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Membrane fission is a process by which a biological membrane is split into two new ones in the manner

that the content of the initial membrane is separated and distributed between the new membranes. Inspired by this

biological phenomenon, membrane separation rules were considered in membrane computing. In this work, we

investigate cell-like P systems with symport/antiport rules and membrane separation rules from a computational

complexity perspective. Specifically, we establish a limit on the efficiency of such P systems which use communica-

tion rules of length at most two, and we prove the computational efficiency of this kind of models when using

communication rules of length at most three. Hence, a sharp borderline between tractability and NP–hardness

is provided in terms of the length of communication rules. VC 2015 Wiley Periodicals, Inc. Complexity 21:

321–334, 2016
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1. INTRODUCTION

L
et us recall that a lipid membrane, called a cell mem-

brane or plasma membrane, separates the inside of a

cell from its environment. Furthermore, membrane

compartments (e.g., mitochondria, endosomes, endoplas-

mic reticulum, and Golgi complex) inside eukaryotic cells

are surrounded by lipid membranes allowing the compart-

ments to have an identity. In both cases, the lipid mem-

branes serve as concentration barriers allowing to

incorporate material from its environment in the case of a

cell, or exchange material between compartments (from a

donor membrane to an acceptor membrane). This is done

by means of a simple three-step process whose last step is

membrane fission consisting in splitting it into two new

membranes [1].

The biological phenomenon of membrane fission pro-

cess was incorporated in membrane computing [2] as a

new kind of computational rules, called membrane separa-

tion rules, in the framework of polarizationless P systems

with active membranes [3]. These rules were associated
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with different subsets of the working alphabet. In [4], a

new definition of separation rules in the framework of P

systems with active membranes was introduced, where

there exists a distinguished partition of the working alpha-

bet into two subsets such that each separation rule is

associated with that predefined partition. By applying

such a rule, two new membranes are created, the object

triggering it is consumed and the remaining objects are

distributed among the newly created membranes. A uni-

form and polynomial time solution to SAT problem by a

family of P systems with active membranes and mem-

brane separation rules was given in [3].

Networks of membranes, which compute by communi-

cation only in the form of symport/antiport rules, were con-

sidered in [5]. These networks aim to abstract the biological

phenomenon of transmembrane transport of couples of

chemical substances, in the same or opposite directions.

Such rules are used both for communication with the envi-

ronment and for direct communication between different

membranes. It is worth noting that in such a system the

environment plays an active role because not only objects

can be sent outside the system but also objects can be

brought into the system from the environment.

With respect to the tissue-like computation models,

from the seminal definitions of tissue P systems [6,7], one

of the most interesting variants of tissue P systems was

presented in [8]. In that paper, the definition of tissue P

systems with symport/antiport rules is combined with the

one of P systems with active membranes, yielding tissue P

systems with cell division. Membrane fission was intro-

duced into tissue P systems with symport/antiport rules

through cell separation rules yielding tissue P systems with

cell separation [9]. The computational efficiency of these

systems was investigated and a tractability border in terms

of the length of communication rules was obtained: pass-

ing from 1 to 8 amounts to passing from tractability to

NP–hardness [9]. Furthermore, in [10], that frontier was

refined in an optimal sense with respect to communica-

tion rules length (passing from 2 to 3).

Cell-like P systems with symport/antiport rules were

introduced in [11] and their computational completeness

(five membranes are enough if at most two objects are

used in the rules) was shown. In this work, we investigate

membrane separation rules in this kind of cell-like P sys-

tems from a computational complexity point of view.

The article is organized as follows. Section 2 briefly

describes some preliminaries to make the article self-

contained. In section 3, limits on computational efficiency

of P systems with symport/antiport rules of length at most

two and membrane separation are established. Section 4

provides a uniform and polynomial time solution to the

SAT problem by a family of P systems with symport/anti-

port rules of length at most three and membrane separa-

tion. Finally, conclusions are drawn.

2. PRELIMINARIES
2.1. Multisets Over an Alphabet

An alphabet C is a nonempty set and their elements

are called symbols. A string u over C is an ordered finite

sequence of symbols. The length of a string u, denoted by

juj, is the number of occurrences of symbols that it con-

tains. The empty string (with length 0) is denoted by k.

The set of all strings over an alphabet C is denoted by C�.

A language over C is a subset of C�.

A multiset over an alphabet C is an ordered pair ðC; f Þ,
where f is a mapping from C onto the set of natural num-

bers N. The support of a multiset m5ðC; f Þ is defined as

suppðmÞ5fx 2 C j f ðxÞ > 0g. A multiset is finite (resp.,

empty) if its support is a finite (resp., empty) set. We

denote by 1 the empty multiset. Let m15ðC; f1Þ; m25ðC; f2Þ
be multisets over C, then the union of m1 and m2, denoted

by m11m2, is the multiset ðC; gÞ, where gðxÞ5f1ðxÞ1f2ðxÞ
for each x 2 C. We say that m1 is contained in m2, and we

denote it by m1 � m2, if f1ðxÞ � f2ðxÞ for each x 2 C. The

relative complement of m2 in m1, denoted by m1 nm2, is

the multiset ðC; gÞ, where gðxÞ5f1ðxÞ2f2ðxÞ if f1ðxÞ � f2ðxÞ,
and g(x) 5 0 otherwise.

A rooted tree is a connected, acyclic, undirected graph

in which one of the vertices (called the root of the tree) is

distinguished from the others.

Given a node x different from the root in a rooted tree, if

the last edge on the (unique) path from the root to the node

x is {x, y} (so x 6¼ y), then y is the parent of node x and x is a

child of node y, which is denoted by y5pðxÞ and x 2 chðyÞ.
The root is the only node in the tree with no parent. A node

with no children is called a leaf (see [12] for details).

