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Abstract

In this paper generalized Riesz methods (R, p,M) of summability
are considered. We prove that, to each open set O ⊂ C with adequate
topological properties and each sequence {Pn} ⊂ C tending to infinity,
we can associate a corresponding P-regular (R, p,M)-method so that
the geometric series and a certain trigonometric series become univer-
sal in the sense that its (R, p,M)-transforms approximate any member
of certain spaces of holomorphic functions or measurable functions.
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1 Introduction

Suppose that p := {pν}∞ν=0 is a sequence of complex numbers with the
property that

Pn :=
mn∑
ν=0

pν 6= 0 (n ∈ N0)
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0

Luis
Nota adhesiva
Computational Methods and Function Theory 3 (2003), 285-297



for a subsequence M := {mn}∞n=0 of N0 := N ∪ {0} = {0, 1, 2, ...}. The
row-finite matrix A = [αnν ] with entries

αnν :=
pν
Pn

for 0 ≤ ν ≤ mn; αnν := 0 for ν > mn

generates a summability method “of weighted mean type”, which occasio-
nally is denoted as a generalized Riesz method (R, p,M) and which was first
investigated by Faulstich (see [2]). Such a method (R, p,M) is regular (by
the well known Silverman-Toeplitz conditions) if and only if

lim
n→∞

Pn =∞, sup
n

1

|Pn|

mn∑
ν=0

|pν | <∞;

it is P-regular if and only if

lim
n→∞

Pn =∞, sup
n

1

|Pn|

mn∑
ν=0

|pν |ρν <∞ for all ρ ∈ (0, 1)

(see Remark 3.2 (2) below).
We recall that if A = [αnν ]

∞
n,ν=0 is a general infinite matrix with complex

entries, then A (or the summability method generated by it) is called regular
if it preserves convergence of limits of sequences, that is, given a sequence
{sn} with sn → s ∈ C then it is also A-summable to s or, in other words, the
sequence σn :=

∑∞
ν=0 αnνsν of its A-transforms also converges to s. And A

is called P-regular (“regular for power series”) whenever for any given power
series f(z) =

∑∞
ν=0 aνz

ν with radius of convergence R ∈ (0,∞) the sequence
σn(z) :=

∑∞
ν=0 αnνsν(z) of its A-transforms (where sν(z) =

∑ν
µ=0 aµz

µ) con-
verges to f(z) compactly in {z : |z| < R}. The exact conditions for regularity
and P-regularity of a matrix A are due respectively to Silverman and Toeplitz
(see for instance [15] or [17, pages 6–7]) and Luh (see [8]).
In 1945 Mensǒv [12] proved the existence of a so-called universal trigonomet-
ric series

∞∑
ν=0

{aν cos ν t+ bν sin ν t}

with the property that for every Lebesgue measurable function ϕ on [0, 2π]
there exists a subsequence {nk} of the natural numbers such that the corre-
sponding sequence of partial sums

snk(t) =

nk∑
ν=0

{aν cos ν t+ bν sin ν t}
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converges to ϕ(t) almost everywhere on [0, 2π]. It was shown in [10] (see also

[13]) that there exist universal Taylor series
∞∑
ν=0

aνz
ν with radius of conver-

gence 1 which for z = eit ∈ D become universal in the sense of Mensǒv.

The trigonometric series
∞∑
ν=0

{cos νt+sin νt} or the geometric series
∞∑
ν=0

zν

obviously cannot have corresponding universal properties. However it is the
aim of the present paper to apply (R, p,M)-methods to these series, in such
a way that they become universal in the sense that the corresponding trans-
forms approximate any member of certain spaces of holomorphic and mea-
surable functions. Our results strongly generalize those, which were obtained
in [3].

The outline of the paper is as follows. Section 2 is auxiliary and in it
a topological, crucial property is considered in order to be used later. In
Section 3 we present two results on approximation of holomorphic functions.
Section 4 is again auxiliary, and in it a general statement on Radon measures
is shown; this section is of independent interest. In Section 5 we employ
the assertions of the foregoing sections to establish a strong result about
approximation of Lebesgue-measurable functions.

