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Abstract—This paper presents a new architecture, design
flow, and field-programmable gate array (FPGA) implementation
analysis of a neuromorphic binaural auditory sensor, designed
completely in the spike domain. Unlike digital cochleae that
decompose audio signals using classical digital signal processing
techniques, the model presented in this paper processes informa-
tion directly encoded as spikes using pulse frequency modulation
and provides a set of frequency-decomposed audio information
using an address-event representation interface. In this case,
a systematic approach to design led to a generic process for
building, tuning, and implementing audio frequency decomposers
with different features, facilitating synthesis with custom features.
This allows researchers to implement their own parameterized
neuromorphic auditory systems in a low-cost FPGA in order to
study the audio processing and learning activity that takes place
in the brain. In this paper, we present a 64-channel binaural
neuromorphic auditory system implemented in a Virtex-5 FPGA
using a commercial development board. The system was excited
with a diverse set of audio signals in order to analyze its response
and characterize its features. The neuromorphic auditory system
response times and frequencies are reported. The experimental
results of the proposed system implementation with 64-channel
stereo are: a frequency range between 9.6 Hz and 14.6 kHz
(adjustable), a maximum output event rate of 2.19 Mevents/s,
a power consumption of 29.7 mW, the slices requirements
of 11141, and a system clock frequency of 27 MHz.

Index Terms— Address event, artificial cochlea, FPGA,
neuromorphic engineering, pulse frequency modulation (PFM),
real-time audition.

I. INTRODUCTION

EUROMORPHIC engineers study, design, and develop
Nneuroinspired systems, such as analog very large-scale
integration (aVLSI) chips for sensors [1], [2], neuroin-
spired processing [3], filtering or learning systems [4], [5],
neuroinspired control pattern generators [6], neuroinspired
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robotics [7], [8], software frameworks [9], and basic spiking
building blocks for creating larger scale systems [10], [11].
Spiking systems are neural models that mimic the neuron
layers of the brain for processing purposes. Signals in these
systems are composed of short pulses in time, called spikes.
The term spike (in this context) is derived from action
potentials in neurons. Communication between spike-based
layers, with hundreds or thousands of neurons per layer, can
become very complex, because one-to-one (or one-to-many)
connections are needed between neurons that need to be
distributed easily over several chips or FPGAs. This problem
was solved with the introduction of address-event representa-
tion (AER), Mead Laboratory in 1991 [13].

Traditional digital signal processing (DSP) techniques com-
monly apply multiply—accumulate (MAC) operations over a
collection of discrete samples codified as fixed or floating
point representation. MAC operations often require dedicated
and complex resources, i.e., float-point multipliers, which
are available in FPGAs as dedicated expensive resources in
relatively small quantities. Therefore, applying a sequence of
MAC operations over a data set with these units requires to
multiplex them in time. So they are reused with different
input data and output results, which are stored in a global
memory. It often requires high-frequency clock signals to
achieve a competitive data throughput. Furthermore, large
memory depths to store intermediate data and results are
needed. These facts are reflected in the power consumption
and circuitry complexity.

On the other hand, spike signal processing (SSP) has the
aim to implement the basic operations that commonly are
performed in DSP, but over spike rate coded signals [10].
Thus, operations are performed directly over spike streams,
being equivalent to simply adding or removing spikes at the
right moment (although is not evident which). The currently
available circuits that implement SSP operations [10] use
general purpose FPGA resources, as counters, comparators,
and logic gates. This allows to build large-scale dedicated
systems in hardware, which process spike coded signals in
real time using low frequency clocks in a fully parallel way
for (low cost) FPGAs.

In this paper, we present a novel way to process the sound
wave using SSP. Our proposed neuromorphic auditory sen-
sor (NAS) for FPGA transforms the information in the acoustic
wave into an equivalent spike rated representation, and then
uses a set of Cascade spike-based low-pass filters (SLPFs)



TABLE I
SUMMARY OF CHARACTERISTIC OF SOME ANALOG COCHLEAE

Ref. Number  Frequency Dynamic Event Power
of range Range Rate cons.
Channels
[2] 64x2 50Hz- 36dB 10 18-26
50kHz MEvents mW
(adjustable) /Sec.
[16] 360 200Hz- 52dB 33 51.8
20kHz kSpikes mW
/Sec.
[17] 64x2 200Hz- 46dB Not 56.32
6.6kHz provided mW
TABLE 11

SUMMARY OF CHARACTERISTIC OF SOME DIGITAL COCHLEAE

Ref. Number Frequency  Slices/ Max.
of range Utilizati clock
Channels on (MHz)
[22] 88 1,006- 6,800 44.15
7,630 Hz slices
[25] 16 150-3,400 11,048 Not
Hz slices provided
[28] 1,224 20 -20,657 113,760 142
Hz slices

bank inspired on Lyon’s model of the biological cochlea [13].
This auditory system processes information directly encoded
as spikes using pulse frequency modulation (PFM), decom-
poses PFM audio into a set of frequency bands, and propagates
that information by means of an AER interface.

The biological cochlea is a part of the inner ear that plays
a central role in hearing. It moves in response to vibrations
caused by sound signals entering the ear and vibrating the
basilar membrane. Thousands of hair cells on the membrane
sense the vibration and excite the spiral ganglion cells, which
generate action potentials, or spikes, that travel along nerve
fibers to higher order auditory brain areas. Because of the
physical properties of the basilar membrane, high-frequency
inputs activate the basilar membrane area closest to the base
of the cochlea, while low-frequency waves travel further down
the membrane [14]. The first silicon cochlea was proposed by
Lyon and Mead [15]. In their design, the membrane basilar
was modeled by a Cascade of 480 second-order filter sections.
There are several VLSI implementations of the cochlea based
on Lyon’s design (for example, [16]-[19]). One of them is
even commercially available [2]. Some of these implementa-
tions, [2], [18], [19], use AER to represent the identification
address of active channels. Table I shows the characteristics of
the latest analog implementations. On the other hand, digital
models of the cochlea have also been documented in the
literature [20]-[28], summarizing some of them in Table II.

