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Backward Φ-shifts and universality

by

Luis Bernal-González

Abstract

In this paper we consider spaces of sequences which are valued in a

topological space E and study generalized backward shifts associated to

certain selfmappings of E. We characterize their universality in terms

of dynamical properties of the underlying selfmappings. Applications to

hypercyclicity theory are given. In particular, Rolewicz’s theorem on hy-

percyclicity of scalar multiples of the classical backward shift is extended.

Key words and phrases: sequence space, universal mapping, backward Φ-

shift, Φ-product map, lp spaces, hypercyclic operator, Rolewicz’s theorem.

1 Introduction

In 1969 Rolewicz [26] was able to prove that for any scalar c with |c| > 1 (and

only for these scalars) the multiple cB of the backward shift B on the sequence

spaces lp (1 ≤ p < ∞) and on c0 is universal, that is, there exists some vector

with dense orbit. The operator B is defined as

B(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

Classical and weighted backward shift operators have been extensively studied

during the last two decades in connection with hypercyclicity and chaos, see for

instance [12], [22], [27], [3], [7], [14], [19], [15], [20], [18], [21], and the references

contained in them. Interest in shift operators comes, among other reasons, from

the fact that many classical operators can be regarded as such operators. For in-

stance, the differentiation operator Df = f ′ on the space H(C) of entire functions

2



on the complex plane C may be viewed as the weighted backward shift

D : (a0, a1, a2, . . .) 7→ (a1, 2a2, 3a3, . . .).

as soon as H(C) is considered as the space of complex sequences (a0, a1, . . .)

with |an|1/n → 0 (n → ∞). Here the sequence of weights is 1, 2, 3, . . .. In [27],

[15], [18] and [21], among others, the universality of weighted backward shift

operators acting on certain sequence spaces has been completely characterized.

In particular, Grosse-Erdmann considers rather general sequence spaces in [15].

A. Peris [25] studied universality and chaos (in the sense of Devaney [9]; in

usual settings, chaos is equivalent to universality plus existence of a dense set

of periodic points, see [2]) of polynomials P : lq → lq given by P (x1, x2, . . .) =

(p(x2), p(x3), . . .), where p : C → C is a complex polynomial. This study was

extended to Köthe sequence spaces in [20, Caṕıtulo 4] for the cases p(z) = zm

and p(z) = (z + 1)m − 1.

In this paper we are concerned with the dynamics of a class of (unweighted,

this time) backward shift operators, namely, the Φ-shifts, which contains the

previously cited cases. A Φ-shift is a map Bf : S → S given by

Bf (x1, x2, . . .) := (f(x2), f(x3), . . .),

where S is a certain subspace of EN, E is a topological space, and f : E → E

is a continuous selfmap, see Section 3. We also consider the related notion of

Φ-product map Πf . Both kinds of maps will be completely characterized on lp

spaces. Our main goal is to characterize the “wild behavior” of a Φ-shift Bf in

terms of the dynamics of f . This will be done in Section 4. Finally, we provide

in Section 5 some applications to the theory of hypercyclic operators.

2 Universality, discrete dynamical systems and

sequence spaces

The current section is devoted to fix some notation and to collect some defini-

tions and known results coming from Topological Dynamics and from elementary
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theory of spaces of sequences. We refer the interested reader to the excellent sur-

veys [14], [16] and [8] for a summary of concepts, history and statements dealing

with universality and hypercyclicity.

Assume that X and Y are topological spaces and that Tn : X → Y (n ∈ N :=

{1, 2, 3, . . .}) is a sequence of continuous mappings. Then (Tn) is said to be

universal whenever there exists some element x ∈ X whose orbit

{Tnx : n ∈ N}

under (Tn) is dense in Y . In this case x is called a universal element for (Tn).

Observe that the universality of (Tn) forces Y to be separable. The sequence (Tn)

is called densely universal when the set U((Tn)) of universal elements for (Tn) is

dense in X. Finally, (Tn) is said to be topologically transitive (in the sense of

Birkhoff) provided that to every pair of nonempty open subsets U of X and V

of Y there exists some n ∈ N with Tn(U) ∩ V 6= ∅.
Assume now that X = Y and that T : X → X is a continuous selfmapping.

From the point of view of the behaviour of the sequence (T ◦n) of its iterates

–that is T ◦1 = T, T ◦2 = T ◦ T, . . .– T can be considered as a “discrete dynamical

system”. Then T is called universal whenever the sequence (T ◦n) is universal;

in this case the set U(T ) := U((T ◦n)) of universal elements for T is dense in

X; indeed, if x0 is universal for T then T (and so each T ◦m) has dense range,

hence each point T ◦mx0 is universal. A continuous selfmapping T is said to be

topologically transitive whenever (T ◦n) is topologically transitive. Finally, T is

called weakly mixing provided that the mapping

T × T : (x, y) ∈ X ×X 7→ (Tx, Ty) ∈ X ×X

is topologically transitive, where X×X is assumed to carry the product topology.

Furstenberg [11, Proposition II.3] proved that in this case the J-product map

T × T × · · · × T (J times): (x1, . . . , xJ) ∈ XJ 7→ (Tx1, . . . , TxJ) ∈ XJ is also

transitive for every J . And Banks [1, Lemma 5] has shown that T is weakly

mixing if for given nonempty open subsets U1, U2, V ⊂ X there is an N ∈ N such

that T ◦N(V ) ∩ Uj 6= ∅ for j = 1, 2. Therefore we have that T is weakly mixing

if and only if for given finitely many nonempty open subsets U1, . . . , UJ , V ⊂ X

there is an N ∈ N such that T ◦N(V ) ∩ Uj 6= ∅ for j = 1, . . . , J . This motivates

the following definition, which will be used in Section 4.
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Definition 2.1. Assume that fn : E → E (n ∈ N) is a sequence of continuous

selfmappings on a topological space E and that a is a point in E. We say that

(fn) is weakly mixing at a if and only if for given finitely many nonempty open

sets U1, . . . , Um, V such that a ∈ V there exists N ∈ N satisfying

fN(V ) ∩ Uj 6= ∅ for all j = 1, . . . ,m.