2 Sets with an exhausting property

Throughout this paper we use the following notations and abbrevia-
tions.

For an open set O ⊂ C we denote by H(O) as usual the family of
all functions which are holomorphic in O. If K ⊂ C is a compact set then
A(K) stands for the collection of all functions which are continuous on K

and holomorphic in the interior K0 of K. By =⇒
A

we denote uniform con-

vergence on a set A ⊂ C, while ≡>
A

stands for uniform convergence on any

compact subset of A. Finally, D will represent the open unit disk {z : |z| <
1}.

By M we denote the collection of all compact sets K of the complex
plane C which have connected complement Kc.

Definition 2.1. Suppose that F is a set in C. Then F has the property E
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(“exhausting property”) if either F = ∅, or F 6= ∅ and there exists a sequence
{Kn} ⊂ M with Kn ⊂ F for all n ∈ N such that for any K ⊂ F with K ∈M
there exists an n0 = n0(K) ∈ N with K ⊂ Kn0 . Any such a sequence {Kn}
is called an “exhausting sequence” for F .

Examples 2.2. Let G ⊂ C be a simply connected domain, then G has the
property E. Indeed, if G = C we choose S(n) := {z : |z| ≤ n}, and in the
case that G 6= C let φ be a conformal mapping of D onto G and consider the
sets

S(n) := φ
(
{z : |z| ≤ 1− 1

n+ 1
}
)

(n ∈ N) .

Then in both cases {S(n)}∞n=1 is an exhausting sequence for G (actually for
any compact set K ⊂ G there exists an n0 ∈ N with K ⊂ S(n0)).
More generally any domain G ⊂ C has the property E. In fact it is well
known that any open set G ⊂ C has this exhausting property (cf. [9, page
198], [5, chapter 2.2]). The referee has kindly supplied an alternative proof of
this assertion, which is a modification of the proof of Lemma 2.1 in [10] (see
also [11]): In [10] having a locally finite number of components we succeds to
consider a finite subset of Q + iQ. In the present situation the intersection
of the component of G with a big closed disk is compact and is at a positive
distance δ from a compact set K. By compactness we can find a finite num-
ber of open disks with centers in this intersection, all with radii δ

1000
, which

cover this intersection. We can select an element of Q + iQ in each one of
these open disks. Then we arrive again to deal with a finite subset of Q+ iQ
and the approach of [10, Lemma 2.1] applies.

The following examples show that closed sets may or may not have the
property E.

Examples 2.3. 1. If O ⊂ C is an open set with infinitely many components
then F = Oc has in general not the property E. This can be seen for instance
by the example (see [10])

O =
∞⋃
n=1

{z : |z − 2−n| < 2−n−2}.
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However, if it is supposed that the number of components of O is locally
finite –that is, every compact subset L ⊂ C only intersects a finite number
N = N(L) of components of O– then it was shown by Melas and Nestoridis
[10, Lemma 2.1] that Oc has the property E.

2. In particular, if O ⊂ C is an open set with a finite number of compo-
nents, then F = Oc has the property E.

3. Consequently, if G is any domain in C (= a nonempty connected
open subset of C), then F = Gc has the property E. In this case, we can
provide with the following easy proof, which is independent of that of [10]:
The result is clear if G = C. Suppose that G 6= C and choose a closed circle
S = {z : |z − z0| ≤ r} ⊂ G. Let {Ln} be an enumeration of all Jordan
domains in Sc which are bounded by polygons with vertices in points which
have rational real and imaginary parts. Then each closure Ln belongs toM
and for any set L ∈ M with L ⊂ Sc there exists an n0 with L ⊂ Ln0 . It
is easy to see that the sequence {Kn} with Kn := Ln ∩ Gc is an exhausting
sequence for Gc.

3 Approximation of holomorphic functions

We first proof the following results.

