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Abstract

Plethysm coefficients are important structural constants in the representation the-
ory of the symmetric groups and general linear groups. Remarkably, some sequences
of plethysm coefficients stabilize (they are ultimately constants). In this paper we
give a new proof of such a stability property, proved by Brion with geometric repre-
sentation theory techniques. Our new proof is purely combinatorial: we decompose
plethysm coefficients as a alternating sum of terms counting integer points in poly-
topes, and exhibit bijections between these sets of integer points.
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1 Introduction

Representation theory of groups is a fundamental tool in geometry and mathe-
matical physics. But even one of the simplest cases, the representation theory
of the general linear groups GLn(C), still raises unsolved problems. It is
known that any (finite-dimensional, complex, analytic) linear representation
V of GLn(C) decomposes as a direct sum of irreducible representations:

V ≈
⊕

λ

mλSλ(C
n).

Here the mλ are nonnegative integers (the multiplicities of the irreducible
representations in V ). The irreducible representations Sλ(C

n), indexed by the
integer partitions λ of length at most n (an integer partition of length k is a
weakly decreasing sequence of k positive integers), can be built explicitly by
means of explicit combinatorial constructions [7,6]. These constructions can
be applied actually to any representations: the Sλ are actually endofunctors of
the category of representation of GLn(C) (the Schur functors) that comprise
as particular cases the symmetric powers and the exterior powers.

Three important, non–trivial, constructions of new representations from
old ones are: tensor products; restrictions to a subgroup; plethysms (com-
position of functors Sλ). They define three important families of structural
constants. Firstly, the Littlewood–Richardson coefficients cλµ,ν are the multi-
plicities arising when decomposing a tensor product of irreducible represen-
tations Sµ(C

n) ⊗ Sν(C
n). Next, the Kronecker coefficients g

µ,ν
λ are the mul-

tiplicities arising when considering an irreducible representation of GLmn(C)
as a representation of GLm(C) × GLn(C) by means of the Kronecker prod-
uct of matrices, and decomposing it into irreducibles. Finally, the plethysm

coefficients aλπ,ν are the multiplicities obtained when applying a Schur func-
tor Sπ to an irreducible representation Sν(C

n) and decomposing the resulting
representation in irreducibles.

The Littlewood–Richardson coefficients are quite well understood: they
have many combinatorial interpretations (they count Littlewood–Richardson

Young tableaux, or alternatively the integral points in the hive polytopes) that
are as many efficient tools for proofs and as well for computations. Finding
similar general interpretations for the Kronecker coefficients and the plethysm
coefficients are major open problems in combinatorial representation theory.

Murnaghan [10] and Littlewood [8] observed some remarkable stability
properties of the Kronecker coefficients: some sequences of Kronecker coef-
ficients are ultimately constants. Proofs for these stability properties were



provided by Thibon and his his collaborators by means of vertex operators
on symmetric functions [11] and by Brion by means of tools from geometric
representation theory [1]. Very recently a new proof were provided by Church,
Farb and Ellenberg by means of explicit constructions of sequences of repre-
sentations of symmetric groups in the setting of their theory of FI–modules [4],
at the same time they observed the ubiquity of the phenomenon of stability
of multiplicities.

The plethysm coefficients also exhibit several stability properties, some ob-
served by Foulkes [5], that were proved in the 1990’s essentially by means of
combinatorial arguments (vertex operators and symmetric functions) by Carré
and Thibon [2] on the one hand, and by tools from geometric representation
theory by Brion on the other hand [1] in a more general setting (algebraic
groups in general rather than just general linear groups). Some of the sta-
bility properties proved by Brion lack combinatorial proofs. In this paper we
consider one of them.

Theorem 1.1 (Brion [1]) For any partitions π, λ and µ such that |λ| · |π| =
|µ|, the sequence with general term un = a

µ+nλ

π+(n), λ stabilizes.

Here for any partition α = (α1, α2, . . . , αk), the notation |α| stands for the
sum of its parts,

|α| = α1 + α2 + · · ·+ αk,

and we treat partitions as vectors: we can addi them, and multiply them by
scalars (e.g. in µ+ nλ), adding trailing zeros whenever necessary (e.g adding
two partitions of different lengths).

Our contribution is a new, simple, combinatorial proof of Theorem 1.1,
that we sketch now. We set the plethysm coefficients a

µ
π,λ in the framework

of symmetric functions and express them as alternated sums of coefficients
b
µ+ω′

π+ω, λ. The stability of the sequence coefficients a
µ+nλ

π+(n),λ will therefore be

established as soon as all sequences of coefficients bµ+nλω′

π+ω+(n), λ are shown to be
stable.

