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Abstract. In this paper, we analyze the use of the Ornstein-Uhlenbeck pro-
cess to model dynamical systems subjected to bounded noisy perturbations.
In order to discuss the main characteristics of this new approach we consider
some basic models in population dynamics such as the logistic equations and
competitive Lotka-Volterra systems. The key is the fact that these perturba-
tions can be ensured to keep inside some interval that can be previously fixed,
for instance, by practitioners, even though the resulting model does not gener-
ate a random dynamical system. However, one can still analyze the forwards
asymptotic behavior of these random differential systems. Moreover, to illus-
trate the advantages of this type of modeling, we exhibit an example testing
the theoretical results with real data, and consequently one can see this method
as a realistic one, which can be very useful and helpful for scientists.
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1. Introduction

In the last years, researchers of many areas in life sciences have been more and
more interested in considering non-deterministic parameters in the mathematical
models since it allows them to set up models which are much more realistic. How-
ever, there are many different ways of introducing random or stochastic disturbances
in deterministic models.

First, a decision should be made about the most appropriate kind of stochas-
tic/random perturbation for our model. Amongst the several stochastic processes
which can be potential candidates, we need to decide which one fits better the set
up of our stochastic/random model. Next, we need to decide about the location in
the equations where the disturbances must appear. Later, we should think whether
our resulting stochastic/random model is realistic and, of course, we also need to
have some tractability in order to carry out a mathematical analysis and effective
computations. Due to these facts, it is necessary to find a reasonable balance which
make our work both tractable and realistic and, consequently, original and interest-
ing.

The most common stochastic process that is considered when modeling distur-
bances in real life is the well-known standard Wiener process, see for instance [1, 2]
where the authors study random and stochastic modeling for a SIR model, [3, 4, 5]
where stochastic prey-predator Lotka-Volterra systems are analyzed or [6, 7, 8, 9]
where different ways of modeling stochasticity in the chemostat model are investi-
gated. Nevertheless, this stochastic process has the property of having continuous
but not bounded variation paths, which does not suit to the idea of modeling real
situations since, in most of cases, the real life is subjected to fluctuations which are
known to be bounded.

In some cases analyzed in the previous literature (see [6, 8]), the use of a standard
Wiener process to perturb some parameters in deterministic systems can lead to a
non-realistic model; for instance, the positiveness of solutions are not necessarily
preserved as a consequence of the arbitrary large values and the large fluctuations
of this Wiener process. However, in other situations, one can modify the way to
perturb the deterministic system, still using standard Wiener processes, and the
positiveness of solutions is preserved too (see [7, 9]).

Henceforth, in this paper we consider a noise whose realizations (or sample paths)
remains bounded in an interval (previously fixed, for instance, by practitioners), al-
lowing us, in addition, to perform calculations in a simple way. We will be able
to obtain realistic mathematical models due to the boundedness of the considered
stochastic process, and will be also able to prove the existence of absorbing and
attracting sets which will not depend on the realizations of the noise. As a conse-
quence, we will ensure the persistence and coexistence of the species (or population)
under some conditions on the parameters in the models.

We remark that every result will be proved forwards in time, unlike the usual
pullback convergence, which is characteristic in the theory of random dynamical sys-
tems. Although these pullback concepts are very useful for the development of the
theory of random dynamical systems, in some cases from applications it might not
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provide meaningful information about the forwards behavior of the system.Despite
our resulting random differential systems do not generate random dynamical sys-
tems, we will be able to investigate the long-time behavior of the random system
for every fixed event, which is a relevant and helpful improvement to prove the
forwards convergence that we use in our work.

The manuscript is organized as follows. In Section 2 we introduce an Ornstein-
Uhlenbeck (O-U) process depending on some parameters whose effects on the dy-
namics of the stochastic process are detailed explained. Also we recall some essential
and useful properties of this process when dealing with the mathematical models.
In Sections 3 and 4 we present an example of a logistic differential equation with
random disturbances in the environment and the growth rate by means of the O-U
process. Therefore, in Section 5 we present an example concerning the parameter
estimation in the logistic equation affected by the O-U process by setting up an ob-
server which will consist of another differential system providing information about
the behavior of the state variables. Then, in Section 6 we analyze a random com-
petitive Lotka-Volterra system where the growth rates of the species are affected by
noise, namely by means of the O-U process. In Section 7 we recall the advantages of
using the O-U process when modeling reality in the case of the chemostat. Finally,
in Section 8 we include some comments and conclusions.

2. The Ornstein-Uhlenbeck process.

The key in our current work consists of perturbing the deterministic models by
means of a suitable O-U process defined as the following random variable

(2.1) z∗β,γ(θtω) = −βγ

0∫

−∞

eβsθtω(s)ds, t ∈ R, ω ∈ Ω, β, γ > 0,

where ω denotes a standard Wiener process in a certain probability space (Ω,F ,P),
β and γ are positive parameters which will be explained in more detail below and
θt denotes the usual Wiener shift flow given by

θtω(·) = ω(·+ t)− ω(t), t ∈ R.

We note that the O-U process (2.1) can be obtained as the stationary solution
of the Langevin equation

(2.2) dz + βzdt = γdω.

We would like to highlight that the O-U process is frequently used to transform
stochastic models affected by the standard Wiener process into random ones (see
[1, 6, 7, 8]), which are much more tractable from the mathematical point of view,
but both parameters β and γ are not taken into account or do not play any relevant
role. Nevertheless, in the framework that we introduce in this paper we use directly
this suitable O-U process depending on the parameters previously mentioned since
they will be the key of the advantages provided by this way of modeling, as we will
show in the rest of this work.

Due to the importance of those parameters, we introduce them now in a more
detailed way and we show the effects that they have in the dynamics of the realiza-
tions of the O-U process.



