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Abstract. Levenshtein described in [5] a method for constructing error

correcting codes which meet the Plotkin bounds, provided suitable Ha-

damard matrices exist. Uncertainty about the existence of Hadamard

matrices on all orders multiple of 4 is a source of diÆculties for the prac-

tical application of this method. Here we extend the method to the case

of quasi-Hadamard matrices. Since eÆcient algorithms for constructing

quasi-Hadamard matrices are potentially available from the literature

(e.g. [7]), good error correcting codes may be constructed in practise.

We illustrate the method with some examples.
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1 Introduction

One of the main goals in Coding Theory is the design of optimal error correcting

codes. For given length n and minimum distance d, the term optimal means a

code which consists of a set of code words as large as possible. For (not necessarily

linear) binary codes (n;M; d), Plotkin found out in [10] the following bounds for

the number M of codewords:

M � 2b
d

2d� n
c if d is even and d � n < 2d, (1)

M � 2n if d is even and n = 2d, (2)

M � 2b
d+ 1

2d+ 1� n
c if d is odd and d � n < 2d+ 1, (3)

M � 2n+ 2 if d is odd and n = 2d+ 1. (4)

Levenshtein proved in [5] that the Plotkin bounds are tight, in the sense

that there exist binary codes which meet these bounds, provided that enough

Hadamard matrices exist. Unfortunately, the Hadamard Conjecture about the
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existence of Hadamard matrices in all orders multiple of 4 remains still open. Mo-

reover, there are in�nite orders for which no Hadamard matrices have been found.

This means that, though theoretically correct, Levenshtein's method could not

be useful in practise.

In the sequel a matrix for which the inner product of rows two by two is

mostly zero is called a quasi-Hadamard matrix. We will use Levenshtein's method

in this paper to show that \good" error-correcting codes may be analogously

constructed from quasi-Hadamard matrices. Here the term \good" refers to a

code formed from a signi�cantly large number of code words, for given length

and minimum distance. We must emphasize that quasi-Hadamard matrices may

be straightforwardly obtained in all orders multiple of 4, so that the associated

error-correcting codes may be constructed in practise.

We organize the paper as follows.

In Section 2 we introduce the notion of quasi-Hadamard matrices, and some

processes to construct them, which are available in the literature. Section 3 is

devoted to explain how to construct good error-correcting codes from suitable

quasi-Hadamard matrices. Some examples are discussed in Section 4.

2 Quasi-Hadamard matrices

A Hadamard matrix H of order n is an n � n matrix of +1's and �1's entries

such that HH
T = nI . That is, the inner product of any two distinct rows of H

is zero.

We now generalize this notion.

We de�ne a quasi-Hadamard matrix of order n as an n�n matrix M of +1's

and �1's entries such that the inner product of rows two by two is mostly zero.

Sometimes it is necessary to precise the largest number q of rows in M which

are orthogonal one to each other. The larger q is, the closer M is from being

a Hadamard matrix. In these circumstances, M is termed a quasi-Hadamard

matrix of depth q.

In some sense, a quasi-Hadamard matrix could be thought as a Hadamard

matrix in which some rows have been substituted, so that the Hadamard cha-

racter is generally lost in turn.

Constructing Hadamard matrices is hard. How about constructing quasi-

Hadamard matrices?

We now attend to another characterization of Hadamard matrices, in terms

of cliques of graphs (that is, a collection of n vertices and
n(n�1)

2 edges of a graph

G which form a complete subgraph Kn of G).

Consider the graph G4t whose vertices are all the tuples of length 4t formed

from 2t ones and 2t minus ones, with the restriction that precisely t ones have to

appear within the �rst 2t positions (by analogy, precisely t ones appear within

the last 2t positions). There is an edge between two vertices if and only if the

inner product of the correspondent tuples is zero. A Hadamard matrix of order 4t

exists if and only if G4t contains a clique of size 4t�2. Furthermore, the vertices



of such a clique and the normalized rows (

4tz }| {
1; : : : 1) and (

2tz }| {
1; : : : ; 1;

2tz }| {
�1; : : : ;�1) form

a Hadamard matrix. This is a particular type of Hadamard Graph, as de�ned

in [8, 9].

Unfortunately, the problem of �nding out the maximum clique in a graph

has been proven to be NP-hard [4]. Moreover, even its approximations within a

constant factor are NP-hard [2, 3]. So one should expect that �nding out Hada-

mard matrices from G, or even quasi-Hadamard matrices for large depths close

to 4t, are to be hard problems. In fact, they are.

Hopefully, heuristic methods for the maximum clique problem can be found

in the literature, which output pretty large cliques [7]. These methods can be

used in turn to construct quasi-Hadamard matrices of large depth as well.