Theorem 3.1. Let be prescribed:

– an open set O ⊂ C with simply connected components and D ⊂ O,
1 /∈ O;

– a set F ⊂ Oc which has the property E;

– a function ϕ ∈ H(O) with ϕ|D = ϕ0, where ϕ0(z) ≡ 0;

– a sequence {Pn} ⊂ C \ {0} with Pn →∞.

(a) Then there exist sequences {pν} ⊂ C and {mn} ⊂ N0 such that Pn =∑mn
ν=0 pν (n ∈ N) and

τn(z) :=
1

Pn

mn∑
ν=0

pνz
ν ≡>
O

ϕ(z) (n→∞).
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(b) If in addition any set K ∈ M, K ⊂ F , 1 /∈ K and any function
f ∈ A(K) are given then there exists a sequence {nk} with

τnk(z) =⇒
K

f(z) (k →∞).

Proof. 1. Suppose that O =
⋃
ν∈I

Gν , where 0 ∈ I and I ⊂ N0, that the Gν ’s

are pairwise disjoint simply connected domains (the components of O)
and assume D ⊂ G0.

For ν ∈ I choose a conformal mapping φν of D onto Gν and consider the
sets

S(n)
ν := φν({z : |z| ≤ 1− 1

n+ 1
}) (n ∈ N, ν ∈ I),

Tn := S
(n)
0 , Sn :=

⋃
ν∈I

1≤ν≤n

S(n)
ν (n ∈ N),

which are compact, have connected complement and the sets Tn and Sn are
pairwise disjoint for each n ∈ N.

Since F has the property E it is not hard to see that also F1 := F \{1}
has the property E. Without loss of generality we may assume that F1 6= φ.

Let {K∗n} be an exhausting sequence for F1 and denote by {Π∗n} an enume-
ration of all polynomials whose coefficients have rational real and imaginary
parts. Finally let {(Kn,Πn)}∞n=1 be an arrangement of the sets K∗n and the
polynomials Π∗n in which any combination (K∗r ,Π

∗
s) occurs infinitely often.

It follows that for each n the sets Tn, Sn, Kn, {1} are pairwise disjoint.
2. We construct by induction a sequence {Qn} of polynomials and sequences
{qn} and {mn} of nonnegative integers.

Suppose that Q0(z) ≡ P0 and q0 = 0 and assume that for an n ∈ N
the polynomials Q0, ..., Qn−1 and the numbers q0, ..., qn−1 have already been
determined. The degree of the polynomial zqn−1Qn−1(z) will be denoted by
mn−1.

We choose qn ∈ N so great that qn > mn−1 and using Runge’s approxima-
tion theorem (see [4, Chapter II,3]) we find a polynomial Qn which satisfies
simultaneously

(1) Qn(1) = Pn − Pn−1,
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(2) max
Tn
|Qn(z)| < 1

n2 maxTn |zqn|
,

(3) max
Sn

∣∣∣∣∣Qn(z)− Pn · ϕ(z)−
∑n−1

ν=0 z
qνQν(z)

zqn

∣∣∣∣∣ < 1

maxSn |zqn|
,

(4) max
Kn

∣∣∣∣∣Qn(z)− Pn · Πn(z)−
∑n−1

ν=0 z
qνQν(z)

zqn

∣∣∣∣∣ < 1

maxKn |zqn|
.

By induction we get {Qn}, {qn}, {mn}; note that mn > mn−1 and qn > qn−1

for all n ∈ N.
3. The series

∑∞
ν=0 z

qνQν(z) converges by (2) compactly in G0 and therefore
g(z) :=

∑∞
ν=0 z

qνQν(z) is holomorphic in G0. The properties of the qn and mn

imply that the polynomials zqn−1Qn−1(z) and zqnQn(z) do not have powers
in common. Therefore, if the power series of the function g around the origin
is denoted by g(z) =

∑∞
ν=0 pνz

ν , we obtain

mn∑
ν=0

pνz
ν =

n∑
ν=0

zqνQν(z).