4 T. CARABALLO, R. COLUCCI, J. LÓPEZ-DE-LA-CRUZ, A. RAPAPORT

The O-U process given by (2.1) is a stationary mean-reverting Gaussian stochas-
tic process where β > 0 is a mean reversion constant that represents the strength
with which the process is attracted by the mean or, in other words, how strongly
our system reacts under some perturbation, and γ > 0 is a volatility constant which
represents the variation or the size of the noise independently of the amount of the
noise α > 0. In fact, the O-U process can describe the position of some particle
by taking into account the friction, which is the main difference with the standard
Wiener process and makes our perturbations to be a better approach to the real
ones than the ones obtained when using simply the standard Wiener process. In
addition, the O-U process could be understood as a generalization of the standard
Wiener process as well in the sense that it would correspond to take β = 0 and
γ = 1 in (2.1). In fact, the O-U also provides a link between the standard Wiener
process and no noise at all, as we will see later.

Now, we would like to illustrate the relevant effects caused by both parameters
β and γ on the evolution of realization of the O-U process.

Fixed β > 0. Then, the volatility of the process increases when considering
larger values of γ and the evolution of the process is smoother when taking smaller
values of γ, which sounds reasonable due to the fact that γ decides the amount
of noise introduced to dz, the term which measures the variation of the process.
Henceforth, the process will be subject to suffer much more disturbances when
taking a larger value of γ. This behavior can be observed in Figure 1, where we
simulate two realizations of the O-U process with β = 1 and we consider γ = 0.1
(blue) and γ = 0.5 (orange).
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Figure 1. Effects of the mean reverting constant on the O-U process

Fixed γ > 0. In this case the process tends to go further away from the mean
value when considering smaller values of β and the attraction of the mean value
increases when taking larger values of β. This behavior seems logical since β has
a huge influence on the drift of the Langevin equation (2.1). We can observe this
behavior in Figure 2, where we simulate two realizations of the O-U process with
γ = 0.1 and we take β = 1 (blue) and β = 10 (orange).
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Figure 2. Effects of the volatility constant on the O-U process

Once presented the O-U process and the effects that its parameters cause on the
behavior of its realization, we state now some essential properties that it satisfies
which will be another important key point of the paper.

Proposition 2.1. There exists a θt-invariant set Ω̃ ∈ F of Ω of full P−measure

such that for ω ∈ Ω̃ and β, γ > 0, we have

(i) the random variable |z∗β,γ(ω)| is tempered.

(ii) the mapping

(t, ω) → z∗β,γ(θtω) = −βγ

0∫

−∞

eβsω(t+ s)ds+ ω(t)

is a stationary solution of (2.1) with continuous trajectories;

(iii) for any ω ∈ Ω̃ one has

lim
t→±∞

|z∗β,γ(θtω)|

t
= 0;

lim
t→±∞

1

t

∫ t

0

z∗β,γ(θsω)ds = 0;

lim
t→±∞

1

t

∫ t

0

|z∗β,γ(θsω)|ds = E[z∗β,γ ] <∞;

(iv) finally, for any ω ∈ Ω̃,

lim
β→∞

z∗β,γ(θtω) = 0, for all t ∈ R.

The proof of Proposition 2.1 is omitted here. We refer the readers to [10] (Lemma
4.1) for the proof of the last statement and to [11, 12] for the proof of the other
points.

To sum up the main idea of this framework, we will have to deal with a random
differential system depending on the stationary solution of the Langevin equation
(2.2) as follows

(2.3) ẋ = f(x, z∗β,γ(θtω)),

where z∗β,γ(θtω) is the stationary solution of the Langevin equation.
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Henceforth, the idea consists of fixing an event ω ∈ Ω and then to solve (2.2)
in order to introduce its solution into the differential system (2.4). However, we
remark that, for a general choice of the parameter β, it is not possible to ensure
that the solution z∗β,γ(θtω) is bounded for every time, which would be the most
desirable property since it is well known that real models are expected to be sub-
ject to bounded perturbations, in fact, unbounded disturbances has no sense when
modeling real systems, as we pointed out previously.

Nevertheless, thanks to the last property (iv) in Proposition 2.1, for every fixed
event ω ∈ Ω, it is possible to find β > 0 large enough such that the stationary solu-
tion of the Langevin equation (2.2), z∗β,γ(θtω), remain inside any bounded interval
previously fixed.

Therefore, for every fixed ω ∈ Ω and for proper β > 0, we compute z∗β,γ(θtω)
such that the realizations of the corresponding perturbed parameter remain inside
a strictly positive interval, namely (b1, b2) ⊂ R, which should be previously deter-
mined depending on the application or provided by practitioners, where b2 > b1 > 0.
For population dynamics, this property concerning the positiveness of the realiza-
tions of the perturbed parameter will be essential in this work, in fact, it will be the
main key to be able to guarantee strictly positiveness of all state variables which
could mean, for instance, to be able to ensure the persistence of the species involved
in the corresponding model.

In most of situations one design a suitable mathematical model with random
features for a biological problem. But the main concerns are: is the model realis-
tic? is the model useful? To answer these questions one may try to identifty the
parameters on sets of real data to test if the choice of stochastic process is able to
reproduce satisfactorily real situations.

