
 A Methodological Framework for Evaluating Software Testing Techniques and Tools

Tanja E.J. Vos∗, Beatriz Marı́n†, Maria Jose Escalona‡, Alessandro Marchetto§
∗Centro de Métodos de Producción de Software (ProS), Universidad Politécnica de Valencia, Valencia, Spain

Email: tvos@pros.upv.es
† Universidad Diego Portales, Manuel Rodriguez Sur 415, Santiago, Chile

Email: bmarin@udp.cl
‡ Ingeniera Web y Testing Temprano (IWT2), Universidad de Sevilla, Sevilla, Spain

Email: mjescalona@us.es
§ FBK-irst, Trento, Italy
Email: marchetto@fbk.eu

Abstract—There exists a real need in industry to have
guidelines on what testing techniques use for different testing
objectives, and how usable (effective, efficient, satisfactory)
these techniques are. Up to date, these guidelines do not exist.
Such guidelines could be obtained by doing secondary studies
on a body of evidence consisting of case studies evaluating
and comparing testing techniques and tools. However, such a
body of evidence is also lacking. In this paper, we will make a
first step towards creating such body of evidence by defining a
general methodological evaluation framework that can simplify
the design of case studies for comparing software testing tools,
and make the results more precise, reliable, and easy to com-
pare. Using this framework, (1) software testing practitioners
can more easily define case studies through an instantiation of
the framework, (2) results can be better compared since they
are all executed according to a similar design, (3) the gap in
existing work on methodological evaluation frameworks will
be narrowed, and (4) a body of evidence will be initiated. By
means of validating the framework, we will present successful
applications of this methodological framework to various case
studies for evaluating testing tools in an industrial environment
with real objects and real subjects.

Keywords-Case study, Software testing techniques, Evalua-
tion, Methodological framework.

I. INTRODUCTION

Software testing practitioners need to make informed de-

cisions about which techniques to use in a specific situation

and estimate the time and effort that is needed to apply

them. However, up to date, there do not exist clear guidelines

for this. One of the principle reasons for this is that not

enough empirical studies have been performed that can serve

as documented experiences for secondary Evidence-Based

Software Engineering (EBSE) [1] studies.

Thus more studies that evaluate and compare testing

techniques and tools are needed [2]–[4]. However, to make

sure that the resulting body of evidence can yield the right

guidelines, the evaluative case studies should:

• involve realistic systems and subjects, and not toy-

programs and students as is the case in most current

work [2], [5].

• be done with thoroughness to ensure that any benefit

identified during the evaluation study is clearly derived

from the testing technique studied

• ensure that different studies can be compared

Although this type of research is time-consuming, expen-

sive and difficult, it is fundamental since claims made by

analytical advocacy are insupportable [6].

Unfortunately companies are often reluctant to participate

in case studies. Some are unwilling to try new, perhaps

unproven approaches. Others are concerned that they might

reveal critical faults, poor metrics or performance. Yet others

are unwilling to allow researchers in for fear of losing

proprietary information, or that they may slow down the

team, or simply do not know how to do it. Regardless the

reasons, barriers must be overcome in order to advance [7]

and create the needed body of evidence.

In this paper we propose a general methodological frame-

work to reduce some of the entry barriers for conducting

case studies. The framework will simplify the design of

Help testing practicioners to make informed decisions about which
techniques to use and estimate the time/effort that is needed

Secondary study
(EBSE)

Secondary study
(EBSE)

TT1
CS1

CS2

CSn

TT2
CS1

CS2

CSn

TTi
CS1

CS2

CSn

TTn
CS1

CS2

CSn

Body of
Evidence

Testing Techniques and Tools (TT)

Pr
im

ar
y

ca
se

 s
tu

di
es

G
en

er
al

 F
ra

m
ew

or
k

fo
r

Ev
al

ua
tin

g
Te

st
in

g
Te

ch
ni

qu
es

an
d

To
ol

s

Instantiate

Figure 1. Creating a body of evidence

case studies for comparing software testing techniques while

ensuring that the many guidelines and check-list for doing

empirical work have been met. Moreover, if case studies are

all executed according to similar design (i.e. through instan-

tiation of the framework), it will be possible to replicate

studies and the created evidence will be easier compared

and hence effectively aggregated in secondary studies (see

Figure 1).

The framework we describe has evolved throughout the

past years by doing case studies to evaluate testing tech-

niques. The need to have a framework as described in

this paper emerged some years ago during the execution

of the EU funded project EvoTest (IST-33472, 2007-2009,

[8]) and continued emerging during the EU funded project

FITTEST (ICT-257574, 2010-2013, [9]). Both these are

projects whose objectives are the development of testing

tools that somewhere in the project need to be evaluated

within industrial environments. Searching in the existing

literature to find a framework that could be applied in our

situation, did not result in anything that exactly fit our

need: a methodological framework that is specific enough

for the evaluation of software testing techniques and general

enough and not make any assumptions about the testing

technique that is being evaluated nor about the subjects

and the pilot projects. We needed a framework that can be

instantiated for any type of treatment, subject and object

and simplifies the design of evaluative studies by suggesting

relevant questions and measures. Since such a framework did

not exist, we defined our own making sure that the guidelines

and checklist that can be found in the literature are satisfied.

