOY 85-115), 

but ∆T was consistently higher in WSSand than in WSClay from DOY 115 onwards 

(Figure 4.5b). A comparison of the WW and WS plots for each soil type 

revealed that in the clay soil, ∆T was only slightly affected by the soil moisture 

differences (Figure 4.3) caused by irrigation management. However, in the 

sandy soil, the ∆T of WSSand was substantially higher than that of WWSand from 

approximately DOY 115 (onset of the first water-stress cycle; Figure 4.3). 

Similar seasonal trends to those described for ∆T were also observed for the 

CWSI (Figures 4.5c, 4.5d). The CWSI values ranged fron 0 to 1 across most of 

the experimental plots and sampling dates, but negative values observed in the 

sandy plots on one of the sampling days suggest that the Idso (1982) NWSB 
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may not be suitable for the prevailing environmental conditions of this study 

area. 

 

Figure 4.5 Evolution of the crop-air temperature difference (T) and crop water stress index 

(CWSI) in WWClay and WWSand (a, c) and WSClay and WSSand (b, d) plots The crop temperature 

was measured at a flight altitude of 30 m. Error bars indicate the standard error of the mean. 

The hatched areas indicate the periods during which irrigation was withheld in the WSClay and 

WSSand sub-plots. Definition of symbols: filled triangles (WSClay), hollow triangles (WSSand), filled 

circles (WWClay), hollow circles (WWSand). 

Table 4.3 shows the sugar beet yield components determined at harvest for 

all experimental plots. Irrigation management had a significant effect on sugar 

beet yield in both soil types, although a more negative impact of water stress 

was observed in the sandy soil. In the clay soil, WSClay showed a significant 

decrease in fresh root mass compared to WWClay, but this reduction was not 

translated into a sugar content reduction since the sugar recovery rate of WSClay 

was significantly higher than that of WWClay. In the sandy soil, both the fresh 
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root mass and sugar content were significantly lower in WSSand than in WWSand, 

while no differences in sugar recovery rate were observed in this soil type. The 

soil type had also a significant impact on sugar beet fresh root mass, as 

indicated by the lower values observed in both WWClay and WSClay than in the 

corresponding sandy plots. The soil type had no effect on the sugar content, as 

similar sugar contents were measured in WWClay and WWSand as well as in 

WSClay and WSSand. 

 

Table 4.3 Sugar beet yield components measured in the experimental plots. 

Plot ID Fresh root mass Sugar recovery Sugar content 

(t ha-1) (%) (t ha-1) 

WWClay 104.0 ± 3.7b 14.8 ± 0.2b 15.4 ± 0.6a 

WSClay 83.0 ± 1.5d 17.9 ± 0.3a 14.8 ± 0.3ab 

WWSand 115.5 ± 4.3a 14.2 ± 0.1b 16.3 ± 0.6a 

WSSand 93.2 ± 1.5c 14.6 ± 0.4b 13.6 ± 0.2b 

Different letters within the same column denote significant differences based on Duncan’s 

multiple range test. 

 

In an attempt to integrate the cumulative water stress in the experimental 

plots during the measurement period, a WSI was calculated for all plots based 

on the ∆T measurements and an adaptation of the expression originally 

developed by Myers (1988) to quantify the cumulative integral of leaf water 

potential over any chosen period of time. The derived WSI was related to sugar 

beet yield (both fresh root mass and sugar content), as shown in Figure 4.6. 

The fresh root mass and sugar content tended to decrease linearly with 

increasing WSI. However, while the relationship between the fresh root mass 

and WSI was poor (R2= 0.28), the WSI and sugar content were closely related, 

as shown by the high coefficient of determination of the linear regression (R2= 

0.94).  
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Figure 4.6 Relationships of the fresh root mass (filled symbols) and sugar content (hollow 

symbols) with the water stress integral (WSI) determined from the cumulative crop-air 

temperature difference. Dashed line: regression line between the sugar content and WSI 

(y=17.8-0.018x, R2=0.94). Continuous line: regression line between the fresh root mass and 

WSI (y=117.5-0.117x, R2=0.28). Definition of symbols: hollow symbols (sugar content), filled 

symbols (fresh root mass); triangles pointed upward (WSClay), inverted triangles (WWSand), 

circles (WWClay), squares (WSSand). 

