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Abstract A function f holomorphic in the unit disk D is called strongly
annular if there exists a sequence of concentric circles in D expanding out
to the unit circle such that f goes to infinity as |z| goes to 1 through these
circles. The residuality of the family of strongly annular functions in the space
of holomorphic functions on D is well known, and it is extended here to certain
classes of functions. This important topological property is enriched in this
paper by studying algebraic-topological properties of the mentioned family, in
the modern setting of lineability. Namely, we prove that although this fami-
ly is clearly nonlinear, it contains, except for the zero function, large vector
subspaces as well as infinitely generated algebras. Similar results are obtained
for strongly annular functions on the whole complex plane and for weighted
Bergman spaces.
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1 Introduction

Let us denote by D, as usual, the open unit disk of the complex plane
C, and by H(D) the space of holomorphic functions in D, endowed with the

Luis Bernal-González
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compact-open topology τc. Under τc, this space becomes an F-space, i.e., a
complete metrizable topological vector space. An interesting family in H(D)
is SA, formed by the so-called strongly annular functions. By definition, a
function f ∈ H(D) belongs to SA provided that

lim sup
r→1

min{|f(z)| : |z| = r} = +∞.

For the sake of convenience, we establish the next notation. Denote by Σ the
set of all strictly increasing sequences σ = {rn}n≥1 ⊂ (0, 1) with rn → 1. If σ
is as before, we set C(σ) :=

⋃∞
n=1 rnT, where T := {z : |z| = 1}. Then f ∈ SA

if and only if there is σ = {rn}n≥1 ∈ Σ such that limn→∞min{|f(z)| : |z| =
rn} = +∞, or equivalently, lim |z|→1

z∈C(σ)

|f(z)| = +∞.

There is an extensive literature on this kind of functions, see for instance
[6], [12], [13], [14], [15], [16], [18], [19], [20], [25], [26], [27], [28], [29], [30] and
the references contained in them. The study of SA is motivated by the search
of functions in H(D) having fast radial growth. Observe that there is not
any function f ∈ H(D) such that lim|z|→1 |f(z)| = +∞. Indeed, by way of
contradiction, assume that f is one of such functions. Then the set of zeros of
f form a compact subset of D. By the analytic continuation principle, this set
of zeros is finite. Let P be a polynomial whose zeros are exactly those of f ,
counting multiplicities. It follows that P/f ∈ H(D) and, since P is bounded
on D, lim|z|→1 |P (z)/f(z)| = 0. By the maximum modulus principle, P/f ≡ 0,
which is clearly impossible.

Once the existence of strongly annular functions is established, the next
natural step is to study the topological nature and the size of SA. This was
carried out by Bonar and Carroll [13], who proved in 1975 that SA is a dense
Gδ (hence residual) subset of H(D). Therefore it can be said that SA is topo-
logically large. But, what can be asserted about its algebraic structure and
size? It is plain that SA is not even a vector space. In recent years, a plethora
of papers have been published stating the existence of large algebraic struc-
tures within nonlinear sets. To this respect, the following notions have been
recently introduced. Assume that X is a topological vector space and that µ
is a cardinal number. Then a subset A of X is called

• lineable [3] if A ∪ {0} contains an infinite dimensional vector subspace,
• µ-lineable [3] if A ∪ {0} contains a µ-dimensional vector subspace,
• dense-lineable or algebraically generic [7] whenever A∪{0} contains a dense

vector subspace of X,
• maximal dense-lineable [10] if A∪ {0} contains a dense vector subspace M

of X with dim(M) = dim(X), and
• algebrable ([4] and [5]) if X is a function space and A ∪ {0} contains some

infinitely generated algebra.

See also [1] and [22]. Recall that a vector space M of functions is said to be an
algebra provided that fg ∈ M if f, g ∈ M . Clearly, maximal dense-lineability
implies dim(X)-lineability plus dense lineability, but the converse is not true.
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It follows from the definition that if a strongly annular function has a radial
limit, the limit must be infinity. Consequently, by Fatou’s theorem, no function

in the classical Hardy spaces Hp(D) := {f ∈ H(D) : sup0≤r<1

∫ 2π

0
|f(reiθ)|p dθ

< +∞} (see e.g. Rudin [31]) can belong to SA. Nevertheless, in 2007 Re-
dett [30] was able to construct a strongly annular function in each weighted
Bergman space Apα(D) (0 < p < +∞, α > −1).

Our aim in this paper is to establish that SA is not only topologically
large, but also algebraically large, in the sense of the above definitions. This
will be accomplished in Section 4. Section 2 will be devoted to give the neces-
sary background. In Section 3, residuality is reinforced and examined within
certain subspaces of H(D). Finally, in Sections 5 and 6 we extend our results
to weighted Bergman spaces and to the space of entire functions.

2 Preliminary results

A number of preliminary assertions will be used in due course. We begin
with a simple observation. If X is a separable infinite-dimensional F-space then
Baire’s theorem implies that dim(X) = c, the cardinality of the continuum.
Hence c is the maximal dimension allowed for any subspace of X. For instance,
dim(H(D)) = c.