3 Quasi-Hadamard codes

We �rstly recall Levenshtein's method [5] for constructing optimal error correc-

ting codes from suitable Hadamard matrices.

Starting from a normalized (i.e. the �rst row and column formed all of 1's)

Hadamard matrixH of order 4t, some codes (which are termed Hadamard codes)

may be constructed (see [6], for instance). More concretely, consider the matrix

A4t related to H4t, which consists in replacing the +1's by 0's and the �1's

by 1's. Since the rows of H4t are orthogonal, any two rows of A4t agree in 2t

places and di�er in 2t places, and so have Hamming distance 2t apart. In these

circumstances, one may construct:

1. An (4t � 1; 4t; 2t) code, A4t, consisting of the rows of A4t with the �rst

column deleted. This is optimal for the Plotkin bound (1).

2. An (4t� 1; 8t; 2t� 1) code, B4t, consisting of A4t together with the comple-

ments of all its codewords. This is optimal for the Plotkin bound (4).
3. An (4t; 8t; 2t) code, C4t, consisting of the rows of A4t and their complements.

This is optimal for the Plotkin bound (2).
4. An (4t� 2; 2t; 2t) code, D4t, formed from the codewords in A4t which begin

with 0, with the initial zero deleted. This is optimal for the Plotkin bound

(1).

Furthermore, as explained in [6], for any d � n < 2d, an optimal code

attending to the Plotkin bound (1) may be obtained from a suitable combination

of codes of the above type.

More concretely, given d even so that 2d > n � d, de�ne k = b
d

2d� n
c and

a = d(2k + 1)� n(k + 1); b = kn� d(2k � 1):

Then a and b are nonnegative integers satisfying that n = (2k � 1)a+ (2k+ 1)b

and d = ka+ (k + 1)b. Moreover, if n is even then so are a and b. Analogously,

if n is odd and k even, then b is even. Finally, if both of n and k are odd, then

a is even.



Depending on the parity of n and k, de�ne the code C to be:

{ If n is even, C =
a

2
D4k �

b

2
D4k+4.

{ If n is odd and k even, C = aA2k �
b

2
D4k+4.

{ If n and k are odd, C =
a

2
D4k � bA2k+2.

Here � denotes the following \summation" of codes. Suppose that C1 and C2
are (n1;M1; d1) and (n2;M2; d2) codes, respectively. Assume, for instance, that

M2 � M1. For nonnegative integers a; b, the code aC1 � bC2 consists in pasting

a copies of C1, side by side, followed by b copies of the code obtained from C2 by

omitting the last M2 �M1 codewords. By construction, aC1 + bC2 is shown to

be an (an1 + bn2;M1; d) code, for d � ad1 + bd2.

This way, the code C de�ned above meets the Plotkin bound (1), since it has

length n, minimum distance d, and contains 2k = 2b
d

2d� n
c codewords.

We now extend Levenshtein's method for constructing optimal error correc-

ting codes from Hadamard matrices to the case of quasi-Hadamard matrices.

The codes so obtained are termed quasi-Hadamard codes.

Consider a normalized quasi-Hadamard matrix M4t of order 4t and depth

q. We de�ne the matrix A
0

4t related to M4t in the following way: select a q-set

of rows of M4t which are orthogonal one to each other (notice that there is no

larger set with this property, since q is the depth of M4t), and replace the +1's

by 0's and the �1's by 1's.

Theorem 1. In the circumstances above, the following quasi-Hadamard codes

may be constructed:

1. An (4t�1; q; 2t) code, A0

4t, consisting of the rows of A0

4t with the �rst column

deleted.

2. An (4t� 1; 2q; 2t� 1) code, B0

4t, consisting of A0

4t together with the comple-

ments of all its codewords.

3. An (4t; 2q; 2t) code, C04t, consisting of the rows of A0

4t and their complements.

4. An (4t� 2; h; 2t) code, D0

4t, formed from the h codewords in A0

4t which begin

with 0, with the initial zero deleted (we only know that h � q).

Proof.

It is a straightforward extension of the case of usual Hadamard codes coming

from Hadamard matrices, since:

{ A
0

4t consists of q rows.

{ Any two rows of A0

4t agree in 2t places and di�er in 2t places (since they are

pairwise orthogonal), and so have Hamming distance 2t apart.

The result follows.

ut



Remark 1. Obviously, the closer q is from 4t, the better codes A0

4t, B
0

4t, C
0

4t and

D0

4t are. In the sense that the number of codewords is very close to the optimal

value indicated in the Plotkin bound.

