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Abstract

The Al‐Robotics team was selected as one of the 25 finalist teams out of 143

applications received to participate in the first edition of the Mohamed Bin Zayed

International Robotic Challenge (MBZIRC), held in 2017. In particular, one of the

competition Challenges offered us the opportunity to develop a cooperative approach

with multiple unmanned aerial vehicles (UAVs) searching, picking up, and dropping

static and moving objects. This paper presents the approach that our team

Al‐Robotics followed to address that Challenge 3 of the MBZIRC. First, we overview

the overall architecture of the system, with the different modules involved. Second,

we describe the procedure that we followed to design the aerial platforms, as well as

all their onboard components. Then, we explain the techniques that we used to

develop the software functionalities of the system. Finally, we discuss our

experimental results and the lessons that we learned before and during the

competition. The cooperative approach was validated with fully autonomous missions

in experiments previous to the actual competition. We also analyze the results that

we obtained during the competition trials.
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1 | INTRODUCTION

Multirobot teams are of interest for many applications where a single

robot cannot perform all the tasks on its own or with the same

efficiency. In aerial robotics, the same trend is arising, the use of teams

of unmanned aerial vehicles (UAVs) to tackle autonomous missions is

becoming commonplace. However, operating UAVs in outdoor and

unstructured environments is still challenging, much more when they

need to cooperate together. In those cases, the classic perception and

control issues are complicated with additional communication con-

straints and the need for a more intelligent behavior.

Robot competitions are becoming popular, as they have proved to

be helpful speeding up technological advances in certain robotics

tasks. The idea is to replicate conditions from real life in simulated or

testbed scenarios and push the community to propose efficient

algorithms to solve specific challenges. Since all participants are

forced to operate their robotic systems in the same controlled and

standardized testbeds, competitions are also interesting in terms of

robot benchmarking. They foster the replicability of results in

robotics research and allow researchers to compare different

approaches and methods under similar conditions.

Particularly, due to the recent advances in multi‐UAV systems,

there is an increasing need for testbed facilities and methodologies to

compare existing methods in that field. Since competitions are a

remarkable vehicle to develop specific technologies, aerial robot

competitions are specially trending. The Mohamed Bin Zayed
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International Robotic Challenge (MBZIRC)1 is a new competition,

which focuses on aerial robots operating outdoors, and cooperating

between them and with ground robots.

In its first edition, which took place in March 2017 in Abu Dhabi,

the MBZIRC gathered 143 applications from teams all around the

world, out of which 25 top‐teams were selected as finalists to

compete in several outdoor challenges. In particular, the competition

consisted of three challenges and a Grand Challenge integrating all

together: Challenge 1 required a UAV to locate, track, and land on a

moving vehicle; Challenge 2 required a ground autonomous robot to

locate and navigate to a panel, and physically operate a valve stem on

it with the appropriate tool; Challenge 3 required a team of UAVs to

cooperate to search, track, pick up, and drop a set of static and

moving objects; and the Grand Challenge required the team of UAVs

and the ground robot to coordinate to solve Challenges 1, 2, and 3

simultaneously.

The Al‐Robotics team was one of 25 finalists selected to

participate in the first edition of the MBZIRC, and their members

are researchers from the Robotics, Vision, and Control Group,2 at the

University of Seville. Even though the team participated in all the

challenges, this paper focuses on the cooperative approach that was

designed and implemented to address the Challenge 3. This task is

particularly challenging for several reasons. From the point of view of

the system architecture, a team of UAVs have to operate together in

an outdoor scenario, showing cooperative behaviors. From the

perception point of view, the UAVs must be able to locate and track

different types of objects. Last but not least, they must interact

physically with the environment by picking up, transporting and

dropping static and moving objects.

In this paper, we describe in detail the approach and the systems

used by the Al‐Robotics team in the MBZIRC Challenge 3. First, a

vision‐based algorithm is proposed to detect objects based on color.

The objects in the competition have known colors and sizes, so we

developed color‐based techniques assuming they were on the

ground. Second, a data fusion approach is used to integrate

observations from all the UAVs in the team and compute a

probabilistic estimation of the objects’ positions. Given the lack of

communication issues (there are only few UAVs working in a short

range), we opted for a centralized stochastic filter due to its

robustness. Third, a mission planner is used for cooperative

decision‐making, sending the UAVs to search for objects, and later

to perform pickup and dropping operations. After a detection phase,

the UAVs are assigned objects heuristically so that hypothetical

conflicts, that is, UAVs with crossing paths, are minimized. The pickup

operations are carried out by means of a magnetic tool and a vision‐
based controller since the positioning systems of the UAVs are not

accurate enough to pick up the objects.

In summary, the main contributions of this paper are: (a) to

present our overall approach for the MBZIRC Challenge 3, combining

multi‐UAV data fusion and decision‐making with vision‐based
algorithms; (b) to detail the design and implementation of our

hardware and software architectures; (c) to describe our results and

the lessons we learned before and during the competition, some of

them even leading to system redesigns.

The remainder of the paper is structured as follows: Section 2

surveys the related work; Section 3 presents the overall approach

followed by Al‐Robotics to tackle the challenge; Section 4 provides

details on the design of the aerial platforms; Section 5 describes the

software architecture and functionalities; Section 6 discusses the

evaluation of the system and the lessons learned; and Section 7 gives

conclusions.

2 | RELATED WORK

This section presents related work relevant for the main components

of our system. We also summarize the state of the art with respect to

robot competitions.

2.1 | Robot competitions

Robot competitions are spreading fast due to the inherent difficulties

associated with robotics benchmarking Stuckler, Holz, and Behnke

(2012). Such competitions allow roboticists to test methods and

compare them under the same conditions since they provide

controlled testbeds where specific robotics challenges need to be

solved. In this sense, there are recent initiatives like RoCKIn (Amigoni

et al., 2015) to develop competitions where the focus is on coming

closer to scientific experiments and enabling the replicability and

repeatability of experimental results.

The Defense Advanced Research Projects Agency (DARPA) is one

of the most active actors organizing robot competitions. They started

with the DARPA Grand Challenge and Urban Challenge, which

focused on autonomous ground vehicles; but they have organized

recently their successor, the DARPA Robotics Challenge,3 which

fosters the development of humanoid robots solving complex tasks in

disaster or emergency scenarios (e.g., driving a vehicle to the disaster

site or manipulating valves). Another competition in the domain of

rescue robotics is euRathlon,4 which was inspired by the 2011

Fukushima accident and combines marine, aerial, and ground robots

in an outdoor testbed.

The RoboCup5 is a worldwide known competition involving

different domains. It started as a league focused on cooperative

teams of intelligent robots playing soccer, including humanoid

leagues. However, they included later new leagues for rescue

(RoboCup Rescue), industrial (RoboCup@Work), and service robots

(RoboCup@Home). Indeed, this kind of competitions to develop

home‐assistant robots and to solve specific industrial challenges are

1http://www.mbzirc.com.

2https://grvc.us.es.

3http://archive.darpa.mil/roboticschallenge.

4http://www.eurathlon.eu.

5https://www.robocup2017.org.
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becoming highly popular. Another example is the recent Amazon

Robotics Challenge,6 which proposes pick and stow tasks in

unstructured industrial scenarios. In Europe, one of the challenges

of the European Robotic Challenges (EuRoC)7 is about plant servicing

and inspection, and it targets the open problems in existing MAV

(Micro Aerial Vehicle) solutions to enable their deployment in real,

industrial applications.

2.2 | Vision‐based object detection

Vision‐based object detection is a complex task, which is not

completely solved since most existing algorithms focus on detecting

particular subclasses of objects to be more efficient. For instance,

Viola and Jones (2001) use a boosted cascade classifier for detecting

objects; Dalal and Triggs (2005) present another accurate classifier

for general object detection, but it might be sensitive to appearance

variations or changes in the object due to nonrigid deformations; and

Felzenszwalb, Girshick, McAllester, and Ramanan (2010) propose an

improved method for detection of deformable objects based on a

multiscale model for deformable parts. Many approaches for object

detection assume a model description using features selected by

hand. However, recent works also use Artificial Neural Networks, as

they have proved to be effective for learning a complex variety of

objects (Goyal and Benjamin, 2014).

A common feature for object detection is their color. Algorithms

for color segmentation have been widely studied for a long time, as

many perception systems are based on RGB cameras, and the color is

usually a quite distinguishable feature. The authors of Ilea and

Whelan (2006) propose an adaptive technique for color segmenta-

tion based on the K‐means algorithm. This algorithm presents the

drawback that the parameter K for spatial color segmentation must

be selected independently for each image, which results difficult

because not all the scenes contain the same amount of objects. Thus,

increasing the parameter might decrease the efficiency of the

algorithm, whereas decreasing it might result in a mixture of colors

within the same cluster. Tai, Jia, and Tang (2007) propose an

automatic solution based on Gaussian Mixture Models. The previous

methods focus on robust color segmentation but not on efficiency in

terms of computation speed. Moreover, they usually perform color

segmentation without keeping a track of the segmented zones, so

another algorithm has to estimate later the position of the objects in

the image.