In biological cochleae, the acoustic wave is filtered mechan-
ically and its frequency components are represented by neural
pulses in the auditory nerve. An analog cochlea transforms
the sound wave into an analog electronic signal that is
processed by aVLSI filters. In digital cochleae, the sound wave

is transformed into digital data that is processed by VLSI
discrete digital filters. The main difference between analog
and digital filters is the precision achieved when working with
the information. Analog filters never suffer from truncating
resolution errors, while digital filters never suffer from tran-
sistor mismatch at the fabrication level. When the audio signal
is represented in an ideal PFM and the filters are applied
in that domain, this NAS would offer the benefits of both
types (no resolution errors and no mismatch errors). However,
the implementation presented in this paper did not have an
ideal PFM representation because the way audio is converted
to spikes, which experiences some truncating resolution errors.

This paper is structured as follows. Section II presents
the global architecture of the NAS, and shows how it was
developed with spike-based building blocks [10]. These blocks
work mainly with the spike frequencies in a different way
to the integrate-and-fire (IF) neuron [3]. Section III presents
the design flow for synthesizing a parameterized NAS, with
a new set of features. One of the most difficult tasks is to
properly tune the NAS, so in Section IV, we propose using a
genetic algorithm (GA). The NAS has a high degree of scala-
bility, and may, therefore, consume a huge number of FPGA
resources. Section V presents a resource study based on the
synthesis results for different NAS sizes. Sections VI and VII
describe a test scenario, using a Virtex-5 development board
from Xilinx, and present the experimental results obtained.
The NAS responses to diverse stimulus are also analyzed
and characterized. Finally, some conclusions are presented
in Section VIII.

II. BINAURAL NAS ARCHITECTURE

The architecture of the NAS is shown in Fig. 1(a). It com-
prises two different Cascade banks of time domain SLPFs.
These are described in detail in [10] and [29]. The aim is to
decompose two digitalized audio streams (the left and right
ear’s audio signals) into a set of bands, having previously
converted them into trains of spikes [30]. The streams are
decomposed in time domain spike-based filter banks, the infor-
mation of each channel being encoded and passed on as spikes.
The output spikes from the filters are collected by an AER
monitor [31] that transmits the spike information using a
four-stage asynchronous AER protocol.

Each complete NAS was modeled by a time domain
spike-based filter bank, or Cascade filter bank (CFB). Each
CFB comprising several stages connected in Cascade for
that particular NAS; the architecture of a single stage is
shown in Fig. 1(c). Each stage has a time domain SLPF
and an element capable of subtracting two spike coded sig-
nals (both elements will be explained later in detail in this
paper). As in previous implementations of AER cochleae
[2], [15], [20], [22], a series of several Cascade-connected
stages subtracted the information from consecutive SLPF out-
put spikes in order to reject out-of-band frequencies, obtaining
a response equivalent to that of a bandpass filter. The SLPF
architecture for implementing the NAS banks was presented
earlier in [10], but for a better understanding, we will briefly
introduce the elements that are needed to design an SLPF.
All the elements were written in VHDL and designed as
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small general purpose building blocks. Each of these blocks
performs a specific primitive arithmetic operation on the spike
streams, and can be combined with others to build large spike
processing systems of the type already used in closed-loop
spike-based PID controllers [32], and trajectory generators for
object tracking [33].

A. Reverse Bitwise Synthetic Spike Generator

Digital sound samples received from a commercial audio
codec were immediately converted into a stream of spikes by
a digital synthetic spike generator (SSG) capable of converting
a discrete number (SSG input) into a fixed spike frequency
rate (SSG output). These output spikes represented the audio
information that would excite the CFB. This SSG is also
the formed part of other elements in the CFB capable of
processing spike-coded signals. This will be explained later.

Although there are several ways to design a digital
SSG [30], [34], the implementation in this paper used the
reverse bitwise method for synthetic AER event generation
[reverse bitwise SSG (RBSSG)] described in [30] and [35].

(a) Global NAS architecture. (b) Filter banks with Cascade topology, CFB. (c) Single CFB stage containing an SLPF and an SH&F.

Clock Frequency |C

Divider

genFB

Digital Counter

X

C ﬂABS'

n..0] 1.

0]

Fig. 2. RBSSG [10].

This architecture was selected mainly for its low resource
needs (a digital counter and a comparator) and closer to
uniform temporal spike distribution.

An SSG would generally be capable of generating a
synthetic spike stream with a frequency proportional to a
constant (kBwspikesGen) and an input value (x), as in

ey

RBSSG()C)SpikesRate = kBWSpikeGen * X.

Fig. 2 shows the RBSSG circuit. It uses a continuous digital
counter [Fig. 2 (top)], the output of which is reversed
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adjust the RBSSG gain. The clock frequency divider activates

a clock enable signal, which divides the spike generator clock

frequency according to a frequency divider signal (genFD).

The RBSSG gain (kBwspikeGen) can thus be calculated as in
Feik

2N=l(genFD + 1)’ @

FcLkx represents the system clock frequency, N is the
RBSSG bit length, and genFD is the clock frequency divider
value. These parameters can be modified to set up an RBSSG
gain that meets design requirements.

kBWSpikeGen =

B. Spike Hold & Fire

The spike hold & fire (SH&F) block performs the subtrac-
tion between two spike trains. Subtracting one spike input
signal ( fy) from other ( fy) means creating a new spike signal
with a spike rate (fspggr) that is the difference between the
two input spike rates

fsnar = fu — fr. ©)

The function of the SH&F block is to hold the incoming
spikes for a fixed period of time while input evolution is
monitored to decide whether output spikes must be produced.
Fig. 3(a) shows the SH&F behavior as a state machine,
and Fig. 3(b) shows how SH&F can evolve from a positive
input spike. In Fig. 3(a), state machine can be seen that the
transition between hold state and idle state is governed by
a timeout that represent the fixed period of time mentioned
earlier. In [32], that time was set to 10 us with a configurable
range between 1 us and infinite. In this paper, we use an

Fig. 4. SI&G block diagram [10].