And we say that a continuous selfmapping f : E → E is weakly mixing at a

whenever its sequence (f ◦n) of iterates is weakly mixing at a.

The following universality criterion will reveal useful in Section 4. It can be

found in, for instance, [14, Section 1a] (see also [13, Kapitel 1]).

Theorem 2.1. Suppose that X, Y are topological spaces, in such a way that X

is a Baire space and Y is second-countable. Let (Tn) be a sequence of continuous

mappings from X to Y . Then the following assertions are equivalent:

(a) The sequence (Tn) is densely universal.

(b) The sequence (Tn) is topologically transitive.

In a linear setting, that is, when X, Y are topological vector spaces on K (:= C
or the real line R) and Tn (n ∈ N) (or T ) are linear and continuous, the words

universal and hypercyclic are synonymous. By an operator we mean a continuous

linear selfmapping on a topological vector space.

By ω we denote, as usual, the space of all scalar sequences ω = KN. It becomes

a Fréchet space (= complete metrizable locally convex space) when it is endowed

with the metric

d(x, y) =
∞∑
j=1

1

2j
|xj − yj|

1 + |xj − yj|
,

where x = (xj) and y = (yj). For 0 < p <∞ we consider the lp spaces

lp = {x = (xj) ∈ ω :
∞∑
j=1

|xj|p <∞}.

If µ(p) = p (p ≥ 1), µ(p) = 1 (p < 1) and ‖x‖p := (
∑∞

j=1 |xj|p)1/µ(p) then for

p ≥ 1 the space lp becomes a Banach space under the norm ‖ · ‖p, while for p < 1
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the space lp is an F-space (= complete metrizable linear space) under the metric

d(x, y) = ‖x− y‖p. Recall also that the space c0 = {x = (xj) ∈ ω : limj→∞ xj =

0} is a Banach space when it is endowed with the norm ‖x‖0 := supj∈N |xj|.
Generalizations of this kind of sequences spaces will be considered in Section 3.

3 Φ-product maps and backward Φ-shifts

In this section and in the next one E will denote a Hausdorff topological space,

and S will stand for a subset of the space EN of E-valued sequences x = (xj), so

xj ∈ E for all j ∈ N. For every a ∈ E we denote by σ(a) the set of sequences

ending with a, that is, σ(a) = ∪∞J=1σJ(a), where σJ(a) = {x = (xj) ∈ EN : xj = a

for all j > J}. From now on, we will assume that S is a standard sequence space

in the sense established by the next new concept.

Definition 3.1. We define a standard sequence space (SSS) on E as a subset

S ⊂ EN endowed with a topology such that there exists a point a ∈ E satisfying

the following four properties:

(S1) The space S is Baire and second-countable.

(S2) The topology on S is stronger than that inherited from the product topo-

logy on EN.

(S3) The set σ(a) is a dense subset of S.

(S4) For each J ∈ N, the topology of each σJ(a) inherited from S is the product

topology.

If S is a SSS and a ∈ E is a point satisfying (S3)–(S4) then we will say a is a

distinguished point for S. If E is a Hausdorff topological vector space, then a

topological vector space S ⊂ EN is called a linear standard sequence space on E

whenever it satisfies (S1)–(S4) for the point a = 0.

Sometimes we will also consider the following property:
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(S4*) Given J ∈ N, an open set U ⊂ S and a point α ∈ σJ(a) ∩ U , there exist

open sets U1, . . . , UJ , A in E such that α ∈ Π∞j=1A
(N)
j ⊂ U for all N > J ,

where

A
(N)
j =


Uj (1 ≤ j ≤ J)

A (N + 1 ≤ j ≤ N + J)

{a} (J < j ≤ N or j > N + J).

(1)

Remark 3.1. Due to the presence of U1, . . . , UJ , (S4*) implies (S4). In (S4*), the

existence of “sliding J-wagon trains” A×· · ·×A in the projections of every neigh-

borhood of each point of σJ(a) reveals some “indifference” among the coordinates

of the elements of S when they are close to a. On the other hand, (S4) implies

that for every j ∈ N the immersion ij : t ∈ E 7→ (a, a, . . . , a, t, a, a, . . .) ∈ S

(where t occurs at the jth place) is continuous. Of course, (S2) tells us that

convergence in S implies coordinatewise convergence.

Examples 3.2. 1. The spaces ω, lp (0 < p <∞) and c0 are linear SSSs: suffice

it to take E = K with the usual topology. Property (S1) for these spaces is easily

checked just by taking into account that a completely metrizable separable space

is Baire and second-countable. The remaining conditions are straightforward.

A different example is the space S = {x = (xj) ∈ KN : limj→∞ x2j−1 = 0

and
∑∞

j=1 |x2j| < ∞}, which becomes a Banach space under the norm ‖x‖ =

supj≥1 |x2j−1|+
∑∞

j=1 |x2j|. All these spaces also satisfy (S4*).

2. The direct sum S = ⊕n∈N K of countably many lines endowed with the induc-

tive limit locally convex topology is a second-countable topological vector space

satisfying (S2) to (S4) for E = K and a = 0, but it is not a linear SSS since S is

not a Baire space.

3. Let S = {x = (xj) ∈ RN : limj→∞ jxj = 0}. Then S becomes a separable

Banach space when it is endowed with the norm ‖x‖ = supj∈N |jxj|. Then S

satisfies (S1) to (S4) (for a = 0; no other point a ∈ R is possible), so it is a

linear SSS. But (S4*) fails because given a ball U = {‖x‖ < ε} then we have

diam (πj(U)) ≤ 2ε/j → 0 (j → ∞), see Remark 3.1. Here, as usual, πj denotes

the j-projection πj : x = (xn) ∈ S 7→ xj ∈ E (j ∈ N).
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Another family of examples of linear SSSs which are extensions of ω, c0, lp is

described as follows. Assume that E is a separable Banach space over R or C
with norm ‖ · ‖. Consider the spaces of E-valued sequences ω(E), c0(E), lp(E)

(0 < p < ∞). They are defined as the former spaces just by replacing K with

E, and the absolute value with ‖ · ‖. As a matter of fact, in the case ω(E) it is

enough to assume that E is a completely metrizable separable topological space.