In this study, we need to extract as much information as

possible from the objects (e.g., size, shape, color, and position) and

as fast as possible. Therefore, our color segmentation is an

optimized version of the algorithm described in Bruce, Balch, and

Veloso (2000). The results are then fused with information about

the position and orientation of the camera to generate three‐
dimensional (3D) object positions by means of the corresponding

homography.

2.3 | Multirobot object tracking
and decision‐making

The use of multiple cooperative UAVs for missions where the

positions of some objects or targets must be estimated and

tracked is commonplace. These vehicles can provide enhanced

sensing capabilities, faster dynamics, wider fields of view and they

can access more hazardous areas; all of which are remarkable

advantages for applications like surveillance and situational

awareness in rescue robotics (Burdakov, Doherty, Holmberg,

Kvarnstrom, & Olson, 2010; Hsieh et al., 2007; Beard, McLain,

Nelson, Kingston, & Johanson, 2006).

From the point of view of perception, the problem of target

tracking by means of a team of UAVs has been extensively studied.

An estimation of the targets’ positions and their associated

uncertainties can be maintained by using different types of stochastic

filters, which fuse observations coming from multiple sensors on

board the team members. Depending on the models and sensors

involved, some works assume Gaussian probability distributions and

propose Kalman Filters (KFs; Morbidi & Mariottini, 2011) or

Information Filters (Capitan, Merino, Caballero, & Ollero, 2011);

whereas others deal with multimodal distributions through Bayes

Filters (Cook et al., 2014), Particle Filters (Ong et al., 2006), or

Gaussian Mixture Models (He, Bachrach, & Roy, 2010).

Besides the estimation problem, a decision‐making problem

needs to be solved, so that each UAV knows which are its best

actions during the mission to locate the targets. One approach is to

use stochastic optimal control to formulate the problem, trying to

optimize some utility function based on the targets’ uncertainties

(Anderson & Milutinovic, 2013; Morbidi & Mariottini, 2011). These

uncertainties can be quantified by means of different metrics, such as

entropy or mutual information.

Another relevant approach for decision‐making in this kind of

missions is to split the scenario into survey areas or points to visit

and assign them to the UAVs in an efficient manner. In this sense,

coverage path planning algorithms can be useful, that is,

algorithms to cover a certain area efficiently with a team of

robots (Galceran & Carreras, 2013) present an extensive survey of

those algorithms, providing a categorization for decomposition

and coverage techniques in the literature. Task allocation

techniques also play a key role in multi‐UAV cooperation. The

authors of Korsah, Stentz, and Dias (2013) provide an extensive

literature review and propose a novel taxonomy. Traditionally,

those algorithms allocate tasks to UAVs in an efficient manner,

being typical tasks the points to visit for searching targets or the

targets themselves, to be tracked. However, these tasks can vary

depending on the techniques used. For instance, some people have

proposed recently auctions to allocate behavior‐based policies

(Capitan, Merino, & Ollero 2016) or best‐planned paths (Cook

et al., 2014) among the UAVs. Moreover, the heuristics considered

to solve the problem efficiently are important. Most works try to

optimize the distance traveled or the energy consumed, but

information‐based heuristics can also be used.
6https://www.amazonrobotics.com//#/roboticschallenge.

7http://www.euroc‐project.eu.
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3 | OVERALL APPROACH

In this section, we present an overview of our approach to address

the MBZIRC Challenge 3. We summarize first the main features of

the Challenge itself to ease the understanding of the required

functionalities and constraints in the system. Then, we sketch our

proposed architecture, with the different modules involved.

3.1 | Challenge description

Challenge 3 of the MBZIRC requires a team of UAVs (up to 3) to

cooperate to search and find a set of static and moving objects. The

UAVs will be equipped with magnetic, suction, or other types of

effectors to pick up the found objects and drop them into a

dropping box, whose position is known in the middle of a Dropping

Zone (DZ). This challenge is expected to last for a maximum of

20 min and takes place in an outdoor arena with GPS signal

accessible. The arena is approximately the size of a football pitch

(around 100 m × 60 m).8

Communication between the UAVs and the ground station, and

between the UAVs themselves, is allowed and based on an IEEE

802.11 network provided by the competition organizers. For safety

reasons, the speed of the UAVs is limited to 30 km/hr. Their size is

also restricted to a maximum volume of 1.2 m × 1.2 m × 0.5 m. All

these technical constraints affect the platform design, as it will be

explained in the next sections.

The objects randomly spread on the arena are of different types,

all of them made of ferrous material (some pictures can be seen in

Figure 1). There are 6 moving (with a speed lower than 5 km/hr) and

10 static small objects, as well as 3 static large objects. The small

objects consist of circular disks on top of static pedestals that elevate

them from the ground, or on top of small, moving platforms. There

are three different colors and scores associated with the static

objects: green, blue, and red. The moving objects are yellow, and the

large ones orange. Moreover, the large objects are of rectangular

shape (not exceeding the 2 kg) and may require of several UAVs to be

picked up and transported. Thus, a higher score is associated with the

large objects, and even higher when they are picked up by more than

one UAV.

The score for each object is given only if the UAV drops it into the

dropping box (1 m × 1 m). The large objects do not need to be placed

into the box, but it suffices with the surrounding dropping zone. A

lower score is obtained if the operation is not completed fully

autonomously but with human intervention. The team collecting the

maximum number of points is the winner. More details about the

scoring scheme and the Challenge description can be seen in the

official MBZIRC website.

MBZIRC Challenge 3 is an attempt to foster cooperative

techniques due to the restrictions imposed. The main constraints

are related to the level of autonomy of the aerial platforms, that need

to fly for 20 min; to the onboard sensors needed to find objects; and

to the design of the pickup device. Also, a high control precision is

necessary to pick up and drop down objects in the right position; and

cooperative approaches should be more beneficial when allocating

the tasks among the team members.

3.2 | System architecture

A cooperative solution with several UAVs is proposed to address

the MBZIRC. All the aerial platforms are homogeneous and

equipped with the same hardware and functionalities, so they

collaborate in the same manner to search and collect the objects

in the arena. In particular, they all carry a camera for visual

detection and a magnetic device for pickup operations. As it will

be detailed in Section 4, the aerial platforms were designed to

fulfill with requirements in terms of flight time and payload

capacity. These requirements are given by the objects’ sizes of

the competition and the trials’ length.

Figure 2 shows a diagram with the different blocks that compose

our whole system. In the detailed view of the systems on board the

F IGURE 1 Competition site in Abu Dhabi. Left, the top view of one of the arenas with an eight‐shaped track that was used to drive
the vehicle of Challenge 1. The dropping box is white and lies in the middle of one of the track laces. Right, a UAV trying to pick up one

of the moving objects. In the background, a green static object has fallen down from its pedestal. Images from the MBZIRC organization at
http://www.mbzirc.com [Color figure can be viewed at wileyonlinelibrary.com]

8During the competition in Abu Dhabi, two identical arenas were installed for the trials.
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UAVs, it can be seen that each UAV has a visual camera and runs a

Vision Module to detect object positions and colors. Also, the UAVs

carry an autopilot connected to the GPS and to the inertial sensors.

This autopilot is in charge of providing localization in global

coordinates, as well as navigation capabilities toward commanded

waypoints. To abstract users from the low‐level control and

hardware, we implemented a UAV abstraction layer (UAL) through

which higher‐level commands can be issued (e.g., take off, land, or go

to waypoint). Thus, all the architecture is independent of the

particular autopilot and sensors used, which gives more flexibility

to the system. Once a UAV is commanded to collect an object, it

needs to navigate to the object’s position, descend and activate a

vision‐based controller to pick up the object making contact with the

magnetic device, navigate to the dropping box, and drop the object

releasing the pickup device. All this level of autonomy is carried out

by means of the UAV State Machine that runs on board and receives

high‐level tasks from a ground control station (GCS).

In addition to the processes that run onboard each UAV, there

are also centralized modules that run on the GCS. In particular, all the

vision‐based observations from the UAVs are transmitted to this GCS

and fused together into the object estimator, which keeps track of

the estimated positions and other features of all the detected objects

in the arena. With this information, the cooperative planner decides

where each UAV should go and which object it should collect at each

moment. This module is also in charge of resolving potential conflicts

so that the vehicles do not collide.

In general, we apply in our architecture algorithms which are

robust enough and heuristics that allow us to tailor the system to the

competition objectives. Nonetheless, the methods used are widely

used in the literature for different purposes, so our architecture

could be seen as flexible and could be adapted for other domains

without major modifications. All details about the algorithms

developed will be given in Section 5. The vision module detects

objects by means of their color. Given the fact that objects’ colors

and sizes are known and assuming that they will always be on the

ground, we can apply color segmentation on the images and project

detections on the ground plane with the 3D position of the cameras.

To fuse all color‐based detections from the UAVs, we use a

centralized stochastic filter. We selected a centralized approach

due to its simplicity and efficiency since there are only three UAVs

operating in a relatively short range.

