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Abstract. Voxel carving is a non-invasive and low-cost technique that
is used for the reconstruction of a 3D volume from images captured from
a set of cameras placed around the object of interest. In this paper we
propose a method to topologically analyze a video sequence of 3D recon-
structions representing a tennis player performing different forehand and
backhand strokes with the aim of providing an approach that could be
useful in other sport activities.
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1 Introduction

The combinatorial nature of a 3D digital image is a suitable material to homology
computation by taking as input the (algebraic) cubical complex associated to the
image (whose building blocks are vertices, edges, squares and cubes). Homology
is a topological invariant that characterizes “holes” in any dimension (in the case
of a 3D space, connected components, tunnels and cavities). Persistent homology
[5,20] studies homology classes and their life-times (persistence) in an increasing
nested sequence of subcomplexes (a filtration on the cubical complex).

Space or voxel carving [2,4,12,18] is a technique for creating a three-dim-
ensional reconstruction of an object from a series of two-dimensional images
captured from cameras placed around the object at different viewing angles.
The technique involves capturing a series of synchronised images of an object,
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and, by analysis of these images and with prior knowledge of the exact three-
dimensional location of the cameras, deriving an approximation of the shape of
the object.

There are numerous research papers dealing with the problem of human
activity recognition from 3D data (see [1] for a recent review). An important
subgroup of these works provide algorithms for activity recognition from a set
of silhouettes of the subject, such as [19] or [11]. In [19] Fourier Transform in
cylindrical coordinates is performed to compare motion history volumes repre-
senting different actions. In [11], the so-called action volume is produced from
a set of human body silhouettes from the same view angle. They combine mul-
tiview angles to obtain a set of representative action volumes that are used to
classify the action.

There have been some papers (see [13-15]) dealing with the application of
persistent homology to the problem of gait recognition. Different silhouettes
are extracted from a whole gait cycle (from only one viewpoint) and stacked
together to form some kind of action volume to be topologically analyzed by
using persistent homology.

In this paper we focus on sequences of 3D reconstructions of volumes that are
captured from a small set of cameras with different viewpoints in a tennis court.
From that input, we construct another 3D object containing the motion history
information and that we analyze it from a persistent homology perspective.

In the following section, we describe the specific context in which we develop
our work. Section 3 describes the design of our method to apply persistent homol-
ogy to such specific context with the aim of recognizing the activity in a video
sequence of voxel carving reconstructions. Reports on the computations per-
formed as well as some conclusions are collected in Sect. 4. We draw some ideas
for future work in the last section.

2 Voxel Carving Video Sequences

Voxel carving techniques are very useful for 3D reconstruction since they are non-
invasive and they can cover a very large environment. They can be implemented
with an array of low-cost cameras to produce a synchronised set of images. In
each image, the subject of interest is identified and then segmented from the
background of the image (this is commonly known by silhouette extraction).
The subject silhouette is segmented from the background and a 3D bound-
ing box is then drawn around the subject’s approximate position in 3D space.
This bounding box defines a volume that has a corresponding real world three-
dimensional coordinate system. The different silhouettes are used to “carve” the
defined volume accordingly. A sequence of reconstructed volumes can be seen
in Fig. 1.

In the real world coordinate system the approximate subject volume is popu-
lated with voxels, that are set at a particular distance apart or spatial resolution,
i.e. if the distance between voxels decreases then the spatial resolution increases.
From experimental observation, authors in [16] found that a three dimensional



Fig. 1. A sequence of 3D reconstructions by voxel carving. Each frame is a 3D point
cloud.

spatial frequency of 4cm, i.e. 15,625 samples per cubic metre, was sufficiently
adequate for their purposes and in [7] they concluded that higher resolutions
did not contribute to a better topological model in the reconstruction process.
That means that the spacing considered between each voxel is 4 cm in the OX,
OY and OZ directions. This way, it is satisfied that the final reconstructions
are qualitatively detailed enough to be used as a 3D visualisation tool, and, at
the same time, based on the computational performance of a single PC, this
resolution allows to run the algorithm at near to real-time. Regarding the qual-
ity of space carving results, persistent homology was proposed first in [§] as a
tool for a topological analysis of the carving process along the sequence of 3D
reconstructions with increasing number of cameras.