More precisely, in our case, the parameters β and γ in the O-U process can
be estimated from the real data by using a simple mean square regression. As an
example of how the process describes the fluctuations in the real models, in Figure 3
we can see time history of values that the input flow of a bioreactor has over a time
horizon of one-hundred hours. As it was expected, it seems to be mean-reverting
and then it could be described as a realizations of the O-U process. When estimating
the parameters by using a mean square regression, we obtain that the mean value
is µ = 0.2002, the mean-reverting constant is β = 1.3230 and the volatility constant
is γ = 0.0287.

time
0 10 20 30 40 50 60 70 80 90 100

D

0.14

0.16

0.18

0.2

0.22

0.24

0.26
Realization

Figure 3. Real data: input flow in a bioreactor
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Then, in Figure 4 we make some simulations of the O-U process with the pre-
vious values of the parameters obtained from Figure 3. As we can observe, every
realization remains in the same interval [0.14, 0.26].
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)
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Figure 4. Realizations of the O-U process generated with param-
eters from the real data with β, µ, γ as above

Then, with biological applications in mind, we could consider perturbations of
some parameter in a random system of the following kind

(2.4) ẋ = f(x, z∗β,γ(θtω)).

In the real world, one is often interested in analyzing bounded perturbations,
thus one can wonder about a suitable way of modeling them. In our method for
each ω fixed, we can find values of parameter βω such that the random perturbation
is bounded in a prefixed interval. This implies that for each realization, we have
that our system (2.4) looks like

(2.5) ẋ = f(x, z∗β,γ(θtω)) = f(x, g(t))

where g(·) is a continuous function for each ω, and can be analyzed by the deter-
ministic theory. The main fact is that in some cases the asymptotic behavior of this
system may be independent of ω, which then allows us to compare the deterministic
and stochastic models and testing how realistic the latter can be.

In other words, the resulting random model is a non-autonomous system per-
turbed by means of a non-autonomous perturbation which is generated in a random
way. As a consequence, in this context, the set of admissible random perturbation
coincide with the set of continuous function satisfying properties (i)-(iv) stated in
Proposition 2.1.

This kind of non-autonomous perturbations may be obtained by more general
stochastic processes, then one could wonder the reason why we are just focusing
on the O-U process instead of using another one. The answer is as clear as easy:
Indeed, this suitable O-U process given by (2.1) provides us essential ergodic prop-
erties which allow us to make calculations when analyzing the resulting random
systems, since we will have to deal with integral terms involving such a perturba-
tion.

Notice that real models are subjected to fluctuations which are some what smooth
w.r.t. time and it would not make sense to have perturbations which are changing
too rapidly from extreme values in short periods of time. This is one of the main
reasons to consider the O-U process by taking into account both parameters β and
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γ which allow us to have more flexibility to control the noise in order to be able to
represent the reality in a better way.

One could also wonder the difference between this way of modeling with the one
when considering some random function a(θtω) ∈ [a1, a2], which is bounded and
continuous respect to the time, as in [1, 13]. On the one hand, in both cases we
obtain bounded perturbations, which is the most realistic from the point of view
of the applications, as we explained previously. On the other hand, in both cases
we are working with continuous functions respect to the time, which is also logical
when trying to deal with differential systems as in the current case. Nevertheless,
we remark that the random constant a(θtω) does not satisfy in general the prop-
erties (i)-(iv) stated in Proposition 2.1, as it happens with the O-U process, which
are essential when making calculations and allow us to obtain characterizations of
absorbing and attracting sets for the solutions of the corresponding random systems
as well. Moreover, we would have to assume a(θtω) to be continuous and bounded
while the O-U process satisfies these properties by definition.

We would also like to remark that, in the classic random case, the continuous
function a(θtω) is directly generated thanks to the dynamics of the set of events
Ω whereas, in our new framework, every event ω ∈ Ω is fixed and the continuous
perturbation is obtained by solving the Langevin equation (2.2). Apart from that,
the continuous function a(θtω) is an arbitrary continuous function with values in
some positive bounded interval [a1, a2] whereas, in our new framework, we are sim-
ply considering the realizations of the perturbed parameter which are realistic from
the point of view of the applications.

Let us underline that the realizations by means of suitable O-U process look
quite different from the one generated by a random function a(θtω). One can ob-
serve time to time realizations of a(θtω) which are very unlikely to be observed
as generating by the suitable O-U processes. Several kind of such realizations are
depicted on Figure 5, for instance, the green one approaches the boundaries of the
interval [a1, a2] and stay close to it for a while, the orange or violet ones stay close
from one of the boundaries and, finally, the brown one switches very rapidly be-
tween two values close from the boundaries of the interval.

The realizations generated by the suitable O-U looks more realistic in the sense
that its is similar to an agitated particule with a recall force to the mean value.



BOUNDED STOCHASTIC PERTURBATIONS IN POPULATION DYNAMICS MODELS 9

a

a2

a1

time

Figure 5. Examples of non-realistic realizations of the perturbed parameter

In both cases, when considering a classical random function a(θtω) and also when
considering a perturbation by means of the O-U process a + αz∗β,γ(θtω), the per-
turbations are bounded, then one can expect to find bounds for the solutions of
the system and, therefore, to be able to provide some conditions under which the
persistence of the populations involved in the model can be ensured. Nevertheless,
there are important differences between both cases the classic and the new one, for
instance, the natural context in the classic random case is to study the pullback
convergence whereas, in the new random case involving the new suitable O-U pro-
cess, the solutions may not generate a random dynamical system, since β in fact
depends on ω. However, it does not present any inconvenient since we can analyze
the random system for every fixed ω ∈ Ω, as we explained before.

In addition, we can prove every mathematical result to hold forwards in time,
which is much more realistic than the pullback convergence obtained in the classic
case. This improvement concerning the forwards convergence is also very related
with the ergodic properties stated Proposition 2.1 (iii) which are proved to hold
also forwards in time.