Now we are going to motivate the new concepts provided in Definition 3.2, see

below. As seen in Section 1, Rolewicz [26] proved the universality of the backward

shift cB : (xj) 7→ (cxj+1) (|c| > 1) on c0 and lp (1 ≤ p < ∞), while Grosse-

Erdmann [15, Corollary 2] noted that any weighted backward shift (in particular,

B itself) is universal, even chaotic, on ω. Mart́ınez and Peris [21] have recently

studied backward shifts on Köthe echelon spaces c0(A), λp(A) (1 ≤ p <∞) (see

[17] and [23] for definitions and properties; they are separable Fréchet spaces and

include c0, lp (1 ≤ p < ∞) for adequate matrices A), and in particular they

characterize the universality of B in terms of the matrix A [21, Proposition 3.1].

On the other hand, Bernardes [6] showed that for givenm > 1 there is no universal

m-homogeneous continuous polynomial on any Banach space; in particular, the

shift (xj) 7→ (xmj+1) is not universal on lp (1 ≤ p < ∞) or c0. However, the last

mapping is universal, even chaotic, on the Fréchet space ω = CN [24] and in fact

on some (non-Banach, of course) Köthe spaces λp(A) [20]. Furthermore, Peris

[25] proves that the (non-homogeneous) polynomial (zj) 7→ ((zj + 1)m − 1) is

universal (and chaotic) on the complex Banach spaces lp (1 ≤ p < ∞) and c0.

This is again true on certain spaces λp(A), see [20].
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Definition 3.2. Suppose that S is a SSS and that T : S → S is a continuous

selfmapping on S.

(a) We say that T is a Φ-product map on S if there exists a selfmapping f : E → E

such that T = Πf on S, where Πfx = (f(xj)) for every x = (xj) ∈ EN.

(b) We say that T is a backward Φ-shift on S if there exists a selfmapping f :

E → E such that T = Bf on S, where Bfx = (f(xj+1)) for every x = (xj) ∈ EN.

Remarks 3.3. 1. Observe that Bf = Πf ◦B = B ◦Πf , where B is the ordinary

backward shift, i.e. Bx = (xj+1) for x = (xj). Of course, if g is the identity on

E then Πg = the identity on EN and Bg = B. Note also that if either Πf is a

Φ-product map or Bf is a backward Φ-shift on S then f is continuous. Indeed,

f = π1 ◦ Πf ◦ i1 = π1 ◦ Bf ◦ i2, where i1, i2 are the 1- and 2-immersions (see

Remark 3.1) –which are well-defined by (S3) and continuous due to (S4)– and π1

is the 1-projection, which is continuous by (S2).

2. Note that even in the case of a linear SSS S on E the mapping f : E → E

may be nonlinear, so both Πf and Bf may well be nonlinear.

It is interesting to obtain necessary and sufficient conditions for Πf (Bf , resp.)

to be well-defined on a SSS S (that is, for S to be Πf -invariant: Πf (S) ⊂ S, or

respectively, Bf -invariant: Bf (S) ⊂ S) and to be a Φ-product map or a Φ-

shift (that is, continuous). This will be carried out at least for the most usual

spaces ω(E), lp(E) (0 < p < ∞), c0(E). Recall that the continuity of f is a

general necessary condition for the continuity of Bf . In connection with this,

we remark that Wildenberg [28] discovered in 1988 the absence of nontrivial

functions f : R→ R for which a sequence (xj) in RN is summable only if (f(xj))

(= Πf (xj), in our terminology) is summable. Specifically, he stated that the last

property holds for any sequence (xj) if and only if there exists a constant k with

f(t) = kt in a neighborhood of the origin. Of course, this is not necessary for

Πf (l1) ⊂ l1: take, for instance, f(t) = t2. In fact, we will use an approach similar

to [28, Lemma 1] in order to obtain the Πf -invariance of the spaces lp(E).

Lemma 3.4. Let X be a topological space. Assume that a is a point in X and

that ϕ : X → [0,∞) is a function such that
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(i) There is a countable basis of neighborhoods for a, and a is not an isolated

point in X.

(ii) limx→a ϕ(x) = 0 and ϕ(x) > 0 for all x ∈ X \ {a}.

(iii) If (xj) ∈ XN and limj→∞ ϕ(xj) = 0 then limj→∞ xj = a.

Let us suppose that f : X → X. Then the series
∑∞

j=1 ϕ(f(xj)) is convergent

for every convergent series
∑∞

j=1 ϕ(xj) if and only if there exists a constant M ∈
(0,∞) such that

ϕ(f(x)) ≤Mϕ(x) (2)

on some neighborhood of a.

Proof. Assume first that (2) holds for some M ∈ (0,∞) and some neighborhood

U of a. If (xj) ∈ XN and
∑∞

j=1 ϕ(xj) converges then ϕ(xj) → 0 as j → ∞, so

xj → a by (iii). Therefore there is J ∈ N such that xj ∈ U for all j > J . Hence

ϕ(f(xj)) ≤ Mϕ(xj) (j > J), so
∑∞

j=1 ϕ(f(xj)) converges due to the comparison

criterion.

As for the converse, suppose, by way of contradiction, that there is not any

constant M satisfying (2) on some neighborhood of a. Let {Un : n ∈ N} be

a decreasing basic sequence of neighborhoods of a. From (i) and (ii) there is a

sequence {n(1) < n(2) < · · ·} ⊂ N and points xj ∈ Un(j) \ {a} such that

0 < ϕ(xj) < 1/j2 and ϕ(f(xj)) > jϕ(xj) (j ∈ N).

Define N(j) to be the least integer that is ≥ 1/(j2ϕ(xj)). Then N(j) − 1 <

1/(j2ϕ(xj)), so N(j)ϕ(xj) < (1/j2) + ϕ(xj) < 2/j2. Now consider the sequence

(yj) = (x1, . . . , x1, x2, . . . , x2, x3, . . . , x3, . . .),

where each xj occurs N(j) times. We have that

∞∑
j=1

ϕ(yj) =
∞∑
j=1

N(j)ϕ(xj) <
∞∑
j=1

2

j2
<∞.
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But
∞∑
j=1

ϕ(f(yj)) =
∞∑
j=1

N(j)ϕ(f(xj)) ≥
∞∑
j=1

1

j2ϕ(xj)
jϕ(xj) >

∞∑
j=1

1

j
,

and the last series diverges. This contradiction proves the lemma.