The following statement on lineability was established in Bernal [10, Lemma
2.1], which in turn is a strengthening of Theorem 2.1 in [9]; see also Aron et
al. [2, Theorem 2.2 and p. 152] for related results.

Lemma 1 Assume that X is a metrizable separable topological vector space.
Suppose that Γ is a family of linear subspaces of X such that

⋂
S∈Γ S is dense

in X and
⋂
S∈Γ (X \ S) is µ-lineable, where µ is an infinite cardinal number.

Then
⋂
S∈Γ (X \ S) ∪ {0} contains a dense µ-dimensional vector subspace.

In the next elementary lemma one meets the nice notion of “stronger than”,
coined by Aron, Garćıa, Pérez and Seoane in [2].

Lemma 2 Suppose that the following holds:

(a) (X, τ0) is a topological vector space.
(b) A is a dense Gδ subset of X.
(c) Y is a vector subspace of X and τ1 is a topology on Y such that (Y, τ1) is

a topological vector space and τ1 is finer than τ0|Y .
(d) There is a τ1-dense subset D of Y such that A is stronger than D, that

is, A+D ⊂ A.
(e) A ∩ Y 6= ∅.
Then A ∩ Y is a dense Gδ subset of (Y, τ1).

Proof According to (b), there are τ0-open sets Gn (n ≥ 1) with A =
⋂∞
n=1Gn.

Then A ∩ Y =
⋂∞
n=1(Gn ∩ Y ), which is a τ1-Gδ subset of Y because of (c).

From (e), there is x0 ∈ A ∩ Y and, by (d), x0 + D ⊂ A ∩ Y . But x0 + D is
τ1-dense in Y . Consequently, the same holds for A ∩ Y . �



4 Bernal and Bonilla

If ϕ : D→ (0,+∞) is continuous and σ ∈ Σ, we define

SA(ϕ) :=

{
f ∈ H(D) : lim sup

r→1
min{ |f(z)|

ϕ(z)
: |z| = r} = +∞

}

and SA(ϕ, σ) :=

{
f ∈ H(D) : lim

|z|→1
z∈C(σ)

|f(z)|
ϕ(z)

= +∞

}
.

Then it is plain that SA(ϕ) =
⋃
σ∈Σ SA(ϕ, σ) and that SA(1) = SA.

The following assertion will be employed to study dense-lineability. Recall
that if A ⊂ C then f ∈ H(A) means that there is an open set G = G(f) ⊃ A
such that f ∈ H(G) := {holomorphic functions on G}.

Lemma 3 Assume that ϕ : D→ (0,+∞) is a continuous function satisfying

lim
|z|→1

logϕ(z)

log 1
1−|z|

= +∞. (1)

If f ∈ SA(ϕ) and g ∈ H(D) \ {0} then fg ∈ SA.

Proof Fix f, g as in the statement. Then we can choose a connected open set
with G ⊃ D, g ∈ H(G) and g 6≡ 0 in G. From the analytic continuation
principle one derives that there are only finitely many zeros of g on D. Hence
we can assume that g possesses zeros z1, . . . , zp in D and zeros w1, . . . , wq on
T, with respective multiplicities m1, . . . ,mp, n1, . . . , nq (other cases are easier
to handle). Then g = PQh, where h ∈ H(G), h lacks zeros in D and P (z) :=∏p
k=1(z − zk)mk , Q(z) :=

∏q
k=1(z − wk)nk . By hypothesis, f ∈ SA(ϕ, σ) for

some sequence σ = (rn) ∈ Σ. Let n0 be such that rn > max{|z1|, . . . , |zp|} for
all n ≥ n0, and choose α, β > 0 with |h(z)| > α (z ∈ D) and |z − zk| > β
(|z| = rn, n ≥ n0; k = 1, . . . , p). If |z| = rn with n ≥ n0 we have

|f(z)g(z)| = |h(z)||P (z)||Q(z)|ϕ(z) · |f(z)|
ϕ(z)

> α

p∏
k=1

|z − zk|mk
q∏

k=1

(1− |z|)nkϕ(z) · |f(z)|
ϕ(z)

> αβdegree (P )(1− |z|)degree (Q)ϕ(z) · |f(z)|
ϕ(z)

.

By (1), lim|z|→1(1−|z|)Nϕ(z) = +∞ for all N ∈ N := {1, 2, 3, . . . }. But recall
that lim |z|→1

z∈C(σ)

|f(z)|/ϕ(z) = +∞. Therefore lim |z|→1
z∈C(σ)

|f(z)g(z)| = +∞, that

is, fg ∈ SA. �

Finally, Lemma 4 will be needed to examine dense-lineability in the context
of entire functions.

