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Abstract 
 

Energy storage systems are an essential link in the implementation of renewable energies and in the 

development of electric vehicles, which are needed to reduce our dependence on fossil fuels and the 

emission of greenhouse gases. Various technologies have been proposed for energy storage based 

on different working principles, including lithium-ion batteries, emerging sodium-ion batteries and 

electric-double layer capacitors. Besides the quest for improving key aspects such as energy and power 

densities, current research efforts are devoted to foster the manufacturing of more environmentally 

friendly devices using sustainable materials. Carbon-based electrodes hold considerable promise in 

such terms due to their low cost, tailorable morphology and microstructure, and the possibility of 

processing them by direct carbonization of eco-friendly and naturally-available biomass resources.  

The main goal of this thesis is to develop carbon materials from biomass resources and study their 

applications as electrode for lithium-ion batteries, sodium-ion batteries and electric-double layer 

capacitors. En route towards that goal, it also aims at expanding our understanding of the 

microstructural changes of biomass-derived carbons with varying processing conditions and their effect 

on the electrochemical performance for each of these technologies. 

The first part of this work reports on the synthesis of graphitized carbon materials from biomass 

resources by means of an Fe catalyst, and the study of their electrochemical performance as anode 

materials for lithium-ion batteries (LIBs). Peak carbonization temperatures between 850 °C and 

2000 ºC were covered to study the effect of crystallinity, surface and microstructural parameters on the 

anodic behavior, focusing on the first-cycle Coulombic efficiency, reversible specific capacity and rate 

performance. Reversible capacities of Fe-catalyzed biomass-derived carbons were compared to non-

catalyzed hard carbon and soft carbons materials heated up to 2800 ºC. Moreover, in-situ 

characterization experiments were carried out to advance our understanding of the mechanisms 

responsible for catalytic graphitization. 

The second part of this work reports a comprehensive study on the structural evolution of hard carbons 

from biomass resources as a function of carbonization temperature (800 - 2000 ºC), and its correlation 

with electrochemical properties as anode materials for sodium-ion batteries (SIBs). Synchrotron X-ray 

total scattering experiments were performed and the associated atomic pair distribution function (PDF) 

extracted from the data to access quantitative information on local atomic arrangement in these 

amorphous materials at the nanoscale, as well as its evolution with increasing processing temperature. 

Then, electrochemical properties and the storage mechanisms involved on Na ions insertion into hard 

carbon structures at each characteristic potential regions were elucidated and correlated with 

microstructural properties.  



ii 
 

Finally, the third part of this work reports on the synthesis of nanostructured porous graphene-like 

materials from biomass resources using an explosion-assisted activation strategy by nitrate compounds 

and Ni as a graphitization catalyst. The thermal behavior during carbonization as well as the resulting 

microstructural and surface properties were evaluated at two different processing temperatures, 300 

and 1000 ºC. Finally, their application as electrode materials for electric-double layer capacitors 

(EDLCs) and LIBs is investigated, with a view to their performance under high charge/discharge specific 

current densities experiments.  
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1.1. Motivation 

As a result of climate change and global economic growth, the topic of energy supply and storage has 

emerged as one of the main issues that humanity faces and, despite their impact in global warming, 

fossil fuels still remain our main source of energy (1). However, due to the global concerns regarding a 

future shortage of fossil fuels and raising levels of environmental pollution, there is an urgent need to 

develop new renewable and sustainable energy sources. 

Renewable energy sources, such as solar or wind, have been steadily increasing in recent years (2), 

but still fall short on supplying energy in a stable and continuous manner due to their strong dependence 

on atmospheric conditions, which means that peak renewable production normally occurs during 

periods of low energy demand. Thus, one of the current topics of study is the implementation of large-

scale energy storage systems next to power plants to offset the problem of continuity of supply and 

endow such technologies with future prospects (3). In addition, the growing market of electric vehicles 

with lower CO2 emissions and portable electronic devices has also prompted the development of energy 

storage technologies (4, 5). 