4.4. Discussion 

This study provides further evidence of the impact that soil variability may 

have on crop performance when it is not considered as an additional factor of 

the production system. A uniform water supply in a non-uniform sugar beet field 

with strong soil texture variability led to differences in the REW between the 

clayey and sandy zones that were irrigated to satisfy crop water requirements 

(WWClay and WWSand, respectively) (Figure 4.3). The marked decrease in REW 

observed from DOY 80 to 125 in WWClay compared to that in WWSand (Figure 

4.3) indicates the importance of considering soil variability in irrigation supply 
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decisions. Although clayey soils may retain more water than sandy soils, the 

soil moisture measured taken in the 0-1000 mm soil profile suggested that the 

plants grown in the WWClay plot extracted more soil water than those grown in 

the WWSand plot from DOY 80 to 125. Although crop growth measurements 

were not performed to support this hypothesis, the fraction of green vegetation 

or canopy cover (i.e., the fraction of ground covered by green vegetation) 

estimated on DOY 86 for both WW plots from the thermal images captured 

using the micro-UAV (Figure 4.7) revealed that the plants grown in the WWClay 

plot had 10% more canopy cover than the plants grown in the WWSand plot (see 

the caption of Fig. 4.7 for details on how plant cover was estimated). The faster 

canopy development observed in the WWClay plants can therefore explain the 

higher root water uptake observed in these plants compared with the WWSand 

plants. 
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 Figure 4.7 Thermal infrared images of the WWClay (left) and WWSand (right) plots with marked 

segments distinguishing between the background (soil) and regions of interest (vegetation). A 

segmentation algorithm based on the FWHM rule was applied. The IR thermal images were 

captured at a flight altitude of 20 m on day of year 86. Estimates of canopy cover were 90.77% 

and 80.96% in the WWClay and WWSand plots, respectively. WW indicates well-watered 

conditions. 
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Despite the valuable information provided by soil moisture sensors to support 

irrigation decisions, drawbacks of this technique in terms of acquiring accurate 

and representative soil moisture information have also been reported (Jones, 

2004). The derivation of crop water stress indices from aerial thermal images 

represents a promising decision support tool to complement soil moisture 

information in irrigation programmes (Bellvert et al., 2014). The results obtained 

in this study suggest that during some periods of the sugar beet irrigation 

season, the soil moisture content determined from two probes per plot could not 

reproduce the dynamics of the derived thermal index, a surrogate of crop 

transpiration. This was the case for the plants grown in the WSSand plots, which 

had higher REW values than the WSClay plants (Figure 4.3). Moreover, the ∆T 

and CWSI values, which are used as proxies for the mean crop water stress 

(Maes and Steppe, 2012), were also higher in the WSSand than in the WSClay 

plots (Figure 4.5) over the two cycles of imposed water stress. Furthermore, the 

WWClay and WWSand plots had similar REW values from DOY 150 onwards, 

while the corresponding mean ∆T and CWSI values were higher in the WWSand 

plants than in the WWClay plants. These findings highlight the differences in crop 

transpiration between the WW plots and suggest that soil moisture data 

measrued in a small number of locations may not be reliable enough to 

represent the mean crop water status of zones with uniform soil properties. 

Poor relationships between canopy temperature-based indices and soil 

moisture deficits are frequently observed (DeJonge et al., 2015) and drive which 

is fostering the search for remote sensing applications that use the crop as an 

intermediate sensor for quantifying soil water availability (Zhang et al., 2011).  

Thermal indices derived from satellites and airborne observation platforms 

flying at high altitudes require complex post-processing to correct of parameters 

such as atmospheric transmissivity (Berni et al., 2009), which decreases with 

relative humidity, temperature and distance from the object (Sugiura et al., 

2007). In arid and semi-arid regions, relatively stable atmospheric conditions 

prevail when thermal measurements are conducted at the same time of during 

the day under clear-sky conditions and during the months of high evaporative 

demand (irrigation season). This implies that thermal errors caused by 

variations in atmospheric transmissivity during low-altitude flights may be 
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related to camera error. We assessed this possibility and found no significant 

differences in the mean crop temperature at flight altitudes of 0-40 m 

(P=0.9773) (Figure 4.4). 

WSI values calculated from other non-thermal plant-based water stress 

indicators (e.g., predawn leaf water potential or stem water potential) and for 

different crop species showed great potential to predict yield losses due to 

water stress (Ginestar and Castel, 1996; Egea et al., 2013). The close 

relationship observed between sugar production and the temperature-based 

WSI (Figure 4.6) indicates that T-based WSI was sensitive enough to capture 

the impacts of both soil heterogeneity and irrigation management on sugar 

production, thereby confirming the reliability of the method described in this 

work for monitoring the cumulative water stress in sugar beet fields. 