Lemma 4 If f is an entire function that is not a polynomial then the family
{fα : α > 0} is linearly independent, where we have set fα(z) := f(αz).
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Proof Let f(z) =
∑∞
n=0 anz

n and suppose, by way of contradiction, that there

is a finite linear combination
∑N
k=1 ckfαk = 0, where αk > 0, ck ∈ C (k =

1, . . . , N) and not all the ck are zero. We can assume that N ≥ 2, α1 < α2 <
· · · < αN and cN 6= 0. Then an(c1α

n
1 + · · · + cNα

n
N ) = 0 (n ∈ N). Since f is

not a polynomial, one can find a sequence {n1 < n2 < · · · < nj < · · · } ⊂ N
such that c1α

nj
1 + · · ·+ cNα

nj
N = 0 (j ∈ N). Therefore

1 = −
N−1∑
k=1

ckc
−1
N (αkα

−1
N )nj −→ 0 (j →∞).

This is the desired contradiction. �

3 Residuality

We start with a refinement of the residuality of the family SA. In fact, we can
fix the sequence of radii supporting big values of |f | as well as the rate of growth
so that residuality is kept. As usual, we denote B(a, r) = {z ∈ C : |z−a| < r}
and B(a, r) = {z ∈ C : |z − a| ≤ r} (a ∈ C, r > 0).

Theorem 1 Let be prescribed a continuous function ϕ : D → (0,+∞) and a
sequence σ ∈ Σ. Then the set SA(ϕ, σ) is residual in H(D). Consequently,
SA(ϕ) is also residual in H(D).

Proof Let σ = (rn), so that 0 < r1 < r2 < · · · → 1. For every pair m,n ∈ N
we denote Sm,n := {f ∈ H(D) : |f(z)| > nϕ(z) for all z ∈ rmT}. If we set
Sn =

⋃
m≥n Sm,n (n ∈ N) then one can express

SA(ϕ, σ) =

∞⋂
n=1

Sn.

For each compact set K ⊂ D and each continuous function f on D we set
‖f‖K := sup{|f(z)| : z ∈ K} and m(f,K) := min{|f(z)| : z ∈ K}. A basic
open neighborhood of a function g ∈ H(D) has the form V (g,K, ε) = {h ∈
H(D) : ‖h− g‖K < ε}, where ε > 0 and K is a compact subset of D.

Fix m,n ∈ N. If g ∈ Sm,n then δ := m(|g| − nϕ, rmT) > 0. If h ∈
V (g, rmT, δ) then we have for all z ∈ rmT that −|h(z)|+|g(z)| ≤ |h(z)−g(z)| <
m(|g| − nϕ, rmT), so

|h(z)| > |g(z)| −m(|g| − nϕ, rmT) ≥ |g(z)| − |g(z)|+ nϕ(z) = nϕ(z).

Hence V (g, rmT, δ) ⊂ Sm,n, which proves that Sm,n is open. Therefore every
Sn is open. By Baire’s theorem it is enough to show that each Sn is dense.
To this end, fix a basic open set V (g,K, ε). Choose m ≥ max{n, 3} such that
K ⊂ B(0, rm−2). Since rm−2 < rm−1 < rm, we can select p ∈ N satisfying(rm−2

rm−1

)p
<

ε

‖ϕ‖rmT
and

( rm
rm−1

)p
> n+

‖g‖rmT

‖ϕ‖rmT
.
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Define f(z) := g(z)+(z/rm−1)p‖ϕ‖rmT. Then ‖f−g‖K ≤ (rm/rm−1)p‖ϕ‖rmT <
ε, so f ∈ V (g,K, ε). Furthermore, for all z ∈ rmT,

|f(z)| > (rm/rm−1)p‖ϕ‖rmT − |g(z)|
> n‖ϕ‖rmT + ‖g‖rmT − |g(z)| ≥ nϕ(z).

Thus, f ∈ V (g,K, ε) ∩ Sn, which proves the density of Sn. �

The last result will be of help in Section 4 to find algebraic genericity inside
SA.

Remark 1 With minor modifications in the proof, one can obtain the following
enhancement of Theorem 1. Let ϕ : D→ (0,+∞) is continuous and 0 < s1 <
r1 < s2 < r2 < · · · < sn < rn < · · · −→ 1. If we set A :=

⋃∞
n=1{z : sn < |z| <

rn} and

SA(ϕ,A) :=
{
f ∈ H(D) : lim

|z|→1
z∈A

|f(z)|
ϕ(z)

= +∞
}
,

then SA(ϕ,A) is residual in H(D). Observe that for each function f ∈ SA(ϕ)
there is a set A = A(f) as before such that f ∈ SA(ϕ,A); indeed, it suffices
to apply the continuity of f . Note also that sequences (rn), (sn) can be se-
lected so as to their corresponding set A is rather large, in the sense that its
radial boundary density ω-dens(A) is maximal (that is, equal to 1). Here ω-

dens(A) := limr→1
λ(A ∩ {z : r < |z| < 1})

π(1− r2)
, whenever this limit exists, where

λ denotes bidimensional Lebesgue measure. For related results (with different
classes of functions), see Belna and Redett [8].