Let us recall that the pair function hn;mi5ððn1mÞðn1

m11Þ=2Þ1n is a polynomial-time computable function,

which is also a primitive recursive and bijective function

from IN 3 IN to IN.

2.2. P systems with Symport/Antiport Rules and Membrane
Separation Rules

Next, we introduce an abstraction of membrane fission

process in the framework of cell-like P systems with com-

munication rules of the kind symport/antiport rules,

through membrane separation rules.

Definition 2.1

A P system with symport/antiport rules and membrane

separation rules (SAS P system, for short), of degree q � 1,

is a tuple

P5ðC;C0;C1; E;R;l;M1; . . . ;Mq;R1; . . . ;Rq; iin; ioutÞ

where:

1. C is a finite alphabet;

2. fC0;C1g is a partition of C, that is, C5C0 [ C1;

C0;C1 6¼1, C0 \ C151;
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3. EˆC;

4. R is an (input) alphabet strictly contained in C

such that E � C n R;

5. l is a membrane structure (a rooted tree) whose

nodes are injectively labelled with 1; . . . ;q (the root

of the tree is labelled with 1);

6. M1; . . . ;Mq are finite multisets over C n R;

7. Ri; 1 � i � q, are finite sets of rules over C of the

following forms:

(a) Communication rules:

ða:1Þ Symport rules: (u, out) or (u, in), where

u is a finite multiset over C such that

juj > 0;

ða:2Þ Antiport rules: ðu;out; v; inÞ, where u, v are

finite multisets over C such that juj > 0 and

jvj > 0;

(b) Separation rules: ½a �i ! ½C0 �i ½C1 �i, where a 2 C;

i 2 f2; . . . ; qg, and i is the label of a leaf of the

tree;

8. iin 2 f1; . . . ;qg and iout 5 0;

An SAS P system P5ðC;C0;C1; E;R; l;M1; . . . ;Mq;R1; . . . ;

Rq; iin; ioutÞ of degree q can be viewed as a set of q mem-

branes, labelled with 1; . . . ;q, arranged in a hierarchical

structure l given by a rooted tree whose root is called the

skin membrane, labelled by 1, such that: (a) M1; . . . ;Mq

represent the finite multisets of objects (symbols of C) ini-

tially placed in the q membranes of the system; (b) E is

the set of objects initially located in the environment of

the system, all of them are available in an arbitrary num-

ber of copies; (c) R1; . . . ;Rq are finite sets of rules over C

associated with the membranes labelled with 1; . . . ;q,

respectively; (d) iin 2 f1; . . . ; qg is a label that represents a

distinguished membrane called the input membrane, and

iout 5 0 is a label that represents the environment of the

system where the system outputs the computation results

into. We use the term region i (0 � i � q) to refer to mem-

brane i in the case 1 � i � q and to refer to the environ-

ment in the case i 5 0. The length of rule (u, out) or (u,

in) (resp., ðu;out; v; inÞ) is defined as juj (resp., juj1jvj).

For each membrane i 2 f2; . . . ; qg (different from the skin

membrane), we denote by p(i), the parent of membrane i

in the rooted tree l. We define pð1Þ50, that is, by conven-

tion the ‘‘parent’’ of the skin membrane is the environ-

ment. The leaves of the rooted tree are called elementary

membranes.

An instantaneous description or a configuration Ct at an

instant t of an SAS P system is described by the following:

(a) the membrane structure at instant t; (b) all multisets

of objects over C associated with all the membranes pres-

ent in the system; and (c) the multiset of objects over C2

E associated with the environment at that moment. Recall

that initially there are infinite copies of objects from E in

the environment, and hence this set is not properly

changed along the computation. The initial configuration

of the system is ðl;M1; . . . ;Mq;1Þ.
A symport rule ðu;outÞ 2 Ri is applicable to a configu-

ration Ct at an instant t if membrane i is in Ct and multi-

set u is contained in the multiset associated with such

membrane. When applying a rule ðu;outÞ 2 Ri, the objects

specified by u are sent out of membrane i into the region

immediately outside (i.e., the parent p(i) of i), which can

be the environment in the case of the skin membrane

(i.e., i 5 1). A symport rule ðu; inÞ 2 Ri is applicable to a

configuration Ct at an instant t if membrane i is in Ct and

multiset u is contained in the multiset associated with the

parent of i. When applying a rule ðu; inÞ 2 Ri, the multiset

of objects u goes out from the parent membrane of i and

enters into the region defined by membrane i.

An antiport rule ðu;out; v; inÞ 2 Ri is applicable to a

configuration Ct at an instant t if membrane i is in Ct and

multiset u is contained in membrane i, and multiset v is

contained in the parent of i. When applying a rule

ðu;out; v; inÞ 2 Ri, the objects specified by u are sent out

of membrane i into the parent of i and, at the same time,

bringing the objects specified by v into membrane i.

A separation rule ½a�i ! ½C0�i½C1�i 2 Ri is applicable to a

configuration Ct at an instant t, if there exists an elemen-

tary membrane labelled by i in Ct , different from the skin

membrane, such that it contains object a. When applying

a separation rule ½a�i ! ½C0�i ½C1�i 2 Ri to a membrane

labelled by i in a configuration Ct , in reaction with object

a, membrane i is separated into two membranes with the

same label; at the same time, object a is consumed; the

objects from C0 already existing in membrane i of Ct are

placed in the first membrane, while those from C1 are

placed in the second membrane. In this way, several

membranes with the same label i can be present in the

new membrane structure l0 of the system: an arc ðpðiÞ; iÞ
is established for each of the two new membranes with

label i 6¼ 1.