We show that the coefficient b
µ
π, λ counts the integer points in a polytope

Q(π, λ, µ). Let E(n) stand for Q(π + (n), λ, µ+ nλ). We build explicit injec-
tions E(n) →֒ E(n+ 1). Last we show that these injections are surjective for
n big enough.



2 From plethysm coefficients to integer points in poly-

topes

The (complex, analytic, finite-dimensional) linear representations of GL(n,C)
are completely described, up to isomorphism, by their character, which is a
symmetric polynomial [7,6]. This allows to set computations of plethysms in
the framework of symmetric functions. Remember (see for instance [9,12,6])
that the ring of symmetric functions is a graded ring endowed with a scalar
product, that admits several importat linear basis. Among them: the Schur

functions sλ, the monomial functions mλ, and the products of complete func-
tions hλ = hλ1hλ2 · · ·hλk

. All these bases are indexed by the integer partitions
λ (the complete sums hk are indexed by the nonnegative integers and as a
result the products of complete sums are also indexed by integer partitions).
With respect to the scalar product, the Schur functions are an orthonormal
basis. The monomial functions mλ and the complete sums hλ are dual bases.

The plethysm of representations induces an operation (f, g) 7→ f [g] on
the ring of symmetric functions, called plethysm of symmetric functions (see
[9], I.8). This operation is associative but non–commutative, and not even
bilinear. It is, nevertheless, linear in the first argument. In this framework, the
plethysm coefficient aλµ, ν is the coefficient of sλ in the expansion in the Schur
basis of the plethysm of Schur functions sµ[sν ]. Alternatively, this coefficient
is extracted by means of a scalar product:

aλµ, ν = 〈sµ[sν ] | sλ〉 (1)

We will expand, in this expression, sµ and sλ in the h–basis. This is done by
means of the Jacobi–Trudi identity that we recall here.

Lemma 2.1 (Jacobi–Trudi identity, [9] I. (3.4)) Let λ be a partition with

length at most N . Then

sλ = det
(

hλj+i−j

)

1≤i,j≤N

with h0 = 1 and hr = 0 if r < 0, and λ is completed with trailing zeros if

necessary.

This expansion writes explicitly as a sum over the permutations σ in the
symmetric group SN ([9] I. (3.4’))

sλ =
∑

σ∈SN

ε(σ)hλ+ω(σ)



where ω(σ)j = σ(j)− j for all j between 1 and N .

We now perform this Jacobi–Trudi expansion for sµ and sν in (1). We get
the following expansion for the plethysm coefficients.

Lemma 2.2 Let N and N ′ be positive integers. Let λ, µ and ν be partitions,

such that µ has length at most N and λ has length at most N ′. Then

aλµ, ν =
∑

σ,τ

ε(σ)ε(τ)
〈

hµ+ω(σ)[sν ] | hλ+ω(τ)

〉

where the sum is carried over all permutations σ ∈ SN and τ ∈ SN ′.

The scalar products that appear on the right–hand side are interesting.
For any partition ν and any finite sequences µ and λ of integers we set:

bλµ, ν = 〈hµ[sν ] | hλ〉 .

It turns out that these coefficients count the nonnegative solutions of systems
of linear Diophantine equations whose constant terms depend linearly on the
parts of µ and λ. In particular, they count integer points in polytopes with a
nice description.

To state this precisely we introduce some notations. For any partition
ν and any positive integer N let t(ν;N) be the set of semi–standard Young
tableaux (see [12] 7.10) of shape ν with entries between 1 and N . Let Pν; N =
(pT,j)T,j be the matrix whose rows are indexed by the tableaux T ∈ t(ν;N),
whose columns are indexed by the integers j between 1 and N , such that pT,j
is the number of occurrences of j in T (so that row T of Pν; N is the weight of
the tableau T ).

Proposition 2.3 Let µ, ν and λ be partitions. Let ℓ(µ) be the length of µ

and N be at least the length of λ.

The coefficient bλµ, ν is the cardinal of the set Q(µ; ν;λ;N) of matrices M =
(mi,T ) with nonnegative integer entries whose rows are indexed by the integers i

between 1 and ℓ(µ) and whose columns are indexed by the tableaux T ∈ t(ν;N)
such that:

• The sum of the entries in row i of M is µi.