We finish this section by extending residuality to other spaces of holomor-
phic functions in D. Among these well-behaved spaces, we find the weighted
Bergman spaces Apα(D). For every p ∈ (0,+∞) and every α ∈ (−1,+∞) the
space Apα(D) is defined (see e.g. [23]) as the class of functions f ∈ H(D) for
which

‖f‖p,α :=

(∫ ∫
D
|f(z)|p(1− |z|)α dxdy

)min{1,1/p}

< +∞.

It becomes a separable F-space under the F-norm ‖·‖p,α. If p ≥ 1 (p = 2, resp.),
‖·‖p,α even makesApα(D) a Banach (Hilbert, resp.) space. For α = 0 one obtains
the classical Bergman spaces Ap(D) = {f ∈ H(D) :

∫ ∫
D |f(z)|p dxdy < +∞}.

Theorem 2 Assume that Y is a Baire topological vector space with Y ⊂ H(D)
such that Y is endowed with a topology τ which is finer that τc|Y . Let ϕ : D→
(0,+∞) be continuous, and σ ∈ Σ. We have:

(a) If SA∩Y 6= ∅ and there is a dense subset D of Y such that each function
f ∈ D is bounded on D, then SA ∩ Y is residual in Y .

(b) If SA(ϕ) ∩ Y 6= ∅ and there is a dense subset D of Y such that f/ϕ is
bounded on D for each f ∈ D, then SA(ϕ) ∩ Y is residual in Y .
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(c) If SA(ϕ, σ) ∩ Y 6= ∅ and there is a dense subset D of Y such that f/ϕ is
bounded on D for each f ∈ D, then SA(ϕ, σ) ∩ Y is residual in Y .

Proof Apply Lemma 2 with X := H(D), τ0 := τc, τ1 := τ and D := D. In the
situation of (c), the proof of Theorem 1 reveals that A := SA(ϕ, σ) is a Gδ
subset of X. Clearly A + D ⊂ A. By Lemma 2, SA(ϕ, σ) ∩ Y is a dense Gδ-
subset of Y . Since Y is Baire, SA(ϕ, σ)∩Y is residual in Y . Hence (c) is proved.
Under the hypotheses of (b), there must exist s ∈ Σ such that SA(ϕ, s)∩Y 6= ∅.
From (c), SA(ϕ, s) ∩ Y is residual in Y . Since SA(ϕ, s) ⊂ SA(ϕ), this larger
set is also residual, which proves (b). Part (a) is the special case of (b) when
one takes ϕ ≡ 1. �

Corollary 1 If p ∈ (0,+∞) and α ∈ (−1,+∞) then SA ∩ Apα(D) is residual
in Apα(D).

Proof By Redett’s result [30], SA∩Apα(D) 6= ∅. Just apply Theorem 2(a) with
Y := Apα(D) and D := {polynomials}, and take into account that convergence
in Apα(D) implies convergence in each compact subset of D [23, Prop. 1.1] and
that the polynomials form a dense subset of Apα(D) [23, Prop. 1.3]. �

4 Lineability of SA

We proceed to study the lineability of SA and of subfamilies of it. By
span(Y ) we denote the linear span of a family Y of functions, while 〈f〉 will
stand for the span of {f}, that is, the set {λf : λ ∈ C}.

Theorem 3 SA is maximal dense-lineable in H(D).

Proof Consider the function ϕ(z) := exp 1
1−|z| (z ∈ D). According to Theorem

1, we can select a function f0 ∈ SA(ϕ).

Consider the functions eα(z) := exp(αz) (α > 0) and the set

M := span{eαf0 : α > 0}.

It is clear that M is a vector subspace of H(D). Moreover, dim(M) = c.
Indeed, since the cardinality of (0,+∞) is c, it is enough to prove the linear
independence of the functions eαf0 (α > 0). For this, consider a nontrivial
linear combination

N∑
j=1

ajeαjf0 = 0

where, without loss of generality, we can assume that 0 < α1 < α2 < · · · < αN
and aN 6= 0. Since f0 6≡ 0, the analytic continuation principle guarantees
the existence of an open interval I ⊂ (−1, 1) such that f0(x) 6= 0 for all
x ∈ I. Then, after dividing by f0 and transposing terms, we get aN =
−
∑N−1
j=1 aje

(αj−αN )x (x ∈ I). Now, the analytic continuation principle comes
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again in our help, yielding that the last equality holds for all x ∈ R. Let-
ting x → +∞, we have e(αj−αN )x → 0 (j = 1, . . . , N − 1), hence aN = 0, a
contradiction. Therefore the functions eαf0 (α > 0) are independent.

Fix f ∈ M \ {0}. Then f = f0g, where g is a nonzero linear combination∑N
j=1 ajeαj as before. Since, obviously, ϕ satisfies (1) and g ∈ H(D) \ {0}, it

follows from Lemma 3 that M \ {0} ⊂ SA, whence SA is c-lineable.