From an irrigation scheduling perspective, use of the CWSI as a crop water 

stress indicator for sugar beet requires further experimentation. Although this 

index is a sensitive indicator that is able to capture the differences between 

plants grown in sandy or clay soils and between well-watered plants and those 

subjected to intentional water shortages, aspects such as the derivation of a wet 

reference baseline adapted to Mediterranean conditions and local cultivars and 

the definition of threshold values for irrigation management based on 

relationships with other plant physiological variables (e.g., leaf gas exchange 

variables) need to be determined. 

4.5. Conclusions 

The results of this study yielded two clear conclusions. First, the canopy-air 

temperature differences and the CWSI values determined from thermal images 

captured using a micro-UAV were sensitive enough to identify variations in crop 

water use resulting from different irrigation management strategies or the 

natural variability of soil properties. Second, the dynamics of the soil moisture 

content determined from a limited number of sampling points (two probes per 

plot in this study) failed to adequately represent the variation in crop water use, 

as estimated from the thermal indices derived. This study presents a reliable 

method to monitor the spatio-temporal variations of crop water use in sugar 

beet fields, although further research is required to transform this information 
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into optimal recommendations for sugar beet irrigation requirements. A 

temperature-based WSI was demonstrated to be a good predictor the sugar 

content at harvest under both soil variability and irrigation management. 

Acknowledgments 

Financial support provided by the Spanish ministry of Economy and 

Competitiveness (Research Project AGL2013-46343-R) and the Regional 

Government of Andalusia (Research Project P12-AGR-1227) is greatly 

appreciated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet 

78 

 



Chapter 5 

79 

 

 

Chapter 5:  Main results and 

general discussion 
 

 

 

 

 

  



Main results and general discussion 

80 

  



Chapter 5 

81 

This chapter presents the main results obtained in this Doctoral Thesis as well 

as their implications for the agricultural sector. Until the 1980s, agriculture did 

not pay any attention, at least in a systematic way, to the spatial variation in soil 

and/or crop properties. The division of heterogeneous fields into management 

units that can be considered homogeneous has been, conceptually, a great 

advance for agriculture since it allows more efficient management of inputs, 

improved yields and/or crop quality and increased environmental sustainability. 

However, due to the number of technologies involved, the concept of precision 

farming has spread out faster than the development of applications 

commercially and affordably available for farmers. 

This thesis has contributed to narrowing the gap that still exists between the 

concept of precision agriculture and its application in the field. In particular, it 

has led to the development of two approaches for accurate nitrogen application 

in one of the most economically important rain-fed crops in Andalusia (wheat) 

and irrigation in one of the most economically important irrigated crops in 

Western Andalusia (sugar beet).The implementation of precision agriculture 

implies the use of tools and technologies with different levels of development, 

independent of each other but totally linked from the point of view of achieving 

the final objective. The different levels of technologies that can be used in 

precision farming applications, such as the ones developed in this Thesis, are 

grouped below: 

 Global Navigation Satellite Systems (GNSS): systems that provide 

agricultural equipments/sensors positioning with various levels of 

accuracy. 

 Soil and crop sensing devices: proximal and remote sensors that retrieve 

information from soil and plant tissues in a more timely and less costly 

way than collecting samples to be analyzed in the laboratory. 

 Geographic Information Systems (GIS): tools for georeferenced 

management and mapping of parcel information (e.g. yield and other 

agronomic parameters to be cross-correlated for developing next 

season’s management strategies). 



Main results and general discussion 

82 

 Variable Rate Technology: electronic and positioning technologies on 

board field machinery capable of fulfilling the variable rate of crop 

requirements.  

In order to carry out variable rate application of any type of crop input, such as 

fertilizers or irrigation water, it is of utmost importance to develop, as a first step, 

methodologies to characterize the spatial-temporal variability of relevant 

soil/crop traits. 

That has been the sense of this Thesis, whose objectives have been focused 

on developing methodologies to determine the spatial-temporal variability of N- 

and water status- related crop traits for variable rate fertilizer and irrigation 

application in wheat (Chapter 3) and sugar beet (Chapter 4), respectively.  

Spatial variability of wheat traits for variable-rate nitrogen fertilizing (Manuscript 

1) 

In Andalusia, due to the structure of agricultural fields devoted to arable crops 

(small to medium sized fields), yield monitoring is already been considered by 

some farmers as the main entry-level technology for use in precision 

agriculture. In this region, wheat fields accounts for 33% of the area under 

arable crops (around one million hectares), which suggests the economic and 

environmental importance of this crop in the region. Within a particular farm, the 

spatial differences in wheat yields are reflecting differences in soil conditions 

that could be corrected, for example, by site-specific fertilizing. These conditions 

are structural and are often reflected in the same patterns in the yields of each 

year. 