The general voxel technique proposed in [12] was modified and adapted to
a specific task, as fully detailed in [16,17]. And it is, in fact, that specific voxel
carving technique that we are using in this paper, fixing the number of cameras
to five, since this is the usual constraint we can find in practise.

Once we get the sequence of voxel carving results, the first step is to segment
the frames involving each action accomplished by the subject. This can be done
by a visual inspection of the video, but an attempt to automatically recognize
the beginning and end of each movement (either forehand or backhand strokes)
led us to compute the variation of the mass center of each 3D frame with respect
to previous and next ones with a kind of second derivative. That is, for each
frame Fj, consider the mass center (c;1,¢;2,¢;3) and compute the list of values
|2¢i1 — ci—1,1 — Cip1,1| + [2¢i2 — ci1,2 — Cigr,2] + 123 — ¢i—1,3 — Cit1,3| Whose
graphic representation can be seen in Fig.2. One can observe that peaks are
mainly grouped around five points corresponding to five movements of the player
(three forehand and two backhand).

3 Persistent Homology for 3D Activity Recognition

Persistent homology has been proved to be a useful tool in the study of 3D shape
comparison. For example, in the paper [3] the authors provide an algorithm
to approximate the matching distance (which is computationally costly) when
comparing 3D shapes represented by triangle meshes.
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Fig. 2. Graphic representation of variation of mass center of each frame in the sequence
with respect to previous and next ones.

However, as far as we know there is no work on activity recognition using
persistent homology, except for the related topic of gait recognition which has
already been explored from the persistent homology viewpoint in [13-15].

We are concerned with the application of persistent homology computation
to provide topological analysis of a time sequence of 3D reconstructions by the
voxel carving technique. We consider a sequence of voxel carving results under
a fixed number of cameras, so it is convenient to have in mind that each frame
is referring to a 3D reconstruction, that is, a set of 3D points in space.

The input data is a sequence {F};}; of 3D binary digital images or subsets of
points F} of Z3 considered under the (26, 6)—adjacency relation for the foreground
(F;) and background (Z3\ F}), respectively. Due to the nature of our input data,
we focus on a special type of cell complex: cubical complex. A cubical complex
Q in R3, is given by a finite collection of p-cubes such that a O-cube is a vertex,
a l-cube is an edge, a 2-cube is a square and a 3-cube is a solid cube (or simply
a cube); together with all their faces and such that the intersection between
two of them is either empty or a face of each of them. The cubical complex
Q(F;) associated to Fy is given by identification of each 3D point of F; with the
unit cube centered at that point and then considering all those 3-cubes together
with all their faces (square faces, edges and vertices), such that shared faces are
considered only once. Sometimes we will refer to p-cubes with the more general
term of cells (corresponding to the more general concept of cell complex, see [10]).

Given a cell complex, homology groups can be computed using a variety
of methods. Incremental Algorithm for computing AT-model (Algebraic Topo-
logical Model) [9], computes homology information of the cell complex by an
incremental technique, considering the addition of a cell each time following a



full order on the set of cells of the complex. In [6], the authors revisited this
algorithm with the aim of setting its equivalence with persistent homology com-
putation algorithms [5,20] working over Z/27Z as ground ring. We make use of
algorithm in [6] for the persistent homology computation, though any other algo-
rithm for computing persistent homology, adapted to cubical complexes, could
have been applied. We will use the generated persistence barcode as a source to
create a feature vector characterising the movement. Recall that a persistence
barcode encodes “times” (indexes in the ordering) of birth and death of each
homology class (see [5,20]).

The method described in this paper consists in the following steps starting
from a segmented sequence of 3D frames reconstructed by voxel carving: (1)
from each reconstructed volume, take the projection on a plane parallel to the
net in the tennis court; (2) produce a stack with the 2D images from the previous
step; (3) topologically analyze the volume by considering different directions; (4)
create several topological feature vectors associated to the volume; (5) compare
vectors by using a similarity measure.