¿From (1) we get
∑mn

ν=0 pν =
∑n

ν=0Qν(1) = Pn → ∞ for n → ∞ which
implies that the power series

∑∞
ν=0 pνz

ν has radius of convergence 1. We
obviously have ϕ|G0(z) ≡ 0, which together with (2) gives

τn(z) :=
1

Pn

mn∑
ν=0

pνz
ν =

1

Pn

n∑
ν=0

zqνQν(z) ≡>
G0

ϕ|G0(z) ≡ 0.

4. The property (3) implies

max
Sn
|τn(z)− ϕ(z)| = max

Sn

∣∣∣∣∣ 1

Pn

n∑
ν=0

zqνQν(z)− ϕ(z)

∣∣∣∣∣ < 1

|Pn|

and we obtain τn(z) ≡>
Gν

ϕ(z) for all ν ∈ I, ν > 0. Together with step 3 we

have τn(z) ≡>
O

ϕ(z).
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5. From (4) we get

(5) max
Kn
|τn(z)− Πn(z)| < 1

|Pn|
.

Let now be given a set K ∈ M with K ⊂ F \ {1} = F1 and a function
f ∈ A(K). Then by Mergelian’s theorem (see [4, Chapter III,2]) there exists

a sequence {sk} with sk → ∞ and Π∗sk(z) =⇒
K

f(z). By the exhaustion

property of F1 there exists an r0 with K ⊂ K∗r0 and we find a sequence {nk}
with Πnk(z) = Π∗sk(z) and Knk = K∗r0 for all k. Together with (5) we get

τnk(z) =⇒
K

f(z),

which proves the theorem.

Remarks 3.2. 1. We consider especially the open set O = D. By the
Example 2.3(3) the set F := Dc has the property E. Therefore Theorem
3.1 generalizes Theorem 1 of [1], where we proved the same approximation
properties given in the former theorem but just in the very special case
O = D, F = Dc, ϕ = 0, K ⊂ ∂D \ {1}. Several consequences on the
approximation of measurable functions by universal trigonometric series are
given in [1]. This will also be treated later in our current, more general
situation, see Section 5.

2. The sequence p = {pν} which was constructed in the proof of Theo-

rem 3.1 obviously satisfies τn(1) = 1 for all n ∈ N0 and τn(z) ≡>
D

0. It is

not difficult to show that these conditions are equivalent to those which were
mentioned in the introduction for P -regularity (for details we refer to [8]).
Therefore the considered (R, p,M)-method is P -regular.
3. However it is easy to see that the method (R, p,M) in general cannot cho-
sen to be regular. Indeed, suppose that the sets O and F have the property
that there exists a ς0 ∈ ∂D ∩ F with ς0 6= 1. If (R, p,M) would be regular,
then there would exist a constant C with

1

|Pn|

mn∑
ν=0

|pν | ≤ C for all n ∈ N.
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On the other hand by property (b) of Theorem 3.1 we can find a sequence
{nk} of natural numbers with

τnk(ς0) =
1

Pnk

mnk∑
ν=0

pνς
ν
0 → C + 1 for k →∞ ,

which is obviously not possible.

¿From Theorem 3.1 the following statement about the universal behaviour
of the (R, p,M)-transforms of the geometric series follows very easily.

Theorem 3.3. Suppose that O, F and {Pn} are the same as in Theorem
3.1. Let be given a function Φ ∈ H(O) with Φ|D = Φ0, where Φ0(z) ≡ 1

1−z .

(a) Then there exist sequences {pν} ⊂ C and {mn} ⊂ N0 such that Pn =
mn∑
ν=0

pν (n ∈ N) and

σn(z) :=
1

Pn

mn∑
ν=0

pν

ν∑
µ=0

zµ ≡>
O

Φ(z).

(b) If in addition any set K ∈ M, K ⊂ F , 1 6∈ K and any function
f ∈ A(K) are given then there exists a sequence {nk} with

σnk(z) =⇒
K

f(z).