Up to date we have successfully used the framework for

various case studies during EvoTest and during FITTEST.

The remainder of the paper is organized as follows:

Section II presents related work, Section III presents termi-

nology, Section IV presents the general framework, Section

V describes application of the framework and Section VI

concludes.

II. RELATED WORK

Most existing work present organizational frameworks

and guidelines, i.e. lists of the steps that must be carried,

warnings that the studies should be carefully designed and

that confounding factors should be minimized. With the

exception of [10] which is restricted to fault injection, we

do not know of any work that specifies how to evaluate

software testing techniques, how the research questions can

be defined, what variables could be measured, what the

specific threats to validity can be, etc.

Lott and Rombach [11] describe a characterization schema

for software testing experiments. The schema is similar

to the general scheme in [12] but adapted to deal with

evaluating testing techniques. This schema is divided in four

parts: the goals and hypotheses that motivate the experiment;

the plan for conducting the experiment; the procedures used

during the experiment; and the results. This schema helps

users to organize and evaluate the design of an experiment.

However, it offers no concrete help on how the various

components of the experiment can be designed and what

could be measured.

Do et al. [13], [14] define SIR, the Software Artifact

Infrastructure Repository (sir.unl.edu), to support controlled

experiments with software testing techniques. The main

contribution of their work is a set of benchmark programs

that can be used to evaluate testing techniques. No clear

methodological guidelines are given.

The work from Eldh et. al. [10] describes a framework for

the comparison of the efficiency, effectiveness and applica-

bility of testing techniques based on fault injection. The steps

of the framework are: prepare code samples with known

faults through fault injection; select a testing technique;

perform the experiment and collect data; analyze the data;

and repeat the experiment if necessary. The paper describes

industry challenges for every step. This work describes

an interesting methodological framework, however, it is

restricted to fault injection.

Most works describe general guidelines, roadmaps or

organizational steps for software evaluations. Nevertheless,

guidelines for the whole field of software engineering can-

not be methodological since there are too many different

techniques. Some relevant works for controlled experiments

in software engineering are [15], [16]. For case studies in

software engineering the reader is referred to [17]–[19].

We want to mention the DESMET organizational frame-

work [16] separately, because, like our framework, it is

especially developed for evaluating methods and tools within

companies and is not so much directed to researchers

but to tool vendors, software engineers wanting to as-

sess a proposed change, etc. This means that the studies

are context-dependent, and where we do not expect a

specific method/tool to be the best in all circumstances.

DESMET identifies nine methods for empirical evaluation

and define a set of criteria to help evaluators to select an

appropriate method. DESMET separates empirical method

like experiments, case studies and surveys into quantitative

and qualitative, resulting in the first 6 evaluation methods.

Moreover they distinguish: qualitative screening, qualitative

effect analysis and benchmarking. Our framework will only

concentrate on qualitative and quantitative case studies.

III. A BRIEF NOTE ON TERMINOLOGY

We will use the following terminology that is consistent

with IEEE Standard Glossary of Software Engineering Ter-

minology (Std 729-1983), the IEEE Standard Classification

for Software Anomalies (Std 1044-2009) and the IFIP (In-

ternational Federation for Information Processing): a Fault
is the incorrect code that results from a human mistake. A

Failure is the incorrect behaviour of the software that the

user can observe.

Words like bug, issue, defect will be used interchangeably

with fault. Words like anomaly, incident, problem will be

used interchangeably for failure.

We consider software techniques or tools whose objectives

are to find faults. That means for example test case gener-

ation techniques or tools that help define or automatically

generate test cases that have to be executed on the SUT

(System Under Test) in order to look for failures. But this

also includes tools for noise making, like concurrency testing

or load/stress testing tools that have to run in parallel with

the system in order to provoke failures. This does not directly

include regression testing or other minimization techniques

whose objectives are to select test cases from a given suite

using some criteria. For these techniques the framework

might have to be adapted with additional measures.

IV. A METHODOLOGICAL FRAMEWORK TO EVALUATE

TESTING TECHNIQUES AND TOOLS

Imagine company C wants to evaluate T to see if it

is usable and worthwhile to incorporate this technique or

tool into its testing processes. The following sections help

defining a case study.

A. Objective - What to achieve?
The general framework focuses on the measures of usabil-

ity defined by ISO 9241-11: efficiency, effectiveness, and

subjective satisfaction. Consequently, the research questions

for each case study correspond to instantiations of:

RQ1 How does T contribute to the effectiveness of

testing (fault-finding capabilities) when it is used

in real testing environments of C and compared to

the current testing practices used at C?

RQ2 How does T contribute to the efficiency of testing

when it is used in real testing environments of C
and compared to the current testing practices used

at C?

RQ3 How satisfied are testing practitioners of C during

the learning, installing, configuring and usage of T
when it is used in real testing environments?