Regarding the cooperative planner, we also opted for a

centralized scheme due to its robustness and to avoid inter‐UAV
conflicts as much as possible. The arena can be covered fairly fast

with the three UAVs, so we divide the area to search for objects first.

Then, we apply heuristics to assign objects to the UAVs, prioritizing

assignments where UAVs crossing their paths are unlikely and

collecting static objects first since they are simpler. Moreover,

objects are picked up by means of a visual‐based controller. This is

needed because the localization system of the UAVs is not accurate

enough to pick up objects, so we exploit the color‐based detector

already developed to approach the objects.

4 | AERIAL PLATFORM DESIGN

In this section, we describe the details of our aerial platforms for the

MBZIRC Challenge 3. We overview the procedure that we followed

to find the final design and to select and validate the components on

board the UAVs. The weights of all the physical components on board

the UAVs are also provided. The UAV design is based on three main

restrictions imposed by the description of the Challenge:

1. The maximum duration of the Challenge is 20 min.

2. The maximum weight of the large objects is 2 kg.

3. The UAVs must fit within the volume 1.2 m × 1.2 m × 0.5 m.

We computed the minimum payload for each UAV considering

the maximum weight of the competition objects and taking into

account that the large objects can be transported by two UAVs. Thus,

a payload of 2.5 kg was estimated: 1 kg corresponding to half of a

large object; 1 kg for the electronics and sensors (i.e., onboard

computer, camera, electronics battery, wireless link, etc.); and 0.5 kg

for the pickup device. According to all these constraints, we needed

F IGURE 2 Block diagram of the proposed system architecture. Left, modules on the Ground Control Station and communication links with
the UAVs. Right, detailed view of the blocks on board each UAV [Color figure can be viewed at wileyonlinelibrary.com]
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an aerial platform with a payload of at least 2.5 kg and able to fly for

20 min.

Well‐known platforms from Ascending Technologies like the

Asctec Firefly and the Pelican do not offer enough payload (600 and

650 g, respectively) nor flight time (14 and 16 min, respectively), and

the promising Asctec Neo was not available for sale at the

competition time. Then, we analyzed the two following platforms in

detail: a Yuneec Tornado H920 and a DJI S900. On the one hand, the

Yuneec Tornado H920 fits with the size requirements (1.06 m × 1.06

m × 0.5 m) but the payload and flight time are rather tight. It has a

maximum payload of 2.3 kg and an estimated flight time for 1.6 kg of

around 24 min. On the other hand, the DJI S900 is a little larger than

the specifications (1.28 m × 1.28 m × 0.5 m), its maximum payload is

3.3 kg and its estimated flight time for 2.1 kg is 18 min.

We decided that the payload of the Tornado H920 was not

enough. Regarding the DJI S900, it seemed plausible to make the

frame arms a bit shorter to match the size specifications. However,

the flight time was still quite tight. The estimated flight time given by

the manufacturers is typically calculated with the vehicle hovering,

whereas the Challenge implies maneuvers where the UAVs are

mostly moving: searching for objects, descending and going up again

to collect them, going to the dropping zone to drop them, and starting

over. We also estimated a flight time reduction due to the expected

high temperatures in Abu Dhabi in March. Therefore, we discarded

the previous platforms and designed a custom hexacopter together

with the Spanish company DroneTools9 The final platform can be

seen in Figure 3, and it is made of carbon fiber (CF) with a size of 1.18

m × 1.18 m × 0.5 m, including rotor blades.

We tested first our airframe with different configurations of

motor, blades, and batteries. The platform only included a Pixhawk

autopilot, a GPS receiver board (3DR uBlox LEA‐6H High‐Perfor-
mance Receiver), an RC transmitter/receiver and a 433 MHz

telemetry radiolink to communicate with the well‐known QGround-

Control software running on a laptop. It was also loaded with a

dummy weight equal to the weight estimated for the electronics. To

recreate the weather conditions in Abu Dhabi, these tests took place

in summertime in Seville, which means an outdoor temperature

above 30°C. The procedure for these tests was as follows:

1. Navigate autonomously a rectangular flight plan 200 m long.

2. Pick up and drop manually metallic objects continuously, until the

batteries were discharged to 10%.

3. Check the flight time and motors temperature.

The first tests included AXI 2814/22 765 kV brushless motors

with 14 × 4.8 and 13 × 6.5 CF propellers and 6S LiPo batteries. With

this configuration, we achieved a flight time of 15 min without

motor failures, but the motors reached really high temperatures.

Therefore, after several tests, the following configuration was

selected: T‐Motor Antigravity MN4006 380 kV brushless motors,

15 × 5 CF propellers, JETI 40 A Opto ESC (Electronic Speed

Controllers) and 2 Tattu batteries (7,000 mAh 22.2 V 25/50C 6S1P).

This way, we reached a flight time of 23 min, while the motors

temperature was normal.

Once the aerial platform was validated, it was equipped with all

the sensors and devices required for the Challenge. Figure 4 depicts

the spatial distribution of the onboard equipment, which is the

following:

• Onboard computer: An Intel NUC5i7RYH computer with 16 GB

RAM and a 256 GB Samsung 950 PRO M.2 SSD hard disk. This

computer weights 1.1 kg mainly due to the metallic case, so we

replaced it with a custom‐made plastic case to reduce the weight

to 460 g (see Figure 5). This computer is connected to the Pixhawk

through a serial port and mounted on a quick‐release system so

that it can be easily replaced.

• Camera: A ZED stereo camera was selected after testing also a

Basler daA1280‐54 μm and an Intel R200. It is connected to the

onboard computer through a USB 3.0 interface.

• Altimeter: A Lightware SF11C laser altimeter is integrated and

directly connected to the Pixhawk autopilot. It gives a comple-

mentary measurement to the barometric pressure altimeter

included in the Pixhawk.

F IGURE 3 Aerial platform developed for the Challenge. Left, airframe without the mission electronics and the pickup mechanism. Right, fully
equipped hexacopter [Color figure can be viewed at wileyonlinelibrary.com]

9http://www.dronetools.es
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• Wireless link: An Ubiquiti Rocket M5 5.8 GHz radiolink is used for

communications with the ground control computer and other

UAVs. This device is connected through an Ethernet interface to

the onboard computer.

• Electronics battery: A Hacker ECO‐X Light 4S 3,500 mAh 10C

independent battery for the electronics.

• Pickup mechanism: An object pickup device based on an OpenGrab

EPM (Electro Permanent Magnet) by NicaDrone. This device is

described in detail in Section 4.1.

Table 1 summarizes the weight distribution for the complete aerial

platform. With this platform, we achieved a consistent flight time of 23

min, while having available enough payload to pick up the large objects

of the Challenge (between 2 UAVs). Moreover, a voltage monitor with

acoustic warning was attached to each battery to increase the safety

of our operations. During our tests, we detected some vibrations in the

internal IMU (Inertial Measurement Unit) of the Pixhawk, so a damped

base was built to place the autopilot (see Figure 5). Our Pixhawk runs

a modified version of the PX4 release v1.4.4 stack in order to integrate

the laser altimeter and the control of the electromagnetic device.

4.1 | Pickup mechanism

The main objective of the Challenge is to pick up objects and drop

them correctly, so the implementation of a mechanism for these

operations is crucial. We describe in this section the design of the

device that we developed for this purpose.

Given the metallic nature of the objects in the competition, an

electromagnet seems to be the simplest option to grab them. Our

pickup mechanism is based on an Electro Permanent Magnet (EPM), the

F IGURE 5 Detailed view of the core of the aerial platform. Left, Intel NUC computer with plastic case. Right, Pixhawk autopilot on top of the

damped base [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Front view (left) and side view (right) of the aerial platform with all the sensors and electronic devices on board. The spatial
distribution of the equipment is indicated [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Distribution of the weight for the aerial platform and the

onboard equipment

Category Component Weight (g)

Airframe Arms, motors, ESC, autopilot,

RC receiver, and telemetry

2,800

Power batteries 1,720

Mission

electronics

Onboard computer 460

Camera 170

Wireless link 280

Electronics battery 300

Laser altimeter 40

Pickup mechanism Carbon fiber lattice, plastic joints 210

Electromagnetic device, plastic

part, switch

160

Note. The total weight of 6.140 kg is distributed as 4.520 kg for the

airframe, 1.250 kg for the mission electronics, and 370 kg for the pickup

mechanism.
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Opengrab EPM v3.10 The EPM produces an external magnetic field that

can be switched on or off by a pulse of electric current.11 There are two

sections of magnetic material and the electric current through a wire

winding around one of them makes both sections be polarized in the

same direction, creating the magnetic field. In particular, the device has

a pulse width modulation (PWM) input, which lets us control the

magnet status: an ON command results in a full magnetization; whereas

an OFF command switches off the magnetic field by not magnetizing

both sections in the same direction.