Proof. Let {τn(z)} be the sequence which by Theorem 3.1 exists according
to O, F, {Pn} and the function ϕ with

ϕ(z) :=

{
0 if z ∈ G0
1
z
− 1−z

z
Φ(z) if z ∈ O \G0.

Then there are sequences {pν} and {mn} such that

τn(z) :=
1

Pn

mn∑
ν=0

pνz
ν ≡>
O

ϕ(z).

8



For z 6= 1 we obtain

σn(z) =
1

Pn

mn∑
ν=0

pν

ν∑
µ=0

zµ =
1

1− z
− z

1− z
τn(z),

which implies

σn(z) ≡>
O

Φ(z).

If a set K ∈ M, K ⊂ F , 1 6∈ K and a function f ∈ A(K) are given then
there exists a sequence {nk} such that

τnk(z) =⇒
K

1

z
− 1− z

z
f(z),

which implies σnk(z) =⇒
K

f(z).

4 An approximation lemma

In this section an auxiliary result on the approximation of measurable func-
tions will be proved, see Lemma 4.1. Although it will be applied on mea-
surable functions on C –specifically, in Theorem 5.1– we prefer to state it in
some generality, because this does not cause much more difficulty. Moreover,
we believe that the lemma could be of independent interest. Nevertheless,
a number of concepts and assertions from measure theory are needed. We
recall that, for a positive measure µ on some σ-algebra Σ of subsets of a set
X, a subset A ∈ Σ is called σ-finite if there are countable many sets An ∈ Σ
(n ∈ N) satisfying µ(An) < ∞ (n ∈ N) and A =

⋃∞
n=1An. The measure µ

is σ-finite whenever X is σ-finite itself, hence every measurable set is also
σ-finite in this case. The measure µ is complete if [A ∈ Σ, B ⊂ A, µ(A) = 0]
implies B ∈ Σ.

For the sake of convenience we introduce the following concept. If X is a
topological space and µ is a measure on a σ-algebra of subsets of X containing
the collection B of Borel sets of X (that is, B is the smallest σ-algebra on
X that contains the open sets of X), then we say that X is thin-connected
(with respect to µ) whenever the following property holds:
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For prescribed ε > 0 and points a, b ∈ X, there exists a con-
nected open set U in X containing a, b such that µ(U) < ε.

Let X be a locally compact Hausdorff space and suppose that Σ is a σ-
algebra of subsets of X containing B. Then a measure µ on Σ is said to be
regular (see [14, Chapter 22]) or a Radon measure provided that

(i) µ(C) <∞ for all compact subsets C of X,

(ii) µ is externally regular, that is, µ(A) = inf{µ(U) : U is an open set in
X with A ⊂ U} for each set A ∈ Σ, and

(iii) µ(U) = sup{µ(C) : C is a compact set in X with C ⊂ U} for each
open set U of X.

We denote by K any of the fields R, C. If L is a compact set, then C(L)
will stand, as usual, for the space of the continuous K-valued functions on
L, endowed with the maximum norm.

Lemma 4.1. Assume that X is a Hausdorff locally compact space and that
µ is a measure on some σ-algebra Σ of subsets of X with B ⊂ Σ. Suppose
that Y ∈ Σ and that f : Y → K is a measurable function on Y . Let A be
a family of K-valued continuous functions on X. Assume, in addition, that
the following conditions hold:

(a) The measure µ is regular, complete and σ-finite.

(b) There exists a dense subset D in X with D ∈ Σ and µ(D) = 0.

(c) Every open subset of X has at most countably many components.

(d) The space X is thin-connected.

(e) For every compact set L ⊂ Y with empty interior and connected com-
plement X \ L the (collection of restrictions to L of the members of
the) family A is dense in C(L).