infinite period of time, so there is no real transition between
hold and idle states. SH&F has two inputs: U (positive
input) and Y (negative input, commonly used as feedback).
Let us suppose that a positive spike, U+, is received as
U input [Fig. 3(b) (left)]. The U+ state is held internally
[Fig. 3(b) (center)]. SH&F will do nothing if no more spikes
are received. When a new spike arrives, it behaves according to
the corresponding spike input port and sign [Fig. 3(b) (right)].
As shown in Fig. 3(b) (top-right), if SH&F receives a positive
spike (U+), the previously held spike is fired as a positive
spike (U+), and the new one is held internally (U+ state).
If a negative input spike is received in port U (U—), or a
positive spike is received in port ¥ (Y +), the previously held
spike is cancelled and no output spike is produced. Finally,
if a negative spike (¥ —) is received in Y [Fig. 3(b) (bottom)],
the previously held spike is fired and the last one received
is held with a positive sign (U+ state). This SH&F behav-
ior can be extended to deal with any kind of input spikes
(U—, Y+, or Y— states) using the same logic: hold, cancel,
and fire spikes according to the port and sign of the input spike.
Further information about its behavior and temporal response
can be found in [10] and [32].

C. Spike Integrate & Generate

The building block called spike integrate & gener-
ate (SI&G) [10] integrates spikes. SI&G comprises a spike
counter and an RBSSG, as shown in Fig. 4.



The spike counter is a digital counter, the value of which
increases when a positive spike is received and decreases when
a negative spike is received. The counter output represents
the spike’s integration value. To convert the integrated count
to spikes again, the spike counter output is connected to an
RBSSG input, which will generate a new stream of spikes.
These spikes will have a frequency proportional to the spike
count, or the spike integration value. There is no delay between
the integrator and the generator part of this model. The
frequency response is, therefore, instantaneous with regard to
the integrator part. Furthermore, this element can be seen as
a neuron model, where the membrane potential is the output
of the integrator (as in the IF neuron), but with a frequency
response (not a single action potential spike as in IF neuron
models). The output is, therefore, a stream of action potentials
with an interspike-interval (ISI) time that is a function of the
integrator.

Considering this SI&G architecture, the SI&G spike output
frequency can be calculated as expressed in (4). SI&G gain,
ks1&G, is set using the RBSSG parameters included. Actually,
it is equivalent to kwspikeGen, and can be tuned with the
same parameters we previously introduced in (2) to set up
the RBSSG gain (N, FcLk, and genFD)

t
fs1&G = ksi&G * / SinputSpikesd?
0

Foix / !
= i ikesd?. 4
IN-1 (genFD + 1) o flnputSplkes 4)

As in continuous systems, the equivalent SI&G transfer
function in the time domain can be calculated using a Laplace
transform analogy [10]. Other authors also compare spiking
systems with dynamical systems, such as [12]. The SI&G
transfer function is presented in (5). It is equivalent to an ideal
integrator with a gain of ksigg, but in a spike-based context

SI&G(s) = ksiec _ Fork
s 2N-1(genFD + 1) % s

(5)

D. Spike Frequency Divider

The spike frequency divider (SFD) divides the spike rate
of an input spike train by a constant number. An SFD
can be implemented in many ways: for example, by using
simple counters, by firing one spike when several spikes have
been received, or using probabilistic techniques that decide
whether or not to propagate an incoming spike using a random
number generator, implemented with linear feedback shift
registers. These techniques have one common problem: the
output spike rate is correct on average, but the spikes are not
distributed uniformly over time, introducing high-frequency
noise in terms of ISI. To ensure uniform spike distribution,
we designed this RBSSG-inspired SFD block.

Fig. 5 shows the block’s internal components. The digital
comparator output drives a buffer that allows or prevents input
spikes from passing through the SFD. In general, input spikes
will increase the digital counter, the reverse value of which
is then compared with the spikesDiv signal. If that reversed
counter output is lower than spikesDiv, the output buffers will
be enabled, allowing the next spike to travel through this
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Fig. 6. SLPF Architecture [10].
component. The output buffers only enable output spikes when
spikesDiv is uniform over time.

The SFD transfer function is shown in (6), where N rep-
resents the SFD number of bits, and spikesDiv the previously
presented signal. The SFD transfer function is equivalent to a
gain block with a value in the range of [0, 1], with 2V possible
values

Foutspik
pikes
Fsrp = =

spikesDiv
FinputSpikes 2N

(6)

E. Time-Domain Spike-Based Low-Pass Filters

The time-domain SLPF block filters high-frequency changes
in the input spike rate. To build this element, we used
feedback: the SI&G output is its inputs after processing by
an SFD and by SH&F, as shown in Fig. 6. The idea was to
integrate input spikes with an SI&G, subtracting SI&G output
spikes with input spikes using SH&F, and thus performing
a basic filter operation, with no great accuracy and with a
fixed gain of 1. To achieve better accuracy and improve SLPF
gain, two SFDs were included. The most important one is
the SFD placed in the feedback loop, which has to divide
the feedback spike frequency. This implies less input spikes
in the SH&F and, therefore, a higher number of spikes in
the SI&G input. It also makes the filter gain higher than 1,
because SI&G integrates more spikes, and makes it possible
to choose the cutoff filter frequency more accurately, as will
be discussed later. A second SFD was placed at the SLPF
output, making it possible to decrease SI&G output bandwidth.
SLPF gain is, therefore, fully adjustable. According to SI&G
feedback topology, and considering both SFD gains, it is
possible to calculate the SLPF equivalent transfer function
using basic systems theory. Equation (7) shows the ideal
SLPF transfer function. The SI&G(s) can be obtained from (4).



TABLE III
BUILDING BLOCKS UTILIZATION SUMMARY

RBSSG  SH&F S1&G SFD SLPF

37slices 17slices 15slices 33slices 77 slices

1. Single NAS features
specification: {wmia}

Target Mid Frequencies:
{wmid}

Init population vector
with ramdom values

For N generations

For each element in the
sorted population vector,

2. Cascade Filter Bank
Tunning: {wsipe}

3. Inidividual SLPF cut-off
parameters calculation

4. Cascade Filter Bank
Generation: VHDL File

Select ramdomly two
parents with low error

5. Peripheral Circuitry
Integration: VHDL Project,

Mix parents genes and
apply ramdom mutations,

Compute element error
Sort population vector

Annotate minimium error
element

(a) Spike-based NAS design flow. (b) GA flow for CFB tuning.