We tested different approaches to achieve a trustworthy device,

all of them mounted on a CF lattice. This lattice is placed at the

bottom of the hexacopter and it offers two different functionalities:

first, it gives the aircraft a larger and solid base to land; and second, it

centers the pickup device. In the first designs, the success rate

picking up pieces was very low, and we found out that the problem

was related to the contact surface. The rigid mounting for the EPMs

made the aircraft require perfect flat contacts to pick up pieces. Any

angle between the EPM surface and the contact surface of the pieces

resulted in a failure. Therefore, we created a final prototype where a

single EPM is mounted on a damped platform. Thus, the mechanism is

not rigid but flexible, allowing the EPM to make a stronger contact

with its whole surface and leading to a more stable grip.

Additionally, the lattice is made of CF to reduce the final weight

of the mechanism. Attached to the lattice, there is a flexible platform

with plastic dampers, where the magnet holder is mounted. Figure 6

shows the pickup mechanism with the damped platform and the EPM

holder, which contains a contact sensor. That sensor provides

readings to detect whether a piece is being transported and it

includes a low‐pass filter to avoid false positives.

The final design increased the success ratio to almost 100%,

avoiding pieces from falling down during the flight. Although we

obtained good results, a new issue appeared sending the ON/OFF

commands with the Pixhawk. It seems that the PX4 firmware

modifications (to control the auxiliary port) affect the way that

Pixhawk manages the output mixer. Therefore, we experienced

nonstable behaviors when issuing commands to the EPM, and we

decided to design our own electronic interface.

This electronic interface receives commands from a serial port

(e.g., from the Intel NUC). Then, it sends the ON/OFF commands to

the EPM (using a PWM signal), controls activation/deactivation times

and reads the contact sensor. The electronics are based on a

dsPIC33FJ32GP302 microcontroller and its firmware is written in

MPLAB C30.

5 | SOFTWARE FUNCTIONALITIES

This section explains the software architecture of our system and

gives details about the techniques that are used within each of the

modules of our overall approach in Section 3. These techniques

provide the different functionalities that are required so that the

whole system can address the MBZIRC Challenge.

5.1 | Vision‐based object detection

The Vision Module runs on board each UAV and it is in charge of

processing the images taken by the camera to detect the Challenge

objects. An approach based on color segmentation and clustering is

used to estimate object positions and other features on the image

plane. Then, those measurements are integrated with the camera

pose to produce object positions in the 3D space. In the following

sections, we describe the techniques and steps to obtain the final

detected objects from each image.

5.1.1 | Color segmentation

To extract objects from the scene, we first divide the color space into

several clusters and classify each pixel in the image frame within those

clusters. Even though RGB (red, green, and blue) is the most common

color space, dividing it into clusters representing colors is not

straightforward. Instead of using RGB, we use the HSV (hue, saturation,

and value) color space (see Figure 7). HSV gathers most color

F IGURE 6 Prototype of the pickup mechanism. Left, detail of the damped platform. The EPM is grabbing a metallic disk and it has a certain degree of

flexibility. Right, the holder with a single EPM and a contact sensor. EPM: electro permanent magnet [Color figure can be viewed at
wileyonlinelibrary.com]

10https://kb.zubax.com/display/MAINKB/OpenGrab+EPM+v3.

11The EPM consumes 50 mW in steady mode and a peak of several watts during

microseconds when it commutes.
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information in the Hue channel, and hence defining clusters for the

colors is easier. In particular, the color space is divided into nc clusters

and each cluster is limited by six values as shown in Figure 7 (right).

When finding out the color cluster for a pixel, several conditional

checks in cascade with the corresponding thresholds could be done.

However, this procedure is not efficient because it may perform six

conditional checks at runtime, which are not well vectorized by a

CPU. Instead, we use an optimized implementation of the algorithm

in Bruce et al. (2000), which consists of boolean thresholds defined at

compile‐time. We enhanced the algorithm by implementing a

parallelized version, which reduces considerably the execution

runtime.

First, each channel dimension is divided into nh, ns, and nv

discrete values, respectively. Hence, the values of a pixel h s v( , , )i i i

can be remapped into the discretized space as h s v( , , )i
d

i
d

i
d . Second,

for each channel, the arrays Ah, As, and Av , of sizes nh, ns , and nv ,

respectively, are built. Each element of each array must store nc bits,

indicating each bit whether the corresponding discrete value of the

channel belongs “1” or not “0” to that cluster. To check to which

cluster a pixel belongs, its values h s v( , , )i
d

i
d

i
d are used as indexes

of the three arrays. Then, two bitwise comparisons are done

to find out whether it belongs or not to each of the

clusters: A h A s A v[ ] & [ ] & [ ]h
i
d s

i
d v

i
d .

The significant advantage of this approach is that it can evaluate

the belonging of a pixel to multiples color clusters simultaneously

thanks to the parallelism of the bitwise operator. However, it is not

adaptable at runtime. In the MBZIRC, we used =n 5c , since the

system only needs to distinguish between five colors. Figure 8 shows

an example of a segmented image.

5.1.2 | Run‐length encoding (RLE)

RLE is a simple form of data compression in which every group or run of

data (i.e., a sequence of consecutive data with the same value) is

compressed as a pair with the data value and the count. For instance,

the data WWWWWWWBBBBBBBBBCCCCCCWWWWWWWWWWWW

WWWW would be compressed with RLE into 4 value/count pairs

W7B9C6W16. We use RLE to reduce the image sizes, gathering groups

of colors together. This kind of data compression is quite effective if the

image color is homogeneous, which is the case in our images.

Once every row of the image is encoded with RLE, it is necessary

to connect the runs that belong to the same object. This process is

depicted in Figure 9. First, it goes from the top‐down searching in

consecutive lines for overlapping runs of the same color. If an overlap

is detected, the upper run is assigned as parent of the lower run (see

Figure 9a–c). Then, a second phase starts at the bottom row and goes

up searching for disjointed objects. It checks whether adjacent runs

of the same color have different parents (see Figure 9d).

5.1.3 | Parallel optimization

The previous color segmentation algorithm is computationally efficient

as it optimizes the pixel‐wise color classification. However, UAVs

usually carry onboard computers, which have lower computational

F IGURE 7 Left, color space in HSV and RGB channels. Right, division of the HSV color space into clusters. For instance, the cluster depicted
in red can represent a blue color in a simple manner. However, in RGB, that color has to be defined by a region separated with a tilted plane
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Output of the vision‐based object detector. Left, original image from the arena with a red and an orange object. Bounding boxes

and a text displaying extra information overlay the image. Right, processed image after the color segmentation. The two objects appear
segmented and the background as black [Color figure can be viewed at wileyonlinelibrary.com]
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capabilities than common desktop computers. Thus, we contribute in

this study with a new version of the algorithm for object detection,

parallelizing its computation in the CPU. Figure 10 highlights the

differences between the nonparallel and the parallel implementation

of the algorithm. Basically, each image is split into fragments that are

processed in parallel by a different thread each. Each thread performs

pixel‐wise color segmentation (as described in Section 5.1.1) in its

fragment, and then, it compresses the fragment using RLE and carries

out the top‐down phase of Section 5.1.2. Finally, a single process

synchronizes all the threads by fusing the results for each fragment.

This is done by performing a new top‐down phase that checks data

from neighboring fragments, and the final bottom‐up phase.

5.1.4 | Estimation of the 3D object positions

After all the candidates are obtained from the image, there is a final step

to filter them out and compute their 3D positions in a global coordinate

system. For this purpose, the pose of the camera is used together with

the assumption that all objects lie on the ground. The Vision Module

reads the UAV pose computed by the onboard localization sensors and

applies a known transformation to obtain the camera pose. Then, a

simple homography transformation is used to project the position of the

candidates on the image plane onto the ground of a 3D coordinate

system. Since we only need to estimate 2D positions on the ground

(height is fixed for all objects), the Vision Module outputs for each

candidate its observed color co, a vector z with its 2D position in global

coordinates and an estimation of the error covariance matrix R.12

Moreover, as object sizes are known, the estimated size of each

candidate can be compared with the actual ones, filtering out false

positive detections, and improving the robustness of the results.

5.2 | Multi‐UAV object estimation

The object estimator is in charge of implementing this functionality,

which allows the system to estimate and track the positions of the

objects detected in the arena. The objective is to keep a track for each

new object detected, with all its information associated. These

estimations are used by the planning module to assign objects to UAVs,

which should navigate to the estimated positions and collect the objects.

We propose a centralized stochastic filter running on the GCS

and receiving observations from all the Vision Modules in the

team, and integrating them into a single data structure. The fact

F IGURE 9 Steps of the algorithm to process an RLE image and connect runs that belong to the same object. Several runs of an orange object
are depicted as example. All the runs are grouped together and they can be processed to extract the object information. (a) All runs start

disconnected, (b) top‐down phase connects adjacent runs, (c) Runs 1 and 2 become parents, (d) bottom‐up phase makes 1 the single parent
[Color figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

F IGURE 10 Block diagram for the complete vision‐based object detector. An optimization of the algorithm is implemented by means of a
parallelized version. (a) Nonparallel implementation and (b) parallel implementation [Color figure can be viewed at wileyonlinelibrary.com]

12This parameter was fixed in our system and its adjustment will be discussed later.
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that there are only three UAVs operating in a relatively short

range, makes advisable to use this approach instead of a

decentralized estimator. The communication bandwidth to send

all the observations to the GCS is not critical, and at the same time,

possible issues with inter‐robot transmissions and delays are

avoided. Therefore, we selected a centralized multitrack filter due

to its simplicity and efficiency.