Then there is a sequence {fn}∞n=1 ⊂ A such that fn → f (n → ∞) almost
everywhere on Y .
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Proof. Since µ is σ-finite (by (a)), there are countable many sets An ∈ Σ
(n ∈ N) with µ(An) < ∞ such that Y =

⋃∞
n=1 An. Replacing An by

A1 ∪ · · · ∪ An if necessary, it may be assumed that the sequence {An}∞n=1

is increasing.

¿From (b), there is a dense measurable set D in X with µ(D) = 0. Then
the sets Bn := An \ D (n ∈ N) satisfy Bn ⊂ An, µ(Bn) = µ(An) < ∞ and
B0
n = ∅.

Since µ is regular and σ-finite, it is also internally regular for all measur-
able sets (see for instance [14, Proposition 22.5]), that is, condition (iii) of
the definition of Radon measure holds in fact for any A ∈ Σ, in particular
for every A ∈ Σ with µ(A) < ∞. Recall that µ is also complete. In this
situation we can apply Lusin’s theorem (in the form stated, for instance, in
[16, Chapter 2]), yielding the existence of continuous functions gn : X → K
(n ∈ N) such that

(6) µ({x ∈ X : hn(x) 6= gn(x)} < 1

2n
(n ∈ N),

where each function hn : X → K is defined as

hn(x) =

{
f(x) if x ∈ Bn

0 otherwise.

Now we define Cn := {x ∈ Bn : hn(x) = gn(x)} (n ∈ N). Obviously, the
restriction of hn to Cn is continuous. Observe that by (6) we have µ(Bn \
Cn) < 1/2n. From internal regularity, there is for each n ∈ N a compact set
Dn ⊂ Cn with µ(Cn \Dn) < 1/2n.

The following step is to apply properties (c)–(d). For every n ∈ N,
consider the collection {En,j}j∈I(n) of the connected components of the open
set X \ Dn, where each I(n) is either N or a finite set {1, 2, ..., N(n)}. Fix
n ∈ N and assume, for a moment, that X \ Dn is not connected. Now

fix points x
(n)
1 ∈ En,1, x

(n)
2 ∈ En,2, . . . and select, by thin-connectedness,

connected open subsets On,k ⊂ X (k ≥ 2) such that {x(n)
1 , x

(n)
k } ⊂ On,k and

µ(On,k) < 1/2n+k. Define the sets Un (n ∈ N) by

Un =

{
∅ if X \Dn is connected⋃
k∈I(n)\{1}On,k otherwise.

Then each Un is a connected open set and µ(Un) < 1/2n. Furthermore, the
sets Ln := Dn \ Un (n ∈ N) satisfy the following properties:
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– they are compact, because Dn is compact and Un is open,

– Ln ⊂ Y , because Ln ⊂ Dn ⊂ Cn ⊂ Bn ⊂ An ⊂ Y ,

– L0
n = ∅, because B0

n = ∅ and Ln ⊂ Bn,

– µ(Dn \ Ln) < 1/2n for all n, because Dn \ Ln ⊂ Un,

– the function f : Ln → K is continuous, because Ln ⊂ Cn and hn = f
on Cn; and

– their complements X \ Ln are connected; indeed, this is trivial if X \
Dn is connected; if this would be not connected, then we would have
X \Ln = (X \Dn)∪Un = Un∪

⋃
j∈I(n)En,j and the sets Un, En,j would

be connected and each set En,j shares at least a common point with
Un.

We consider now the measurable setM := lim infn→∞ Ln =
⋃∞
n=1

⋂∞
j=n Lj.

By the subadditivity property of measures,

µ(An \ Ln) ≤ µ(An \Bn) + µ(Bn \ Ln)

≤ µ(D) + µ(Bn \ Cn) + µ(Cn \Dn) + µ(Dn \ Ln)

≤ 0 +
1

2n
+

1

2n
+

1

2n
=

3

2n
(n ∈ N).

¿From this and the facts that M ⊃
⋂∞
j=n Lj for all n and that the sequence

{An}∞n=1 is increasing, we derive

µ(An \M) ≤ µ(An \
∞⋂
j=n

Lj) = µ(
∞⋃
j=n

(An \ Lj))

≤ µ(
∞⋃
j=n

(Aj \Lj)) ≤
∞∑
j=n

µ(Aj \Lj) <
6

2n
(n ∈ N).