In order to illustrate the modeling approach we propose, we are going to consider
in this paper two well known models in the ecology literature: the logistic and
the competition Lotka-Volterra model, that we revisit here introducing noise.. In
addition, we will consider an observer dynamics to show the parameter estimation
despite noise in the logistic equation affected by the O-U process, a problem that
has not been treated up to now in the literature even though it is object of very
interest.

3. Environmental perturbations in the logistic model.

In this section we consider the classical logistic equation given by

dx

dt
= x (a− x) ,(3.1)
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where x = x(t) denotes the number of individual of some population of a certain
species and a is the carrying capacity.

As it is very well-known, the carrying capacity of the population whose dynamics
are modeled by the logistic equation can be affected by many external factors present
on the environment as the climate or the temperature, to name a few. Then it has
sense to consider random perturbations on the carrying capacity such that we have
the following random equation

dx

dt
= x

(
a+ αz∗β,γ(θtω)− x

)
,(3.2)

where z∗β,γ(θtω) denotes the Ornstein-Uhlenbeck process that we introduced previ-
ously and α > 0 is the amount of noise.

The solution of the random logistic equation (3.2) exists and its explicit expres-
sion is given by

(3.3) x(t; 0, ω, x0) =
x0e

∫
t

0
a+αz∗

β,γ(θsω)ds

1 + x0
∫ t

0 e
∫

s

0
a+z∗

β,γ
(θτω)dτds

,

for any initial value x0 ≥ 0, any ω ∈ Ω and for all t ≥ 0.

In addition, thanks to a suitable choice of the parameter β in the O-U process
presented in the introduction of the paper, we know that , a + αz∗β,γ(θtω) ∈ [a, ā]

for every t ∈ R, where a > a are positive values. Then from (3.2) we can obtain the
following differential inequalities

(3.4) x (a− x) ≤
dx

dt
≤ x (ā− x) ,

whence we can deduce that, as soon as we consider an initial value of the species
x0 < a, then the dynamics of the population is increasing till it reaches the curve
a+ αz∗β,γ(θtω) which remains inside the positive interval [a, ā].

Henceforth, from (3.4) it can be deduced that, for every ε > 0, any ω ∈ Ω and
any initial value x0 < a, there exists some time T (ε, ω) > 0 such that

(3.5) a− ε ≤ x(t; 0, ω, x0) ≤ ā+ ε,

for every t ≥ T (ε, ω).

From the previous analysis we obtain that, for any ε > 0, Bε = [a− ε, ā+ ε] is a
deterministic absorbing set for the solutions of (3.2).

Therefore, B0 = [a, ā] is a positive attracting set for the solutions of (3.2), i.e.,

(3.6) lim
t→+∞

sup
x0∈(0,a)

inf
b0∈B0

|x(t, 0, ω, x0)− b0| = 0.

Now, we present some numerical simulations to support the results previously
provided and the advantages of using the suitable O-U process presented here when
modeling realistic problems. From now on, the blue dashed lines represent the
solutions of the deterministic models and the rest are different realizations of the
random ones.
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In Figure 6 we can see two panels representing several realizations of the solution
of the random logistic equation (3.2) for the initial value x0 = 2.4, the nominal
carrying capacity is a = 3, the amount of noise is α = 2 (top) and α = 2.2 (bottom),
the mean reverting constant is β = 1 (top) and β = 10 (bottom) and the volatility
constant is γ = 0.1 (top) and γ = 0.2 (bottom).
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Figure 6. Realizations of the solution of the random logistic equa-
tion with perturbed carrying capacity for x0 = 2.4. α = 2, β = 1,
γ = 0.1(top) and α = 2.2, β = 10, γ = 0.2 (bottom)

In Figure 7 we display two panels representing several realizations of the solution
of the random logistic equation (3.2) for the initial value x0 = 0.2, the nominal
carrying capacity is a = 3, the amount of noise is α = 2 (top) and α = 2.2 (bottom),
the mean reverting constant is β = 1 (top) and β = 10 (bottom) and the volatility
constant is γ = 0.4. Compared to Figure 6, now we increase the volatility constant
which is significant for small values of the mean reverting constant (as it can be
seen in the figure of the top) but the noise can be reduced if we increase the mean
reverting constant even though the volatility constant is not decreased.



12 T. CARABALLO, R. COLUCCI, J. LÓPEZ-DE-LA-CRUZ, A. RAPAPORT
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Figure 7. Realizations of the solution of the random logistic equa-
tion with perturbed carrying capacity for x0 = 0.2. α = 2, β = 1,
γ = 0.4(top) and α = 2.2, β = 10, γ = 0.4 (bottom)

We can observe that all the solutions of the random equation (3.2) are fluctuating
around the equilibrium of the deterministic case x = 3 and these fluctuations remain
inside a strictly positive bounded interval which is smaller when taking larges values
of β and (or) smaller values of γ. Thus, the theoretical results and the advantages
of the O-U process are demonstrated on this example.

In Figure 8 we present the behavior of several realizations of the solution of the
random logistic equation (3.2) for the initial value x0 = 3, the nominal carrying
capacity is a = 3, the amount of noise is α = 2 (top) and α = 2.2 (bottom), the
mean reverting constant is β = 1 (top) and β = 10 (bottom) and the volatility
constant is γ = 0.1 (top) and γ = 0.2 (bottom).
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Figure 8. Realizations of the solution of the random logistic equa-
tion with perturbed carrying capacity for x0 = 3. α = 2, β = 1,
γ = 0.1(top) and α = 2.2, β = 10, γ = 0.2 (bottom)

We can observe in this case a similar behavior to the previous one. However there
are significant differences when comparing the behavior of the random equation (3.2)
and the deterministic one for the initial condition x0 = 3. In the deterministic case,
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x = 3 is a stable equilibrium and the solution is constant as can be observed in
the blue dashed lines. On the random case, one can observe some fluctuations
around x = 3 which remain inside a strictly positive interval, this later one being
deterministic, as proved in the theoretical results. In addition, this interval can be
chosen by tuning the parameters of the O-U process as we previously explained.