We are now ready to specify exactly what Φ-shifts and what Φ-product maps

are well-defined operators on ω(E), c0(E) and lp(E). In the following result we

are assuming that E is a completely metrizable separable topological space in the

case ω(E), while E is a separable Banach space in the cases c0(E), lp(E).

Theorem 3.5. Let f : E → E be a selfmapping on E, and p ∈ (0,∞).

(1) The following properties are equivalent:

(i) Πf is Φ-product map on ω(E).

(ii) Bf is a backward Φ-shift on ω(E).

(iii) f is continuous.

(2) The following properties are equivalent:

(i) The space c0(E) is Πf -invariant.

(ii) The space c0(E) is Bf -invariant.

(iii) f(0) = 0 and f is continuous at the origin.

(3) The following properties are equivalent:

(i) Πf is a Φ-product map on c0(E).

(ii) Bf is a backward Φ-shift on c0(E).

(iii) f is continuous and f(0) = 0.

(4) The following properties are equivalent:

(i) The space lp(E) is Πf -invariant.

(ii) The space lp(E) is Bf -invariant.
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(iii) lim supt→0
‖f(t)‖
‖t‖ <∞.

(5) The following properties are equivalent:

(i) Πf is a Φ-product map on lp(E).

(ii) Bf is a backward Φ-shift on lp(E).

(iii) f is continuous and lim supt→0
‖f(t)‖
‖t‖ <∞.

In particular, Bf is a backward Φ-shift on lp(E) if f is an operator on E.

Proof. The ordinary backward shift B is, trivially, a well-defined continuous

selfmapping on S for each of the spaces S = ω(E), c0(E), lp(E). Then the

implication (i) ⇒ (ii) in all parts (1)–(5) is evident due to the fact Bf =

B ◦ Πf . On the other hand, the sentence “f is continuous” appearing in each

part (iii) of (1), (3) and (5) follows from the corresponding part (ii) together with

Remark 3.3.1. The additional properties “f(0) = 0” and “lim supt→0
‖f(t)‖
‖t‖ <∞”

respectively in (3)(iii) and (5)(iii) follow from parts (2), (4). Thus, we will be

done as soon as we prove the following implications.

(iii) ⇒ (i) of (1): It is evident because Πf is continuous if and only if πj ◦Πf

is continuous for each projection πj : ω(E)→ E; but πj ◦Πf = f for every j ∈ N.

(ii) ⇒ (iii) of (2): Given a sequence (xj) ∈ c0(E) we must have f(xj+1) ∈
c0(E), that is, f(xj+1) → 0 (j → ∞) or, that is the same, f(xj) → 0 (j → ∞).

Since E is first-countable this tells us that f is continuous at the origin and

f(0) = 0.

(iii) ⇒ (i) of (2): Use again that (iii) is equivalent to “(f(xj)) tends to zero

for every sequence (xj) tending to zero”.

(iii) ⇒ (i) of (3): Fix α = (aj) ∈ c0(E) and ε > 0. Since f(0) = 0 and f

is continuous at the origin, there is δ0 > 0 such that ‖f(t)‖ < ε/2 if ‖t‖ < δ0.

On the other hand, from the fact aj → 0 (j → ∞) we deduce the existence of

some J ∈ N with ‖aj‖ < δ0/2 for all j > J , hence ‖f(aj)‖ < ε/2 (j > J).

Now, from the continuity of f at a1, . . . , aJ one gets δj > 0 (j ∈ {1, . . . , J})
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such that ‖f(t) − f(aj)‖ < ε whenever t ∈ E and ‖t − aj‖ < δj. Let us choose

δ := min{δ0/2, δ1, . . . , δJ}. Then δ > 0. Suppose that x = (xj) in c0(E) and

‖x−α‖0 < δ. If j ∈ {1, . . . , J} then ‖xj−aj‖ < δj, therefore ‖f(xj)−f(aj)‖ < ε.

Finally, for j > J , we have ‖xj − aj‖ < δ0/2, so ‖xj‖ ≤ ‖xj − aj‖ + ‖aj‖ < δ0.

Hence ‖f(xj)‖ < ε/2 and

‖f(xj)− f(aj)‖ ≤ ‖f(xj)‖+ ‖f(aj)‖ < ε (j > J).

Thus,

‖Πf (x)− Πf (α)‖0 = sup
j∈N
‖f(xj)− f(aj)‖ ≤ ε,

which proves the continuity of f at α. But α was arbitrary, so the implication is

proved.

(ii)⇒ (iii) of (4): Apply Lemma 3.4 on X = E, a = 0, ϕ(x) = ‖x‖p. Take into

account that, trivially,
∑∞

j=1 ϕ(f(xj)) converges if and only if
∑∞

j=1 ϕ(f(xj+1))

does.

(iii) ⇒ (i) of (4): Apply again Lemma 3.4.

(iii) ⇒ (i) of (5): By the “limsup” condition and (4), Πf is a selfmapping on

lp(E). As for the continuity, fix α = (aj) ∈ lp(E) and ε > 0. By hypothesis,

there are M, δ0 ∈ (0,∞) such that ‖f(t)‖ ≤ M‖t‖ whenever ‖t‖ < δ0. Since

aj → 0 as j → ∞, we can find J ∈ N with ‖aj‖ < δ0/2 for all j > J , so

‖f(aj)‖ ≤ M‖aj‖ (j > J). The number J can be chosen such that, in addition,
∞∑

j=J+1

‖aj‖p <
εµ(p)

3Mp2p(1 + 2p)
. Due to the continuity of f at each aj, it is possible

to find δj > 0 satisfying that

‖f(t)− f(aj)‖ <
(
εµ(p)

3J

)1/p

whenever ‖t− aj‖ < δj.