With respect to the semantics of such P systems, the

rules are applied in a nondeterministic maximally parallel

manner, with the following important remark: when a

membrane i is separated, the membrane separation rule is

the only one from Ri which is applied for that membrane

at that step. The new membranes resulting from separa-

tion could participate in the interaction with other mem-

branes or the environment by means of communication

rules at the next step—providing that they are not sepa-

rated once again. The label of a membrane precisely iden-

tifies the rules which can be applied to it.

Let us consider an SAS P system P. We say that config-

uration Ct yields configuration Ct11 in one transition step,

denoted by Ct)P Ct11, if the system can pass from Ct to

Ct11 by applying the rules following the previous remarks.

A computation of P is a (finite or infinite) sequence of

configurations such that: (a) the first term is the initial
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configuration of the system; (b) for each n � 2, the nth

configuration of the sequence is obtained from the previ-

ous configuration in one transition step; and (c) if the

sequence is finite (called halting computation) then the

last term is a halting configuration (a configuration where

no rule of the system is applicable to it).

For each finite multiset w over the input alphabet R, a

computation of an SAS P system P5ðC;C0;C1; E;R; l;M1;

. . . ;Mq;R1; . . . ;Rq; iin; ioutÞ with input multiset w starts

from the configuration of the form ðl;M1; . . . ;Miin
1

w; . . . ;Mq;1Þ, where w is added to the content of the

input membrane iin. That is, in P, we have an initial con-

figuration associated with such a w. We denote by P1w,

the P system P with input multiset w.

All the computations start from an initial configuration

and proceed as stated above; only a halting computation

gives a result, which is encoded by the objects present in

the output region iout associated with the halting configu-

ration. If C5fCtgt<r11 of P (r 2 N) is a halting computa-

tion, then the length of C, denoted by jCj, is r, that is, jCj is

the number of noninitial configurations which appear in

the finite sequence C. For each i (1 � i � q), we denote by

CtðiÞ, the finite multiset of objects over C contained in all

membranes labelled by i (by applying separation rules,

different membranes with the same label can be created)

at configuration Ct . We also denote by Ctð0Þ, the finite

multiset of objects over C n E contained in the environ-

ment at configuration Ct . Finally, we denote by C�t , the

finite multiset Ctð0Þ1Ctð1Þ1 . . . 1CtðqÞ.

2.3. Recognizer P Systems with SAS P system
Recognizer P systems were introduced in [13], and they

provide a natural framework to solve decision problems

by means of computational devices in membrane comput-

ing (i.e., P systems).

Definition 2.2

A recognizer P system with SAS P system, of degree

q � 1, is a tuple

P5ðC;C0;C1; E;R;l;M1; . . . ;Mq;R1; . . . ;Rq; iin; ioutÞ

where:

1. P5ðC;C0;C1; E;R; l;M1; . . . ;Mq;R1; . . . ;Rq; iin; ioutÞ is

an SAS P system;

2. alphabet C has two distinguished symbols yes and

no;

3. M1; . . . ;Mq are finite multisets over C n R such that

at least one copy of yes or no is present in some of

them;

4. all computations halt;

5. if C is a computation of P, then either symbol yes or

symbol no (but not both) must have been released

into the environment, and only at the last step of

the computation.

Let us notice that if a recognizer P system has a sym-

port rule of the type ðu; inÞ 2 R1 then the multiset u

must contain some object from C n E because on the

contrary, it might exist nonhalting computations of P.

We say that a computation C of a recognizer P system

is an accepting computation (respectively, rejecting compu-

tation) if object yes (respectively, object no) appears in the

environment associated with the corresponding halting

configuration of C, and neither object yes nor no appears

in the environment associated with any nonhalting config-

uration of C.

For each natural number k � 1, we denote by CSC(k),

the class of recognizer SAS P systems such that the com-

munication rules allowed have length at most k. Next, we

define the concept of efficient solvability by means of a

family of such P systems (see [14] for more details).

Definition 2.3

A decision problem X5ðIX ; hX Þ is solvable in polynomial

time by a family P5fPðnÞjn 2 Ng of recognizer P systems

with SAS P system if the following holds:

� the family P is polynomially uniform by Turing

machines, that is, there exists a deterministic Turing

machine working in polynomial time which con-

structs the system PðnÞ from n 2 N;

� there exists a pair (cod, s) of polynomial-time com-

putable functions over IX such that:

� for each instance u 2 IX , s(u) is a natural number

and cod(u) is an input multiset of the system

PðsðuÞÞ;
� for each n 2 N; s21ðnÞ is a finite set;

� the family P is polynomially bounded with regard

to (X, cod, s), that is, there exists a polynomial

function p, such that for each u 2 IX every compu-

tation of PðsðuÞÞ1codðuÞ is halting and it performs

at most pðjujÞ steps;

� the family P is sound with regard to (X, cod, s),

that is, for each u 2 IX , if there exists an accepting

computation of PðsðuÞÞ1codðuÞ, then hX ðuÞ51;

� the family P is complete with regard to (X, cod,

s), that is, for each u 2 IX , if hX ðuÞ51, then every

computation of PðsðuÞÞ1codðuÞ is an accepting

one.