The development and improvement of energy storage systems constitutes one of the greatest 

challenges of present times and has become a primary focus in the scientific and industrial communities 

(6). Among the variety of systems based on either chemical or physical processes that are capable of 

storing electrical energy, two major technologies are nowadays in the front line: rechargeable batteries 

and supercapacitors (7). Lithium-ion rechargeable batteries represent the state-of-the-art technology 

for portable and electric vehicles applications due to their high gravimetric and volumetric energy 

densities, despite their poor power density (8). Alternatively, sodium-ion batteries have been proposed 

as alternative devices to lithium-ion batteries because of the wider availability of source materials and 

lower manufacturing costs. Meanwhile, supercapacitors deliver excellent cyclic stability and power 

density, but have rather low energy densities.  

Besides the quest for higher energy and power densities, there is interest in developing more 

environmentally-friendly processes for the manufacturing of these devices, as currently state-of-the-art 

systems rely on scarce resources, the extraction of which has a tremendous environmental impact (9, 
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10). Despite intensive effort devoted to find alternative active materials for electrode formulation, carbon 

materials are still at the forefront of research due to their interesting intrinsic physicochemical properties 

such as good electrical conductivity, high chemical stability, tailorable surface properties and ease of 

processing. Carbon materials can be easily obtained from carbonization of naturally available biomass 

resources, making their synthesis eco-friendly and cost-effective in a circular economy framework (11). 

However, further efforts are needed to optimize the electrochemical performance of biomass-derived 

carbon electrodes. Our understanding of how the carbon microstructure and surface properties evolve 

with processing conditions and their effect on the electrochemical properties is still lacking. 

1.2. Aim and objectives of the thesis 

The main goal of this thesis is to develop sustainable carbon materials from biomass resources, for 

their use as electrodes in energy storage systems such as lithium-ion batteries, sodium-ion batteries 

and supercapacitors. To achieve this goal, we need to establish a correlation between electrochemical 

properties and structural aspects of the materials, and understand how they are influenced by 

processing conditions. Accordingly, the specific objectives addressed along the thesis are as follows: 

 Explore routes to obtain highly crystalline graphitic materials from biomass resources, by using 

Fe as a catalyst to induce graphitization at low temperatures (850 - 2000 ºC), as well as to 

contribute to our understanding of the mechanisms responsible for catalytic graphitization.  

 Evaluate the electrochemical properties of Fe-graphitized carbons as anodes for lithium-ion 

batteries and investigate the influence of processing, microstructural and surface parameters on 

the anodic electrochemical properties. 

 Study the effect of processing parameters on the microstructural and textural characteristics of 

biomass-derived hard carbon materials (800 - 2000 ºC). Carry out a comprehensive study on 

their structural evolution and local range atomic order as a function of target processing 

temperature by alternative approaches. 

 Evaluate the electrochemical properties of hard carbons from biomass resources as anodes for 

sodium-ion batteries. Obtain further insight into the storage mechanisms involved at 

characteristic potential regions and study the dependence of the structural evolution and 

microstructural features on the anodic electrochemical properties.  

 Synthesis and microstructural characterization of nanostructured porous graphene-like carbon 

materials derived from biomass resources, using an explosion-assisted activation strategy by 

nitrate compounds and Ni as graphitization catalyst. Evaluation of their electrochemical 

properties as electrodes in supercapacitors as well as lithium-ion batteries.  
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1.3. Outline of the thesis 

This thesis is structured in six chapters. This first chapter states the goals of this thesis, followed by an 

outline of each of the following chapters. 

The second chapter reviews the classification of carbon materials in terms of their microstructure and 

the phenomena of catalytic graphitization process by transition metals. Then, the chapter gives an 

overview of current energy framework, energy storage devices technologies, and state-of-the-art 

carbonaceous electrode materials for lithium-ion batteries, sodium-ion batteries and electric double-

layer capacitors.  