4. Perturbations on the growth rate in the logistic equation.

Now, we consider the logistic equation that we rewrite in the following form

dx

dt
= rx

(
1−

x

c

)
,(4.1)

where x = x(t) denotes the number of population of some species, r denotes the
specific growth rate of the species and c is the carrying capacity of the medium
assumed to be constant, both positive.

In this case we are interested in introducing a noise in the reproduction rate by
using the O-U process. As a result, we have the following random logistic model

dx

dt
= (r + αz∗β,γ(θtω))x

(
1−

x

c

)
,(4.2)

where z∗β,γ(θtω) denotes again the O-U process and α > 0 is the amount of noise.
We observe that x = c is still an equilibrium for the equation.

As made in the previous case, the solution of equation (4.2) exists and its explicit
expression is given by

(4.3) x(t; 0, ω, x0) =
x0

e−
∫

t

0
r+αz∗

β,γ
(θsω)ds

(
1 + x0

c

)
+ x0

c

for every x0 ≥ 0, any ω ∈ Ω and t ≥ 0, whence we observe the property
∫ t

0

r + αz∗β,γ(θsω)ds = rt+

∫ t

0

z∗β,γ(θsω)ds

= t

(
r +

1

t

∫ t

0

z∗β,γ(θtω)ds

)

Thus, thanks to the ergodic properties in Theorem 2.1, we obtain that the dy-
namics of the population converges to the carrying capacity as in the deterministic
case or, in other words, we have that for every ε > 0, any initial value 0 < x0 < c
and ω ∈ Ω , there exists some time T (ε, ω) > 0 such that

(4.4) c− ε < x(t; 0, ω, x0) < c

for all t ≥ T (ε, ω).

Therefore, we have that Bε = [c− ε, c], for any ε > 0, is a deterministic absorb-
ing set for the solutions of (4.2) whence we have that B0 = {c} defines a positive
deterministic attracting set for the solutions of (4.2). As a consequence, every re-
alization of the solution of (4.2) converge to the carrying capacity c as long as the
initial value x0 > 0, as in the deterministic case. This is not surprising since, in
this second logistic equation, the carrying capacity is still a stable equilibrium even
though we are treating a random case.
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We would also like to remark that the above calculations are independent of the
choice of the parameter β.

Now we perform some numerical simulations to support the results previously
stated. In Figure 9 we show the behavior of several realizations of the solution of
the random logistic equation (4.2) for the initial values x0 = 0.8 (top), x0 = 1.5
(medium) and x0 = 0.2 (bottom), the growth rate is r = 2, the carrying capacity
is c = 1.5, the amount of noise is α = 2, the mean reverting constant is β = 1 and
the volatility constant is γ = 0.4.
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Figure 9. Realizations of the solution of the random logistic equa-
tion with perturbed growth rate for x0 = 0.8 (top), x0 = 1.5
(medium) and x0 = 0.2 (bottom)

We can observe, differently to the example analyzed in Section 3, that in this
case the realizations of the solution of the random equation (4.2) have fluctuations
when the population is increasing but these disturbances are not present when the
population is close to the carrying capacity, in fact, x = c is an equilibrium of the
equation (4.2) as in the deterministic case. In the second plot we can in fact see
that the random solution is constant for the initial condition x0 = 1.5.

In Figure 10 we can see two panels representing several realizations of the solution
of the random logistic equation (4.2) where the initial values x0 = 0.8 (top), x0 = 1.5
(medium) and x0 = 0.2 (bottom), the growth rate is r = 2, the carrying capacity
is c = 1.5, the amount of noise is α = 2, the mean reverting constant is β = 10 and
the volatility constant is γ = 0.4.
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Figure 10. Realizations of the solution of the random logistic
equation with perturbed growth rate for x0 = 0.8 (top), x0 = 1.5
(medium) and x0 = 0.2 (bottom)

We can observe the same behavior that the one described in the previous simu-
lations. However, the realizations of the solution of the random equation (4.2) are
much closer to the deterministic ones since β is larger.

5. Parameter estimation in the logistic model.

We consider again the logistic equation that we write

dx

dt
= ax

(
1−

x

K

)
,(5.1)

where we put K = ac. In several ecological systems, K represents a carrying capac-
ity, which is related to the size of the population when all the sites are colonized.
When considering the density of the population or the proportion p = x/K ∈ [0, 1]
of occupied sites, the variable p is solution of the differential equation

dp

dt
= rp(1 − p)(5.2)

where the parameter r = aK, usually known as the intrinsic growth rate, may
fluctuate about a nominal value under environmental variations (season, light, tem-
perature...). We consider then random perturbations on r, as in previous section

dp

dt
= (r + αz∗β,γ(θtω))p(1− p),(5.3)

for which there exist positive numbers r, r̄ with r < r̄, such that each realization
of r+αz∗β,γ(θtω) belongs to the interval (r, r̄). The question under investigation in
this section is the estimation of the parameter r, measuring the proportion p over
the time, in both deterministic and random frameworks.