According to Definition 2.3, we say that the family P

provides a uniform solution to the decision problem

X. We also say that ordered pair (cod, s) is a polyno-

mial encoding from X in P and s is the size map-

ping associated with that solution. It is worth

pointing out that for each instance u 2 IX , the P sys-

tem PðsðuÞÞ1codðuÞ is confluent, in the sense that all
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possible computations of the system must give the

same answer.
If R is a class of recognizer SAS P systems, then we

denote by PMCR, the set of all decision problems which

can be solved in polynomial time (and in a uniform way)

by means of recognizer SAS P systems from R. The class P

MCR is closed under complement and polynomial-time

reductions (see [14] for details). Besides, we have

P � PMCR. Indeed, if X 2 P then we consider the family

P5fPðnÞjn 2 Ng, where PðnÞ5Pð0Þ, for each n � IN, and

Pð0Þ is a P system from R of degree 1 containing only two

rules ðyes;outÞ and ðno;outÞ. Let us consider the polyno-

mial encoding from X in P defined as follows: (a) s(u) 5 0,

for each u 2 IX ; and (b) codðuÞ5yes if hX ðuÞ51 and codðuÞ
5no if hX ðuÞ50. Then, the family P solves X according to

Definition 2.3.

3. THE LIMITATION ON THE EFFICIENCY OF CSC(2)
3.1. Representation of P Systems from CSCð2Þ

Let P5ðC;C0;C1; E;R; l;M1; . . . ;Mq;R1; . . . ;Rq; iin; ioutÞ
be a recognizer SAS P system of degree q � 1 from

CSCð2Þ. To identify the membranes created by the applica-

tion of a separation rule, we modify the labels of the new

membranes in the following recursive manner:

� The label of a membrane will be a pair ði;rÞ, where

1 � i � q and r is a string over {0, 1}. At the initial

configuration, the labels of the membranes are ð1; kÞ;
. . . ; ðq; kÞ.

� If a separation rule is applied to a membrane labelled

by ði; rÞ, then the newly created membranes will be

labelled by ði; r0Þ and ði; r1Þ, respectively. Membrane ði;
r0Þ will only contain the objects of membrane ði;rÞ
which belong to C0, and membrane ði;r1Þ will only

contain the objects of membrane ði; rÞ which belong to

C1. The skin membrane cannot be separated, so the

label of the skin membrane is not changed along any

computation, remaining ð1; kÞ. Note that we can con-

sider a lexicographical order over the set of labels of

cells in the system along any computation.

If a membrane labelled by ði;rÞ is engaged by a communi-

cation rule, then, after the application of the rule, the

membrane keeps its label.

A configuration at an instant t of a P system from

CSC(2) is described by the current membrane structure,

the multisets of objects over C contained in each mem-

brane and the multiset of objects over C n E from the envi-

ronment. Hence, a configuration of P can be described by

a multiset of labelled objects:

fða; i; rÞja 2 C [ fkg; 1 � i � q; r 2 f0; 1g�g [ fða; 0Þja 2 C n Eg:

Let us notice that the number of labels we need to iden-

tify all membranes appearing along any computation of a

P system from CSC(2) is quadratic in the size of the initial

configuration of the system and the length of the

computation.

Let r5ðab;outÞ 2 Ri; 2 � i � q, be a symport rule of P

and n 2 N. We denote by n � LHSðr; ði;rÞ; ðpðiÞ; sÞÞ, the mul-

tiset of objects ða; i; rÞnðb; i; rÞn, and we denote by

n � RHSðr; ði; rÞ;ðpðiÞ; sÞÞ, the multiset ða;pðiÞ; sÞnðb;pðiÞ; sÞn.

In a similar way, n � LHSðr; ði; rÞ; ðpðiÞ; sÞÞ and n � RHS

ðr; ði;rÞ; ðpðiÞ, sÞÞ are defined when r is of the form

ða;outÞ 2 Ri.

Let r5ðab;outÞ 2 R1 be a symport rule of P and n 2 N.

We denote by n � LHSðr; ð1; kÞ; 0Þ, the multiset of objects

ða; 1; kÞnðb; 1; kÞn. We denote by n � RHSðr; ð1; kÞ; 0Þ, the

multiset of objects

ða; 0Þnðb; 0Þn ; if a;b 2 C n E;

ða; 0Þn ; if a 2 C n E and b 2 E;

ðb; 0Þn ; if b 2 C n E and a 2 E;

1 ; if a;b 2 E:

8>>>>><
>>>>>:

In a similar way, n � LHSðr; ð1; kÞ; 0Þ and n � RHSðr; ð1; kÞ; 0Þ
are defined when r is of the form ða;outÞ 2 R1.

Let r5ðab; inÞ 2 Ri; 2 � i � q, be a symport rule of P

and n 2 N. We denote by n � LHSðr; ði;rÞ; ðpðiÞ; sÞÞ and

n � RHSðr; ði; rÞ;ðpðiÞ; sÞÞ, the multiset of objects ða;pðiÞ; sÞn

ðb;pðiÞ; sÞn and ða; i;rÞnðb; i; rÞn, respectively. In a similar

way, n � LHSðr; ði; rÞ; ðpðiÞ; sÞÞ and n � RHSðr; ði; rÞ; ðpðiÞ, sÞ)
are defined when r is of the form ða; inÞ 2 Ri.

Let r5ðab; inÞ 2 R1 be a symport rule of P and n 2 N.

We denote by n � LHSðr, ð1; kÞ; 0Þ, the multiset of objects

ða; 0Þnðb; 0Þn ; if a;b 2 C n E;

ða; 0Þn ; if a 2 C n E and b 2 E;

ðb; 0Þn ; if b 2 C n E and a 2 E;

1 ; if a;b 2 E:

8>>>>><
>>>>>:

We denote by n � RHSðr; ð1; kÞ; 0Þ, the multiset of objects

ða; 1; kÞnðb; 1; kÞn. In a similar way, n � LHSðr; ð1; kÞ; 0Þ and n

�RHSðr; ð1; kÞ; 0Þ are defined when r is of the form

ða; inÞ 2 R1.