In this sense, the aim of this work was to analyze the extent to which the yield 

differences observed in a commercial winter wheat field are explained by 

means of an affordable proximal NDVI sensor, as well as the extent to which 

this indicator is related to differences in foliar nitrogen content.  

The results obtained show that, in the two plots evaluated, NDVI and wheat 

yield were highly correlated, as shown by Pearson’s correlation coefficients of 

0.64 and 0.78 in plots 1 and 2, respectively. This high level of correlation is also 

evident when yield and NDVI maps are visually compared. This implies that 
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NDVI measurements can be used to delimit management zones in winter wheat 

grown under the prevailing conditions of Andalusia.  

The strong linear correlation found between the percentage of foliar N content 

and NDVI measurements (with Pearson’s correlation coefficients of 0.71-0.89) 

further suggests that the spatial variability of NDVI, and thus yield, are caused 

by variations in leaf N content across the fields. This finding has major 

implications for correcting yield heterogeneity or, at least, optimizing N-based 

fertilization for current site-specific needs. 

In this regard, a possible application of the affordable NDVI sensor used in this 

work is to perform variable rate N management for winter wheat. In the same 

campaign and field, a further test evaluated the relationship between NDVI and 

the rates of total N applied (55, 150, 190, 225 and 250 kg ha−1). The 

relationship among both variables was clearly exponential with a regression 

coefficient (R2) of 0.99.  

The use of optical sensors resulted in NDVI measurements that ranged 

between 0.60 and 0.78 in both fields. This information, along with the standard 

spatial interpolation method of IDW (Inverse Distance Weighting), allowed for 

variable-rate N prescription maps to be generated on an appropriate grid (12 m 

× 12 m) using field positions taken from a GNSS receiver. 

Based on the prescription maps obtained, two theoretical farmer scenarios were 

created for variable-rate N application, conservative and risk taking, based on 

the number of N units to be distributed in the field.  

The conservative scenario would be the one to be applied when the customary 

N units that are used in the area (not less than those that are usually placed) 

are distributed in such a way that more N-units are applied in areas where 

higher yields are expected and less N units are applied in areas with lower 

margin to increase yield. In terms of fertilizing cost, this scenario would not lead 

to significant savings.  

However, in the most risky scenario, the intention would be to reduce the 

amount of N units applied in the field by applying the customary N units 

recommended in the area (240 kg N ha-1 in our case study) to the zones with 
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the greatest yield potential and reduce the amount in those zones with lower 

yield potential. This strategy would be the preferred option, for example, in 

cases in which the soil is a limiting factor to achieving higher yields irrespective 

of whether higher N rates are applied.  

In the fields evaluated in this work, the risk strategy, in the case of being the 

most appropriate one, would have reduced the fertilizing cost by approximately 

20%. 

Spatial-temporal variability in sugar beet water status for precise irrigation 

management (Manuscript 2) 

The goal of this study was to evaluate the use of thermal images captured using 

a micro-UAV to predict variations in sugar beet water status due to soil 

variability and irrigation management. For this aim, a commercial sugar beet 

field of about 12 ha and irrigated with a sprinkler system was used. In order to 

determine the impact that soil spatial variability has on sugar beet crop status, 

soil spatial variability was first characterized by measuring apparent electrical 

conductivity (ECa) with a EMI Dualem-21S sensor (DUALEM, Milton, Canada). 

With this information, two zones were selected to conduct the experiments, a 

clayey zone and a sandy zone.  

In each soil zone, two plots were established, one irrigated following the criteria 

of the local farmers (WW, to indicate supposed good irrigation conditions) and 

the other plot submitted to water stress conditions (WS) 

Soil moisture measurements performed with a PR2 profile probe (Delta-T 

Devices, Ltd., Cambridge, UK) at each selected plot confirmed that a uniform 

water supply in a non-uniform sugar beet field with strong soil texture variability 

leads to differences in soil water storage and crop development.  

The poor spatial resolution of soil water measurements together with the 

difficulty to select appropriate sites for probes installation has motivated the 

need to derive methodologies to determine crop water status at higher spatial 

resolutions than those obtained with soil moisture monitoring. In this regard, 

crop water stress indices derived from aerial thermal imaging are showing 



Chapter 5 

85 

promising results to be used in decision support systems for irrigation 

management of various crops.  