The third chapter presents the main results of the graphitization of biomass resources by using Fe as 

a catalyst and the related microstructural and surface characterization as a function of treatment 

temperature. Then, the chapter focuses on the electrochemical study of these materials as anodes for 

lithium-ion batteries to discuss the correlation between microstructural features and anodic 

electrochemical properties. 

The fourth chapter reports on the synthesis of hard carbons from biomass resources and their 

application as anode materials for sodium-ion batteries, in order to understand the relationship between 

microstructure and anodic electrochemical properties. This chapter gives significant insights into the 

sodium storage mechanisms at each characteristic potential regions, contributing to the current debate 

regarding storage mechanisms of sodium ions into hard carbon structures. 

The fifth chapter presents the results of the thermal and microstructural characterization of porous 

graphene-like carbon materials synthetized by an explosion-assisted activation strategy using highly 

concentrated nickel nitrate solution as the activating agent. Then, the electrochemical performance of 

these materials as electrodes for supercapacitors and lithium-ion batteries is reported. 

Third, fourth and fifth chapters include each a brief scientific background of previous works on specific 

topics to better understand the main motivation of performing such investigations. 

Finally, the sixth chapter outlines the main contributions of this thesis to each of the topics covered and 

the main conclusions. In addition, some possible future research lines are presented. 

1.4. List of publications 

The following works are original and fully carried-out by the author and co-authors during the thesis 

period. The author has express authorization for using their content as parts of the thesis. 

Papers in indexed journals directly related to this thesis: 

1. A. Gómez-Martín, J. Martínez-Fernández, M. Ruttert, M. Winter, T. Placke and J. Ramírez-Rico. 
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“New insights into the correlation of structure and performance of hard carbons as anodes for 

sodium ion batteries” (under review). 

2. A. Gómez-Martín, J. Martínez-Fernández and J. Ramírez-Rico. “Porous graphene-like carbon from 

fast catalytic decomposition of biomass” (under review). 

3. A. Gómez-Martín, J. Martínez-Fernández, M. Ruttert, A. Heckhmann, M. Winter, T. Placke and J. 

Ramírez-Rico. “Fe-catalyzed graphitized carbons from biomass resources as anode materials for 

lithium-ion batteries”. Chemsuschem 11, 2776 – 2787 (2018).  

4. A. Gómez-Martín, R. Chacartegui, J. Ramírez-Rico and J. Martínez-Fernández. “Performance 

improvement in olive stone's combustion from a previous carbonization transformation”. Fuel 228, 

254–262 (2018).  

 

Contributions to national and international conferences directly related to this thesis: 

1. A. Gómez-Martín, J. Martínez-Fernández, M. Ruttert, T. Placke, M. Winter and J. Ramírez-Rico. 

“New insights into the correlation of microstructure and electrochemical performance of hard 

carbons for sodium-ion batteries”. E-MRS 2019 Spring Meeting. Oral presentation. Nice (France). 

May, 2019. 

2. A. Gómez-Martín, J. Martínez-Fernández, M. Ruttert, T. Placke and J. Ramírez-Rico. “Hard 

carbon derived from olive stone as anode for sodium-ion batteries: Further insights into the 

microstructure on Na+ storage mechanisms”. 43rd International Conference & Exposition on 

Advanced Ceramics and Composites. Invited oral presentation. Daytona Beach (Florida). January, 

2019. 

3. A. Gómez-Martín, J. Martínez-Fernández and J. Ramírez-Rico. “Porous graphene-like nanosheets 

from biomass resources as electrodes for energy storage applications”. 43rd International 

Conference & Exposition on Advanced Ceramics and Composites. Oral presentation. Daytona 

Beach (Florida). January, 2019.  