Theorem 2. For d even so that 2d > n � d, de�ne k = b
d

2d� n
c and

a = d(2k + 1)� n(k + 1); b = kn� d(2k � 1):

as before. A good error correcting code C0 of length n and minimum distance

d may be obtained, from suitable quasi-Hadamard matrices. More concretely,

depending on the parity of n and k, de�ne the code C0 to be:

{ If n is even, C0 =
a

2
D0

4k �
b

2
D0

4k+4.

{ If n is odd and k even, C0 = aA0

2k �
b

2
D0

4k+4.

{ If n and k are odd, C0 =
a

2
D0

4k � bA0

2k+2.

Proof.

From Levenshtein's method [5] described before, it is readily checked that C0

consists of codewords of length n. Furthermore:

{ If n is even, select a normalized quasi-Hadamard matrix 1
M4k of order 4k and

depth q1, and a normalized quasi-Hadamard matrix 2
M4k+4 of order 4k+4

and depth q2. Denote
iA0 a qi-set of pairwise orthogonal rows in i

M with

their �rst entry dropped, and where the +1's and the�1's have been replaced

by 0's and 1's, respectively. Denote iD0 the hi-set of rows in
iA0 which begin

with 0, for 0 � hi � qi. In these circumstances, C0 =
a

2
(1D0

4k)�
b

2
(2D0

4k+4)

consists in a (n;minfh1; h2g; d)-code.
{ If n is odd and k even, select a normalized quasi-Hadamard matrix 1

M2k of

order 2k and depth q1, and a normalized quasi-Hadamard matrix 2
M4k+4

of order 4k + 4 and depth q2. Denote
iA0 a qi-set of pairwise orthogonal

rows in i
M with their �rst entry dropped, and where the +1's and the �1's

have been replaced by 0's and 1's, respectively. Denote 2D0 the h2-set of

rows in 2A0 which begin with 0, for 0 � h2 � q2. In these circumstances,

C0 = a (1A0

2k)�
b

2
(2D0

4k+4) consists in a (n;minfq1; h2g; d)-code.

{ If n and k are odd, select a normalized quasi-Hadamard matrix 1
M4k of

order 4k and depth q1, and a normalized quasi-Hadamard matrix 2
M2k+2

of order 2k + 2 and depth q2. Denote
iA0 a qi-set of pairwise orthogonal

rows in i
M with their �rst entry dropped, and where the +1's and the �1's

have been replaced by 0's and 1's, respectively. Denote 1D0 the h1-set of

rows in 1A0 which begin with 0, for 0 � h1 � q1. In these circumstances,

C0 =
a

2
(1D0

4k)� b (2A0

2k+2) consists in a (n;minfh1; q2g; d)-code.

The \goodness" of the code C0 depends on the choices of qi and hi, so that

the number of codewords is not far from the Plotkin bound (1).

ut



4 Examples

The examples below illustrate that suitable quasi-Hadamard matrices give raise

to good error correcting codes, even optimal ones.

In the sequel we write \�" instead of \�1" for simplicity.

4.1 Example 1: an optimal quasi-Hadamard code.

Consider the Hadamard matrices

H8 =

0
BBBBBBBBBB@

1 1 1 1 1 1 1 1

1 � 1 1 � 1 � �

1 � � 1 1 � 1 �

1 � � � 1 1 � 1

1 � 1 � � � 1 1

1 1 � � � 1 1 �

1 1 � 1 � � � 1

1 1 1 � 1 � � �

1
CCCCCCCCCCA

; H12 =

0
BBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1

1 � 1 � 1 1 1 � � � 1 �

1 � � 1 � 1 1 1 � � � 1

1 1 � � 1 � 1 1 1 � � �

1 � 1 � � 1 � 1 1 1 � �

1 � � 1 � � 1 � 1 1 1 �

1 � � � 1 � � 1 � 1 1 1

1 1 � � � 1 � � 1 � 1 1

1 1 1 � � � 1 � � 1 � 1

1 1 1 1 � � � 1 � � 1 �

1 � 1 1 1 � � � 1 � � 1

1 1 � 1 1 1 � � � 1 � �

1
CCCCCCCCCCCCCCCCCCA

As it is shown in [6], Levenshtein's method provide a (27; 6; 16) Hadamard

code C from H8 and H12. Assuming the notation of the precedent section, this

code is constructed as the summation 2D12 �A8, so that

C =

0
BBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1

1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1

0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0

0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0

1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1

1
CCCCCCA

Taking into account Theorem 2, the same optimal code C may be obtained

as the summation 2(1D0

12)� (2A0

8) from the following quasi-Hadamard matrices:

{ A quasi-Hadamard matrix 1
M8 of order 8 and depth 6, which consists in

randomly substituting the last two rows of H8.