B. Cases or Treatments - What is studied?
The case or treatment is the testing technique or tool

T that is evaluated by means of the case study should

be described. When designing and conducting an empirical

study in software testing, its positioning in the field should

be easily and clearly determined in order to be able to unify

and combine results into families of experiments [20] or

aggregate the results in secondary studies [1]. This approach

demands for the usage of a taxonomy (as [21] calls it) or

a hierarchy (as [20] calls it) or a characterisation schema

(as [22] calls it) of the techniques, methods and tools under

investigation. Given such taxonomy, it becomes possible to

interpret the narrow results of a single study in the wider

context. It is possible, for example, to determine the most

closely related experiments or to design further experiments

which cover neighbouring areas. It is also possible to un-

derstand the generality of the results in terms of its height

in the taxonomy.

In our framework we have to decided to use the taxonomy

from [21], that we have adapted to software testing and

augmented with the results from [22]. The resulting schema

is below. Note, not all of these items might be known for

the treatment under consideration. Maybe the case study

that is being defined has the objective to get some insights

in to some of these characteristics.

Prerequisites
• Software type: type of software that can be tested with

the technique

• Development or life-cycle phase to which it is linked.

• Environment: platform (hw and sw) and programming

language with which it operates.

• Scalability: To what system size has it been applied?

• Input: What input, e.g., source code, executable pro-

gram and execution scenarios, test cases, documenta-

tion, etc., does it require?

• Knowledge: required to be able to apply the technique

• Experience: required to be able to apply the technique

Results
• Output: What output, e.g., test cases, faults, anomalies,

coverage data, etc..?

• Completeness: coverage provided by the test cases

• Effectiveness: Capability of finding faults

• Defect types: Type of faults that can be detected

• Number of generated test cases: per software size unit

Operation
• Interaction: What interaction modes, e.g., navigation,

queries, successive refinement, etc., does it support?

• User Guidance: What guidance, e.g., none (i.e., it

is completely automated),manual evaluation of output,

selection of appropriate inputs, definition of patterns,

filtering, etc., does it require from the user?

• Sources of information: where can you find information

about how to use it.

• Task Applicability: To what tasks can it be applied? Is

it general or special purpose?

• Comprehensibility: whether or not it is easy to under-

stand.

• Subjective satisfaction
• Effort: How much effort it takes to apply it (effort in

learning, installing, configuration and executing)

• Maturity: How mature is the treatment (e.g. [23] Still

being developed; Not in use in commercial projects;

Used in a few products produced by our own organi-

zation; Widespread use in own organization; Used in a

few products outside of own organization; Widespread

use outside of own organization.

Obtaining the tool
• License: Open source, Shareware of Commercial

• Cost: of purchase and maintenance

• Support: where can you turn to when help is needed.

C. Subjects - Who apply the techniques/tools?
Ideally, the subjects are workers of C. Subjects should

be those people that normally use the techniques or tools

that are being compared to T . If for some reason this is

not possible (e.g. lack of time and resources, the tool is an

academic prototype, etc.) then researchers or tool developers

can evaluate the tools. However, this does mean that the

subjective satisfaction cannot be measured and no results

can be obtained of the capabilities of the tool within an

industrial environment.

D. Objects - What are the pilot projects?
The System Under Test (SUT) should be a system that

is typical of C (i.e. the way the software is developed, the

way it is tested, languages used, etc.). Also, the available

information about this system should be determined or mea-

sured in order to do the comparison with T . The following

questions need to be answered:

S1 Will there be access to a system with known faults?

What information is present about these faults?

S2 Can faults be injected into the system?

S3 Does C gather data from projects as standard

practice? What data is this? Can this data be

made available for comparison? Is there a company

baseline?

S4 Does C have enough time and resources to execute

various rounds of tests?, or more concrete:

• Is company C willing to make a new testsuite

TSna with some technique/tool Ta already

used in the company C?

• Is company C is willing to make a new

testsuite TSnn with some technique/tool Tn

that is also new to company C?

• Can we use an existing testsuite TSe that

we can use to compare? Do we know the

techniques that were used to create that test

suite, and how much time it took?

E. Variables - Which data to collect?
Independent and dependent variables are the attributes that

define the study setting.

• Independent: Testing method T used; Complexity of

the Industrial systems; Level of experience of testers

of C that will do the testing.

• Dependent: Effectiveness, Efficiency, Satisfaction

The following is a list of metrics that could be measured.

For a specific instantiation of this framework in a company,

some variables might not be applicable.

1) Measuring effectiveness

a) Number of test cases designed or generated.

b) Number of invalid test cases generated.

c) Number of repeated test cases generated.

d) Number of failures observed.

e) Number of faults found.

f) Number of false positives (i.e. the test is marked

as Failed, when the functionality is working).

g) Number of false negatives (i.e. the test is marked

as Passed, when the functionality is not working).

h) Type and cause of the faults that were found.

i) Coverage reached (estimated or measured).

2) Measuring efficiency

a) Time needed to learn the testing method T .

b) Time needed to design or generate the test cases.

c) Time needed to set up the testing infrastructure

specific to T (install, configure, develop test

drivers, etc.).

d) Time needed to test and observe failures (i.e.

planning, implementation and execution).

e) Time needed to identify fault types and causes

for each observed failure.