Now, let us choose

δ := min{
(
δ0
2

)p/µ(p)
, δ
p/µ(p)
1 , δ

p/µ(p)
2 , . . . , δ

p/µ(p)
J ,

ε

(3Mp4p)1/µ(p)
} > 0.

Assume that x = (xj) ∈ lp(E) and ‖x − α‖p < δ. Then ‖xj − aj‖ < δ0/2,

so ‖xj‖ < ‖aj‖ + (δ0/2), whence ‖xj‖ < δ0 for all j > J and, consequently,
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‖f(xj)‖ ≤M‖xj‖ (j > J). In addition, ‖xj−aj‖ < δj (j ∈ {1, . . . , J}), therefore

‖f(xj)− f(aj)‖p < εµ(p)/3J (1 ≤ j ≤ J). We recall that (b+ c)p ≤ 2p(bp + cp) for

all p ∈ (0,∞) and all b, c ≥ 0, see for instance [10, page 57]. Finally, we estimate:

‖Πf (x)− Πf (α)‖µ(p)p =
∞∑
j=1

‖f(xj)− f(aj)‖p

≤
J∑
j=1

‖f(xj)− f(aj)‖p +
∞∑

j=J+1

(‖f(xj)‖+ ‖f(aj)‖)p

≤
J∑
j=1

‖f(xj)− f(aj)‖p + 2p
∞∑

j=J+1

‖f(xj)‖p + 2p
∞∑

j=J+1

‖f(aj)‖p

≤
J∑
j=1

‖f(xj)− f(aj)‖p + 2pMp

∞∑
j=J+1

‖xj‖p + 2pMp

∞∑
j=J+1

‖aj‖p

≤
J∑
j=1

‖f(xj)− f(aj)‖p + 2pMp

∞∑
j=J+1

(2p‖xj − aj‖p + 2p‖aj‖p) + 2pMp

∞∑
j=J+1

‖aj‖p

≤
J∑
j=1

‖f(xj)− f(aj)‖p + 4pMp‖x− α‖µ(p)p + 2p(1 + 2p)Mp

∞∑
j=J+1

‖aj‖p

< J · ε
µ(p)

3J
+ 4pMp · εµ(p)

3Mp4p
+ 2p(1 + 2p)Mp · εµ(p)

3Mp2p(1 + 2p)
= εµ(p).

Thus, ‖Πf (x) − Πf (α)‖p < ε whenever ‖x − α‖p < δ, which establishes the

continuity of Πf .

4 Universality of Φ-product maps and of Φ-shifts

This section is devoted to providing necessary conditions and sufficient condi-

tions for a Φ-product map Πf or a backward Φ-shift Bf to be universal on a given

SSS. Such conditions will be expressed in terms of the dynamical properties of

the underlying function f , that is, in terms of the behavior of its sequence (f ◦n)

of iterates.

To start with, we establish a necessary condition for universality on lp(E)

and c0(E). Recall that “lim supt→0
‖f(t)‖
‖t‖ <∞” is necessary for Πf and Bf to be
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well-defined operators on lp(E). The point is that such limsup must not be too

small.

Proposition 4.1. Assume that E is a separable Banach space, that p ∈ (0,∞),

and that f : E → E is continuous and satisfies lim supt→0
‖f(t)‖
‖t‖ < ∞ (and

satisfies f(0) = 0, resp.). If either Πf or Bf is universal on lp(E) (on c0(E),

resp.) then lim supt→0
‖f(t)‖
‖t‖ ≥ 1.

Proof. If we follow a way of contradiction and assume that lim supt→0 ‖f(t)‖/‖t‖ <
1 then we obtain easily that for every vector x = (xj) in some ball centered at

the origin of S, the orbit of x under Πf or Bf is bounded, so non-dense. This

is a contradiction because the set U(T ) of universal elements of a continuous

selfmapping T is dense if T is universal. The details are left to the interested

reader.

Observe that as a consequence of Proposition 4.1 if f : E → E is an operator

on a separable Banach space E and Bf is hypercyclic on lp(E) (1 ≤ p <∞) or on

c0(E) then ‖f‖ ≥ 1. In fact, we can say a little more: it must be ‖f‖ > 1 because

‖Πf‖ = ‖Bf‖ = ‖f‖ and a hypercyclic operator on a normed space cannot be

nonexpansive.

We saw in Section 3 that the continuity of f is a necessary condition for

Bf to be a backward Φ-shift on a SSS. We establish in the next result that the

denseness of the range of f is necessary for the universality of Bf . This condition

becomes sharp for the largest space ω(E). As for Πf , the universality of f itself

is necessary.

Theorem 4.2. Suppose that fn : E → E (n ∈ N) and f : E → E are continuous

and that S is a SSS on E. We have:

(a) If Bf : S → S is a universal backward Φ-shift then f has dense range.

(b) If E is a completely metrizable separable topological space and f has dense

range then Bf : ω(E)→ ω(E) is a universal backward Φ-shift.
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(c) If (Πfn) is a universal sequence of Φ-product maps on S then the sequence

(fn) is universal on E. In particular, if Πf : S → S is a universal Φ-product

map then f is universal on E.

Proof. (a) Assume that Bf is universal on S, and fix a point y ∈ E. From

(S3), the point y = (y, a, a, a, . . .) is in S for some a ∈ E. By universality,

there is a point (xj) ∈ S and a sequence (nk) of positive integers such that the

sequence ((f ◦nk(xj+nk
))j∈N) converges to (y, a, a, . . .) in S as k →∞. From (S2),

f ◦nk(x1+nk
) → y, hence f(f ◦nk−1(x1+nk

)) → y, which proves that y is in the

closure of f(E). But y was arbitrary, so f(E) is dense.

(b) From Theorem 3.5, Bf is in fact a backward Φ-shift on ω(E). Recall

that ω(E) is a second-countable Baire space. In order to apply Theorem 2.1,

take X := ω(E) =: Y , Tn := Bn
f . Let us try to check the Birkhoff transitivity

property. Fix nonempty open subsets U, V of ω(E). Then there exist J ∈ N and

nonempty open subsets U1, . . . , UJ , V1, . . . , VJ in E such that

U1 × · · · × UJ × E × E × · · · ⊂ U and V1 × · · · × VJ × E × E × · · · ⊂ V.