6. NAS Synthesis: Binary
Programming File

Fits target FPGA resources?

yes

7. Configure Target
Platform

8. NAS Testing

A) B)

Fig. 7.

ksrpout represents output SFD gain and kspprp represents the
gain of the SFD placed in the feedback loop. Both are detailed
in (6)

Foutspikes(s)  ksrpout * SI&G(s)

Finpuispikes(s) 1+ ksppes * SI&G(s)

_ ksrpout * ksi&G 7
s + ksFDFB * ks1&G

wsLpF = ksrDFB * ks1&G (8)

ksFpout * ksi&G _ KSFDOut ©)

ksrDFB * ksieG ~ kSFDFB

FsLpr(s) =

ksipr = FsLpe(s) =

The SLPF transfer function is equivalent to a first-order
low-pass filter with a pole. The theoretical filter cutoff
frequency, wspr, in rad/s, can be determined by the product
between ksi&c and kspprp in (8). Equivalent SLPF gain can be
set with the relation between the values of ksgprg and ksgpout,
as expressed in (9).

Table III lists the FPGA resources (slices) for the building
blocks mentioned earlier. They have been synthesized and
implemented separately in the FPGA, what implies an incom-
plete use of slices. It can be noticed that when the SLPF is
synthesized, resources are optimized because slices utilization
is more compact.

III. NAS DESIGN FLow

This section presents the design flow needed to achieve a
real VLSI implementation of the NAS architecture described
in Section II (Fig. 1). Since that the NAS architecture was con-
ceived for implementation in a programmable digital device,
such as an FPGA, this design flow can be seen as a generic
process for building a full custom auditory system, with a
particular set of parameterized features and for a specific
application. Our NAS design flow has eight stages. They are
shown in Fig. 7(a). The NAS design process was almost
automatic, as user interaction was only needed to link the
different software applications required in the different stages.
These software tools were: 1) MATLAB, for NAS parameter
tuning, automatic VHDL design file generation, and testing
and 2) Xilinx ISE Design Suite, for synthesis and FPGA bit
stream downloading.

The first step was to define the features of a single NAS,
i.e., to specify the number of channels, N¢,, and the midfre-
quencies of each channel. This led to a set of midfrequen-
cies {wmig} that defined the frequency features of the NAS
response. Considering that the NAS acts like a spectrum ana-
lyzer, this task had to be done considering a number of ques-
tions, including application specification requirements (source
signal frequency features, the number of channels, frequencies
of interest, and so on) and the capabilities of the target FPGA
(general and specific resource requirements) where the NAS
was to be loaded.

The second step was to tune a CFB to fit, or at least provide
the best approximation to, the desired midfrequencies set,
{®wmid}. This involved finding a set of SLPF cutoff frequencies,
{wsLpr}, for the Nch41 SLPFs that would make up the CFB.
Due to the Cascade architecture of the filter bank, the setting
of these cutoff frequencies was critical because the choice of
a particular frequency for an intermediate SLPF would affect
all consecutive channels. Because of the complexity of an
analytical search for {wsipr}, we addressed this task using
a GA that is explained in Section IV.

Once a set {wgipr} that satisfied the NAS specification
requirements was found, the third step was to convert the
cutoff frequencies of the SLPF to the corresponding para-
meters (ksi&G, ksprB, and kspout), according to (8) and (9).
Since we needed an SLPF with a 0-dB gain in the bandpass,
ksprB = kspout-

The fourth step was to generate a VHDL file that would
implement the CFB with the right cutoff frequencies for each
SLPE. A MATLAB script took the number of SLPFs and
their parameters and automatically generated the VHDL file
to implement the required CFB.

At this point, the core of our NAS was ready to process
audio spike information. In the fifth step, the CFB was
integrated with the peripheral circuitry. This circuitry had two
components: 1) a finite state machine (FSM) for decoding the
incoming audio from the AC’97 audio codec [Fig. 1(a) (left)]
and feeding the digitalized audio samples to the RBSSG
and 2) an AER monitor for monitoring the spike output
activity of each SLPF in the CFB and converting it into a
stream of AER events in the output of the proposed system
[Fig. 1(a) (right)]. Depending on requirements and on the



available resources of the target FPGA, the NAS could be built
as a monaural or binaural sensor, so in this step, only one CFB
needed to be added for a monaural NAS, or two CFBs for a
binaural NAS. All the results presented in this paper are for a
binaural NAS with two identically parameterized CFBs.

After integrating and connecting all the NAS components
[AC’97 FSM, RBSSG, CFB(s), and AER monitor], the sixth
step was to synthesize the binaural NAS with selected FPGA
manufacturer tools (in our case, Xilinx). If the number of log-
ical resources required for NAS synthesis exceeded the target
FPGA capabilities, we had two options: 1) reduce the number
of NAS channels or 2) go to a monaural CFB per FPGA,
and then go back to the first step of the procedure. Section V
presents an analysis of hardware requirements according to
the number of NAS channels, and may, therefore, be of use
to designers wishing to determine an FPGA’s capability to
implement a specific NAS. The seventh step was to load
the binary file obtained from the Xilinx Design Suite into
the FPGA and the eighth step was to perform operational
tests.

IV. SLPF BANK TUNING WITH A GENETIC ALGORITHM

This section shows the mechanism for adjusting all the
parameters of the CFB. It was necessary to have a previ-
ously defined set of midfrequencies for each channel, {@wmiq}.
Equation (10) shows the theoretical transfer function of the
ith NAS channel. Due to the Cascade architecture, which
implies strong coupling between NAS midfrequencies, and the
higher order of the transfer function, it was very difficult to
find an analytical solution for all the SLPF cutoff frequencies,
{wsLpr}, in the CFB. There were several possible ways to
solve this problem, for example, an iterative approximation
algorithm, backpropagation, and so on. In this paper, we opted
to use a GA derived from the classical design flow proposed
in [36] for filter bank tuning. This choice was a bioinspired
alternative, and allowed us to measure and calculates whether
a certain set of SLPF cutoff frequencies {ws pr} was accu-
rate or not. It provided us with a set of midfrequencies
that matched, or were very close to, the desired frequencies
{wmia} by evolving a population vector for several generations,
considering the SLPF imperfections and the effects of Cascade
coupling

i
WSLPF_k WSLPF _ WSLPF_j+1
BPF;(S) = (7)
/) kl:[l (s + wsLpF_k) H (s + wsLPE_j+1)
(10)

A. GA Data Structure and Target Function

Fig. 8 shows the data structure of the GA for CFB tuning.
We built a population vector in which every element had a
set of genes representing the cutoff frequencies set for the
SLPFs of a Cascade bank, {wsrpr}, sorted from higher to
lower frequencies. Average error was stored, to later shorten
the population vector.