3) Measuring subjective satisfaction

a) System Usability Score (SUS) questionnaire [24]

consisting of 10 questions with 5 Likert-scale and

a total score.

b) 5 reactions (through reaction cards) that will be

used to create a word cloud and Ven diagrams.

c) Emotional face reactions during interviews (faces

will be evaluated on a 5 Likert-scale from ”not

at all like this” to ”very much like this”).

d) Subjective opinions about T .

We have decided to use the SUS questionnaire because

this simple questionnaire gives most reliable results [25],

[26]. We complement SUS with other measures since ques-

tionnaires alone have known limitations. In a review, Horn-

baek [27] concludes that measures of satisfaction should be

extended beyond questionnaires. We extend them with new

methods for measuring satisfaction developed by Microsoft,

i.e. reaction cards and faces questionnaires [28], [29].

F. Protocol - How to execute the study?

In Figure 2 the steps that have to be taken are depicted. If

faults can be injected into the systems, care should be taken

that [30]

• The artificially seeded faults are similar to faults

that naturally occur in real programs due to mistakes

made by developers. To identify realistic fault types, a

history-based approach can be used, i.e. real faults can

be fetched from the bug tracking system and made sure

that these reported faults are an excellent representative

of faults that are introduced by developers during

���������	��
����
�������

����
�
��	
�� �
����������

���

�	����	�����
����

��

�	� �
��!�������"
���	������	��#�����

�	���������

�#����
�������������
�$��������

%
	&
���������
�
�'��

�	� �
��������
��
�$��������

�	��� 	���
��
	���������

�� ���

�����

�� ���

(����	
�&��!�)
	&
�
��������$��������

(����	
�&��!�)
	&
�
��������$��������

���

�� ���

��

�� ���

* +

,

- .

/ 0

Figure 2. Possible scenarios fir the case study protocols

implementation. Also a faults taxonomy could be used

like the one from [31].

• The faults should be injected fairly, i.e., an adequate

number of instances of each fault type is seeded.

Then after the proper training about the treatment under

study, the subjects should do the tests (i.e. learn, install and

configure the tool; and design/generate and execute the test

cases) and collect the data. The type and the procedure to

execute each case study depends on the answers given to the

questions in Section IV-D. This results in 7 possible case

study scenarios (refer to Section IV-D (S4) to remember the

meaning of the Ta, Tn, TSe, etc.):

Scenario 1 consists of a qualitative assessment. Since we

do not know how many errors there are, we cannot compare

with other techniques, nor do we have a company baseline,

we cannot do a quantitative evaluation. However, studying

and reporting on the measurements found for effectiveness,

efficiency and subjective satisfaction will be done during the

semi-structured interviews with the testing practitioners.

Scenario 2 consist of Scenario 1 ∧ quantitative analysis

based on company baseline. The extent to which this is

possible and how valid the conclusions are, depend on the

data that is present in the company baseline.

Scenario 3 consists of (Scenario 1 ∨ Scenario 2) ∧
quantitative analysis of Fault Detection Rate (FDR) w.r.t.

the known set of faults.

Scenario 4 consists of (Scenario 1 ∨ Scenario 2) ∧
quantitative comparison of T and TSe. This scenario adds a

quantitative comparison of T with TSe. Since TSe already

exists, there are some measures that cannot be compared

(e.g. related to the creation/design of the Test Suite, etc)

these will be covered with scenario 1 analysis.

Scenario 5 consist of Scenario 4 ∧ FDR of T and TSe.

This scenario adds a quantitative comparison of the fault

detection ratio T with TSe to scenario 4.

Scenario 6 consists of (Scenario 1 ∨ Scenario 2) ∧
quantitative comparison of T and (Ta or Tn).

Scenario 7 consists of Scenario 6 ∧ FDR of T and (Ta

or Tn).

G. Threats to Validity of the Studies Performed

Threats to validity should be studies carefully for each

instantiation of this framework. However, according to [15]

we can distinguish: Construct Validity threats might be: hy-

pothesis guessing, evaluation apprehension and experiment

expectancies; Internal Validity threats could be maturation,

history related, instrumentation and the observer effect;

External Validity threats could be related to interaction of

selection and treatment; Conclusion Validity threats: random

heterogeneity of subjects.

V. APPLYING THE FRAMEWORK

To show the applicability of the framework, this section

describes three instantiations to case studies whose objec-

tives were to evaluate and compare testing techniques. The

three studies are very different in nature, yet the framework

could be easily instantiated. The first two studies have been

done within an industrial environment where no information

about existing bugs and existing testing techniques could be

provided. The third study has been done within an academic

environment where defects could be easily injected. The first

study concerns a fully automated structural testing technique

for which little previous knowledge and or experience was

required. The second study concerns a sophisticated black-

box testing technique that requires a significant amount of

previous knowledge and experience in order to make it

work. The third study compares four testing techniques, 3 of

which are automated and one of which is manual. The next

sections show that the framework can be effectively applied

to describe all three studies.