Let r5ða;out; b; inÞ 2 Ri; 2 � i � q, be an antiport rule

of P and n 2 N. We denote by n � LHSðr; ði;rÞ; ðpðiÞ; sÞÞ, the

multiset of objects ða; i; rÞnðb;pðiÞ; sÞn. Similarly, we denote

by n � RHSðr; ði;rÞ; ðpðiÞ;sÞÞ, the multiset of objects

ða;pðiÞ; sÞnðb; i; rÞn.

Let r5ða;out; b; inÞ 2 R1 be an antiport rule of P and

n 2 N. We denote by n � LHSðr; ð1; kÞ; 0Þ, the multiset of

objects

ða; 1; kÞnðb; 0Þn ; if b 2 C n E;

ða; 1; kÞn ; if b 2 E:

(

Similarly, we denote by n � RHSðr; ð1; kÞ; 0Þ, the multiset of

objects
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ða; 0Þnðb; 1; kÞn ; if a 2 C n E;

ðb; 1; kÞn ; if a 2 E:

(

If Ct is a configuration of P, then we denote by

Ct1fðx; i; rÞ=r0g, the multiset obtained by replacing in Ct

every occurrence of ðx; i; rÞ by ðx; i; r0Þ. Besides, Ct1m

(resp., Ct nm) is used to denote that a multiset m of

labelled objects is added to (resp., removed from) the

configuration.

3.2. P systems from CSCð2Þ Characterize Classical
Complexity Class P

To show that only tractable problems can be solved

efficiently using families of SAS P systems from CSCð2Þ,
we first prove a technical result concerning recognizer P

systems from CSCð2Þ.

Lemma 3.1

Let P5ðC;C0;C1; E;R; l;M1; . . . ;Mq;R1; . . . ;Rq; iin; ioutÞ
be a recognizer P system of degree q � 1 from CSCð2Þ. Let

M5jM11 . . . 1Mqj and let C5fC0; . . . ; Crg be a computa-

tion of P. Then, we have

1. jC�0j5M , and for each t, 0 � t < r, C�t11 \ ðC n EÞ �
C�t \ ðC n EÞ;

2. for each t, 0 � t � r; C�t \ ðC n EÞ � ðM11 . . . 1MqÞ\
ðC n EÞ, and jC�t \ ðC n EÞj � M ;

3. for each t, 0 � t < r; jC�t11j � jC�t j1M ;

4. for each t, 0 � t � r; jC�t j � M � ð11tÞ;
5. the number of created membranes along the com-

putation C by the application of membrane separa-

tion rules is bounded by 2M � ð11rÞ.

Proof

(1) First, let us notice that

jC�0j5jC0ð0Þ1C0ð1Þ1 . . . 1C0ðqÞj5jM11 . . . 1Mqj5M :

Let x be an arbitrary object of the multiset

C�t11 \ ðC n EÞ5ðCt11ð0Þ1Ct11ð1Þ1 . . . 1Ct11ðqÞÞ \ ðC n EÞ:

Bear in mind that membrane separation rules neither

replicate objects nor produce new objects. Then, at the

ðt11Þ th step, we have the following two cases:

� x has not been produced by the application of

any rule, and then x 2 C�t \ ðC n EÞ;
� x has been obtained by applying a communica-

tion rule.

� If x appears in a membrane with labels j,

2 � j � q, then the result holds obviously.

� If x appears in the skin membrane, we have

the following four types of rules: (i) ðx; inÞ 2 R1,

then x 2 Ctð0Þ \ ðC n EÞ; (ii) ðx;outÞ 2 Rchð1Þ, then

x 2 Ctðchð1ÞÞ \ ðC n EÞ; (iii) ðx0;out; x; inÞ 2 R1,

then x 2 Ctð0Þ \ ðC n EÞ; and (iv) ðx;out; x0; inÞ 2
Rchð1Þ, then x 2 Ctðchð1ÞÞ \ ðC n EÞ. Hence, in all

of the above four cases, x 2 C�t \ ðC n EÞ.
� If x appears in the environment, we have the

following two types of rules: (i) ðx;outÞ 2 R1,

then x 2 Ctð1Þ \ ðC n EÞ and (ii) ðx;out; x0; inÞ 2
R1, then x 2 Ctð1Þ \ ðC n EÞ. Hence, in both

cases, x 2 C�t \ ðC n EÞ.

Hence, C�t11 \ ðC n EÞ � C�t \ ðC n EÞ.

(2) By induction on t. Let us start analyzing the

basic case t 5 0. The result is trivial because

C�0 \ ðC n EÞ5ðC0ð0Þ1C0ð1Þ1 . . . 1C0ðqÞÞ \ ðC n EÞ
5ðM11 . . . 1MqÞ \ ðC n EÞ:

By induction hypothesis, let us suppose the result holds

for t, 0 � t < r. Let us see that the result also holds for

t 1 1. We have

C�t11 \ ðC n EÞ �
ð1Þ
C�t \ ðC n EÞ�

h
:i:ðM11 . . . 1MqÞ \ ðC n EÞ:

Hence, jC�t \ ðC n EÞj � jðM11 . . . 1MqÞ \ ðC n EÞj � M .

(3) For 0 � t < r, from configuration Ct to configura-

tion Ct11, only the skin membrane (labelled by 1) can

communicate objects with the environment. Thus, all

the objects in membranes 2; . . . ;q at configuration Ct

are still placed in membranes 1; 2; . . . ;q at configura-

tion Ct11. Let us see what are the objects evolved in

membrane 1 from configuration Ct to configuration

Ct11. In what follows, we consider additional objects

introduced in Ct11 from Ct in membrane 1.