The target function of the GA was to minimize deviation
between the ideal midfrequencies {wmig} and the equiva-
lent bandpass filter midfrequencies of an element in the

m——S_PF cut-off Frequencies—=a
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Fig. 8. Population vector and gene codification.
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Fig. 9. GA error evolution through 64 generations for a 32-channel CFB.

population vector. To determine {wmiq} of a population vector
element, we simulated the full NAS model using the Control
Toolbox included in the MATLAB. This has a high computa-
tional load and requires a considerable amount of computation
time. The exact length of time depends directly on the number
of CFB channels for every element in the population vector.
Equation (11) was used to compute the deviation of each
individual filter, and (12) to calculate the average deviation
for all the filters

| /OSLPF_i *@WSLPF_i+1 — Omid_i |

Errornorm i = (11)
Omid_i
N
Y E .
Errorgn, = 2=l PTOMNom.i (12)
N
B. GA Flow

Fig. 7(b) shows the GA iteration flow, starting from a
specified {wmiq} (initial NAS specifications). The population
vector was initialized with a random set of SLPF cutoff
frequencies, {wsipr}. After all the initializations, the error of
each element was computed, and the population vector sorted
considering this error.

After this, the main loop of the GA starts, allowing the pop-
ulation vector to evolve for a defined number of generations.
Each generation replaces elements of the population vector
with crossovers of the best elements (lowest error) of the old
populations. To do this, in each generation, the population
vector has to be filled with new elements, so for each element
in the population vector, we need to find a random pair
of parents among the lower error elements in the previous
generation, and generate a new element in which {wsppr} is
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a mixture of the parents’ genes and a small, added random
number (mutation). Finally, the NAS is simulated and the
relative error is computed. Once the population vector is
filled with a new generation, it is sorted, taking the best
elements (those with the least error) in the first positions of
the population vector for a new generation.

C. GA Execution Results

After executing the GA, we obtained the element with
the lowest error from among the generations. This element
provided the set {wsp pr} with the best fit {wmig} in our
entire GA. Fig. 9 shows the evolution of the population vector
error after executing the GA for a 32-channel CFB through
64 generations. Using an Intel Core i5 4670 at 3.4 GHz
and applying parallel optimizations in the MATLAB, this
execution took 3329.45 s.

Fig. 9 contains the minimum, maximum, and average errors
after GA execution with (11) and (12). In the first generations,
the error was very high, nearly 14%; however, with the genetic
evolution of the population vector, it quickly decreased. After
20 generations, the error started to reach minimum values
below 2%. In the next generations, the error did not present
significant changes; however, gene mutation can facilitate a
better CFB fine-tuning, so we expanded the study to 64 itera-
tions. In iteration 45, one of the population members reached
the minimum error.

Fig. 10 shows the solution provided by the element with
the lowest error found by the GA. Fig. 10 contains the ideal
CFB midfrequencies, {®mid ideai} (red crosses), the midfre-
quencies that were found, {wmig} (blue crosses), the SLPF
cutoff frequencies, {wsipr} (green crosses), and the relative
midfrequency deviation of each channel (dark green line),
using (11). In accordance with (12), this element had an
average error of 1.573%. This is comparable to cochlear
implants, where users are able to discriminate sentences with
a deviation below 10% [37].

V. NAS SYNTHESIS

Once {wsipr} was obtained for every SLPF contained in
the CFB, the last step was to generate the VHDL files to

ideal and final CFB midfrequencies, SLPF cutoff frequencies, and channel relative error.

implement the already parameterized NAS and perform the
tests. As commented earlier, this was done using automatic
scripts: first calculating the SLPF’s own set of parameters
(ks1&G, ksprB, and kspout), and then automatically generat-
ing the VHDL file of the CFB using previously calculated
parameters. Finally, one or two instances of the CFB were
integrated with the peripheral circuitry (AC’97 FSM and AER
Monitor). It is possible to add more than two CFBs for some
noncommon applications, e.g., a quadrasonic audition system.
The nature of this architecture makes it scalable not only in
the number of channels, but also in the number of CFBs.

To measure hardware requirements for the purpose of
choosing the right FPGA for a particular design, several
binaural NASs were synthesized with different features
(number of channels). This was done for the Virtex-5 FPGA
(XC5VEXT70T) included in the ML507 Xilinx development
board [38]. It should be noted that this NAS architecture,
thanks to its implementation of spike-based building blocks,
does not require specialized FPGA resources (i.e., multipliers,
phase-locked loop, embedded processors, DSP, and so on).
It requires only common digital logic (counters, comparators,
adders, and registers) with a low number of bits and a low
connectivity: only two wires are needed for internal commu-
nication of the stages of the CFB, and a few I/O pins for
transmitting the NAS spikes as AER events.