From equation (5.2), one obtains an exact expression of r, when the dynamics of
p is not at steady state

(5.4) r =
1

t

∫ p(t)

p(0)

dp

p(1− p)
=

1

t
log

(
p(t)(1 − p(0))

p(0)(1− p(t))

)
, t > 0,
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One can then consider

(5.5) r̂(t) =
1

t
log

(
p(t)(1 − p(0))

p(0)(1 − p(t))

)
, t > 0

as an estimator of r in presence of random perturbation. Simulations show that
this estimator behaves well as long as p(t) is not too close from its limiting value 1
(see Figure 11, where two panels are presented: the first shows the realizations of
the solution of (5.3) and the other overlaps the realization r + αz∗β,γ(θtω) (orange

line), its estimator (blue line) and the dashed lines represent the values r, r and
r̄.). Differently to a true observer (see for instance [14] for an introduction to the
theory of observers), we have no information to know when to trust this estimator.
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Figure 11. Realizations of the solution of (5.3) and estimation
of r in presence of random perturbation.

We look instead for observers, i.e. dynamical systems with on-line corrective
terms (see Appendix for the main ingredients which are not here to avoid tech-
nicalities). After setting up an observer in normal form, it is possible to obtain a
practical convergence of the observer, in the sense that for any ε > 0, one can design
an observer such that there exits T > 0 with r̂(T ) ∈ [r−ε, r+ε]. One cannot expect
a better convergence of this observer as the system is not observable at p = 1 and
all solutions with non null p(0) converge asymptotically to this singular point. On
the simulations depicted on Figure 12, one can see two different panels: the first
one shows the solution of (5.3) without the presence of noise and the observer p̂
and the second one represents the estimator r̂ and r. Moreover, we can observer
that the error of the observer has converged much before the system has reached
the neighborhood of the steady state p = 1, as it is desired for a true observer.
Moreover the innovation, that is the difference between the observed variable x and
the variable x̂ (in blue) of the observer informs on the convergence of the estimator
r̂ (when x̂ stays almost equal to x, we know also that r̂ stays close to the unknown
value r).
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Figure 12. Simulation of the observer in normal form for T = 2
and θ = 15

Finally, in Figure 13 we present simulations of this observer in presence of random
perturbations. The first panel shows the solution of (5.3) in presence of noise by
means of the O-U process and the second panel overlaps the realization of r +
αz∗β,γ(θtω) (orange line) and the estimator r̂ (blue line). The dashed lines represent
the values of r̄, r and r.
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Figure 13. Simulation of the observer in normal form for T = 2
and θ = 15 with random perturbation on r

6. Random competitive Lotka-Volterra models

In this section we consider a competitive Lotka-Volterra model given by

dx

dt
= x(λ− ax− by),(6.1)

dy

dt
= y(µ− cx− ey)(6.2)

where x = x(t) is the number of population of the first species, y = y(t) is the
number of population of the second species, λ and µ are the specific growth rates
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of each species, respectively, a and e are the carrying capacities of each species,
respectively, b measures the interaction of the first species on the second one and c
is the interaction that the second species has on the first ones. We assume that all
the parameters in the system are positive.

Concerning the deterministic competitive system (6.1)-(6.2), it is known that
coexistence of both populations can be ensured as long as conditions

(6.3)
d

b
>
µ

λ
>
c

a
and ad− bc > 0

hold true.

In this case we are interested in studying the previous system where the growth
rates are affected by the O-U process. Then, we consider the random competitive
model given by

dx

dt
= x(λ+ αz∗β,γ(θtω)− ax− by),(6.4)

dy

dt
= y(µ+ αz∗β,γ(θtω)− cx− ey)(6.5)

where z∗β,γ(θtω) denotes the O-U process introduced in Section 2 of this work and
α > 0 represents the intensity of the noise.

Thanks to a suitable choice of the parameter β, we know that λ+ αz∗β,γ(θtω) ∈

[λ, λ̄] and µ+ αz∗β,γ(θtω) ∈ [µ, µ̄] for any t ∈ R.

Hence, from the random competitive system (6.4)-(6.5), we can obtain the fol-
lowing differential inequalities for the dynamics of the population of both species
involved in our model

dx

dt
≤ x(λ̄ − ax),(6.6)

dy

dt
≤ y(µ̄− ey).(6.7)

Then, we obtain that the population of the both species are bounded from above

(6.8) x(t; 0, ω, x0) ≤
λ̄

a
and y(t; 0, ω, y0) ≤

µ̄

e

for any initial values x0 ≥ 0, y0 ≥ 0, any ω ∈ Ω and t ≥ 0.

In addition, from (6.6) it is possible to obtain the following differential inequality

(6.9)
dx

dt
≥ x

(
λ− b

µ̄

e
− ax

)

whence we can obtain its explicit solution which is given by

(6.10) x(t; 0, ω, x0) ≥
x0

e−(λ−b
µ̄
a )t + x0a

λ−b
µ̄
e

(
1− e−(λ−b

µ̄
a )t

)
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for any initial value x0 ≥ 0, any ω ∈ Ω and t ≥ 0, from which, by taking limit when
t goes to infinity, we obtain

(6.11) lim
t→+∞

x(t; 0, ω, x0) ≥
λ− b µ̄

e

a
.

Then, the population of the first species persists as long as the condition

(6.12)
µ̄

λ
<
e

b

is fulfilled.

Concerning the other population, the same argument can be done and we obtain

(6.13) lim
t→+∞

y(t; 0, ω, y0) ≥
µ− λ̄

a

e
,

then the population of the second species persists as long as the following condition
is fulfilled

(6.14)
µ

λ̄
>
c

a
.

In conclusion, for any ε > 0, ω ∈ Ω and every initial values x0 ≥ 0 and y0 ≥ 0,
there exists some time T (ε, ω) > 0 such that the solution of the random system
(6.6)-(6.7) can be bounded inside the frame

(6.15) Bε =

[
λ− b µ̄

e

a
− ε,

λ̄

a

]
×

[
µ− λ̄

a

e
− ε,

µ̄

e

]

for every t ≥ T (ε, ω).