(i) If rules of type (u, out), u 2 C1 and 1 � juj � 2,

are used, then jC�t11j � jC�t j.
(ii) If rules of type (u, in), u 2 C1 and 1 � juj � 2,

are used, then an additional object is added in Ct11

from Ct only using a rule of type (ab, in), with a 2 C

nE;b 2 E; a 2 Ctð0Þ or b 2 C n E;a 2 E; b 2 Ctð0Þ.
(iii) If rules of type ða;out; b; inÞ; a 2 C and b 2 C, are

used, then an additional object is added in Ct11 from

Ct only using a rule of type ða;out; b; inÞ, with a 2 Ctð1Þ
\ ðC n EÞ, b 2 E.

Thus, by combining the cases (i), (ii), and (iii) with

the result (2), it is easy to deduce that the total number

of additional objects added in Ct11 from Ct is bounded

by M. Hence, for each t, 0 � t < r; jC�t11j � jC�t j1M .

(4) By induction on t. Let us start analyzing the

basic case t 5 0. The result is trivial because of jC�0j5M .

By induction hypothesis, let us suppose the result

holds for t, 0 � t < r. Then,
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C�t11 �
ð3Þ
jC�t j1M �

h:i:
M � ð11tÞ1M5M � ð11ðt11ÞÞ:

Hence, the result is also true for t 1 1.

(5) According to the fact that the application of a

membrane separation rule consumes an object and

produces two new membranes, result (5) can be

obtained from (4) easily. �

In what follows, we present a deterministic algorithm

A working in polynomial time that receives as input a

P system P from CSC(2) and an input multiset m of P,

and reproduces the behavior of a computation of P1m.

In particular, if P is confluent, then the algorithm A
will provide the same answer of the system P. The

pseudocode of the algorithm A is described as follows:

Input: A P system P from CSC(2) and an input

multiset m

Initialization phase: C0 is the initial configura-

tion of P 1 m

t  0

while Ct is a nonhalting configuration do

Selection phase: Input Ct , Output ðCt
0;AÞ

Execution phase: Input ðCt
0;AÞ, Output Ct11

t  t11

end while

Output: Yes if P1m has an accepting computa-

tion, No otherwise

The algorithm A receives a recognizer P system

P5ðC;C0;C1; E;R;l;M1; . . . ;Mq;R1; . . . ;Rq; iin; ioutÞ

from CSC(2) and an input multiset m. Let

M5jM11 . . . 1Mqj, p be a natural number such that

any computation of P performs at most p transition

steps. Hence, from Lemma 3.1, we know that the num-

ber of membranes in the system along any computation

is bounded by 2Mð11pÞ1q.

A transition step of a recognizer P system P1m is

performed by the selection phase and the execution

phase. Specifically, the selection phase receives as input

a configuration Ct of P1m at an instant t. The output

of this phase is a pair ðCt
0;AÞ, where A encodes a multi-

set of rules selected to be applied to Ct, and Ct
0 is the

configuration obtained from Ct once the labelled objects

corresponding to the left-hand side of the rules from A

have been consumed. The execution phase receives as

input the pair ðCt
0;AÞ and the output of this phase is

the next configuration Ct11 of Ct , where the configura-

tion Ct11 is obtained from Ct
0 by adding the labelled

objects produced by the application of rules from A,

which is the labelled objects corresponding to the right-

hand side of the rules from A.

Selection Phase

Input: A configuration Ct of P1m at instant t

Ct
0  Ct ; A 1; B 1

for r5ðu;out; v; inÞ 2 Ri; 2 � i � q according to

the order

chosen do

for each membrane ði;rÞ of Ct
0 according to

the lexicographical

order do

nr  maximum number of times that r is

applicable to ði; rÞ
if nr > 0 then

Ct
0  Ct

02nr � LHSðr; ði;rÞ; ðpðiÞ; sÞÞ
A A [ fðr;nr ; ði;rÞ; ðpðiÞ; sÞÞg
B B [ fði; rÞ; ðpðiÞ; sÞg

end if

end for

end for

for r5ðu;out; v; inÞ 2 R1 according to the order

chosen do

for membrane ð1; kÞ of Ct
0 according to the

lexicographical

order do

nr  maximum number of times that r is

applicable to ð1; kÞ
if nr > 0 then

Ct
0  Ct

02nr � LHSðr; ð1; kÞ; 0Þ
A A [ fðr;nr ; ð1; kÞ; 0Þg

end if

end for

end for

for r5½a �i ! ½C0 �i ½C1�i 2 Ri (i 6¼ 1) according to

the

order chosen do

for each ða; i; rÞ 2 Ct
0 according to the

lexicographical

order, and such that ði; rÞ 2 B do

C0t  C0t n fða; i;rÞg
A A [ fðr; 1; ði;rÞÞg

end for

end for

This algorithm is deterministic and works in a polynomial

time. Indeed, the running time of this algorithm is polyno-

mial in the size of P because the number of cycles of the

first main loop for is of order OðjRj �M � p � qÞ; the number

of cycles of the second main loop for is of order OðjRjÞ;
and the number of cycles of the third main loop for is of

order OðjRj �M � p � q � jCjÞ.

Execution Phase

Input: The output ðCt
0;AÞ of the selection

phase
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for each ðr;nr ; ði;rÞ; ðpðiÞ; sÞÞ 2 A do

Ct
0  Ct

01nr � RHSðr; ði; rÞ; ðpðiÞ; sÞÞ
end for

for each ðr;nr ; ð1; kÞ; 0Þ 2 A do

Ct
0  Ct

01nr � RHSðr; ð1; kÞ; 0Þ
end for

for each ðr; 1; ði; rÞÞ 2 A do

Ct
0  Ct

01fðk; i; rÞ=r0g
Ct
0  Ct

01fðk; i; r1Þg
for each ðx; i; rÞ 2 Ct

0 according to the

lexicographical

order do

if x 2 C0 then

Ct
0  Ct

01fðx; i; rÞ=r0g
Else

Ct
0  Ct

01fðx; i; rÞ=r1g
end if

end for

end for

Ct11  Ct
0

This algorithm is deterministic and works in a polynomial

time. Indeed, the running time of this algorithm is polyno-

mial in the size of P because the number of cycles of the

first main loop for is of order OðjRj �M � p � qÞ; the number

of cycles of the second main loop for is of order OðjRjÞ;
and the number of cycles of the third main loop for is of

order OðjRj �M � p � q � jCjÞ.