{ A quasi-Hadamard matrix 12
M12 of order 12 and depth 6, which consists in

randomly substituting those rows of H12 which begin with (1� : : :).

ut



4.2 Example 2: a good (non optimal) quasi-Hadamard code.

The section \Finding out a liar" in ([1], chap. 17) has provided inspiration for

this example.

Suppose that someone thinks of a number between 1 and 10, and that you

are supposed to guess which number it is. The rules of the game let you to ask

8 questions (with \yes" or \no" answers), and no more than one lie is allowed.

In order to win, it suÆces to get a code capable of correcting up to 1 error,

formed from at least 10 codewords (one for every number in the given range).

Writing 1 for \yes" and 0 for \no", now choose the questions so that the binary

tuple that the answers generates in each case coincides with the corresponding

codeword. This requires that the length of the code should coincide with the

number of questions. Summing up, you need a (n;M; d) code so that n = 8,

M � 10 and d allows to correct at least 1 error.

Your elementary background on the Theory of Codes indicates that in order

to correct e errors you need to use a code of minimum distance d such that

b
d� 1

2
c � e. Since e = 1, you need d � 3.

Assume that d = 4. Taking into account the Plotkin bound (2), it follows

that n = 2d = 8 and the number M of codewords is always M � 2n = 16.

Attending to Levenshtein's method, the code C8

C8 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 0 1 0

0 1 0 1 1 1 0 0

0 0 1 1 1 0 0 1

0 0 1 0 1 1 1 0

0 0 0 1 0 1 1 1

1 1 1 1 1 1 1 1

1 0 1 1 0 1 0 0

1 0 0 1 1 0 1 0

1 0 0 0 1 1 0 1

1 0 1 0 0 0 1 1

1 1 0 0 0 1 1 0

1 1 0 1 0 0 0 1

1 1 1 0 1 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

related to the matrix H8 above is optimal for given length 8 and minimum

distance 4. Since C8 consists of 16 codewords, C8 may be used to solve the game.

In spite of this fact, a smaller (8;M; 4) code may be used as well, provided

M � 10.



Consider the quasi-Hadamard matrix M8 obtained from H8 by randomly

changing the entries located at the 1st, 7th and 8th rows,

M8 =

0
BBBBBBBBBB@

� � � � � � � �

1 � 1 1 � 1 � �

1 � � 1 1 � 1 �

1 � � � 1 1 � 1

1 � 1 � � � 1 1

1 1 � � � 1 1 �

� � � � � � � �

� � � � � � � �

1
CCCCCCCCCCA

Taking into account Theorem 1, we may construct the (8; 10; 4) code C08,

C08 =

0
BBBBBBBBBBBBBB@

0 1 0 0 1 0 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 0 1 0

0 1 0 1 1 1 0 0

0 0 1 1 1 0 0 1

1 0 1 1 0 1 0 0

1 0 0 1 1 0 1 0

1 0 0 0 1 1 0 1

1 0 1 0 0 0 1 1

1 1 0 0 0 1 1 0

1
CCCCCCCCCCCCCCA

related to the matrix M8 above.

Map every integer i in the range [1; 10] to the i-th codeword ci in C
0

8.

Now you should ask the following questions:

1. Is the number greater than 5?
2. Is it less or equal to 4 modulo 10?
3. Is it in the set f2; 3; 5; 6; 9g?
4. Is it in the range [3; 7]?
5. Is it in the set f1; 4; 5; 7; 8g?
6. Is it even?
7. Is it in the set f1; 3; 7; 9; 10g?
8. Is it in the set f1; 2; 5; 8; 9g?

Assume that the vector of answers is a = (a1; : : : ; a8). Select the unique

codeword ci in C08 whose summation with a modulo 2 produces a tuple with

at most one non zero entry. Then the correct number is i, and the player lied

precisely when he answered the question which corresponds to the column with

the non zero entry.

ut

Remark 2. Notice that any quasi-Hadamard matrix of order 8 and depth 5 could

have been used as well in order to solve the game. The only variation is the

questions to ask. In fact, the questions should be formulated so that if the number

to guess is i, then the answer to the j-th question is the i-th entry of the j-th

codeword of the code.



Summarizing, depending on the needs of the user, suitable quasi-Hadamard

matrices have to be constructed in order to perform the desired error correcting

code. Notice that working with quasi-Hadamard matrices and codes instead of

Hadamard ones does not mean that functionality is lost (see example 1, for ins-

tance). In fact, it often occurs that not all codewords of a given code are actually

used for transmissions in practise (see example 2 above). So quasi-Hadamard

matrices and quasi-Hadamard codes may suÆce to perform transmissions at the

entire satisfaction of users, including optimal detection and correction a�airs.
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