A. Search Based Structural Testing

In [32] an instantiation of the described evaluation frame-

work is used to execute a case study whose main goal is to

research the scalability of the search based structural testing

techniques developed within the EvoTest project [8] and au-

tomated within a tool called the ETF (Evolutionary Testing

Framework). The description of the treatments according to

the taxonomy from Section IV-B is in Table I.

The described tools are evaluated within two companies

(Daimler1 and Berner& Mattner2) that participated in the

case study as part of their participation in EvoTest.

The instantiated research questions from Section IV-A re-

lated to effectiveness, efficiency and user satisfaction related

to the testing technique are:

1) In comparison with random testing the ETF is more

effective and more efficient in finding test cases for

real-world systems.

2) The amount of time, effort and knowledge necessary

to configure and use the ETF make it worthwhile to

use it within an industrial setting.

The subjects (Section IV-C) in this case studies were

testers employed by the two industrial companies. The

objects (Section IV-D) were C functions selected from real-

world automotive systems like an active brake assistant, rear

window defroster, global powertrain engine controller, etc.

Due to restrictions in the companies that could not share

information about existing bugs, existing test suites, nor

could inject faults, the answer to the questions S1 to S3

1http://www.daimler.com
2http://www.berner-mattner.com

Prerequisites

Static or dynamic Dynamic

Software Type ISO C99 code

Lifecycle phase Unit testing

Environment Eclipse C

Scalability Investigated by the mentioned case study.

Input C code. Optionally: upper and lower bounds
for variables; manual tuning of the parame-
ters of the evolutionary engine.

Knowledge If no optional parameters are provided:
None. If optional parameters (see experi-
ence).

Experience Some experience with coverage testing. If
user wants to tune parameters then knowl-
edge and experience is needed on evolution-
ary algorithms and tuning.

Results

Output Test cases; coverage information; faults.

Completeness Investigated by the mentioned case study.

Effectiveness Investigated by the mentioned case study.

Defect types Investigated by the mentioned case study.

Test suite size Investigated by the mentioned case study.

Operation

Interaction The users has to set up an Eclipse C-
project and set up the compiler and linker
preferences. Then just select the C function
to test and evaluate the results.

User guidance Eclipse menus can guide the user.

Source of information Research papers; User Manual

Task applicability Unit testing; Code coverage testing

Comprehensibility Fully automatic if no optional parameters
are set.

Subjective satisfaction Investigated by the mentioned case study.

Effort Investigated by the mentioned case study.

Maturity Academic research tools under development

Obtaining the tool Open source, support from researchers.

Table I
DECRIPTION OF THE ETF WHITE-BOX TESTING TECHNIQUES

from section IV-F were al NO. The answer to question S4

was yes, but only if application of Tn could be done with

a minimum of human effort by choosing an automated test

generation method, like e.g. random testing. Consequently,

the scenario for this case study (as explained in Section

IV-F) corresponds to number 6, i.e. a qualitative assessment

from scenario 1 and quantitative comparison of the ETF with

random testing.

Variables from Section IV-E that were measured were the

number of test cases (variable 1a), the degree of structural

code coverage (variable 1i), the time needed to set up ETF

(variable 2c), time to generate the test cases (variable 2b),

time to test the system (variable 2d), and the general qual-

itative subjective satisfaction opinions within the industrial

setting through an informal interview (variable 3d). Since no

faults were expected to be found within this software that

was already under production, the fitness values’ progress

was measured to get a qualitative measure for the quality of

the test cases.
The instantiation of the do from section IV-F consisted of:

(1) Install and configurate according to the ETF user manual.

During these activities, work-diaries were maintained that

contain a lists of the tasks (including their date, time and

description) that are performed to set up the ETF according

to the user manual (e.g. installation, configuration, find an

appropriate set of parameters for the evolutionary engine,

etc.); (2) Run each search 30 times for ensuring statistical

meaning and collect the data related to the variables selected;

(3) Have informal interviews about the general suitability

and acceptability in the specific industrial setting.

B. Search Based Functional Testing
In [33] an instantiation of the described evaluation frame-

work is used to execute a case study whose main goal is

to research the applicability of the search based functional

testing techniques automated within the ETF from the pre-

vious section. The description of the treatments according

to the schema from Section IV-B is in Table II.
Since search based functional testing is not completely

automated (as is structural testing from the previous section)

and again the companies indicated that the case study

systems were taken from serial production developments in

which is would be very unlikely to find faults, and faults

could not be injected, the instantiated research questions

from section IV-A related to the three usability properties

for this case study were:

1) Effectiveness

• The ETF applied to real-world sized examples, in

real-world test environments, is able to generate

better test cases w.r.t. achieving the test goal than

random testing.

• The ETF is more effective in finding error reveal-

ing test cases when applied to real-world systems

for black-box testing compared to random testing.

2) User satisfaction and efficiency

• It is possible to use the ETF without detailed

knowledge in evolutionary computation to search

for interesting test data.

• After installation of the ETF, the amount of time

and effort it takes to configure the ETF in order

to apply it to real-world systems for evolutionary

functional testing is suitable within an industrial

setting.