Theorem 3.1

P5PMCCSCð2Þ:

Proof

It suffices to show that PMCCSCð2Þ � P. Let X 2 PM

CCSCð2Þ and let P5fPðnÞjn 2 Ng be a family of recognizer

P systems from CSCð2Þ solving X, according to Definition

2.3. Let (cod, s) be a polynomial encoding associated with

that solution. If u 2 IX is an instance of the problem X,

then u will be processed by the system PðsðuÞÞ1codðuÞ.
Let us consider the following deterministic algorithm A0:

Input: an instance u of the problem X

Construct the system PðsðuÞÞ1codðuÞ
Run algorithm A with input PðsðuÞÞ1codðuÞ

Output: Yes if PðsðuÞÞ1codðuÞ has an accepting

computation

No otherwise

The algorithm A0 receives as input an instance u of the

decision problem X5ðIX ; hX Þ and works in a polynomial

time with respect to the size of the input. The following

assertions are equivalent:

� hX ðuÞ51, that is, the answer of problem X to

instance u is affirmative.

� Every computation of PðsðuÞÞ1codðuÞ is an accepting

computation.

� The output of the algorithm A0 with input u is Yes.

Hence, X 2 P. �

4. AN EFFICIENT SOLUTION TO SAT IN CSCð3Þ
In this section, a polynomial time solution to the SAT

problem by a family of recognizer P systems P5fPðtÞj t
2 INg from CSCð3Þ is provided. Each system PðtÞ will pro-

cess all Boolean formula u in conjunctive normal form

with n variables and m clauses, where t5hn;mi5ððn1mÞ
ðn1m11Þ=2Þ1n, provided that the appropriate input mul-

tiset codðuÞ is supplied to the system.For each n;m 2 IN,

we consider the recognizer P system

Pðhn;miÞ5ðC;C0;C1; E;R; l;M1; . . . ;Mq;R1; . . . ;Rq; iin; ioutÞ

from CSCð3Þ, defined as follows:

1. Working alphabet:

C5R [ E [ fai;0;k ; a
0
i;0;k j1 � i � n21; 0 � k � 1g[

fA1;B1;b1; b
0
1; c1; c

0
1; v1; q1;1;b0; b

0
0; b

00
0; c0; c

0
0; c
000
0 ; c

000
0 ; f0;

yes;nog [ ff 0ij0 � i � 3n12m11g[
fqi;0; si;0j1 � i � ng [ fdj;0j0 � j � mg;

where the input alphabet is R5fxi;j; �xi;jj1 � i � n;

1 � j � mg. The alphabet of the environment is

E 5 fai;j;k; a0i;j;k j1 � i � n21; 1 � j � 3ðn21Þ; 0 � k � 1g[

fbj; b
0
j; b
00
j ; cj; c

0
j; c
00
j ; c
000
j j1 � j � 3ðn21Þg[

fqi;j; si;jj1 � i � n; 1 � j � 3n21g[

fTi;j;T
0
i;j;Fi;j;F

0
i;jj1 � i < j; 1 � j � ng[

fTi;i;F
0
i;i;Ti;Fij1 � i � ng [ fAi;A

0
i;Bi;B

0
ij2 � i � n11g[

fbi;b
0
i; ci; c

0
ij2 � i � ng [ fvij2 � i � n21g[

fyi;ai;wij1 � i � n21g [ fzij1 � i � n22g[

fqi;jj1 � i � j; 2 � j � n21g[

fui;jj1 � i � j; 1 � j � n22g[

fti;j; fi;j; ri;j; si;jj1 � i � j; 1 � j � n21g[

fdi;j;k; �di;j;kj1 � i � n; 1 � j � m; 1 � k � n21g[

ffr j1 � r � 3n12mg [ fei;j; �ei;jj1 � i � n; 1 � j � mg[

fdj;r j0 � j � m; 1 � r � 3ng [ fEjj0 � j � mg [ fSg:

2. The partition is fC0;C1g, where C05C n C1 and

C1 5 fT 0i;j F 0i;jj1 � i < j; 1 � j � ng [ fF 0i;ij1 � i � ng[

fA0i;B0ij2 � i � n11g:

3. Membrane structure: l5½ ½ �2 ½ �3�1. The input

membrane is the membrane labelled by 1.
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4. Initial multisets:

M1 5 fai;0;k; a0i;0;kj1 � i � n21; 0 � k � 1g[

fqi;0; si;0j1 � i � ng[

fb0; b
0
0; b

00
0; c0; c

0
0; c
000
0 ; c

000
0 ; c1; c

0
1;b1;b

0
1; v1;q1;1; f0; yesg[

fdj;0j0 � j � mg [ ff 0pj1 � p � 3n12m11g;

M2 5 fA1;B1g;

M3 5 ff 00;nog:

5. Rules in R1:

� Rules to generate in membrane 1 of configura-

tion C3p11 (p51; . . . ;n21), the objects T 2p21

i;p11;T
0
i;p11

2p21; F2p21

i;p11;F
0
i;p112p21:

ðai;0;k ;out; ai;1;k ; inÞ; 1 � i � n21; 0 � k � 1;