Therefore, for any ε > 0, Bε is a strictly positive deterministic absorbing set for
the solutions of the system (6.6)-(6.7), whence we have that

(6.16) B0 =

[
λ− b µ̄

e

a
,
λ̄

a

]
×

[
µ− λ̄

a

e
,
µ̄

e

]

is a strictly positive deterministic attracting set for the solutions of the system
(6.6)-(6.7).

From the previous analysis, we can observe that, as long as conditions (6.12) and
(6.14) are satisfied, we can ensure the coexistence of the population of both species.

Now, we present some numerical simulations to illustrate the results provided in
this section. In Figure 14 we present the phase plane with several realizations of the
solutions of the random competitive system (6.6)-(6.7) for the initial values x0 = 4
and y0 = 3 and the following values of the rest of the parameters a = 20, b = 2,
c = 4, e = 314, λ = 5, µ = 7, the amount of noise is α = 2, the mean reverting
constant is β = 1 and the volatility constant is γ = 0.5. We remark that the right
panel shows a zoom of the left one to see the absorbing set of the solutions, which
is the box delimited by the dashed lines.
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Figure 14. Phase plane with realizations of the solutions of the
competitive Lotka-Volterra system for x0 = 4 and y0 = 3

We can observe that all the realizations of the solution of the system remain,
after some time, inside a rectangle limited by the red dashed lines. This rectangle
is the absorbing set B0 (see (6.16)) obtained in the mathematical results which is
deterministic.

In Figure 15 we present the dynamics of both species individually where the red
dashed lines represent the bounds guaranteed for the corresponding state variables.
We can observe that both species are fluctuating around the deterministic solution
inside a strictly positive interval that allows us to guarantee the persistence of both
species. In addition, these intervals are deterministic in the sense that they do not
depend on the realization on the noise and can be chosen as explained previously.
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Figure 15. Realizations of the solution of the competitive Lotka-
Volterra system (both state variables depending on time) for x0 = 4
and y0 = 3
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7. Random chemostat model

In this section we would like to remark that the O-U process has already also
provided a very useful tool when perturbing the input flow in the chemostat model.
Let us recall the classical “resource-consumer” model (see for instance [15, 16]):

ds

dt
= D(t)(sin − s)−

1

Y
µ(s)x,(7.1)

dx

dt
= µ(s)x −D(t)x,(7.2)

where x(t) and s(t) denote respectively the consumers and resource densities at time
t. The function µ is the specific growth rate of the consumers over the resource (Y is
a conversion coefficient). When the system is continuously fed, as in the chemostat
device or in ecological situations such as mountain lakes, the resource is brought at
a concentration sin and diluted with a dilution rate D. Most often, D is subject to
random disturbances but realizations stay bounded.

Every detail about the way of modeling and a complete analysis of the resulting
random model can be found in [17, 18] thus we will omit the details in this section.
Instead we just give some remarks concerning the work in [17, 18].

As already explained in the introductory section, several drawbacks can be found
when perturbing the input flow of the chemostat model by using the standard
Wiener process (see [6, 8]). For instance, the input flow could take extremely large
values and thus could negative. Due to this fact, which is unrealistic from the bi-
ological point of view since we know that the input flow is fluctuating in a positive
bounded interval, we also have that some state variables that describe population
size could take negative values which is also unrealistic from the biological point of
view. In addition, it is not posible to ensure the persistence of the species as we did
and which corresponds to real observations.

However, everything these drawbacks are circumvented when introducing the
perturbations on the input flow by means of the O-U process as explained in this
paper. The first important improvement is the fact that the perturbed input flow
is ensured to be bounded, as in real experiments (see Figure 3 where we presented
the real data). In addition, it is possible to prove that there exists absorbing and
attracting sets which are deterministic (then they do not depend on the realization
of the noise) and moreover, what is essential to prove the persistence of the species,
positive. Furthermore, these results are proved in forward sense which suits the
point of view of applications..

8. Conclusions and final comments

In this final section we would like to draw some conclusions and final comments
concerning the O-U process introduced in Section 2. We recall that the most im-
portant improvement of this way of modeling the noise, compared to other kinds
of noise considered previously in the literature is the fact that the O-U process
depends of two parameters, the volatility constant γ and the mean reversion con-
stant β which play an important role and allow the noise to have all the expected
properties that we have formulated in the introduction.
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In order to show the relevance of this new way of modeling we have presented
in the previous sections some examples which illustrate the effect of this bounded
noise when perturbing some very well-known models such as the logistic growth or
the Lotka-Volterra competition. In addition, in [17, 18] the authors consider this
noise to model random input flows in the chemostat model where some relevant
improvements are also achieved. Finally, this way of modeling is full of advantages
from the mathematical analysis point of view but also, which is essential, as a quite
realistic modeling from the biological point of view.

In conclusion, we believe that this modeling approach is generic and could be
applied in most of the population models, when some aspects or parameters are
expected to subject to randomness with bounded realizations. For instance, it could
be very interesting to analyze prey-predator models where, in the deterministic case
periodic orbits and limit cycles are present. In this way, it could be possible to define
a concept of random periodic orbits in the sense that the solutions of the system
are fluctuating around the deterministic periodic orbit inside some interval that
depends on the parameters of the O-U process, as in the examples of the present
paper. Another idea is to analyze the problem of the observer with measurements
perturbed by the O-U process. These are some ideas among other ones to carry on
the applications of this way of modeling noise.