The subject (Section IV-C) in this case studies were em-

bedded systems testers, three testers within each of the two

companies. The testers already had some prior knowledge

of evolutionary testing principles.
The objects (Section IV-D) used in the studies are real-

world embedded control systems from the automotive do-

main. Both case study systems were taken from serial

Prerequisites

Static or dynamic Dynamic

Software Type Any type of system for which the input
items (see below) can be developed.

Lifecycle phase Requierements testing at the acceptance or
system level test.

Environment Eclipse IDE

Scalability Investigated by the mentioned case study.

Input Individual specification, test drivers, a val-
idated objective function for breaking the
selected requirement; Optionally: manual
tuning of the parameters of the evolutionary
engine.

Knowledge Knowledge about the requirements to break;
about the definition and validation of objec-
tive functions; knowledge to implement test
drivers that provides the connection between
the framework and the System Under Test

Experience Experience with requirements testing and
evolutionary testing.

Results

Output Test cases; faults.

Completeness Investigated by the mentioned case study.

Effectiveness Investigated by the mentioned case study.

Defect types Investigated by the mentioned case study.

Test suite size Investigated by the mentioned case study.

Operation

Interaction To customize the framework for a partic-
ular test aim, the user has to supply the
following domain-specific components: 1)
an individual specification, 2) a test driver,
and 3) an objective function. The individual
specification describes the structure of the
individuals, that is the test data in an XML
file. The test driver provides the connection
between the framework and the SUT. It
converts the individuals from the search
process into test data. Subsequently, the test
driver executes the SUT using the test data
and monitors the output of the SUT. The
monitoring results are passed back to the
framework and are used by the objective
function to calculate the adequacy of the test
data.

User guidance Eclipse menus can guide the user.

Source of information Research papers; User Manual

Task applicability Requirements testing.

Comprehensibility Since the objective function has to be pro-
vided, the technique is not easy to under-
stand nor apply.

Subjective satisfaction Investigated by the mentioned case study.

Effort Investigated by the mentioned case study.

Maturity Academic research tools under development

Obtaining the tool Open source, support from researchers.

Table II
DECRIPTION OF THE ETF BLACK-BOX TESTING TECHNIQUES

production developments, one for an adaptive cruise control

systems and another for an anti-lock breaking system.

Again, the companies could not share information about

existing bugs, existing test suites, nor could inject faults, nor

test with other techniques, so the answer to the questions

S1 to S4 from section IV-F were al NO. Consequently, the

scenario from Section IV-F for this case study corresponds

to number 1, i.e. a qualitative assessment. The quality of

the test cases was investigated through the resulting fitness

values to verify that while fitness values are improving, the

system is continuously being exercised closer and closer

to a boundary condition (an optimal fitness value means

breaking that boundary, i.e. the requirement). A quantitative

comparison to random testing was added to have a baseline

for comparing the underlying search algorithms.

Variables from Section IV-E that were measured were the

number of test cases (variable 1a), the number of invalid test

cases (variable 1b), number of faults found (variable 1e),

the time needed to set up ETF (variable 2c) (including the

time to define the fitness function), time to generate the test

cases (variable 2b), time to test the system (variable 2d),

and the general qualitative subjective satisfaction opinions

within the industrial setting through an informal interview

(variable 3d). Since no faults were expected to be find within

this software that was already under production, the fitness

values’ progress was measured to get a qualitative measure

of the quality of the test cases.

The instantiation of the do from section IV-F consisted

of: (1) Install and configure according to the ETF user

manual; Maintenance of work-diaries that should contain

the tasks (including their date, time and description) that are

performed to set up the ETF according to the user manual

(i.e. tasks like to find an appropriate set of parameters for

the evolutionary engine, etc.); (2) Implement the case study

specific components (e.g. individual specification and test

drivers). Work-diaries will be maintained in order to be

able to estimate the necessary effort; (3) Define, refine and

implement the fitness function and validate its suitability

for breaking the requirement, working diaries will be main-

tained; (4) Run each search 30 times to give it statistical

meaning and collect data listed below; (5) Have informal

interviews about the general suitability and acceptability in

the specific industrial setting.

C. Web testing of AJAX applications

In [34] an instantiation of the framework is presented that

evaluates the capabilities of 4 testing techniques frequently

used for web testing: model-based testing, coverage-based

testing, black-box testing and state-based testing. The de-

scription of these four techniques according to the schema

from Section IV-B are put together in Table III.

The techniques are evaluated by academics and the objects

consisted of web applications are drawn from a student book

instead of real world industrial applications, although care

was taken that these applications were selected in a way

such that the selected applications are typical in terms of

technologies, frameworks, and languages used in industrial

Prerequisites

Static or dynamic Model/state/code coverage based testing re-
quire execution to generate test cases;
Black-box testing requires a static analysis
of the application requirements.

Software Type Web and Web 2.0 applications.

Lifecycle phase System level test.

Environment Web environment: web server to install the
application and web browser to run it.

Scalability Small/medium size web applications.

Input Model/state based testing: execution logs
are required; Code coverage based test-
ing: code to be instrumented for computing
the coverage when running the test cases;
Black-box testing: application requirements.