The object estimator maintains a belief over the pose and color

of each object in the arena (i.e., a track). Anytime a new object is

detected by any of the UAVs, this is communicated to the

estimator, and a new track for that object is created. For each

track, the state is composed of several factored variables

associated with the object x y v v c( , , , , )x y . The 2D position and

velocity of the object are continuous variables, whereas the color

is a discrete variable c {red, blue, green, yellow, orange} . The

former is updated by means of a KF, and the latter with a discrete

Bayes Filter.

We use a KF to estimate object positions because it is simpler for

data fusion from different sources and less computationally costly

than a Particle Filter. The main problem is that we cannot deal with

multimodal distributions, but we alleviate that issue by reducing the

integration of false positive observations into the filter. For that, we

develop a technique to solve the data association problem between

the observed objects and the current tracks, combining both color

and distance information. The following sections give more details

about the different probabilistic models used for the prediction step,

the update step and data association.

5.2.1 | Initialization

As stated above, the initialization of a track occurs whenever a new

object is detected by the team and must be incorporated into the

filter. This happens when an observation received from some UAV is

not associated with any previous track. Hence, a new track is created,

initializing the position and velocity according to the observation

received from the UAV and the color to a uniform probability

distribution. Then, the color variable is updated with the information

contained within the UAV observation, increasing the probability for

the value of the observed color co.

5.2.2 | Prediction

A KF is used to maintain the belief over the position and velocity

of the object. Therefore, if = x y v vx ( , , , )x y
T is the state vector

and Σ the covariance matrix, a linear kinematic model is used

to predict this state from one time step to another separated a

time interval Δt. The prediction and noise matrices are the

following:

σ

σ

=

Δ
Δ = Δ

Δ

t
tF Q

1 0 0
0 1 0
0 0 1 0
0 0 0 1

,

0 0 0 0
0 0 0 0

0 0 0
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⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
(1)

The parameter σv indicates the level of noise for the object

velocity; the higher, the more the uncertainty grows after a

prediction.13 The belief color factor is never predicted, since the

color is fixed for all the objects. Moreover, the KF is not predicted for

the static obstacles, only for the moving ones. This is determined by

means of the color: An object whose probability of being yellow is

higher than its probability of not being yellow is labeled as a moving

obstacle. Otherwise, the object is considered static. The same

reasoning is applied to the probability of being orange to label each

object as large or small.

5.2.3 | Update

If a UAV observes an object and this observation gets associated with

a specific track, the belief of that track must be updated with this

new information. The observation coming from the Vision Module

consists of a 2D position in global coordinates of the object z and its

corresponding covariance matrix R; and an observed color co. To

incorporate the position information, the KF is updated with a simple

linear model:

=H
1 0 0 0
0 1 0 0 .

⎛
⎝⎜

⎞
⎠⎟ (2)

The color belief is also updated with the observation co by means

of the equations of a standard Bayes Filter:

⋅ ∣ ⋅ ∀η= = = =p c i p c c i p c i i( ) ( ) ( ), ,t o t t (3)

where η is a normalizing constant and ∣ =p c c i( )o t is the probability of

observing co given a color value =c it . We estimated empirically that

the probability of detecting the actual color of an object with our

vision algorithm was of 0.9, which is the value that we used to

compute the previous probability. If the vision algorithm provides no

information about the color because it could not be observed with

enough certainty, the color belief is not updated.

Finally, the belief is only updated with recent observations. If an

observation that is too old reaches the filter, it is discarded. In this

way, we avoid spoiling the estimations with observations that were

delayed too long due to network communication issues. This value

was adjusted during the experimental trials after evaluating commu-

nication delays.

5.2.4 | Data association

A data association problem must be solved when new object

observations arrive at the object estimator. Multiple tracks are

maintained and it needs to be determined to which track the

observations correspond, or whether new tracks should be created.

We define a couple of heuristics based on probability to measure

13We set this value to ∕σ = 0.2 m sv
2 2 2 and checked during the experimental trials that was

reasonable for the moving objects.
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how close an observation is to the current estimation of each track.

Then, those heuristics are used to create associations. First, we

define a probabilistic distance of the observed position:

= − −−d z Hx S z Hx( ) ( ) .p
T 1 (4)

Given a track with position belief Σx( , ) (mean and covariance

matrix), the heuristic in Equation (4) measures the Mahalanobis

distance between an observed object position z and the probability

distribution of the predicted observation. With the current belief, the

probability distribution of the predicted observations can be

computed by projecting Σx( , ) into the observation space, that is,

the probability distribution of observations would have mean and

covariance matrix Hx S( , ). The lower dp, the higher the probability

that the observation corresponds to that track.

To take into account the information about the color, we also

compute the probability of the color observation co for each track:

∣ ⋅= = = =∑p c c p c c i p c i( ) ( ) ( ).o i o (5)

At each iteration of the estimator, the set of received observa-

tions is processed to associate them with the existing tracks. First,

the heuristic dp is computed for all possible pairs observation/track.

Then, the best pair with minimum distance value is selected for

association. If < =d dp th, the observation is likely enough14 and the

track is updated with that observation. Otherwise, the observation is

not close enough to any of the existing tracks, so a new one is created

and initialized with that observation. The same procedure is repeated

until there are no more observations to associate. Note that more

than one observation could be associated with the same track, since

those may be observations of the same object coming from different

UAVs. Finally, when a best pair is selected but the probability of its

color observation is too low (Equation (5)), the association is

discarded. We experimented with our color detection algorithm

and estimated that this happened when = <p c c( ) 0.15o .

5.2.5 | Additional information

Besides the belief over the position and the color of each object, the

estimator keeps additional information useful for other modules.

First, for each object (track) a unique identifier is stored. This is

useful for logging and visualization, and also to assign them to

different UAVs. Second, each object has a status within the tuple

{UNASSIGNED,ASSIGNED, CAUGHT, DEPLOYED, LOST,FAILED}.

ASSIGNED and UNASSIGNED indicate whether the object has a UAV

assigned to be picked up or not, respectively; CAUGHT means that

the object has been picked up successfully; DEPLOYED that the

object has been transported and dropped; an object is LOST when a

UAV goes to pick it up and cannot find it; and an object is set to

FAILED when a UAV goes to pick it up and the action is aborted after

failing.

The Cooperative Planner and the UAV state machine use this

status to keep a track of the objects’ situation, and they are the ones

in charge of modifying the values, as it will be explained in the next

section. Furthermore, CAUGHT and DEPLOYED objects are not

considered by the estimator for prediction nor update; whereas

LOST objects are removed from the filter.

Finally, it is relevant to mention that the estimator also removes

objects that are not observed for two long or were observed

spuriously. After the experimental trials, we determined that an

object that had been detected in less than five frames and had not

been detected for 20 s, was a false positive and had to be removed.

We adjusted those values during the trials not to have many spurious

objects and to focus on those detections more likely to be real.

5.3 | Cooperative planning

The cooperative planner is in charge of planning paths and actions for

the UAVs in a coordinated manner. It consists of a centralized

module that runs on the GCS and that receives the current position

from each UAV and the object estimations from the object estimator

module. Then, it allocates different objects to the UAVs, that should

go to their estimated positions, pick them up and drop them back into

the dropping box.

Due to the fact that the arena can be covered fairly fast with the

UAVs, and to avoid too many conflicts between the different vehicles

collecting objects, we proposed a novel cooperative strategy with

two phases. With this algorithm, objects are allocated to UAVs as

tasks heuristically and the potential conflicts are minimized. First, the

UAVs fly covering nonoverlapping zones of the whole arena and

searching for the maximum number of objects. Second, once this

search has ended, the planner starts to assign the UAVs objects that

they must collect and drop.

During the search phase, the arena is divided into three

longitudinal sectors, and each of them is covered by a different

UAV with a straight‐line path (return trip). Figure 11 depicts an

example of the division and the paths followed, which can be

computed geometrically so that all the segments are equally

distributed. Also, in case that there were only two UAVs available

(e.g., because one of them failed), the scenario would be split into two

equal sectors to be covered in the same fashion as before. Note that

the UAVs fly at the same height during this search phase, since their

paths are nonoverlapping and no conflicts need to be solved.15

After the search phase, the UAVs should have a good estimation

of most object locations. Then, a collecting phase starts; where the

cooperative planner assigns them different objects to collect and

drop. These assignments are asynchronous, that is, anytime a UAV is

idle, it asks for a new task (object) and the planner decides the best

14The threshold dth is a parameter to adjust how flexible the associations are. Its value will

be discussed later.