Step 1. In this specific context, a particular viewpoint that can be useful for
recognizing the action is a front view from the net in the tennis court. Having
a 3D reconstruction obtained from different viewpoints allows to reproduce the
result from a viewpoint of interest even though there is no camera in that viewing
angle. For each 3D reconstructed volume, hence, we project the points onto a
plane parallel to the net (see Fig. 3). If necessary, this projection could be done
onto other planes of interest depending on the action to be recognized. Even
more, one could combine the information obtained from different projections,
that is the advantage of having a 3D reconstruction of the subject.

Step 2. Form a stack with all the 2D images from the previous step, by aligning
the mass centre of every 2D projection. This way, a volume is constructed that
can be considered a motion history volume since contains information of the
whole movement. In this volume, we will convene that OX is the axis that is
perpendicular to the net (in the tennis court), OY is parallel to the net and OZ
means the hight of the points in the volume (see Fig. 4).

Step 3. Consider the cubical complex @) associated to the 3D digital image
from previous step. We must consider a full ordering of its cubes {c!,...,c"}
such that if ¢! is a face of ¢/, then i < j. Such ordering will be determined by
different filter functions given by the distance to certain planes in the 3D space.
Then we will have a nested sequence of subcomplexes § = Q° C Q'--- C Q™
(a filtration over ) determined by the value of the filter function induced on the
cells of the complex) for which persistent homology can be computed.

Set the minimum and maximum coordinates of the points in the consid-
ered volume, {Tmin, Tmaz, Ymins Ymaz, Zmins Zmaz §, and consider the following
“directions” to provide the filters:



— direction given by OX axis, z7: the filter function z* is provided then by the
distance to the plane © = xyin;

— directions given by OY axis, y* and y~: the filter function y™ (resp. y~)
is provided then by the distance to the plane y = ¥y, (resp. minus the
distance);

— directions given by OZ axis, z* and z7: the filter function z* (resp. z7)
is provided then by the distance to the plane z = 2z, (resp. minus the
distance);

Fig. 3. Set of silhouettes obtained, from a sequence of 3D reconstructions, by projection
on a plane parallel to the net in the tennis court

Fig. 4. Stack of silhouettes obtained, from a sequence of 3D reconstructions represent-
ing a backhand movement



— 45° direction on the OY Z plane, oyz™ and oyz~: the filter function oyz™
(resp. oyz~) is provided then by the distance to the plane y+2z = ymin + Zmin
(resp minus the distance);
— (—45)° direction on the OY Z plane, ozy™ and ozy~: the filter function ozy™
(resp. ozy ™) is provided then by the distance to the plane y — 2 = Ymaz — Zmin
(resp. minus the distance);

These directions are represented in Fig. 5. However, direction given by OX axis
would provide poor information when applied to the whole complex, since in
normal conditions, it will produce a unique connected component. That is why
we propose a subdivision of the initial complex into 9 volumes (see Fig.6) in
order to compute persistent homology of each of these volumes separately along
2T direction. This way, each silhouette is divided into a 3 by 3 array that may
separate the evolution of movement of extremities from the central part of the
body. More specifically, the volumes are given by V;; = {(z,v,2), ys < y <
Yit1, 24 <z< Z]-‘rl} for i, j —.071727 with Yo = Ymin; 20 = Zmin Yi = Ymin +
%(ymam_ymin) and z; = Zmin"‘%(zmax_zmin) fori =1,2;93 = Ymaz; 23 = Zmaz-

Image 30

Fig. 5. Each of the 9 possible directions described to provide a filter function to order
the cells in the complex.