Knowledge All testing methods require the knowledge
of the application domain; State based test-
ing requires also knowledge about how to
identify the state of the system under test;
Black-box testing: requires the ability of
analyzing requirements, i.e., identifying sce-
narios;

Experience Experience with web testing.

Results

Output Test cases; faults.

Completeness Investigated by the mentioned case study.

Effectiveness Investigated by the mentioned case study.

Defect types Investigated by the mentioned case study.

Test suite size Investigated by the mentioned case study.

Operation

Interaction Model/State/Code coverage testing: testers
are asked to run the application to col-
lect execution traces, then used to generate
the test cases. Black-box: testers are asked
to analyze the requirements to derive test
cases; All methods: testers are asked to
check the results of the test case execution.

Source of information Research papers

Task applicability System testing.

Comprehensibility In state based testing could be difficult to
understand what are possible application
states must be tested, so that must be cap-
tured by models used to derive test cases.

Subjective satisfaction No studies yet available.

Effort Investigated by the mentioned case study.

Maturity Academic research tools under development

Obtaining the tool Open source, support from researchers.

Table III
DECRIPTION OF THE WEB TESTING TECHNIQUES COMPARED

applications. Since the studies were executed by academics,

no study could be done related to subjective satisfaction and

hence the instantiated research questions were:

• What is the effectiveness in revealing faults of each of

the Web testing techniques.

• What is the effort required to apply each Web testing

technique?

Considering the fact that this was no industrial software,

faults could be injected and consequently the scenario from

Section IV-F for this case study corresponds to number 3.

Variables that were measured were: number of faults found

(variable 1e), coverage of the use cases (variable 1i), type

and severity of the faults that were found (variable 1h),

test suites size (variable 1a), Time (in man-hours) needed

to set up the testing infrastructure specific (variable 2c),

Complexity of the test suites (variable 2d).

The instantiation of the do from section IV-F consisted of:

(1) Inject faults (this is done by a person different from the

tester) into the original Web applications, trying to simulate

real programming errors using a taxonomy or defects from

[31]. These changes do not break the execution of the target

application, but lead to wrong or unexpected behaviours;

(2) Apply the selected Web testing techniques (i.e., model-

based, code-coverage, black-box, and state-based) to all the

faulty Web applications with the aim of deriving suites of

test cases for each of them; (3) Use each test suite to test

the faulty Web applications.

VI. CONCLUSIONS

A methodological framework to evaluate software test-

ing techniques has been presented. The objective of this

framework is to enable software testing practitioners to more

easily define case studies by instantiating the framework,

while ensuring that the many guidelines and checklists for

doing empirical work have been met. In addition, since case

studies are to be executed according to a similar design,

it will be more easy to compare the results obtained, and

hence a body of evidence can be constructed that will enable

researchers to investigate general statements about testing

techniques and tools evaluated in different case studies might

be specified.

We have presented three successful instantiations or ap-

plications of the framework to validate its applicability and

effectiveness. However, the framework needs to be instanti-

ated by many more case studies to validate the completeness

of the identified variables in Section IV-E and the identified

scenarios from Section IV-F. Our future work plans go

in that direction, do many more case studies to validate

the framework, refine it and start creating this so needed

body of evidence that contain evaluations of software testing

techniques.

ACKNOWLEDGMENT

This work was funded by the European project FITTEST

(ICT257574, 2010-2013) and Spanish National project

CaSA-Calidad (TIN2010-12312-E, Ministerio de Ciencia e

Innovacin).

REFERENCES

[1] B. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based
software engineering,” in Proc of ICSE. IEEE, 2004, pp.
273–281.

[2] N. Juristo, A. Moreno, and S. Vegas, “Reviewing 25 years
of testing technique experiments,” Empirical Softw. Engg.,
vol. 9, no. 1-2, pp. 7–44, 2004.

[3] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and
T. Berling, “What do we know about defect detection meth-
ods?” IEEE Softw., vol. 23, no. 3, pp. 82–90, 2006.

[4] A. C. D. Neto, R. Subramanyan, M. Vieira, G. H. Travassos,
and F. Shull, “Improving evidence about software technolo-
gies: A look at model-based testing,” IEEE Software, vol. 25,
no. 3, pp. 10–13, 2008.

[5] S. Hesari, H. Mashayekhi, and R. Ramsin, “Towards a general
framework for evaluating software development methodolo-
gies,” in Proc of 34th IEEE COMPSAC, 2010, pp. 208–217.

[6] N. Fenton, S. Pfleeger, and R. Glass, “Science and substance:
a challenge to software engineers,” Software, IEEE, vol. 11,
no. 4, pp. 86 –95, Jul. 1994.

[7] D. Janzen, C. Turner, and H. Saiedian, “Empirical software
engineering in industry short courses,” in Proc of the 20th
Conf on Softw Eng Education & Training, 2007, pp. 89–96.

[8] T. E. J. Vos, “Evolutionary testing for complex systems,”
ERCIM News, vol. 2009, no. 78, 2009.

[9] ——, “Continuous evolutionary automated testing for the
future internet,” ERCIM News, vol. 2010, no. 82, pp. 50–51,
2010.