15We flew with a height of 10 m during our trials, since we tested that that height was

adequate for detecting most objects with our vision algorithm and covering a third of the

arena.
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one to be picked up, given the current situation. During this phase, a

different height is assigned to each UAV for navigation, so that they

can traverse the arena without colliding with each other.16 Note that

the vision modules and the object estimator are still running during

the second phase, so new objects could be detected (or information

from previous ones updated) as the UAVs navigate collecting and

dropping objects.

When the planner needs to assign an object to a UAV, it follows

several rules. First, it only considers objects that are not assigned to

another UAV. Second, it prioritizes according to the color and assigns

first those unassigned with the color of highest priority. In particular,

we focused first on the static, small ones (the higher its score, the

higher its priority); then on the moving ones (yellow); and finally on

the large ones (orange). Given our aerial platforms, we estimated that

scale of difficulty and decided to go from easier to harder. Last, to

discriminate between obstacles with the same priority, the planner

rates them with a heuristic based on distance, opting for the closest

one. We also tested another heuristic weighting object scores and

distances, but it turned out to be more effective the priority rule, that

is, to pick up always the easiest ones first.

Although each UAV flies at a different horizontal plane while

collecting objects, they may still collide when one of them is

descending to pick up an object, since it could traverse others’

planes. To minimize those situations, when assigning an object i to

a UAV 1, the planner checks whether the straight line from that

UAV 1 to the object i lies too close (distance measured on the

horizontal plane) from any other object j assigned to some other

UAV 2. In that case, this assignment is discarded because the UAV

1 could cause a potential conflict while the UAV 2 is descending to

pick up its object j. Nonetheless, note that some conflictive

situations may still arise, but their probability is significantly

reduced. Indeed, being conservative and discarding assignments

whose corresponding paths passed closer than 5 m to other

assigned objects, we did not come across any conflict during all our

experiments.

Finally, another source of conflict must be taken into account, the

dropping zone. We solve this issue by treating that zone as a

centralized shared resource where only one UAV can enter at a time.

When a UAV enters that zone, it takes a token that needs to be freed

before someone else uses it. Thus, as shown in Figure 11, an

imaginary roundabout with six waiting positions is designed around

the dropping zone. Any time a UAV has picked up an object and

needs to drop it, it asks the cooperative planner for a waiting spot.

The planner will assign to the UAV the closest spot not already

assigned to another UAV also dropping. Then, the UAV will navigate

there and wait until the token of the dropping zone is free. Note that

UAVs navigating across the dropping zone toward their assigned

objects (before picking them up) would still be conflictive, but this

situation is highly unlikely since the dropping zone is placed in one of

the extremes of the arena with no much space behind.

5.4 | UAV state machine

Each UAV runs a state machine on board that deals with all the tasks

assigned by the cooperative planner. The UAV state machine is

depicted in Figure 12 and it governs the UAV behavior by issuing

commands through the UAL. State transitions may be triggered by

the completion of UAL commands, by service calls from the planner,

or by other external events (e.g., activation of the contact sensor in

the pickup mechanism).

The state machine starts in REPOSE and it waits until the planner

begins the mission by calling a service to take off the UAV. Then, it

switches to TAKING_OFF and issues a TAKE_OFF command through

the UAL with the corresponding height for the search phase

(z_searching). When the take‐off is completed, the UAV goes directly

to the SEARCHING state, where it is issued a GOTO_WP command.

This UAL command navigates the UAV to a single waypoint or

through a list of waypoints. The cooperative planner indicates the

specific search path for each UAV (search_path), as explained in

Section 5.3. After finishing the path, the UAV goes to an idle state

called HOVERING.

As explained in Section 5.3, the planner assigns asynchronously

objects to the UAVs as they become idle and ask for new tasks. Hence,

F IGURE 11 Scheme of the arena for the MBZIRC: DZ represents the dropping zone, where the box is placed; LZ represents the landing
zone, where UAVs start the mission. Left, an example of the paths followed by three UAVs during the search phase to cover the whole arena
(they go and return to the start position). Right, in red the roundabout around the DZ with the six waiting spots for the UAVs loaded with

objects [Color figure can be viewed at wileyonlinelibrary.com]

16We selected heights of 3, 7, and 11 m for the three UAVs during our trials, since we tested

that those were still adequate to detect objects and keep a safe distance between the UAVs.
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any time a UAV is HOVERING, the planner selects the best object to

collect (if there is any) and calls a service of the UAV state machine

indicating information about that object. In the GOTO_PICKUP state,

the state machine uses the object position (object_xy) to send the UAV

there with a GOTO_WP command. Note that the navigation height

z_uav during this phase varies from one UAV to another.

Once arrived at the object position, a pickup operation is

attempted. The candidates generated by the vision module are

explored to find one that matches the color of the assigned object.

The best match is selected, that is, the closest one with the same

color as the assigned object and inside the arena (see the discussion

about geofencing in Section 6.4). If a match is found, the state

machine transitions to PICKING_UP. Otherwise, it goes back to

HOVERING and that assigned object is set to LOST.

In the PICKING_UP state, the UAL command VEL_CTRL is

activated. This command controls the UAV in velocity (horizontally)

to center the candidate position candidate_xy on the image, at the

same time that the UAV descends to get closer. This visual servoing is

based on a PID controller that works with local position errors, since

global object positions are not accurate enough. Thus, the object

position on the image (candidate_xy) with respect to the image center

is used to center the UAV by means of horizontal movements.

Different values for the controller gains are used to pick up static or

moving objects. We tuned those values empirically to achieve a more

aggressive control with the dynamic objects.

As the UAV descends, the corresponding candidate may be lost

by the vision module. In that case, the UAV ascends back up to a

maximum height or until the object is detected again (GOTO_WP

command). The same procedure is repeated up to a maximum

number of attempts, after which the object is set to FAILED and the

UAV returns to HOVERING. Since FAILED objects are not

considered again for assignment, in case there were not remaining

objects, the object estimator would reset the ones FAILED to

UNASSIGNED to attempt them over again. On the contrary, if the

contact sensor of the pickup mechanism is activated, the object is set

to CAUGHT and the state machine switches to GOTO_DROP.

In the GOTO_DROP state, the UAV goes back to its navigation

height and asks for the closest free waiting spot in the roundabout

(GOTO_WP command). Once arrived, it waits until the dropping zone

is free, then it enters, descends to a dropping altitude, drops down

the object and sets it to DEPLOYED. Afterward, the UAV returns to

its original position at the roundabout at its navigation height and

transitions back to HOVERING.

6 | EVALUATION AND LESSONS LEARNED

This section analyzes the performance of our system and the lessons

that we learned during the MBZIRC competition. The system

evaluation includes experimental results that we obtained during

the development phase and results from the actual competition. We

learned some lessons during the whole development process

previous to the competition and during the actual competition,

where we had to adjust parameters for our systems and even change

the original design of some of them.

6.1 | Aerial platform design

During the competition in Abu Dhabi, we discovered that there were

two kinds of approaches for the aerial platforms: some teams

designed UAVs of similar size to ours; while others used smaller and

lighter UAVs. These lighter platforms present advantages in terms of

maneuverability and stability, but they were not able to pick up the

large objects. However, there were two relevant facts during the

competition that affected significantly the payload requirements.

First, even though the weight of the small objects was originally

specified as “less than 500 g,” the actual weight of those used in the

competition was 350 g. Second, the organization allowed all teams to

change batteries during the trials without penalty. Thus, it was

feasible to fly with smaller batteries, having more payload available

for the objects.

Given the above premises, we would have probably used a

different platform. Actually, we also performed some experiments in

Seville to test our software and pickup mechanism with the smaller

and lighter DJI F550 airframe, as shown in Figure 13. Although

this aircraft was more controllable and stable at low altitude,

we originally considered that it would not offer enough flight time

and payload. Nonetheless, the performance of our aerial platforms

F IGURE 12 Diagram of the UAV state machine. States are

represented by rectangles and transitions by arrows. The circles
represent UAL commands to the UAV with specific parameters
[Color figure can be viewed at wileyonlinelibrary.com]
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during the competition was excellent in terms of endurance. They

behaved as expected according to the original design, being able to

fly during 20 min and to perform complete missions. Hence, we never

had to change the batteries during any of the trials.

Finally, we discarded more precise localization devices for the

UAVs, such as an RTK GPS due to their price. Those devices provide

more accuracy in the measurements and increase clearly the stability

of the aircraft. However, we experienced that the level of precision

provided by our autopilot (it achieved errors below 2 m by filtering

GPS and IMU measurements) was enough to perform the missions,

since we were using visual servoing with local coordinates to pick up

the objects.

6.2 | Pickup mechanism

In our first rehearsal trials in Abu Dhabi, we experienced issues with

our pickup mechanism described in Section 4.1, since the UAVs were

not able to grab any of the competition objects. The issue was related

to the layer of color paint that the official objects had. Our previous

and successful tests in Seville were with similar mock‐up metallic

objects since the organization did not send instances of the

competition objects. There were other teams experiencing the same

critical issue, but instead of quitting the competition, we improvised a

new design on site.