Since f has dense range and is continuous, we have that f ◦J has also dense range.

From this, we derive the existence of points t1, . . . , tJ ∈ E such that f ◦J(tj) ∈ Vj
(j = 1, . . . , J). Choose any points yj ∈ Uj (j = 1, . . . , J) and any point t ∈ E.

Consider the sequence x = (xj) ∈ ω(E) defined as

xj =


yj (1 ≤ j ≤ J)

tj−J (J < j ≤ 2J)

t (j > 2J).

It is clear that x ∈ U . Finally, TJx = BJ
f x = (f ◦J(xj+J)), but f ◦J(xj+J) =

f ◦J(tj) ∈ Vj for j = 1, . . . , J , so

TJx ∈ V1 × · · · × VJ × E × E × · · · ⊂ V.

Consequently, TJ(U) ∩ V 6= ∅, as required.

(c) This is due to the following facts: the projection π1 is continuous and

surjective (by (S3)), π1 ◦ Πfn = fn ◦ π1 and (Πf )
◦n = Πf◦n for all n ∈ N.
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Now, we focus our attention on the searching of conditions on the function f

that guarantee the universality of Bf and Πf on general SSSs. A local weakly

mixing condition will be imposed in the following theorem on a sequence of self-

mappings fixing the distinguished point.

Theorem 4.3. Assume that fn : E → E (n ∈ N) is a sequence of selfmappings

for which the mappings Tn : x = (xj) ∈ S 7→ (fn(xj+n)) ∈ S are well-defined and

continuous, where S is a SSS on E satisfying (S4*) for some distinguished point

a ∈ E. Suppose that fn(a) = a for all n ∈ N and that (fn) is weakly mixing at

a. Then (Tn) is densely universal.

Proof. Observe first that, in a similar way to the case of Bf , every fn must be

continuous, see Remark 3.3.1.

Our aim is to apply Theorem 2.1. Choose X := S =: Y . Observe that X is

Baire and that Y is second-countable by (S1). Consequently, our goal is, given

a pair of nonempty open sets U, V of S, to find a sequence x = (xj) ∈ U and

a positive integer N such that TNx ∈ V . From (S3), U ∩ σ(a) 6= ∅ 6= V ∩ σ(a).

Therefore there exist J ∈ N and points a1, . . . , aJ , b1, . . . , bJ ∈ E with α ∈ U and

β ∈ V , where

α := (a1, . . . , aJ , a, a, a, . . .) and β := (b1, . . . , bJ , a, a, a, . . .).

First of all, let us prove the following claim: There are in fact infinitely many

N ∈ N with fN(A) ∩ Uj 6= ∅ for all j = 1, . . . ,m, where A,U1, . . . , Um are

prescribed nonempty open sets with a ∈ A. Indeed, choose N1 ∈ N such that each

fN1(A)∩Uj (j ∈ {1, . . . ,m}) is not empty. If E has only one point, namely a, then

the claim is trivial. If E has at least two points then, since E is Hausdorff, there

are b ∈ E and open subsets A0, B ⊂ E with a ∈ A0, b ∈ B and A0∩B = ∅. Recall

that each fn is continuous. Hence there exist open subsets An (n = 1, . . . , N1)

in E with a ∈ An and An ⊂ A such that fn(An) ⊂ A0; we have used that

fn(a) = a for all n. Define Ã := A1 ∩ . . . ∩ AN1 . Then Ã is an open subset

containing the point a and fn(Ã) ⊂ A0 for all n ∈ {1, . . . , N1}. In addition,

Ã ⊂ A. Hence fn(Ã) ∩ B = ∅ for n = 1, . . . , N1. By hypothesis, there exists
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N2 ∈ N (necessarily, N2 > N1) with fN2(Ã) ∩ Uj 6= ∅ for all j ∈ {0, 1, . . . ,m},
where U0 := B. Therefore

fN2(A) ∩ Uj 6= ∅ (j ∈ {1, . . . ,m}),

which proves the claim because in the same way we would obtain N1 < N2 <

N3 < · · · such that fNk
(A) ∩ Uj 6= ∅ for all j ∈ {1, . . . ,m} and all k ∈ N.

Now we recover our first goal and fix U, V, α, β as before. Since α ∈ σJ(a) ∩
U , from (S4*) it can be extracted the existence of finitely many open sets

U1, . . . , UJ , A in E for which α ∈ Π∞j=1A
(N)
j ⊂ U (N > J), where A

(N)
j is

defined by (1). In addition, there are open sets V1, . . . , VJ in E such that

β ∈ V1 × · · · × VJ × {a} × {a} × · · · ⊂ V . By the just-proved claim, a posi-

tive integer N can be chosen in such a way that N > J and

fN(A) ∩ Vj 6= ∅ (j = 1, . . . , J).

Hence there exist J points t1, . . . , tJ , in A satisfying fN(tj) ∈ Vj (j = 1, . . . , J).

Let us define x = (xj) ∈ EN as

xj =


αj (1 ≤ j ≤ J)

tj−N (N + 1 ≤ j ≤ N + J)

a (J < j ≤ N or j > N + J).

Then x ∈ Π∞j=1A
(N)
j , so x ∈ U . Finally,

TNx = (fN(xN+j)) = (t1, . . . , tJ , fN(a), fN(a), fN(a), . . .)

= (t1, . . . , tJ , a, a, a, . . .) ∈ V1 × · · · × VJ × {a} × {a} × {a} × · · · ⊂ V,

which concludes the proof.

Remark 4.4. The sufficient condition for universality furnished in the last the-

orem may not be necessary at all. Indeed, if for instance E = R and S = ω then

the identity f : x ∈ R 7→ x ∈ R has dense range and is continuous, so B = Bf
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is universal by Theorem 4.2, but the sequence (fn) = (f ◦n) is clearly not weakly

mixing at a = 0. Nevertheless, the converse holds for c0 and for the lp spaces.

In fact, we will be able to obtain a more general result for SSSs (see Theorem

4.5 below) under the further condition that the “center” of S has neighborhoods

with projections which are as “uniformly small” as desired, that is, under the

condition

(S5) Given an open subset V ⊂ E containing a, there exists an open subset

U ⊂ S with (a, a, a, . . .) ∈ U such that πj(U) ⊂ V for all j ∈ N.