The results obtained in this study evidenced the difficulty that soil moisture 

content measured at a small number of sampling points has to represent the 

average crop water status of a homogeneous area. Thermal indices derived 

from crop temperature measured with a thermal camera on board a small sized 

UAV showed that (i) spatial variability in soil texture drives variations in sugar 

beet water status when irrigation is applied uniformly across the field, and that 

(ii) the impact of irrigation shortages on crop water status is also affected by soil 

type. In this regard, a comparison of the WW and WS plots for each soil type 

revealed that thermal indices were only slightly affected by deficit irrigation in 

clay soil, whereas the impact in sandy soil was substantially higher.  

An important finding of this research, and that confirm the goodness of the 

thermal indices to characterize the sugar beet water status, is the close 

relationship found (R2=0.94) between a thermal-based water stress integral 

(WSI) and sugar yield. The derived WSI was linearly related to sugar yield, such 

that the higher the WSI the lower the sugar yield, as also found for other non-

thermal based WSI.  

The close relationship observed between temperature-based WSI and sugar 

production indicates that this cumulative water stress index is sensitive enough 

to capture the impact of soil heterogeneity and irrigation management on sugar 

production. 

From an irrigation scheduling perspective, the use of CWSI as water stress 

indicator still requires further experimentation. Although CWSI is sensitive and 

captures differences in crop water status between plants grown in sandy or clay 

soils and plants that are well irrigated or subject to deliberated water stress, 

aspects such as derivation of a wet baseline adapted to local conditions, or the 

definition of threshold CWSI values for irrigation management (based on their 

relationships with other physiological and agronomic variables) still need to be 

determined. 
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This thesis analysed spatial variability in cereal and sugar beet fields by means 

of sensors and technologies commonly used in precision agriculture. In the first 

contribution, sensors’ information was used to delineate differentiated 

management zones within the experimental plots for variable rate fertilization 

(Paper 1). In the second contribution, sensors’ and instruments information was 

used to delineate management zones and assess crop water status for 

irrigation management (Paper 2). Main contributions with these two articles 

have been the following: 

6.1 Spatial variability assessment in winter wheat for 

fertilization (Paper 1) 

This research is looking for new and improved tools to help make decisions 

about the right amount of nitrogen fertilizer to apply to winter wheat fields in a 

particular year in a Mediterranean environment. The adoption of VRA nitrogen 

management has potential economic and environmental benefits. The main 

contributions are as follows: 

- The average error of yield monitoring for detecting the actual mass flow 

rate was −3.1%, with a standard deviation of 4.2%. This monitoring 

enabled an assessment of the relationship between the yield data and 

NDVI measurements (r2 = 0.64 and 0.78) for fields 1 and 2, respectively. 

- The relationship between leaf N content and NDVI measurements from 

optical sensors (Greenseeker handheld sensor) gives determination 

coefficients greater than 0.9 in winter wheat. 

- An appropriate and inexpensive portable hand-held optical sensor 

(GreenSeeker®, Trimble Navigation Ltd., Sunnyvale, CA, USA) could 

satisfactorily help operators predict and generate a map of N application 

recommendations for fields. Wheat canopy greenness may not always 

be the result of a certain N content (e.g., available water or temperature 

may also affect the greenness). If the greenness is not related to the N 

content, then N inputs are based on an erroneous indicator. 

- N recommendation maps were developed, and accurate N 

recommendations for sub-regions of fields were produced. The 
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recommended N maps based on this technique may help operators use 

accurate and efficient application rates from year to year. 

 

6.2 Spatial-temporal variability assessment in sugar beet fields 

for irrigation management. (Paper 2) 

The results of this research yielded two clear conclusions: 

- The canopy-air temperature differences and the CWSI values 

determined from thermal images captured using a micro-UAV were 

sensitive enough to identify variations in crop water use resulting from 

different irrigation management strategies or the natural variability of soil 

properties. 

- The dynamics of the soil moisture content determined from a limited 

number of sampling points (two probes per plot in this study) failed to 

adequately represent the variation in crop water use, as estimated from 

the thermal indices derived.  

This study presents a reliable method to monitor the spatio-temporal variations 

of crop water use in sugar beet fields, although further research is required to 

transform this information into optimal recommendations for sugar beet 

irrigation requirements. 

A temperature-based WSI was demonstrated to be a good predictor of the 

sugar content at harvest under both soil and irrigation management variability. 
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