In particular, we used the same holder but replaced the EPM

with an array of four permanent magnets, which had enough power

to pick up the objects. We also included a radio‐control servome-

chanism with a lever that was used to release the objects.

Moreover, we mounted two contact sensors to detect the pieces.

Figure 14 shows the new design of the whole mechanism. The

contact sensors were in charge of confirming that an object had

been caught, and the release action triggered the movement of the

lever to push the object downwards. We tested our new device

during the rehearsal trials successfully and were able to pick up

eventually the official objects.

6.3 | System architecture and integration

We integrated all the modules of our architecture with the open‐
source Robotics Operating System middleware,17 in particular, its

version ROS Kinetic Kame. We also developed a simulated version of

the MBZIRC arena and our aerial platforms based on the robotics

simulator Gazebo.18 A Software‐In‐The‐Loop (SITL) scheme was used

to integrate the actual software of our autopilot into the simulation,

what allowed us to perform quite realistic simulations. Our platforms

use PX4 as autopilot software, so we used an SITL module of the PX4

for Gazebo (Furrer, Burri, Achtelik, and Siegwart, 2016) integrated

into our software architecture. This allowed us to implement a

Gazebo model for our aerial platforms, which run the same software

as the actual autopilot. The camera to feed the Vision Module and

the pickup devices were also integrated into the simulation by means

of Gazebo plug‐ins. This simulation is not very reliable in terms of

flight control, as we did not invest time identifying a dynamic model

of the platform, but it is definitely accurate with respect to the

autopilot behavior.

F IGURE 13 Preliminary tests in Seville

(Spain). A DJI F550 aerial platform with
our pickup mechanism transporting a red
object (top) and our final custom‐made

hexacopter transporting a blue object
(bottom) [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 14 Final version of the pickup mechanism. In the middle

of the carbon lattice, the red holder is mounted on the damped
structure. The holder has four magnets on top, two contact sensors,
and a lever in the middle actuated by a servomechanism [Color figure

can be viewed at wileyonlinelibrary.com]

17http://www.ros.org.

18http://gazebosim.org.
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Additionally, on top of the autopilot software, we developed our

abstraction layer UAL based on ROS, what helped us to simplify and

unify the commands to control the UAV. This UAL is publicly available

at GitHub19 and offers a simple interface with commands like take‐off,

land, and go to waypoint. On the other side, the abstraction layer has a

back‐end, which is in charge of the communication with the autopilot.

For the MBZIRC, the communication with the PX4 was performed

through MAVROS,20 which is the ROS version of theMAVlink protocol.

In general, the UAL and the SITL simulator proved to be quite

relevant for the integration of the whole system. The ability to

simulate complete multi‐UAV missions became a remarkable feature

to test and debug the interfaces and functionalities of all the

modules. Indeed, the whole system could not distinguish simulation

from real flight behavior. Only the gains of the low‐level controllers
for the aerial platforms needed an additional adjustment to jump into

experiments with the actual systems.

6.4 | System coordinates and geofencing

The autopilot provides the location of each UAV in global geodesic

coordinates (latitude and longitude) and in local coordinates (in meters)

with the origin in the place where the autopilot is booted and the axis

aligned with the north. Since we have multiple UAVs which cooperate,

we need a common coordinate system. Geodesic coordinates are global

and seem to be an obvious option. However, our platforms have not the

global precision of an RTK‐GPS and the PX4 implements an enhancing

filter (based on GPS readings) to estimate its pose on its own local

coordinate system. Therefore, we preferred those local coordinates

rather than the global ones, due to their accuracy and stability.

We defined a global coordinate system called [arena] (see Figure 15)

relative to the scenario map and we learned that specifying coordinates

for the high‐level modules in this common system avoided many issues.

With this new system, we could also maintain the same configuration (in

terms of UAV waypoints) for every arena (there were two). The only

requirements to transform between the local geodesic coordinates of

the UAVs and the [arena] system were to know the start UAV positions

(we placed them in known points of the landing zone, e.g., the squares);

and the arena rotation with respect to the north, because the local

coordinates are defined in ENU (East‐North‐Up). Furthermore, we

designed our UAL to deal with different coordinate systems, abstracting

the end‐user from that.

Besides defining different coordinate systems and managing

them transparently, we implemented a geofencing tool. This tool is in

charge of checking whether a hypothetical object is within the

physical limits of the arena (see Figure 15). We discovered during the

competition that this was quite relevant for safety reasons, to

prevent the UAVs from attempting to pick up things out of the arena

(i.e., false positives), or inside the dropping zone (i.e., dropped

objects), where trying to catch an object could interfere with other

UAV dropping. The geofencing tool solved the above issues in a

simple fashion, double‐checking object positions before creating

them in the estimator. Also, objects not holding the geofencing

constraints were not considered by the UAVs during pickup

operations.

6.5 | Communication and network configuration

The network configuration and devices turned out to be critical for

the competition. Although we had tested the wireless communication

devices on board our aerial platforms extensively in the experiments

previous to the competition, we experienced many communication

issues during the trials in Abu Dhabi. We discovered eventually that

it was a problem with the setup of our wireless links on board the

UAVs and we solved our connectivity issues by updating the

firmware of the Ubiquiti Rocket devices.

In addition, since the system is distributed and there are

processes running on the UAVs and on the GCS, time synchroniza-

tion is essential, especially for the algorithms of data fusion. Delays in

the network communications led to situations where the object

estimator discarded many observations for being too old or where

those estimations were inconsistent. Therefore, we solved this issue

by using the network time protocol (NTP) and a server configured on

the GCS. NTP allows timing information to be distributed in local

area networks with errors below one millisecond, which satisfies the

time constraints of our distributed architecture.

6.6 | Vision module

The vision detector turned out to be a critical module for the

execution of the mission. It feeds the object estimator to compute

object positions and colors, but it is also used to control the UAV in

velocity when it is picking up an object. An important parameter is

F IGURE 15 The MBZIRC arena with the [arena] coordinate
system. It can be seen that the coordinates are aligned with the
arena and can have a rotation with respect to the north. In gray, the

valid area for the geofencing tool is also shown. Objects out of that
area were not considered for estimation nor collection [Color figure
can be viewed at wileyonlinelibrary.com]

19https://github.com/grvcTeam/grvc‐ual.

20http://wiki.ros.org/mavros.
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the resolution of the color space discretization, that is, nh, ns , and nv . A

coarse division reduces the sizes of the arrays in memory but may be

insufficient for the correct segmentation of colors that occupy a small

volume in HSV. For instance, yellow is quite thinner than blue (see

Figure 7). We adjusted this resolution empirically and set all the array

sizes to 36. That allowed us to segment images with a precision in

each channel of ∕1 36 (i.e., 10° for the Hue channel). Theoretically,

there is a limit for that resolution, which is determined by the color

(from those that need to be detected) with smallest volume in the

color space. In the case of the MBZIRC, the most critical colors with

smallest volumes were yellow and orange. Increasing the resolution

helps to divide the color space more accurately and enables the

detection of more colors, but it increases slightly the computational

cost of clustering.

Another relevant feature of the vision module is its frame‐rate
since we use it to feed the UAV controller while picking up objects.

We evaluated the algorithm speed with two different image

resolutions (available for our onboard cameras) and with/without

the parallel optimization. Figure 16 shows the average processing

time per frame. A significant difference can be observed varying

image resolutions.

The selection of the image resolution for the cameras was done

considering the frame‐rate requirements and the accuracy to detect

objects. During the search phase, each UAV should cover a third of

the arena, which means that they should fly with an altitude of

around 10 m (given the camera field of view). At this height, objects

may appear too tiny on the images, so we chose a resolution of 1,280

× 720 to ensure that the objects were not of the size of noise.

Furthermore, we achieved frame‐rates faster than 20 FPS for that

resolution, which was sufficient for the UAV controller.

In our trials in Abu Dhabi, we set the parameters as explained

above and calibrated the system with the lighting conditions there.

Then, we achieved positive results in a repetitive fashion in terms of

object detections. Table 2 summarizes the results of the vision module

over five different trials of the challenge. Most objects were detected

correctly, true positives (TP). In these experiments, there were only a

couple of false negatives (FN), caused by a yellow object that was

missed during the searching phase due to the sunlight reflection.

However, that object was later detected after the searching phase,

with a UAV flying at a lower altitude. Regarding the false positives

(FP), they were caused by participant T‐shirts and a blue fence near

the arena (geofencing was applied to discard most of them).

6.7 | Multi‐UAV object estimation and allocation

We integrated and tested successfully and repetitively our object

estimator in the trials in Abu Dhabi, fusing information from the three

UAVs. The navigation heights selected were appropriate to detect the

objects in the arena and estimate their positions with enough accuracy

to be found later by a UAV trying to collect them. The main source of

error for the objects’ positions came from the UAV positioning

systems since those were used to project the image detections onto

the 3D global coordinate system. Moreover, the time synchronization

to match image detections and UAV telemetry was not perfect.