To conclude, take X := H(D) and Γ := {〈f〉+P : f ∈ H(D) \SA}, where
P := {polynomials}. Since 0 /∈ SA and the sum of a polynomial and of a
function in H(D)\SA stays in H(D)\SA (i.e. H(D)\SA is stronger than P),
we have on one hand that

⋂
S∈Γ S = P, which is dense in X, and on the other

hand that
⋂
S∈Γ (X \ S) = SA, which is c-lineable. According to Lemma 1,

SA∪{0} contains a dense c-dimensional vector subspace or, that is the same,
SA is maximal dense-lineable. �

In the next assertion, we settle algebrability.

Theorem 4 SA is algebrable.

Proof For f ∈ H(D) the standard notation M(f, r) := max{|f(z)| : |z| = r}
(0 < r < 1) will be used. We start with a function f1 ∈ SA. Then there is a
sequence of radii σ = (rn) ∈ Σ such that limn→∞min{|f1(z)| : z ∈ rnT} =
+∞. Hence f1 ∈ SA(ϕ0, σ), where ϕ0 ≡ 1.

Let ϕ1(z) := expM(f1, |z|). According to Theorem 1, we can select a
function f2 ∈ SA(ϕ1, σ). By induction, assume that for some N ≥ 2 the
functions f1, . . . , fN−1, ϕ0, . . . , ϕN−2 have been already determined. Then we
define ϕN−1(z) := expM(fN−1, |z|) and, again by Theorem 1, one can choose
a function fN ∈ SA(ϕN−1, σ). Therefore we obtain a sequence of functions
(fn) ⊂ H(D) such that fn ∈ SA(ϕn−1, σ) (n ≥ 1), where ϕ0 ≡ 1 and ϕj(z) ≡
expM(fj , |z|) (j ≥ 1). Define M as the algebra generated by the functions fn
(n ∈ N). Our task is to show that (fn) is a minimal system of generators of
M and that each nonzero member of M belongs to SA.

In order to achieve the first part of the task, it is enough to prove that for
each N ≥ 2 the function fN is not algebraically generated by f1, . . . , fN−1.
To do this, assume by way of contradiction that for some N ≥ 2 there exists
a polynomial P (z1, . . . , zN−1) in N − 1 variables without constant term such
that fN = P (f1, . . . , fN−1). Denote by m the number of monomials forming
P , by α the maximum of the moduli of the coefficients of P , and by p the
degree of P . Then

|fN (z)| = |P (f1(z), . . . , fN−1(z))| ≤ mα
[N−1∏
j=1

(1 +M(fj , |z|))
]p

(z ∈ D).

From the construction of f1, . . . , fN we can choose n0 ∈ N satisfying

M(fN−1, |z|) ≥M(fj , |z|) (j = 1, . . . , N − 1) and
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|fN (z)| ≥ expM(fN−1, |z|) ≥ 2mα(1 +M(fN−1, |z|))pN

for all z ∈ A :=
⋃
n≥n0

rnT. It follows that, if z ∈ A,

1 ≤ mα (1 +M(fN−1, |z|))pN

expM(fN−1, |z|)
≤ 1

2
,

so providing the desired contradiction.

Finally, fix f ∈ M \ {0}. Then there is N ∈ N and a nonzero polynomial
P (z1, . . . , zN ) (without constant term, but this is inmaterial) such that f =
P (f1, . . . , fN ). We proceed by induction on N . If N = 1 then f = P (f1) =∑m
k=0 akf

k
1 , say, where m ∈ N and am ∈ C \ {0}. If m = 1 then it is trivial

that f ∈ SA. If m ≥ 2 then, for z ∈ C(σ), we have

|f(z)| ≥ |am||f1(z)|m
(
1−

m−1∑
k=0

|ak||f1(z)|k−m
)
−→ +∞ (|z| → 1)

because |f1(z)| → +∞ as z ∈ C(σ), |z| → 1. Therefore f ∈ SA(1, σ). As-
sume now that, for some N ≥ 2, any nonconstant polynomial Q of N − 1
variables satisfies Q(f1, . . . , fN−1) ∈ SA(1, σ). Let f = P (f1, . . . , fN ), where
P is as in the beginning of this paragraph. Then there are m ∈ N and
polynomials Q1, . . . , Qm of N − 1 variables with Qm 6≡ 0 such that f =∑m
k=0Qk(f1, . . . , fN−1)fkN . By the induction hypothesis, either Qm is cons-

tant or Qm(f1, . . . , fN−1) ∈ SA(1, σ). Choose n0 ∈ N so large that fN (z) 6= 0
if |z| = rn and n ≥ n0. Then

|f(z)| = |Qm(f1(z), . . . , fN−1(z))fN (z)m| ·
(
1−

m−1∑
k=0

Qk(f1, . . . , fN−1)

fN (z)m−k
)

for such points z. But, in view of the exponential growth of fN with respect
to f1, . . . , fN−1 on

⋃
n≥n0

rnT, one gets that the last sum tends to zero as
|z| → 1 (z ∈ C(σ)). Moreover, it is plain that |Qm(f1, . . . , fN−1)fmN | tends
to +∞ along C(σ). Hence f ∈ SA(1, σ). This completes induction and shows
that M \ {0} ⊂ SA(1, σ) ⊂ SA, which had to be proved. �

Remark 2 With slight modifications of the proofs of Theorems 3–4, it is not
difficult to demonstrate the following improvement: Assume that ϕ : D →
(0,+∞) is continuous and that σ ∈ Σ. Then SA(ϕ, σ) (and so SA(ϕ)) is
maximal dense-lineable and algebrable.