[10] S. Eldh, H. Hansson, S. Punnekkat, A. Pettersson, and
D. Sundmark, “A framework for comparing efficiency, ef-
fectiveness and applicability of software testing techniques,”
TAIC Part, pp. 159–170, 2006.

[11] C. Lott and H. Rombach, “Repeatable software engineering
experiments for comparing defect-detection techniques,” Em-
pirical Software Engineering, vol. 1, pp. 241–277, 1996.

[12] V. Basili, R. Selby, and D. Hutchens, “Experimentation in
software engineering,” IEEE TSE, vol. 12, pp. 733–743, 1986.

[13] H. Do, G. Rothermel, and S. Elbaum, “Infrastructure support
for controlled experimentation with software testing and re-
gression testing techniques,” in Proc. Int. Symp. On Empirical
Software Engineering, 2004.

[14] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,” Empirical Softw. Eng., vol. 10, no. 4,
pp. 405–435, 2005.

[15] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in software engineering: an
introduction. Kluwer, 2000.

[16] B. Kitchenham, S. Linkman, and D. Law, “Desmet: a method-
ology for evaluating software engineering methods and tools,”
Computing Control Engineering Journal, vol. 8, no. 3, pp.
120 –126, Jun. 1997.

[17] B. Kitchenham, L. Pickard, and S. Pfleeger, “Case studies for
method and tool evaluation,” Software, IEEE, vol. 12, no. 4,
pp. 52 –62, Jul. 1995.

[18] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,” Em-
pirical Softw. Engg., vol. 14, no. 2, pp. 131–164, 2009.

[19] M. Host and P. Runeson, “Checklists for software
engineering case study research,” in Proceedings of the First
International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 479–481. [Online].
Available: http://dx.doi.org/10.1109/ESEM.2007.29

[20] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge
through families of experiments,” IEEE Trans. Softw. Eng.,
vol. 25, no. 4, pp. 456–473, 1999.

[21] P. Tonella, M. Torchiano, B. Du Bois, and T. Systä, “Empir-
ical studies in reverse engineering: state of the art and future
trends,” Empirical Softw. Engg., vol. 12, no. 5, pp. 551–571,
2007.

[22] S. Vegas and V. Basili, “A characterisation schema for soft-
ware testing techniques,” Empirical Softw. Engg., vol. 10,
no. 4, pp. 437–466, 2005.

[23] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,
D. C. Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary
guidelines for empirical research in software engineering,”
IEEE Trans. Softw. Eng., vol. 28, no. 8, pp. 721–734, 2002.

[24] J. Brooke, “Sus: a ’quick and dirty’ usability scale,” in
Usability Evaluation in Industry. Taylor and Francis, 1996.

[25] T. Tullis and J. N. Stetson, “A comparison of questionnaires
for assessing website usability.” in Proc of the Usability
Professionals Association Conf, 2004.

[26] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical eval-
uation of the system usability scale,” International Journal of
Human-computer Interaction, vol. 24, pp. 574–594, 2008.

[27] K. Hornbaek, “Current practice in measuring usability: Chal-
lenges to usability studies and research,” Int. J. Hum.-Comput.
Stud., vol. 64, pp. 79–102, February 2006. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=1140933.1140935

[28] J. Benedek and T. Miner, “Measuring desirability: New
methods for measuring desirability,” in Proc of the Usability
Professionals Association Conf, 2002.

[29] D. Williams, G. Kelly, and L. Anderson, “Msn 9: new user-
centered desirability methods produce compelling visual de-
sign,” in Extended abstracts on Human factors in computing
systems, ser. CHI ’04, 2004, pp. 959–974.

[30] A. Memon and Q. Xie, “Studying the fault-detection ef-
fectiveness of gui test cases for rapidly evolving software,”
Software Engineering, IEEE Transactions on, vol. 31, no. 10,
pp. 884 – 896, oct. 2005.

[31] A. Marchetto, F. Ricca, and P. Tonella, “Empirical validation
of a web fault taxonomy and its usage for fault seeding,” in
Proceedings of the 2007 9th IEEE International Workshop
on Web Site Evolution. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 31–38. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1524880.1525461

[32] T. E. J. Vos, A. I. Baars, F. F. Lindlar, P. M. Kruse,
A. Windisch, and J. Wegener, “Industrial scaled automated
structural testing with the evolutionary testing tool,” in ICST,
2010, pp. 175–184.

[33] T. E. J. Vos, F. Lindlar, B. Wilmes, A. Windisch,
A. Baars, P. Kruse, H. Gross, and J. Wegener, “Evolutionary
functional black-box testing in an industrial setting,” Software
Quality Journal, pp. 1–30, 2012, 10.1007/s11219-012-9174-
y. [Online]. Available: http://dx.doi.org/10.1007/s11219-012-
9174-y

[34] A. Marchetto, F. Ricca, and P. Tonella, “A case study-
based comparison of web testing techniques applied to
ajax web applications,” International Journal on Software
Tools for Technology Transfer (STTT), vol. 10, pp. 477–
492, 2008, 10.1007/s10009-008-0086-x. [Online]. Available:
http://dx.doi.org/10.1007/s10009-008-0086-x