For instance, c0(E) and lp(E) (0 < p < ∞) satisfy (S5) (with a = 0) for any

Banach space E, while ω(E) does not satisfy it for any metrizable space E.

Theorem 4.5. If S is a SSS on E satisfying (S5) for the distinguished point

a and fn : E → E (n ∈ N) is a sequence of selfmappings such that Tn : x =

(xj) ∈ S 7→ (fn(xj+n)) ∈ S (n ∈ N) is a densely universal sequence of continuous

selfmappings on S, then (fn) is weakly mixing at a.

Proof. Let us fix an open set V ⊂ E containing the distinguished point a. Fix

also finitely many nonempty open sets Uj ⊂ E (j = 1, . . . , J). Since (S5) holds

for S, we get the existence of an open subset U ⊂ S containing (a, a, a, . . .) such

that πj(U) ⊂ V for all j ∈ N. Since (Tn) is densely universal, there must be

at least one element x = (xj) ∈ U which is universal for (Tn). The set W :=

U1×· · ·×UJ ×E×E×· · · is open in S by (S2), therefore there exists a positive

integer N such that TNx ∈ W , that is, (fN(xj+N)) ∈ U1×· · ·×UJ ×E×E×· · ·.
In other words,

fN(xj+N) ∈ Uj (j = 1, . . . , J).

But every xj+N belongs to V , hence Uj ∩ fN(V ) 6= ∅ for 1 ≤ j ≤ N , as required.

Theorem 4.6. Let S be a SSS and Πfn : S → S (n ∈ N) be a sequence of

Φ-product maps. We have:
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(a) If (Πfn) is densely universal then, for all J ∈ N, the sequence {fn×· · ·×fn :

EJ → EJ}n≥1 is transitive.

(b) If fn(a) = a for all n ∈ N and the sequence {fn × · · · × fn : EJ → EJ}n≥1
is transitive for all J ∈ N, then (Πfn) is densely universal.

Proof. (a) Fix J ∈ N and nonempty open subsets A, B of EJ . We must show

that (fN ×· · ·× fN)(A)∩B 6= ∅ for some N . There exist nonempty open subsets

U1, . . . , UJ , V1, . . . , VJ of E such that U1 × · · · × UJ ⊂ A and V1 × · · · × VJ ⊂ B.

Hence it is enough to find an N with fN(Uj) ∩ Vj 6= ∅ for all j = 1, . . . , J . From

(S2) the sets U := (U1×· · ·×UJ×E×E×· · ·)∩S and V := (V1×· · ·×VJ×E×
E × · · ·) ∩ S are open in S. By hypothesis and Theorem 2.1 together with (S1),

the sequence (Πfn) is transitive, so there exists N ∈ N such that ΠfN (U)∩V 6= ∅.
Pick an element y = (y1, y2, . . .) in such intersection. Then y ∈ V and there is

x = (x1, x2, . . .) ∈ U with fN(xj) = yj for all j ∈ N. Hence xj ∈ Uj, yj ∈ Vj and

fN(xj) = yj (j = 1, . . . , J), which proves (a).

(b) This time we fix nonempty open subsets U, V of S. Again by Theorem 2.1

and (S1) it should be shown the existence of an N with ΠfN (U)∩ V 6= ∅. Due to

(S3), the sets σ(a)∩U and σ(a)∩V are nonempty, so σJ(a)∩U 6= ∅ 6= σJ(a)∩V
for some J ∈ N. Now (S4) comes to our help, yielding the existence of nonempty

open sets U1, . . . , UJ , V1, . . . , VJ in E with

U1 × · · · × UJ × {a} × {a} × · · · ⊂ σJ(a) ∩ U

and

V1 × · · · × VJ × {a} × {a} × · · · ⊂ σJ(a) ∩ V.

By hypothesis, there exists N ∈ N such that fN(Uj)∩Vj 6= ∅ (j = 1, . . . , J). Pick

points xj ∈ Uj, yj = fN(xj) ∈ Vj (j = 1, . . . , J). Then x̃ := (x1, . . . , xJ , a, a, . . .) ∈
σJ(a) ∩ U ⊂ U and ỹ := (y1, . . . , yJ , a, a, . . .) ∈ σJ(a) ∩ V ⊂ V . Finally,

ΠfN x̃ = (fN(x1), . . . , fN(xJ), fN(a), fN(a), . . .) = (y1, . . . , yJ , a, a, . . .) = ỹ

because every fn fixes a.
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We remark that in Theorem 4.6(a) only properties (S1)–(S2) of an SSS are

used; in particular, it also holds for the space ⊕n∈NK, see Example 3.2.2.

Roughly speaking, the following corollary shows that under soft conditions

on a SSS the universality of the backward Φ-shifts and of the Φ-product maps

becomes completely characterized in terms of the dynamical properties of their

underlying selfmappings.

Corollary 4.7. We have the following:

(a) Assume that Bf : S → S is a Φ-shift on a SSS S satisfying (S4*) with

distinguished point a, in such a way that f(a) = a and f is weakly mixing

at that point. Then Bf is universal.

(b) Assume that Bf : S → S is a universal Φ-shift on a SSS S which satisfies

property (S5). Then f is weakly mixing at the distinguished point.

(c) Assume that Πf : S → S is a Φ-product map on a SSS S with distinguished

point a, in such a way that f(a) = a and f is weakly mixing. Then Πf is

universal.

(d) Assume that Πf : S → S is a universal Φ-product map on a SSS. Then f

is weakly mixing.

(e) Suppose that E is a separable Banach space, that S = lp(E) or c0(E) (0 <

p < ∞) and that f : E → E is continuous. In addition, we assume

lim supt→0 ‖f(t)‖/‖t‖ <∞ if S = lp(E), and f(0) = 0 if S = c0(E). Then

the Φ-product Πf (the Φ-shift Bf , resp.) is universal on S if and only if f

is weakly mixing (weakly mixing at the origin, resp.).