Table IV presents the synthesis and implementation study
results, including the number of CFB channels, the hardware
requirements as FPGA slices, the maximum operative system
clock frequency, power demand, and the number of exter-
nal I/O signals required. The bigger the CFB implemented,
the more FPGA resources are required. Around 40% of
the XC5VFX70T was needed for a 24-channel stereo NAS
(two x CFBs with 12 channels each), and almost 100% was
needed for a 128-channel stereo NAS. Maximum operating
clock frequency decreases with the number of channels, from
180 MHz for a 24-channel stereo NAS to 87 MHz for
a 128-channel stereo NAS. This is because the greater the need
for logical resources the more levels of asynchronous logic and
longer paths are introduced into the internal FPGA routing.
Using the Xilinx XPower tool to estimate power demand,



TABLE IV
STEREO NAS HARDWARE REQUIREMENTS

CFB Slices / Max. clock  Power I/0
channels  Utilization (MHz) (mW)  Signals
2x12 4,286/ 179.95 6.6 15
38.26%
2x16 4,415/ 171.73 7.2 16
38.41%
2x24 6,301/ 113.74 8.6 17
56.25%
2x32 7,606/ 99.84 14.3 17
67.91%
2x48 10,241/ 91.86 18.1 18
91.43%
2x64 11,141/ 87.31 29.7 18
99.47%
12000
10000 8
é 8000 E
§ 6000 -
k)
5 4000F 1
Qo
£
3 22000f E
0
Number of channels (stereo NAS)
Fig. 11. Logical resource requirements versus the size of CFB.

we simulated the power consumption for different NASs.
This is shown in the fourth column of Table IV. Power
also increases with NAS channels as the required slices
increase. The highest power required for a 128-channel NAS
is <30 mW.

The number of required slices was measured against the
number of CFB channels. It is interesting to note that the
number of required slices decreases per channel as the number
of channels increases. This is due to the peripheral circuitry,
which must always be added regardless of the number of
CFB channels.

In Fig. 11, the y-axis shows the quantity of required slices
and the x-axis shows the number of CFB channels, indicating
how slice requirements are relatively linear with respect to
the number of CFB channels. A linear regression of these
values is also shown, making it possible to estimate how many
slices will be needed for a specific design using (13). This
equation indicates that there is a fixed cost (in terms of slices)
of 2663 slices and an additional cost of 71.6 slices for every
CFB channel added to the NAS

Total slices &~ 71.6 x channelNumber + 2663. (13)

The last column of Table IV contains the number of
I/O signals required in different synthesized NASs. The num-
ber of I/O signals may change depending on the number of
CFB channels. This happens because the AER address space
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Fig. 12.  Structure of the AER address event for NAS spike communication.

needs to have enough AER addresses to provide a unique
address to the output spikes of each of the CFB channels. This
implies that the width of the AER bus is related to the size of
the CFB. Fig. 12 shows the general structure of the AER events
implemented by the included AER monitor. The output AER
events have three fields: the first field has a fixed width of one
bit and represents the spike’s polarity (positive or negative),
and the second field contains the identification number
(or address) of the CFB channel that fired the spike and
its width should be enough to encode the channel number
(6 b for 64 channels), while the third field again has a
fixed width of 1 b and indicates which CFB fired the
spike (left or right). With this AER event structure, we are able
to give a unique address to every spike firing inside the CFB.
The width of the AER events, in bits, is, therefore, a factor
that directly affects the number of I/O signals in the NAS.

The number of NAS I/O signals can be calculated as
an addition of the number of fixed signals (clock, reset,
AC’97 link, and AER protocol lines) and the width of the
AER bus (which varies with the number of CFB channels).
This calculation can generally be performed using (14). The
following signals are required. One signal for the NAS clock-
ing, six additional signals to manage the AC’97 audio link, two
signals that are used for the asynchronous communication of
the AER bus (request and acknowledge), and, finally, a number
of I/O signals equivalent to the AER bus width

Nijo = 2(CIk, Rst) 4+ 6(AC Link)

+ 2(AER Control) + AER Bus Width. (14)

VI. NAS TEST SCENARIO

The NAS test scenario was designed and built to implement
a synthesized NAS inside a real platform that would allow
us to characterize and analyze the NAS behavior. For exper-
imental testing, a Xilinx development board (ML507) [38]
was used, which, among other components, included a
Virtex-5 FPGA (XC5VFX70T) and an AC’97 audio codec.
The idea was to implement the NAS in the FPGA, receive
the analog audio using the AC’97 codec through a stan-
dard digital audio AC link, and transmit the AER events
through the general-purpose input/output (GPIO) pins avail-
able on the board. The use of the AC’97 commercial audio
chip imposed a maximum sample frequency for the ana-
log audio signal of 48 kHz, limiting the temporal capabili-
ties of our NAS. For ecolocalization purposes, for example,
a higher sampling frequency is needed. In a future study,
we intend to explore how the performance and specifica-
tions of the proposed NAS can be improved by using faster
ADCs or new circuits for directly converting analog signals
to PFM.
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Fig. 13. NAS test scenario block diagram (top) and photograph (bottom).

Fig. 13 (top) shows the block diagram for the test scenario.
The computer on the left is the master device; the audio
line-out of its sound card is connected to the line-in of the
AC’97 audio codec included in the ML507 [Fig. 13 (center)].
The computer sound card is used to stimulate the NAS with
different sounds. This AC’97 audio codec is able to digitize
a stereo audio signal with a resolution of 20 b with a sample
rate of 48 kSamples/s.

The audio stimulus is then processed by an NAS loaded
inside the FPGA, generating a stream of AER events, which
are sent to the computer via USB, using the USBAER-
mini2 platform detailed in [39] [Fig. 13 (right)]. The
USBAERmini2 represents a bridge between AER buses and
the USB bus, so the NAS AER activity can be monitored,
sending the AER events directly to the computer with a
minimum interevent temporal resolution of 0.2 us, using
JAER open source software JAER [39].

Fig. 13 (bottom) shows a photograph of the real test
scenario comprising the ML507 development board (center),
an attached Xilinx JTAG programmer (left), and the
USBAERmini2 (right). The Virtex5 FPGA and the
AC’97 audio codec inside the ML507 are marked. Connected
to a ML507 GPIO port, there is a small adapter that adapts
the GPIO signals to the AER bus, in accordance with the
CAVIAR standard [40]. Finally, the AER bus is connected to
the USBAERmini2, which sends AER events to the computer
through the USB port.

VII. EXPERIMENTAL RESULTS

Using the test scenario described earlier, several exper-
iments were conducted to analyze the CFB response and
extract the NAS features. The features study focused on

a 2 x 64 channel binaural NAS with a 27-MHz clock, because
this is the biggest NAS (in terms of CFB channels) that can
be loaded into the VirtexS FPGA. This NAS needs an AER
bus width of 8 b, providing an AER space of 256 addresses
(0 to 127 for the left CFB, and 128 to 255 for the right CFB,
including the polarity bit).