Remark 3 This paper deals with special unbounded analytic (hence continu-
ous) functions on D or C under the focus of lineability. To this respect, families
of unbounded continuous functions on more general topological spaces have
been already studied from this point of view. Namely, Garćıa, Mart́ın and
Seoane [21, Theorem 4.1] have recently proved that, in every non-compact
metric space Ω, the set of all continuous unbounded real functions defined on
it is algebrable.
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5 Bergman spaces

The purpose of this section is to analyze lineability of SA in the context of
weighted Bergman spaces. The next lemma, which is due to Buckley, Koskela
and Vukotic [17], will be employed (as in Redett [30]) to construct strongly
annular functions in this setting. Functions involved in it are associated to
lacunary series.

Lemma 5 Let p ∈ (0,+∞), α ∈ (−1,+∞), (pn) ⊂ N with pn+1 > 2pn
(n ≥ 1), and f(z) =

∑∞
n=0 anz

pn ∈ H(D). Then f ∈ Apα(D) if and only if∑∞
n=1 |an|pp−α−1n < +∞.

We establish our result in the next theorem.

Theorem 5 The set SA ∩Apα(D) is dense-lineable in Apα(D).

Proof Suppose that we have already proved that SA∩Apα(D) is lineable. Then
we can argue as in the final part of the proof of Theorem 3, by using Lemma 1
with µ = card(N), X := Apα(D) and Γ := {〈f〉+P : f ∈ Apα(D) \ SA}; again,
we use the fact that polynomials form a dense subset of Apα(D) [23, Prop. 1.3].
Then we conclude the dense-lineability of SA∩Apα(D). Alternatively, [2, The-
orem 2.2 for F-spaces] can also be used to prove dense-lineability.

Therefore we have only to show the lineability of SA ∩ Apα(D). In some
steps of the proof we will follow (and modify) the nice construction given by
Redett in [30].

We proceed by induction. Choose p1 = a1 = 2 and 0 < r1 < 1 so that
a1r

p1
1 > 1. Since the series

∑∞
n=1 nr

n
1 converges, one can select m1 ∈ N so that∑∞

n=m1
nrn1 < a1r

p1
1 − 1. Then

a1r
p1
1 > 1 +

∞∑
n=m1

nrn1 .

Observe that ap1p
−α−1
1 < ap1 = 2p. Next, we choose a positive integer a2 >

max{2(1 +a1),m1}. With a2 fixed, select p2 ∈ N such that p2 > max{2p1, a2}
and ap2p

−α−1
2 < 2p−a1p−α−11 . Therefore

∑2
n=1 a

p
np
−α−1
n < 2p. Since a2 > 2(1+

a1) and a2x
p2 → a2 as x→ 1, we can pick r2 ∈ (r1, 1) with a2r

p2
2 > 2(1 + a1).

As before, the series
∑∞
n=1 nr

n
2 converges. Then one can select m2 ∈ N such

that
∑∞
n=m2

nrn2 < (1/2)a2r
p2
2 − (1 + a1), whence

a2r
p2
2 > 2

(
1 + a1 +

∞∑
n=m2

nrn2
)
.

By induction, assume that a1, . . . , an, p1, . . . , pn, r1, . . . , rn,m1, . . . ,mn have
already been selected in the above manner.

At step n + 1, we choose a positive integer an+1 > max{(n + 1)(1 +∑n
k=1 ak),mn}. Since

∑n
k=1 a

p
kp
−α−1
k < 2p, one can select a positive integer
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pn+1 > max{2pn, an+1} such that an+1p
−α−1
n+1 < 2p −

∑n
k=1 a

p
kp
−α−1
k . There-

fore
n+1∑
k=1

apkp
−α−1
k < 2p. (3)

In addition, since an+1x
pn+1 → an+1 as x → 1, we may choose rn+1 ∈

(rn, 1) such that an+1r
pn+1

n+1 > (n + 1)(1 +
∑n
k=1 ak). Once more, the con-

vergence of
∑∞
k=1 kr

k
n+1 ensures the existence of a number mn+1 ∈ N with∑∞

k=mn+1
krkn+1 <

an+1r
pn+1
n+1

n+1 − (1 +
∑n
k=1 ak), whence

an+1r
pn+1

n+1 > (n+ 1)
(
1 +

n∑
k=1

ak +

∞∑
k=mn+1

krkn+1

)
. (4)

Next, we fix a countable collection {i(j, k)}k≥1 (j ∈ N) of pairwise disjoint
strictly increasing sequences of natural numbers and define

fj(z) :=

∞∑
k=1

ai(j,k)z
pi(j,k) (j ∈ N). (5)

Since pn+1 > 2pn and, thanks to (3), the series
∑∞
n=1 a

p
np
−α−1
n converges, it

follows from Lemma 5 that each fj ∈ Apα(D). Define

M := span{fj : j ∈ N}.