• The sum of the entries in column j of M · Pν; N is λj.

Proof. [Sketch] Let x1, x2, . . . be the underlying variables of the symmet-
ric functions and, for any finite sequence λ = (λ1, λ2, . . . , λk), let xλ =
xλ1
1 xλ2

2 · · ·xλk

k .



Since the scalar product with hλ extracts the coefficient of mλ in the ex-
pansion in basis of monomial functions, the constant bλµ, ν can be interpreted
as the coefficient as the monomial xλ in hµ[sν ]. Instead of working with sym-
metric functions (with infinitely many variables) we can work with symmetric
polynomials in N variables, provided N is at least the length of λ. We now use
the expansion of the Schur polynomial sν(x1, x2, . . . , xN) in monomials ([6]):

sν(x1, x2, . . . , xN ) =
∑

T∈t(ν;N)

x
p1,T
1 x

p2,T
2 · · ·x

pN,T

N .

We also use that a plethysm f [g] when g is a sum of monomials g =
∑

i x
ui

is just the evaluation f(xu1 , xu2 , . . .) (see [12] 7.8). We use finally that the
complete sum hj is the sum of all monomials of degree j. These three facts
and a short combinatorial reasoning provide the expansion:

hµ[sν(x1, . . . , xN )] =
∑

λ

Card (Q(µ; ν;λ;N)) xλ.

This proves the proposition. ✷

3 Stability

We now consider a positive integer N and three partitions λ, π and µ, where
λ and µ have length at most N and |λ| · |π| = |µ|. Applying Lemma 2.2 to
the plethysm coefficients un = a

µ+nλ

π+(n), λ we get

un =
∑

σ∈Sℓ(π),τ∈SN

ε(σ)ε(τ) vn(σ, τ)

where vn(σ, τ) = b
µ+nλ+ω(τ)
π+ω(σ)+(n), λ.

Therefore, in order to establish Theorem 1.1 (the stability of the sequence
with general term un), it is enough to show that each of the sequences vn(σ, τ)

stabilizes. Each of these sequences is of the type b
µ′+nλ

π′+(n), λ for some sequences

π′ and µ′.

Theorem 3.1 Let λ be a partition and π and µ be finite sequences of integers.

Then, the sequence with general term vn = b
µ+nλ

π+(n), λ stabilizes.

Proof. [Sketch] Let N be an integer bigger than or equal to the lengths of λ



and µ. After Proposition 2.3,

vn = Card (Q(π + (n); λ; µ+ nλ)) .

Set E(n) for Q(π + (n); λ; µ+ nλ).

Let T0 be the tableau in t(λ;N) whose row number i is filled with occur-
rences of i, for each i. Consider the injection ι(n) : E(n) →֒ E(n + 1) that
maps any matrix M ∈ E(n) to the matrix M′ where the coefficient m1,T0 is
incremented by one, and all other coefficients are unchanged.

We contend that ι(n) is also surjective for n big enough. It is not difficult
to check that ι(n) is surjective if and only if for all M′ ∈ E(n+ 1), the entry
m1,T0 is non–zero. Thus proving the surjectivity of ι(n) amounts to showing
that m1,T0 > 0.

LetM′ ∈ E(n+1). Observe that among all tableaux in t(λ;N), the tableau
T0 is the unique one with maximum weight for the dominance ordering ([9]
I.1). Denote ||α|| for

∑N

k=1

∑k

j=1 αj and pT for row T of Pλ; N . Then for all
T 6= T0,

||pT || ≤ ||λ|| − 1,

and for T = T0,

||pT0|| = ||λ||.

Using now the row sums conditions on the matrix M′, a few more elementary
operations lead to the inequality

m1,T0 ≥ ||µ||+ π1 − |π| · ||λ||+ (n + 1)

that proves that m1,T0 > 0 as soon as n ≥ |π| · ||λ|| − ||µ|| − π1. ✷

4 Conclusion

We have provided with rather elementary tools (the combinatorics of sym-
metric functions) a new proof of a stability property for plethysm coefficients,
otherwise proved using the more eleborate machinery of geometric represen-
tation theory. Our approach enhanced the importance of other constants (the
bνλ, µ in our paper) that seem interesting by themselves. In particular, since
they count integer points in polytopes, it should be possible to evaluate them
efficiently by means of Barvinok’s algorithm. Does this lead to more efficient
algorithms for computing the plethysm coefficients? A similar approach was
followed successfully for the Kronecker coefficients [3].
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