Step 4. The filter function considered in the previous step set an ordering of
all que cells in the cubical complex. Next step is to compute the persistence
barcode for the cubical complex representing the motion volume. We make use
of the concept of simplified barcode stated in [7] by which bars shorter than the
distance between two consecutive subcomplexes in the considered filtration are
discarded. In the case of the subdivision in the nine volumes, the computation is
performed for each one of them. Hence, out of each computed barcode, a vector
is produced in the style of Lamar et al. [13-15]. That is, consider the ordered set
of cells in the whole volume {ci,...,cn} and a partition of this ordered set into
n equal parts. Then, for each of the n intervals (c’ cl H] j =1,...n, compute

1. a; = the number of homology classes living along the interval,
2. b; = the number of homology classes that are born in the interval;

and compose the vector [a1,b1,az,ba, ..., an,by).



Image 3D

Fig. 6. Color representation of the 9 volumes segmented from the motion history
volume

Step 5. Finally, a similarity measure has to be considered for comparison of
the feature vectors. We adopt the cosine of the angle between two vectors to
measure how similar the corresponding barcodes are, that is, for two vectors V
and V5 computed on the same direction, compute

Vi-Va

Sigp= .
AT

Notice that each barcode produces a feature vector so the final similarity measure

would be computed as the total sum of all the partial comparison measures
between the corresponding vectors.

4 Experiments

We have considered 8 video sequences for forehand stroke and other 8 for back-
hand strokes. Such video sequences correspond to synthetic 3D reconstructions
by voxel carving with coordinates on 0.4Z3. Due to the fact that the result of
voxel carving process may carry eventual numerical errors that produce some
missing points, and after taking some experiments, we discarded the 1-homology
classes and considered only dimension 0, that is, connected components.

By an initial evaluation on the computed barcodes (see Fig. 7, last column),
we have confirmed the intuition that the direction z~ (that is, from top to
bottom), is not very informative, so we have skipped it to compute the similarity
measure. We have implemented the partition for n = 5 and n = 10 and realized
that the latter provides much better results. This was also quite intuitive from
observing Figs. 7 and 8 since n = 5 is too low to distinguish the numerous small
bars from the few more significant bars that appear in the barcode.

We have also come up with the conclusion that the division into the 9 volumes
to follow up the movement direction ™ does not provide good results, what was
also clear by watching the corresponding barcodes. The problem is that the
connection of the whole object is lost and the division can be very different
depending on the inclination of the subject yielding to different results. In the



first column of results of Fig.9, the normalized similarity measure has been
computed from the sum of similarity measures of each pair of vectors in directions
yt, y~, 2T, oyzt, oyz~, ozy™ and ozy~, as well as those of volumes Vo, Vo1,

Vo2, Vio, Viz, Vag, Vai, Vag, for n = 5 in direction z™T.
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Second and third columns of results in Fig.9 have been computed without
considering volumes V;;, for partitions n = 5 and n = 10 respectively. It is clear
that only for n = 10 does the method provide good results.

Filter functions Filter functions

All the filter|OY+, OY-, OZ+, OY+, OY-, OZ+,

functions |OYZ+, OYZ+, OZY+, |OYZ+, OYZ+, OZY+,

forn=5 0ZY- for n=5 0ZY- for n=10
F1-F2 0,90 0,87 0,83
F2-F3 0,88 0,83 0,79
F3-B1 0,83 0,75 0,54
B1-B2 0,86 0,81 0,78
B2-B3 0,76 0,70 0,67
B1-B3 0,41 0,40 0,84
F2-B1 0,38 0,33 0,59
F3-B2 0,38 0,37 0,57
B1-B3 0,39 0,42 0,84
F1-B1 0,84 0,77 0,59
F2-B2 0,85 0,79 0,58
F3-B3 0,74 0,64 0,55
F1-B2 0,86 0,81 0,60
F2-B3 0,78 0,72 0,58
F1-83 0,77 0,73 0,58

Fig. 9. Results of normalized similarity measures between three forehand and three
backhand strokes with different partitions and filter functions.

5 Conclusions and Future Work

Fixing a certain number of cameras and considering a video sequence of 3D
reconstructions (by voxel carving), we propose a method for activity recognition
of a tennis player stroke based on persistent homology. This work could set the
ground for extension to other activities recognition. Depending on the context,
different projections could be used to form the stack of silhouettes to be analyzed
and different directions of interest could be selected.
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