Since p1 < p2 < p3 < · · · and the mapping i : N × N → N is injective, the
family {fj : j ∈ N} is linearly independent. Thus M is an infinite-dimensional
vector subspace of Apα(D). Our task is to show that M \ {0} ⊂ SA.

Fix f ∈ M \ {0}. Then there are N ∈ N and scalars c1, . . . , cN such that

cN 6= 0 and f =
∑N
j=1 cjfj . We can assume without loss of generality that

N ≥ 2 and cN = 1. Let α := max{|cj | : 1 ≤ j ≤ N − 1}. It follows from (5)
that for all z with |z| = ri(N,k) we have

|f(z)| ≥ |cNfN (z)| −
N−1∑
j=1

|cj ||fj(z)| ≥ |fN (z)| − α
N−1∑
j=1

|fj(z)|

≥ ai(N,k)|z|pi(N,k) −
∞∑
ν=1
ν 6=k

ai(N,ν)|z|pi(N,ν) − α
N−1∑
j=1

|fj(z)|

= ai(N,k)r
pi(N,k)
i(N,k) −

∞∑
ν=1
ν 6=k

ai(N,ν)r
pi(N,ν)
i(N,k) − α

N−1∑
j=1

|fj(z)|

≥ ai(N,k)r
pi(N,k)
i(N,k) − (1 + α)

∞∑
n=1

n6=i(N,k)

anr
pn
i(N,k).
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Fix k0 ∈ N so large that i(N, k) ≥ 1 + α for all k ≥ k0. Then (4) drives us to

|f(z)| ≥ i(N, k) + i(N, k)

i(N,k)−1∑
n=1

an + i(N, k)

∞∑
n=mi(N,k)

nrni(N,k)

− (1 + α)

i(N,k)−1∑
n=1

an − (1 + α)

∞∑
n=i(N,k)+1

anr
pn
i(N,k)

≥ i(N, k) + i(N, k)

∞∑
n=mi(N,k)

nrni(N,k) − (1 + α)

∞∑
n=i(N,k)+1

anr
an
i(N,k)

≥ i(N, k) + (i(N, k)− 1− α)

∞∑
n=mi(N,k)

nrni(N,k),

where we have used that pn ≥ an, an ∈ N for all n ≥ 1 and that an ≥
ai(N,k)+1 ≥ mi(N,k) for all n ≥ i(N, k) + 1. Consequently, |f(z)| ≥ i(N, k)
whenever |z| = ri(N,k) and k ≥ k0. This ensures limk→∞min{|f(z)| : |z| =
ri(N,k)} = +∞, which implies f ∈ SA. �

Remark 4 The same approach of the proof of Theorem 5 shows that the vector
space M̃ := {

∑∞
j=1 cjfj : (cj) ⊂ C is bounded}, which is larger than M , also

satisfies M̃ \ {0} ⊂ SA ∩Apα(D).

6 Entire functions

The results of sections 3–4 can be extended to the space H(C) of entire
functions (again, H(C) is c-dimensional and becomes an F-space when en-
dowed with the compact-open topology), but there is an important different
nuance. Namely, entire functions f with limz→∞ |f(z)| = +∞ do exist. These
functions are exactly the nonconstant polynomials. Nevertheless, we can define
analogously the family SAe of strongly annular entire functions as

SAe := {f ∈ H(C) : lim sup
r→∞

min{|f(z)| : |z| = r} = +∞}.

Hence SAe ⊃ {nonconstant polynomials}, so SAe is at least dense in H(C).
Incidentally, we obtain that SAe is lineable because SAe ⊃ {polynomials P
with P 6≡ 0 and P (0) = 0}. But much more is true: see Theorem 7 below.

A specially intriguing result is the one given in Proposition 1 below (see
Boas [11, p. 39]) that is due to Wiman. Recall that, if ρ ∈ (0,+∞) and f is
entire, the ρ-type of f is defined as

τρ(f) = lim sup
r→∞

logM(f, r)

rρ
,

where M(f, r) := max{|f(z)| : |z| = r} (r > 0). In our terminology, Wiman’s
theorem reads as follows.
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Proposition 1 If f is a nonconstant entire function with τ1/2(f) = 0 then
f ∈ SAe.

Let us settle appropriate notation as passing from D to C. Assume that
ϕ : C→ (0,+∞) is a continuous function. Let Σ∞ be the family of all strictly
increasing unbounded sequences σ = (rn) ⊂ (0,+∞). For each σ ∈ Σ∞ we set
D(σ) :=

⋃∞
n=1 rnT. Denote

SAe(ϕ) := {f ∈ H(C) : lim sup
r→∞

min{ |f(z)|
ϕ(z)

: |z| = r} = +∞} and

SAe(ϕ, σ) := {f ∈ H(C) : lim
z→∞
z∈D(σ)

|f(z)|
ϕ(z)

= +∞} (σ ∈ Σ∞).