A. Temporal Response

The first experimental result obtained was the temporal
response of the NAS. Fig. 14 (top) shows the cochleagram
created in the presence of a woman saying “En un lugar de la
mancha”, the first sentence in the famous Spanish novel Don
Quixote. In Fig. 14 (top), the x-axis represents real time and
the y-axis represents the AER address, adding a blue dot every
time an AER address appears in the AER bus. Fig. 14 (bottom)
(addresses from O to 127) shows the left NAS AER activity
and Fig. 14 (top) (addresses from 128 to 255) shows the
right NAS AER activity. In general, both NASs have delayed
responses due to the CFB Cascade architecture, where there
is an additional phase delay in the SLPFs implemented by
the CFB. Both the left and right CFBs have a similar temporal
response, but Fig. 14 shows that the responses are not identical.

Looking at these spikes from a higher level point of view,
we can reconstruct the spike rate of the different CFB chan-
nels over time, obtaining a representation equivalent to the
sonogram in Fig. 14 (center) [2], [42]. Fig. 14 (center) shows
the left CFB instantaneous spike rate as a color map, where
the x-axis is time, the y-axis is the NAS channel, and the
color represents the spike rate. The six words used for the
NAS stimulation are clearly visible in Fig. 14 (center), with a
specific spike rate through the NAS channels. Fig. 14 (bottom)
shows the original audio spectrogram for this sentence.
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Fig. 14.  Experimental cochleagram of a 128-channel stereo NAS (top),
reconstructed sonogram of a 64-channel mono-NAS (center), and original
audio spectrogram (bottom) corresponding to a woman saying “En un lugar
de la mancha’.

For this example, the maximum frequency that the NAS is
detecting is 4 kHz, which corresponds to channel 10 according
to Fig. 15 (bottom). And this is the lowest active channel
in Fig. 14 (center) where this female voice is in channels 10-35
(300 Hz—4 kHz).

B. Frequency Features

This test studied frequency behavior. An audio frequency
sweep was carried out, stimulating the NAS with a set of pure
audio tones, and simultaneously monitoring AER activity in
the NAS output.

The audio tones had an amplitude of 1 Vrms and varied
in a frequency from 10 Hz to 22 kHz. Fig. 15 (top) shows
the left NAS bode diagram, that is to say, the spike rate
(y-axis) versus the audio tone frequency (x-axis) for each
of the CFB channels (different colors). Fig. 15 (top) shows
how, in general, the NAS channels act like a set of bandpass
filters, rejecting out of band audio tones. Fig. 15 (top) also
shows that the spike rate of the bandpass of the CFB channels
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Fig. 15. Frequency response of a 64-channel NAS. Top: 1 Vrgm audio tone.
Bottom: surface representation of the same frequency response.

decreases with lower frequencies, while the higher frequency
channels show the addition of an offset. The same information
is represented as a color mesh in Fig. 15 (bottom), where
the x-axis represents the tone frequency, the y-axis the NAS
channel, and the color intensity the channel’s output spike rate.
Fig. 15 (bottom) shows how every channel is more active
in a specific audio frequency band, the light blue band, and
presents no activity outside that band, in the dark blue area.
It also indicates that high-frequency channels have progres-
sively higher activity in their bands, with a diagonal gradient
moving from light blue at low frequency to red at high
frequencies. This effect is due to overlapping with SLPF
rejection bands in the Cascade. A higher frequency filter will
attenuate softly the band near to cutoff frequency. This effect
is increased along SLPF Cascade, showing an accumulative
effect in low frequency channels, what implies a stronger
attenuation.

This information can be used to measure some parameters
related to common bandpass filters [midfrequency, quality
factor (Q factor), and bandwidth], and thus to characterize
features of the CFB channels in greater detail. Fig. 16 (top)
shows the midfrequency, and the spike rate at this frequency,
of every CFB channel. In Fig. 16 (top), the x-axis represents
the audio frequency tone and the y-axis represents the spike
rate. A line is added at the midfrequency of the CFB channels.
The distribution of the midfrequencies is relatively uniform.
However, as mentioned in Section III-C, it is not perfect,
because the GA used to tune the CFB channels was designed
to approximate a set of values, and it is very difficult to
find a perfect solution. The highest frequency channel has a



0°

o
Channeto-----él po L1y
=
L7}
g
a
(23 ,Channel 63
b 4 A
= ;
< v
g T
<
‘a
(%)
10t Ll LI ]
10' 10 10° 10
Frequency (Hz)
12 15 : , ‘
—Avg. = 0.8526 =
11 oo @
i —@ Q Factor %
1 Hlolle (7o ol
- of| [o 0 0P
5] o "N
S oo9t N o | |
o
w
€ 08 H
. ﬂ TT T T
0.6
0 10 20 30 40 50 60
NAS Channel
10°
10% 4
—_ PPoo
L] in)
0% ; 1
L
=]
=]
<
2 102, , ]
g P00,
oM o e
) ‘ H HnﬂT
10° W
0 10 20 30 40 50 60
NAS Channel
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NAS (1 Vrmsaudio tone). Center: Q factor of a 64-channel NAS. Bottom:
bandwidth of a 64-channel NAS.

midfrequency of 14.06 kHz, and the lowest frequency channel
a midfrequency of 9.6 Hz, producing a global equivalent
NAS bandwidth greater than 14 kHz. The spike rate of
the CFB channels in their midfrequency decreases with the
tone frequencies. The highest frequency CFB channel has
a maximum spike rate of more than 90 kSpikes/s and the
lowest frequency CFB channel has a maximum spike rate of
around 20 kSpikes/s. This effect of decreasing CFB spike rates
also impacts the Cascade architecture, where spike-based low-
pass (SLPF) filters reject bands overlap and SLPF gain through
the CFB sections progressively decreases.