Hence we get

µ(Y \M) = µ(
∞⋃
n=1

(An \M)) = lim
n→∞

µ(An \M) = 0,
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where the second equality is true because the sequence {An \M}∞n=1 is also
increasing.

Finally, hypothesis (e) comes in our help, yielding the existence of a
sequence {fn}∞n=1 ⊂ A for which

|fn(x)− f(x)| < 1

n
(x ∈ Ln, n ∈ N).

Thus, it is enough to show that fn(x) → f(x) (n → ∞) whenever x ∈ M .
For this, fix a point x ∈ M . Then a positive integer N can be picked in
such a way that x ∈ Ln for all n ≥ N , so |fn(x)− f(x)| < 1/n for the same
integers n. This yields the desired result.

As an easy (and expected) example, note that if X = RN (N ∈ N) with
the usual topology, Σ is the σ-algebra LN of Lebesgue-measurable sets in
RN and µ = λN is the Lebesgue N -dimensional measure, then all hypotheses
(a)–(d) in the last lemma are fulfilled.

5 Approximation of measurable functions

Here we apply the results of Sections 3–4 to obtain the following statement
about universal measurable approximation.

Theorem 5.1. Let be prescribed O, F, ϕ, {Pn} as in Theorem 3.1. Let us
consider the sequence {τn} constructed in that theorem. Then {τn} enjoys
the following approximation property: If a Lebesgue-measurable set S ⊂ F
and a complex Lebesgue-measurable function f : S → C are given, then there
exists a sequence {nk} of natural numbers such that

τnk(z)→ f(z) almost everywhere on S.

Proof. The unique task is to select a good “casting of characters” in Lemma
4.1 and to apply Theorem 3.1. For this, let us set X = C = R2 with the
usual topology, Σ = L2, µ = λ2, K = C, Y = F \ {1}, A = {τn : n ≥ 1}.
As noticed before, hypotheses (a)–(d) in Lemma 4.1 are fulfilled. As for
hypothesis (e), observe that if L ⊂ F \ {1} is a compact subset with empty
interior and connected complement, then by Theorem 3.1 A is dense in
A(L) = C(L). Since λ2({1}) = 0, we may assume without loss of generality
that S ⊂ F \{1}. Moreover, the function f can be extended as a measurable
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function f : Y → C just by setting f(z) = 0 for all z ∈ Y \ S. Consequently,
f can be approximated almost everywhere on Y (so on S) by a sequence of
members of {τn}, but this is exactly what is desired.

Several theorems, of the kind of Theorem 5.1, could be proved for uni-
versal Taylor series or other kinds of universal functions, for instance those
studied in [10].

As remarked earlier, Theorem 1 of [1] is the special case [O = D, F =
Dc, ϕ = 0, K ⊂ ∂D\{1}] of Theorem 3.1. The notation for Pn, pn, mn, τn, σn
(n ∈ N) that we used in [1] is similar to that of the present paper. We point
out that in Theorems 2–3 of [1] we derived from Theorem 1 the following
result on universal approximation of measurable functions by sequences of
trigonometric polynomials, this time in the setting of λ1:

If {Pn}, {pn}, {mn} are as in Theorem 1 and g : [0, 2π] → C is a given
Lebesgue-measurable complex function on [0, 2π], then there are sequences
{nk} and {lk} of natural numbers satisfying

αnk(t)→ g(t)
βlk(t)→ g(t)

(k →∞) almost everywhere on [0, 2π],

where

αn(t) =
1

Pn

mn∑
ν=0

pν(cos νt+ i sin νt)

and

βn(t) =
1

Pn

mn∑
ν=0

pν

ν∑
µ=0

(cosµt+ i sinµt).

A few results, similar to the just mentioned one, have already appeared in
[10] and [13].
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