It is evident that SAe(1) = SAe and SAe(ϕ) =
⋃
σ∈Σ∞

SAe(ϕ, σ).

A closer look at the proofs of Theorems 1 and 4 together with Remark
2 reveals that they also work for entire functions, after easy modifications.
Consequently, we only state the results, leaving the proof to the interested
reader.

Theorem 6 Let σ ∈ Σ∞ and ϕ : C→ (0,+∞) be continuous. Then SA(ϕ, σ)
(hence SA(ϕ) and so SA) is residual in H(C) and algebrable.

Nevertheless, the study of maximal dense-lineability for SAe requires ad-
ditional work, because the proof of Theorem 3 cannot be adapted so easily
to H(C): indeed, the functions eα (α > 0) satisfy limr→∞min{|eα(z)| : |z| =
r} = limr→∞ e−αr = 0, which is far from being useful to obtain vector spaces
inside SAe ∪ {0}. Moreover, there is no analogue to Lemma 3 at our disposal.
This forces us to proceed under a different focus. Recall that the growth order
and the lower growth order of an entire function f are respectively defined

as ρ(f) = lim supr→∞
log logM(f,r)

log r and λ(f) = lim infr→∞
log logM(f,r)

log r . In this

section we set m(f, r) := min{|f(z)| : |z| = r} (r > 0). The following asser-
tion, which is due to Pólya (see [24, pp. 137–144]) and is more precise than
Proposition 1, will be needed to prove our statement.

Lemma 6 If f is an entire function with ρ(f) ∈ (0, 1) and ω < cos(πρ), then
there is a sequence (rn) ∈ Σ∞ such that m(f, rn) > M(f, rn)ω for all n ≥ 1.

In fact, we obtain a result stronger than the expected one. For each γ > 0,
we denote ϕγ(z) := exp(|z|γ) (z ∈ C).

Theorem 7 For each γ ∈ (0, 1/2), the family SAe(ϕγ) is maximal dense-
lineable in H(C). Hence SAe is maximal dense-lineable in H(C).

Proof Fix γ ∈ (0, 1/2) and select γ′ ∈ (γ, 1/2). Observe that SAe(ϕγ) = {f ∈
H(C) : lim supr→∞

m(f,r)
er
γ = +∞}. For any function g(z) =

∑∞
n=1 anz

n ∈
H(C), the quantities ρ(g) and λ(g) satisfy

lim inf
n→∞

n log n

log(1/|an|)
≤ λ(g) ≤ ρ(g) = lim sup

n→∞

n log n

log(1/|an|)
, (2)
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see Boas [11, Chap. 2].

Now, we take

g0(z) :=

∞∑
n=1

n−n/γ
′
zn.

For every α > 0, denote fα(z) := g0(αz). By Lemma 4, the set

M := span {fα : α > 0}

is a vector subspace of H(C) satisfying dim(M) = c. Fix f ∈ M \ {0}. Then
there are N ∈ N, scalars c1, . . . , cN with cN 6= 0 and numbers 0 < α1 < · · · <
αN satisfying f = c1fα1 + · · ·+ cNfαN . Then f(z) =

∑∞
n=1 bnz

n, where bn =

n−n/γ
′
cNα

n
N (1+

∑N−1
k=1 (ck/cN )(αk/αN )n). Therefore log(1/|bn|) ∼ (n/γ′) log n

(n→∞), so limn→∞
n logn

log(1/|bn|) = γ′. According to (2), ρ(f) = γ′ = λ(f), from

which one derives that limr→∞
log logM(f,r)

log r = γ′. In particular, if we fix γ′′ ∈

(γ, γ′), we get M(f, r) > er
γ′′

asymptotically. Since ρ(f) = γ′ ∈ (0, 1/2) ⊂
(0, 1), an application of Lemma 6 (with ω := (1/2) cos(πγ′) > 0) yields that, for

some sequence (rn) ∈ Σ∞, m(f, rn) > M(f, rn)ω > eωr
γ′′
n . But eωr

γ′′

> rer
γ

for r large enough. Thus, there is n0 ∈ N such that m(f, rn)/er
γ
n > rn if

n ≥ n0. Hence lim supr→∞m(f, r)/er
γ

= +∞, i.e. f ∈ SAe(ϕγ). Therefore
M \ {0} ⊂ SAe(ϕγ). Consequently, SAe is c-lineable.

Finally, we can conclude as in the proof of Theorem 3. Let us take X :=
H(C) and Γ := {〈f〉 + P : f ∈ H(C) \ SAe(ϕγ)}, where P is the set of
polynomials. Since 0 ∈ H(C) \ SAe(ϕγ), we derive that

⋂
S∈Γ S = P, which

is dense in X. Furthermore,
⋂
S∈Γ (X \ S) = SAe(ϕγ), because the sum of

a polynomial and a member of SAe(ϕγ) stays in SAe(ϕγ) (again we meet
the notion of “stronger than” given in [2]). From Lemma 1, we deduce the
existence of a dense c-dimensional vector subspace contained, except for zero,
in SAe(ϕγ). This finishes the proof. �
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