The next parameter we studied was the Q factor of the CFB
channel response. Fig. 16 (center) shows the Q factor of every
CFB channel, where the x-axis represents the CFB channel
number and the y-axis the Q factor. CFB channel Q factors
vary from 1.2 to 0.75 with an average value of 0.85. Again,
the Q factor changes from one channel to another due to the
imperfection of the CFB tuning, a factor directly dependent
on the distance between the consecutive SLPFs that make
up the CFB. Finally, Fig. 16 (bottom) shows the bandwidth
of every CFB channel, where the x-axis represents the CFB
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Fig. 17. 64-channel stereo NAS event rate for different levels of audio white
noise.

channel number and the y-axis the absolute bandwidth fre-
quency. Fig. 16 (bottom) shows how bandwidth is distributed
logarithmically from 10 kHz to 10 Hz. Bandwidths have been
calculated from data represented in Fig. 15. For each channel,
let us suppose the peak is 0 dB. If we draw a line at —3 dB for
each bode diagram, the bandwidth is calculated by subtracting
the high and low frequencies of the intersection.

C. Dynamic Range

The dynamic range (DR) of an NAS represents the range
of audio power against the NAS sensitivity. The NAS was
excited with white audio noise at different levels, and the
AER event rate was then analyzed. Fig. 17 shows the exper-
imental results. White audio noise power is shown in the
x-axis, in correlation with the NAS’s absolute AER event
rate (y-axis). The NAS studied had an AER background
activity (the absence of audio or low audio power) of around
44.1 kEvents/s. At an audio level of —70 dBW, AER activity
gradually rose to +5 dBW, reaching an AER event rate
saturation level of 2.19 MEvents/s. The DR, in terms of audio
level, was +75 dBW for the couple AC’97 and NAS, while
the AC’97 used claims +80 dBW.

VIII. CONCLUSION

Emergent SSP techniques offer the opportunity to design
new neuromorphic systems that represent real alternatives to
common digital systems. Despite the debate over which type of
system—classic digital systems or neuromorphic systems—is
better, neuromorphic systems are actually different from digital
systems. They are based on different ideas, closer to biology
than to traditional computing. In the audio context, traditional
digital systems have to process several samples in a buffer,
because sound makes sense along time, where fast Fourier
transform calculation prior to specific processing. However,
NAS provides audio directly and continuously decomposed
into its frequency components as an AER events stream. This
allows real-time event-by-event audio processing (without the
need for buffering), using neuromorphic processing layers.

In this paper, we have presented the architecture and design
flow for an NAS, which implements in the frequency domain
a set of auditory filters whose outputs are inspired in the



TABLE V
SUMMARY OF NAS CHARACTERISTIC

Number of Channels
Frequency range

64x2 (adjustable)
9.6Hz- 14.06kHz (adjustable)

Dyn. range (AC’97+NAS) 75dB
Event Rate  2.19Mevents/sec
Power Consumption (NAS) 29.7mW
Slices requirements 11,141
System clock frequency 27MHz

functionality of the last stage of a biological cochlea, the inner
hair cells. This response has been also obtained in other analog
and digital cochlea emulated implementations [2], [18], [19].
The real time response is transferred from this auditory sensor
using an AER interface. This NAS represents a parallel com-
putational system, in that spikes flow between dedicated spike
processing hardware units without sharing or multiplexing any
computational elements. It is thus able to operate with low
clock frequencies, 27 MHz in this case, and has low power
consumption (below 30 mW) in the FPGA side (total platform
power consumption has to include AC’97 one). Spike-based
building blocks do not require dedicated resources, such
as floating or fixed point multipliers. Their most complex
operations are to increase/decrease one single register and
to perform arithmetic comparisons. The cochleae presented
in [22], [25], and [28] require 77, 92, and 690 slices/channels,
respectively. The presented NAS requires 87 slices/channels.
It should be noted that [25] and [28] include other function-
ality, such as automatic gain control of the outer hair cells.

Table V shows a summary of the NAS characteristics
for comparison with previous implementations. As is shown
in Table I, the DR of the NAS is at least 20 dB higher than that
of earlier analog cochleae. This is possible thanks to use of a
specific audio codec that provides a DR of +80 dB; however,
in combination with NAS, this decreases until +75 dB. The
NAS can be implemented for a wide variety of FPGAs and
development boards at a low cost, making this technology
ideal for aiding/improving research into neuromorphic audio
processing systems. These systems have potential applications
in real-time audio processing, and offer a better understanding
of how biological auditory systems work. They could even
constitute a new model for cochlear implants.

The presented NAS is able to represent the input layer of
a spiking neuronal network, and can be used for a number
of purposes, such as ecolocalization, noise robust speech
recognition, person identification, audio classification, quality
control, and so on. Neuromorphic audio processing offers new
opportunities for exploring and implementing new algorithms
for real time binaural ecolocalization, including interaural time
differences and interaural-level differences. However, the main
limitation of this architecture resides in the need for a digital
audio codec capable of sampling the sound at a fixed rate.
This is a critical issue with regard to the temporal accuracy of
auditory information.

The tuning and synthesis of the NAS are automatic, making
it possible to produce a full NAS from a set of specifica-
tions, while its flexibility and scalability allow us to build

custom auditory systems with sets of features appropriate for
specific FPGAs, and thus satisfy the requirements of specific
applications. For testing and behavioral analysis of the NAS,
a test scenario was built where a 2 x 64 channel stereo NAS
was loaded and analyzed. The NAS analyzed displayed the
expected behavior of a bank of spike-based bandpass filters,
providing streams of spikes representing audio frequency
components, and manifesting a DR of 75 dBW. The results
showed that the gain in the NAS channels decreased from high
to low frequency. To improve this aspect, we are now working
to develop active cochleae models capable of dynamically
adjusting filter features to model the behavior of outer hair
cells [17].

Current research is focused on the development and imple-
mentation of applications for use in fields, such as speech
recognition, auditory feature classification, person identifica-
tion, quality control, and so on. As an example of a current
development, [43] shows a convolutional spiking neural net-
work for audio tone classification using a 64-channel stereo
NAS as input stage, with a success percentage of 97.5%. These
applications also address sensory fusion, where neuromorphic
retina information is combined with NAS events to develop
new real-time neuromorphic processing systems. For example,
in [44], there is combined DVS128 retina [1] with an NAS to
measure the speed of dc motor, with an accuracy of 94.33%.
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