4. A. Gómez-Martín, J. Martínez-Fernández and J. Ramírez-Rico. “Nanostructured carbon materials 

from biomass resources as electrode for energy storage applications”. Multifunctional Materials 

(MultiMat) 2018 National Conference. Oral presentation. Granada (Spain). September, 2018. 

5. A. Gómez-Martín, M. Ruttert, T. Placke, J. Martínez-Fernández and J. Ramírez-Rico. “Fe-

catalyzed graphitized carbons from biomass resources as anode materials for lithium-ion batteries”. 

Worldwide Carbon 2018 Conference. Oral presentation. Madrid (Spain). July, 2018. 

6. J. Ramirez-Rico, A. Gómez Martín, J. M. Fernandez, M. Ruttert and T. Placke. “Graphitized 

carbon materials from biomass resources as electrodes for energy storage systems”. 42nd 

International Conference & Exposition on Advanced Ceramics and Composites. Oral presentation.  

Daytona Beach (Florida). January, 2018. 
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7. A. Gutiérrez-Pardo, A. Gómez-Martín, J. Martínez-Fernández and J. Ramírez-Rico. 

“Graphitization of cellulosic materials by means of an iron catalyst”. E-MRS 2016 Fall Meeting. Oral 

presentation. Warsaw (Poland). September, 2016.  

 

Papers in indexed journals not directly related to this thesis: 

1. A. Gómez-Martín, A. Gutiérrez-Pardo, J. Martínez-Fernández and J. Ramírez-Rico. “Purification of 

wood-derived monolithic graphitized carbons for binder-free supercapacitor electrodes”. Submitted 

to Journal of Alloys and Compounds. 

2. M. P. Orihuela, A. Gómez-Martín, J. A. Becerra, J. Serrano-Reyes, F. Jiménez-Espadafor and 

R.Chacartegui. “Preliminary study on the performance of biomorphic Silicon Carbide as substrate 

for Diesel Particulate Filters”. Thermal Science 22 (5), 2053-2064 (2018). 

3. M. P. Orihuela, A. Gómez-Martín, P. Miceli, J. A. Becerra, R. Chacartegui and D. Fino. 

“Experimental measurement of the filtration efficiency and pressure drop of wall-flow Diesel 

Particulate Filters (DPF) made of biomorphic Silicon Carbide using laboratory generated particles”. 

Applied Thermal Engineering 131, 41-53 (2017). 

4. M. P. Orihuela, A. Gómez-Martín, J. A. Becerra, R. Chacartegui and J. Ramírez-Rico. “Performance 

of biomorphic silicon carbide as particulate filter in diesel boilers”. Journal of Environmental 

Management 203 3, 907-919 (2017). 

5. A. Gómez-Martín, M. P. Orihuela, J. Ramírez-Rico, R. Chacartegui and J. Martínez-Fernández. 

“Thermal conductivity of porous biomorphic SiC derived from wood precursors”. Ceramics 

International 42, 16220-16229 (2016). 

6. A. Gómez-Martín, M. P. Orihuela, J. A. Becerra, J. Martínez-Fernández and J. Ramírez-Rico.  

“Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas 

filters”. Materials and Design 107, 450-460 (2016). 

7. M. J. López-Robledo, A. Gómez-Martín, J. Ramírez-Rico and J. Martínez-Fernández, “Sliding wear 

resistance of porous biomorphic SiC ceramics”. International Journal of Refractory Metals and Hard 

Materials 59, 26-31 (2016). 

 

Contributions to national and international conferences not directly related to this thesis: 

1. J. A. Becerra, A. Castillo, H. Cifuentes, A. Gómez-Martín and R. Chacartegui. “Densification of olive 

pit in pellet form”. 26th European Biomass Conference & Exhibition (EUBCE 2018). Poster 

presentation. Copenhague (Denmark). May, 2018. 