Overall, with our GPS‐based positioning system, we achieved an

accuracy with errors below 2 m for the UAVs, and hence, for object

estimations. We did not use RTK GPS and we had no ground truth

either, so we could only get an empirical estimation of the UAV

localization error. For that, we took large sets of measurements of a

UAV at different static positions and compared them with the average

value to extract a standard deviation. The UAV altitude was provided

by a highly accurate laser altimeter, and hence it had a much lower

vertical uncertainty. The cooperative planner worked also properly

during the competition trials, performing the search phase and

distributing later the objects between the three UAVs.

We were able to detect most of the objects in the arena, but we

observed that two parameters were critical for the estimator

performance, the error covariance for the observed positions R

and the association threshold dth. As expected, it is essential to

adjust those parameters adequately so that the filter is not

overconfident (what may make it diverge at some point) and the

associations are reasonable. On the one hand, if the distance

threshold for association is decreased, the filter considers many

observations as new different objects instead of integrating them

within previously existing estimations. On the other hand,

F IGURE 16 Average processing time per frame (milliseconds) of

the vision module. Different image resolutions and parallelization
options are compared [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Results of object detections over five different MBZIRC
trials

Set #1 Set #2 Set #3 Set #4 Set #5

Number of objects 6 10 7 9 8

TP 5 10 7 9 7

FP 0 1 1 1 2

FN 1 0 0 0 1

Note. The actual number of objects that appear throughout each trial is

compared with the number of detections and misdetections.
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increasing this threshold too much could cause that close objects

are seen as the same.

Figure 17 shows some experimental results in Abu Dhabi21 for the

object estimator with and without adjusting the above parameters.

When everything is tweaked correctly (top view), the system outputs

estimations for the actual objects, whereas too many spurious

objects appear without the correct parameters (bottom view).

As explained above, this is due to the fact that many observations

corresponding to the same objects are not associated well but seen as

new objects. Moreover, the video of this experiment shows how a

moving object (yellow) is detected within the dropping zone (second

50) but not included in the estimator due to the geofencing tool. The

idea is to avoid the UAVs from going toward dropped objects again.

F IGURE 17 Results of the object
estimator during a trial in Abu Dhabi with

two UAVs. In the middle, some images
taken from the UAVs during the
experiment (each row comes from a UAV).

Green marks indicate detections from the
Vision Module. On top, the objects
estimations after the search phase of both
UAVs and with the Estimator parameters

properly adjusted. At the bottom, the same
without adjusting the parameters
correctly. Each object has a number

associated and a circle with the estimated
position covariance. The color of the circle
represents the most likely color according

to the filter

21A video of the experiment can be seen at https://youtu.be/38PnmsH4jOk.
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Also, there are some false positive detections during the video that

create new objects which are erased later (e.g., objects 1 and 6), as

they are considered spurious after some time without detection. This

is done for objects that are detected just in a couple of image frames.

Another interesting discovery during the competition trials was

that the movement of the yellow objects was quite restrictive since

they moved around the same zone where they started. In the

beginning, our estimator was configured to remove moving objects

that had not been detected for a while. That made sense because

those predicted estimations were not reliable anymore after some

time. However, we ended up treating them in the estimator as static

ones, bounding their predictions and not removing them when not

seen for a while. Regarding the cooperative behavior, it turned out to

be wise the strategy of focusing first on the small, static objects, and

then the moving ones, since those were harder to pick up and there

was no team collecting all the static ones. Moreover, even though we

managed to run missions with the three UAVs, many times we ended

up with fewer due to hardware, software, or communication failures.

This could lead to some issues due to synchronization constraints

between the UAVs. For instance, originally the UAVs were waiting

for each other after the search phase, to move together to the

collecting phase. In the end, we removed those synchronizations to

make the distributed system more robust.

6.8 | Picking up objects

In our previous experiments in Seville, we tested the software

architecture to pick up our mock‐up objects autonomously. Even

though we did not have time to test the system extensively under a

wide variety of conditions, we performed successful experiments,

including autonomous complete missions picking up several pieces.

For instance, Figure 18 shows the results of an experiment where

one of our UAVs attempts to pick up a red object with the

autonomous visual servoing.22 In this experiment, the UAV centers

the object on the image plane by means of its velocity control, at the

same time that it descends gradually. The visual detector is stable

enough and the UAV is able to recover when the object gets out of

the field of view. This is done by ascending back slightly until the

object is seen again. After the second attempt (second 70 of the

video), the object is caught by the magnetic device successfully. This

is noticed by the UAV, that starts going up again.

We also run some repeatability tests to assess the overall

performance of the system.23 In particular, we repeated multiple

F IGURE 18 Results of a successful operation to pick up a red object autonomously. On the top left, a frame of the original image with the
results of the vision detector. On the top right, the frame segmented. At the bottom, the evolution of the horizontal position errors. Those

errors are measured with respect to the image center and normalized. The yellow line indicates the time instant corresponding to the example
frames [Color figure can be viewed at wileyonlinelibrary.com]

22A video of the complete experiment is available at https://youtu.be/NQLvokGbVzM.

23A video showing an excerpt of these experiments is available at https://youtu.be/

0n2B0wOoOZI.
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autonomous pickups of different static objects an evaluated the

success rate and the duration of each trial. On average, 20% of the

trials failed, that is, the UAV was not able to pick up the object; a 30%

of the trials were partially successful, that is, the UAV picked up the

object but it fell down when returning to the dropping area; and a

50% of the trials were totally successful, with the UAV picking up and

dropping the object correctly. Moreover, the average duration of

each trial was ±40 4 s and the number of attempts ±2.1 0.34. In

each trial, a single UAV started the pickup operation always at the

same height, and performed several attempts (as explained in

Figure 12) until either it picked up the object successfully or it made

it fall down from its pedestal. We also picked up moving objects

successfully, but we did not have enough time before the competition

to run similar repeatability tests with moving objects.

During the first trials in Abu Dhabi, the performance of our

controller was not satisfactory and we did not achieve the same

successful results picking up objects autonomously. There were

windy conditions and it turned out that our system was not robust

enough to cope with that. We thought of tuning the controller to

make it more aggressive, but it was too risky because we were not

allowed to fly the UAVs for testing out of the trials. Instead, we

decided to modify the final behavior, including a free fall of the

aircraft (until the contact sensor was activated) when it managed to

have the object centered and close enough.

After the free‐fall implementation, we performed the last

competition trials where our UAVs attempted to pick up several

objects autonomously. However, they did not fall down with enough

accuracy to contact the objects. Any subtle delay in the free‐fall
decision resulted in blindly trying to pick up a nonexistent object near

the actual one. The problem may have been solved by tuning and

testing better the controller, but we had no time available for that.

7 | CONCLUSIONS

In this paper, we presented a cooperative approach with multiple

UAVs to address the MBZIRC Challenge 3. This Challenge takes

place in an outdoor arena and it consists of searching, collecting, and

transporting to a dropping box a set of static and moving colored

objects. First, we presented the hardware and software architecture

of our system. Then, we detailed the procedure to design our aerial

platforms and all the onboard components. We also described the

techniques used to develop all the software functionalities. Finally,

we discussed our results before and during the first edition of the

competition in Abu Dhabi (2017), as well as all the lessons learned

during the process.

In terms of hardware, our aerial platforms performed well with all the

devices correctly integrated. However, provided that battery replace-

ment was not penalized eventually and that the payload requirements

from the objects were not so high as expected, we conclude that we

could have used UAVs with less payload. These would have been lighter

and agiler platforms, and hence easier to control and stabilize.

Regarding the software modules, our participation in the competi-

tion entailed a tremendous and fruitful integration effort. As a result,

our team managed to perform cooperative missions with the three

UAVs and all the modules working together. In the competition trials,

we always started in Autonomous Mode and flew simultaneously our

three UAVs, except for one of the trials, where we lost communication

with a UAV from the beginning. Our team always completed the

search phase autonomously, finding most of the objects on the arena.

Then, the team was also able to allocate objects to the UAVs

autonomously, and the UAVs attempted to collect their assignments

navigating without collisions in a coordinated manner.

In our experiments previous to the competition, we managed to

pick up mock‐up objects with an acceptable success rate, which we

did not achieve with worse windy conditions in Abu Dhabi. We

conclude that our system was more sensitive than others to the

external conditions since it required to have the UAV stabilized to

make contact with the pieces. We strongly believe that the system

would have worked fully autonomous with some more time for a

proper calibration and tunning process.

As a general conclusion, it seems that this first edition of the

MBZIRC was more focused on hardware issues. Designing reliable

aerial platforms and pickup mechanisms were the most crucial part.

On the contrary, there was less focus on the implementation of

cooperative and efficient strategies. After this first experience, we

foresee that the next edition will push forward in that direction.

Many participant teams will offer reliable hardware solutions and

they will compete according to the efficiency of their strategies and

methods.
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