Appendix

Let us give more details about the observer construction used in Section 5. For
simplicity, let us first consider by the deterministic framework. For this purpose,
we consider the extended dynamics

dp

dt
= rp(1 − p)(.1)

dr

dt
= 0(.2)

with the measured output
y(y) = p(t)

Notice this system is not observable (see [14] for the definition of observability) at
the steady states p = 0 or p = 1. When the system is not at equilibrium, let us first
consider a classical observer of Luenberger form

dp̂

dt
= r̂y(t)(1 − y(t)) +G1(p̂− y(t))

dr̂

dt
= G2(p̂− y(t))

where the gains parameters G1, G2 have to be chosen. The dynamics of the error
variables ep = p̂− p, er = r̂ − r are given by the linear non-autonomous system

dep
dt

= G1ep + y(t)(1− y(t))er

der
dt

= G2ep

Consider then the quadratic function

(.3) V (ep, er) =
1

2
(ep + γer)

2 +
1

2
e2r
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where γ is a parameter. Notice that V is definite positive for any value of γ. One
has, along any trajectory:

dV

dt
= (ep + γer)(G1ep + y(t)(1 − y(t))er + γG2ep) + erG2ep

= (Gr + γG2)e
2
p + γy(t)(1− y(t))e2r + (γG1 + γ2G2 +G2)eper

Take G1 < 0 and γ < 0 and set

G2 = −
γ

1 + γ2
G1

Notice that for such choice, one has

γp := G1 + γG2 =
G1

1 + γ2
< 0

Equivalently, G1 and G2 are defined as

G1 = (1 + γ2)γp

G2 = −γγp

with γp and γ negative. For V > 0, one has the inequality

dV

dt
= γpe

2
p + γy(t)(1− y(t))e2r < 0, ∀t > 0.

However, we cannot conclude about the convergence of V to 0 because
∫ +∞

0

y(t)(1 − y(t))dt =
1− p(0)

r
< +∞

as this is shown on Figure 16.
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Figure 16. Simulation of the Luenberger observer with γ = −5
and γ = −1

Consider now a second kind of observer, but in normal form (see [14, 19]), which
consists in applying the change of coordinates (p, r) → (z1, z2) with

z1 = p

z2 = rp(1 − p)
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When p is different from the steady states p = 0 and p = 1, parameter r can be
reconstructed as

r = ϕ(z1, z2) :=
z2

z1(1− z1)

Dynamics (.1)-(.2) in these coordinates writes as follows

dz

dt
=

[
0 1
0 0

]

︸ ︷︷ ︸
A

z +

[
0

ψ(z1, z2)

]
with ψ(z1, z2) := ϕ(z1, z2)

(
1−

z1
2

)
z2

with the observation

y(t) =
[
0 1

]
︸ ︷︷ ︸

C

z(t)

This leads to consider the following observer

dẑ1
dt

= ẑ2 +G1(ẑ1 − y(t))

dẑ2
dt

= ψ(y(t), ẑ2) +G2(ẑ1 − y(t))

with the estimator
r̂(t) = ϕ(y(t), ẑ2(t))

Notice that when the system is not at steady state, ϕ(y(t), ẑ2(t)) and ψ(y(t), ẑ2(t))
are well defined for any t > 0. The dynamics of the error e = ẑ − z is given by the
system

de

dt
=

[
G1 1
G2 0

]
e+

[
0
1

]
(ψ(y(t) − ẑ2)− ψ(y(t)− z2))

The map z2 7→ ψ(y(t), z2) is not Lipschitz with respect to z2 uniformly w.r.t. t.
However for any fixed T , it is Lipschitz on any compact set uniformly on [0, T ].
We can then use the theory of high-gains observers [14, 19], which guarantees an
exponential decrease of the norm of the error on [0, T ], when the gains G1, G2 are
chosen such that [

G1

G2

]
= −S−1

θ C⊤

where Sθ is the symmetric definite positive matrix solution of the Lyapunov equation

A⊤Sθ + SθA− C⊤C + θSθ = 0

and parameter θ > 0 is large enough. On can check that this gives
[
G1

G2

]
=

[
−2θ
−θ2

]
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Dynamics of Stochastic Chemostats, Vol. 69, Springer International Publishing, Cham, 2016,
Ch. 11, pp. 227–246. doi:10.1007/978-3-319-40673-2_11.

[7] T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz, Dynamics of some stochastic
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[18] J. López-de-la-Cruz, Random and stochastic disturbances on the input flow
in chemostat models with wall growth, Stochastic Analysis and Applica-

tionsdoi:10.1080/07362994.2019.1605911.
[19] J. Gauthier, H. Hammouri, S. Othman, A simple observer for nonlinear systesm. Application-

sto bioreactors, IEEE Trans. Aut. Control 37 (6) (1992) 875–880.

E-mail address: caraball@us.es

E-mail address: renatocolucci@hotmail.com

E-mail address: jlopez78@us.es

E-mail address: alain.rapaport@inra.fr

http://dx.doi.org/10.1016/j.jmaa.2006.12.032
http://dx.doi.org/10.1007/978-3-319-40673-2_11
http://dx.doi.org/10.3934/cpaa.2017092
http://dx.doi.org/10.1016/j.jde.2005.06.017
http://dx.doi.org/10.3934/dcdsb.2017012
http://dx.doi.org/10.1007/978-3-662-12878-7
http://dx.doi.org/10.1007/s00245-004-0802-1
http://dx.doi.org/10.1002/mma.3437
http://dx.doi.org/10.1017/cbo9780511530043
http://dx.doi.org/10.1002/9781119437215
http://dx.doi.org/10.3934/dcdsb.2018280
http://dx.doi.org/10.1080/07362994.2019.1605911

	1. Introduction
	2. The Ornstein-Uhlenbeck process.
	3. Environmental perturbations in the logistic model.
	4. Perturbations on the growth rate in the logistic equation.
	5. Parameter estimation in the logistic model.
	6. Random competitive Lotka-Volterra models
	7. Random chemostat model
	8. Conclusions and final comments
	Appendix
	References