2. J. Ramirez-Rico, J. M. Fernandez, A. Gomez Martin, P. Orihuela Espina, R. C. Martin and J. 

Becerra-Villanueva. “Ceria-based catalytic regeneration of wall-flow Diesel Particulate Filters made 

of biomorphic Silicon Carbide”. 42nd International Conference & Exposition on Advanced Ceramics 

and Composites. Oral presentation. Daytona Beach (Florida). January, 2018. 

3. P. Orihuela Espina, A. Gomez Martin, J. Ramirez-Rico, J. M. Fernandez, R. Chacartegui-Ramirez 
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and M. Singh. “Bioceramic Substrates for Engineering Applications: Particles Filtration in Diesel 

Engines”. 42nd International Conference & Exposition on Advanced Ceramics and Composites. Oral 

presentation. Daytona Beach (Florida). January, 2018. 

4. M.P. Orihuela, A. Gómez-Martín, J.A. Becerra-Villanueva, J. Serrano-Reyes, F. Jiménez-

Espadafor and R. Chacartegui. “Performance of biomorphic Silicon Carbide as substrate for DPF in 

an automotive diesel engine”. 12th Conference on Sustainable Development of Energy, Water, and 

Environment Systems (SDEWES 2017). Oral presentation. Dubrovnik (Croatia). October, 2017 

5. A. Gómez-Martín, M.P. Orihuela, J. Martínez-Fernández, J. A. Becerra, R. Chacartegui and J. 

Ramírez-Rico. “Assessment of the suitability of biomorphic silicon carbide for filtering applications 

at high temperatures”. LV National Congress of the Spanish Society of Ceramics and Glass (SECV). 

Invited oral presentation. Sevilla (Spain). October, 2016. 

6. M.P. Orihuela, A. Gómez-Martín, J. A. Becerra Villanueva, J. Ramírez-Rico and J. Martínez-

Fernández.  “Performance of biomorphic SiC as particulate filter in diesel engines”. LV National 

Congress of the Spanish Society of Ceramics and Glass (SECV). Oral presentation. Sevilla (Spain). 

October, 2016. 

7. M.P. Orihuela, A. Gómez-Martín, J.A. Becerra, R. Chacartegui-Ramirez and J. Ramírez-Rico. 

“Performance of biomorphic silicon carbide as particulate filter in a diesel boiler”. 11th Conference of 

Sustainable Development of Energy, Water and Environment systems (SDEWES 2016). Oral 

presentation. Lisbon (Portugal). September, 2016. 

8. A. Gómez-Martín, M.P. Orihuela, J. Martínez-Fernández, J. A. Becerra, R. Chacartegui and J. 

Ramírez-Rico. “Thermal conductivity and permeability simulations based on X-ray tomography of 

porous biomorphic SiC”. E-MRS 2016 Fall Meeting. Poster presentation. Warsaw (Poland), 

September, 2016. 

9. M.P. Orihuela, A. Gómez-Martín, J. Ramírez-Rico, J. Martínez-Fernández and R. Chacartegui-

Ramirez. “Assessment of the suitability of bioSiC as substrate of DPFs“. Junior EUROMAT 2016. 

Lausanne (Switzerland). Oral presentation. July, 2016. 

10.  A. Gómez-Martín, M.P. Orihuela, J. Martínez-Fernández, J. A. Becerra, R. Chacartegui, 

J.Ramírez-Rico. “Assessment of the suitability of biomorphic silicon carbide for filtering applications 

at high temperatures”. V Conference of Young Researchers of the Institute of Ceramics and Glass 

(ICV). Oral presentation. Madrid (Spain). July, 2016. 

 

Awards in national and international conferences: 

1. Award for best 2nd oral presentation: A. Gómez-Martín, M. Ruttert, T. Placke, J. Martínez-

Fernández and J. Ramírez-Rico. “Fe-catalyzed graphitized carbons from biomass resources as 

anode materials for lithium-ion batteries”. Worldwide Carbon 2018 Conference. Madrid (Spain). July, 

2018. 

http://junior-euromat.org/#event-description
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