Proof. The results (a)–(e) are direct consequences of Theorems 3.5, 4.3, 4.5,

4.6 and of the fact that, for a single selfmapping T on a topological space,

the universality of T implies the dense universality of the sequence (T ◦n) of

its iterates. Only part (c) needs some further explanation: Since f is weakly

mixing, by [11, Proposition II.3] one gets that for every J ∈ N the mapping
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f ×· · ·×f : EJ → EJ is transitive. But this is the same as the transitivity of the

sequence f ◦n × · · · × f ◦n : EJ → EJ (n ∈ N), hence Theorem 4.6(b) applies.

5 Applications to hypercyclicity theory

Here we obtain two examples of hypercyclic operators and of hypercyclic se-

quences of operators on linear SSSs as a consequence of some preceding results.

Firstly, we get the following rather general statement that extends Rolewicz’s

theorem. This is just the case E = K, S = lp (1 ≤ p <∞) or c0, f = the identity

on K.

Theorem 5.1. Let be prescribed a Banach space E, a surjective operator f on

E and a linear SSS S on E satisfying (S4*) for a = 0. Let UE be the open unit

ball of E. Then the scalar multiple λBf : S → S of the backward Φ-shift Bf is

hypercyclic whenever

|λ| > µ :=
1

sup{α > 0 : f(UE) ⊃ αUE}
.

.

Proof. The Open Mapping Theorem together with the boundedness of f guar-

antees that µ ∈ (0,∞). If |λ| > µ then f(UE) ⊃ αUE for some α ∈ (0,∞) with

|λα| > 1. Therefore (λf)◦n(UE) ⊃ (λα)nUE for all n ∈ N. Let us fix an open

set V ⊂ E with 0 ∈ V and finitely many nonempty open sets U1, . . . , UJ in E.

Pick points tj ∈ Uj (j = 1, . . . , J). Then V ⊃ βUE for some β > 0. Since the set

F := {t1, . . . , tJ} is finite and |λα| > 1, there is N ∈ N such that β(λα)NUE ⊃ F .

Hence, trivially, (λf)◦N(V )∩Uj 6= ∅ for every j ∈ {1, . . . , J}. Then λf is weakly

mixing at the origin, so Corollary 4.7(a) applies with a = 0 if we take into account

that Bλf = λBf .

We finish with a result (Theorem 5.2) that relates the hypercyclicity of a Φ-

product map to the so-called Hypercyclicity Criterion, which is the condition (b)
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in Theorem 5.2. Such criterion is a well known sufficient condition for hypercyclic-

ity, see [7], [14] and [5]. We will assume that S is a complete linear SSS on an F-

space E. Hence S is a separable F-space (due to (S1), because second-countable is

equivalent to metrizable plus separable) and, from (S4), E is also separable. The

following concept was introduced by the author in [4]: a sequence (fn) of opera-

tors on E is called almost-commuting whenever limn→∞[fn(fm(t))−fm(fn(t))] = 0

for every m ∈ N and every t ∈ E.

Theorem 5.2. Suppose that S is a complete linear SSS on an F-space E. Assume

that (fn) is a sequence of operators on E such that (Πfn) defines a sequence of

operators on S. Consider the following properties:

(a) The sequence (Πfn) is densely hypercyclic.

(b) There exist dense subsets X0 and Y0 of E and an increasing sequence (nk) ⊂
N satisfying the following two conditions: fnk

(t) → 0 (k → ∞) for all

t ∈ X0; for any t ∈ Y0 there is a sequence (uk) in E such that uk → 0 and

fnk
(uk)→ t (k →∞).

(c) The sequence fn × fn : E2 → E2 (n ∈ N) is hypercyclic.

Then we have the following:

(A) Properties (a) and (b) are equivalent.

(B) If (fn) is almost-commuting then (a), (b) and (c) are equivalent.

Proof. (A) We are assuming that (Πfn) is densely hypercyclic. From Theorem

4.6(a), the sequence {fn × · · · × fn : EJ → EJ}n≥1 is transitive (so densely

hypercyclic by Theorem 2.1) for all J ∈ N. Then Theorem 2.2 of [5] applies

and one obtains that (b) holds. Conversely, assume that (b) is satisfied. Again

by Theorem 2.2 of [5] the sequence {fn × · · · × fn : EJ → EJ}n≥1 is densely

hypercyclic (so transitive) for all J ∈ N. Since fn(0) = 0 for all n we have that

(Πfn) is densely hypercyclic by Theorem 4.6(b).

(B) We have already obtained that (a) and (b) are equivalent. On the other

hand, if (a) holds then by Theorem 4.6(a) (for J = 2) we get again the transitivity
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(so the dense hypercyclicity, hence the single hypercyclicity) of the sequence

{fn×fn : E2 → E2}n≥1. Conversely, if this sequence is hypercyclic then Theorem

3.3 of [5] guarantees that (b) is satisfied.

Of course, part (B) applies to a single operator f on E since any two iterates

f ◦n, f ◦m clearly commute. Other conditions on (fn) which are equivalent to

the Hypercyclicity Criterion can be seen in [5] and [7]. Observe also that the

transitivity of {fn × · · · × fn : EJ → EJ}n≥1 for all J ∈ N is stronger than the

property that (fn) is weakly mixing at the origin. Hence, in view of Theorem

4.3 and of the proof of Theorem 5.2, we have that the sequence {Tn : x = (xj) ∈
S 7→ (fn(xj+n)) ∈ S}n≥1 is hypercyclic if (b) and (S4*) (with a = 0) are satisfied.

In particular if f is an operator on E then under the latter two conditions (with

fn = f ◦n for all n ∈ N) the Φ-shift Bf is hypercyclic on S.

Remark 5.3. As for a nice nonlinear example, we point out that some argu-

ments similar to those presented in the proofs of Theorems 4.3 and 4.5 allowed

Peris to show in [25] that a polynomial P : lq → lq given by P (x1, x2, . . .) =

(p(x2), p(x3), . . .) –where p : C → C is a complex polynomial with p(0) = 0 of

degree strictly greater that one– is universal if and only if 0 belongs to the Julia

set of p.
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[4] L. Bernal-González, Universal images of universal elements, Studia Math.

138 (2000), 241–250.
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