ða0i;0;k ;out; a0i;1;k ; inÞ; 1 � i � n21; 0 � k � 1;

ðai;1;k ;out; ai;2;k ; inÞ; 1 � i � n21; 0 � k � 1;

ða0i;1;k ;out; a0i;2;k ; inÞ; 1 � i � n21; 0 � k � 1;

ðai;2;k ;out; ai;3;k ; inÞ; 1 � i � n21; 0 � k � 1;

ða0i;2;k ;out; a0i;3;k ; inÞ; 1 � i � n21; 0 � k � 1;

ðai;3p;k ;out; ai;3p11;kDk
i;p11; inÞ;

1 � i � p; 1 � p � n22; 0 � k � 1;

ða0i;3p;k ;out; a0i;3p11;kDi;p11
0k; inÞ;

1 � i � p; 1 � p � n22; 0 � k � 1

ðai;3p;k ;out; ai;3p11;k ; inÞ;
p11 � i � n21; 1 � p � n22; 0 � k � 1;

ða0i;3p;k ;out; a0i;3p11;k ; inÞ;

p11 � i � n21; 1 � p � n22; 0 � k � 1;

ðai;3p11;k;out; ai;3p12;k ; inÞ;

1 � i � n21; 1 � p � n22; 0 � k � 1;

ða0i;3p11;k;out; a0i;3p12;k ; inÞ;

1 � i � n21; 1 � p � n22; 0 � k � 1;

ðai;3p12;k;out; a2
i;3p13;k ; inÞ;

1 � i � n21; 1 � p � n22; 0 � k � 1;

ða0i;3p12;k;out; a0i;3p13;ka0i;3p13;k ; inÞ;

1 � i � n21; 1 � p � n22; 0 � k � 1;

ðai;3ðn21Þ;k ;out; Dk
i;n; inÞ;

1 � i � n21; 0 � k � 1;

ða0i;3ðn21Þ;k ;out; Di;n
0k; inÞ;

1 � i � n21; 0 � k � 1;

where D0
i;j5Fi;j, Di;j

005F 0i;j, D1
i;j5Ti;j, Di;j

015T 0i;j.

� Rules to generate in membrane 1 of configura-

tion C3p11 (p50; 1; . . . ;n21), the objects B2p

p12;B
0
p12

2p; S2p

:

ðb3p;out; b3p11Bp12; inÞ; 0 � p � n23;

ðb03p;out; b03p11B0p12; inÞ; 0 � p � n23;

ðb003p;out; b003p11S; inÞ; 0 � p � n23;

ðb3p11;out; b3p12; inÞ; 0 � p � n23;

ðb03p11;out; b03p12; inÞ; 0 � p � n23;

ðb003p11;out; b003p12; inÞ; 0 � p � n23;

ðb3p12;out; b2
3p13; inÞ; 0 � p � n23;

ðb03p12;out; b03p13 b03p13; inÞ; 0 � p � n23;

ðb003p12;out; b003p13 b0 03p13; inÞ; 0 � p � n23;

ðb3ðn22Þ;out; b3ðn22Þ11Bn; inÞ;

ðb03ðn22Þ;out; b03ðn22Þ11B0n; inÞ;

ðb003ðn22Þ;out; b003ðn22Þ11S; inÞ;

ðb3ðn22Þ11;out; b3ðn22Þ12; inÞ;

ðb03ðn22Þ11;out; b03ðn22Þ12; inÞ;

ðb003ðn22Þ11;out; b003ðn22Þ12; inÞ;

ðb3ðn22Þ12;out; b2
3ðn22Þ13; inÞ;

ðb03ðn22Þ12;out; b03ðn22Þ13 b03ðn22Þ13; inÞ;

ðb003ðn22Þ12;out; b003ðn22Þ13 b003ðn22Þ13; inÞ;

ðb3ðn21Þ;out; Bn11; inÞ;

ðb03ðn21Þ;out; B0n11; inÞ;

ðb003ðn21Þ;out; S; inÞ:

� Rules to generate in membrane 1 of configura-

tion C3p11 (p50; 1; . . . ;n21), the objects T 2p

p11;p11;

T 0p11;p112p;A2p

p12;A
0
p122p:

ðc3p;out; c3p11Tp11;p11; inÞ; 0 � p � n23;

ðc03p;out; c03p11F 0p11;p11; inÞ; 0 � p � n23;

ðc0 03p;out; c003p11Ap12; inÞ; 0 � p � n23;

ðc0003p;out; c0003p11A0p12; inÞ; 0 � p � n23;

ðc3p11;out; c3p12; inÞ; 0 � p � n23;

ðc03p11;out; c03p12; inÞ; 0 � p � n23;

ðc0 03p11;out; c003p12; inÞ; 0 � p � n23;

ðc0003p11;out; c0003p12; inÞ; 0 � p � n23;

ðc3p12;out; c2
3p13; inÞ; 0 � p � n23;

ðc03p12;out; c03p13 c03p13; inÞ; 0 � p � n23;

ðc0 03p12;out; c0 03p13 c0 03p13; inÞ; 0 � p � n23;

ðc0003p12;out; c0003p13 c0003p13; inÞ; 0 � p � n23;
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ðc3ðn22Þ;out; c3ðn22Þ11Tn21;n21; inÞ;

ðc03ðn22Þ;out; c03ðn22Þ11F 0n21;n21; inÞ;

ðc0 03ðn22Þ;out; c0 03ðn22Þ11An; inÞ;

ðc0003ðn22Þ;out; c0 03ðn22Þ11A0n; inÞ;

ðc3ðn22Þ11;out; c3ðn22Þ12; inÞ;

ðc03ðn22Þ11;out; c03ðn22Þ12; inÞ;

ðc0 03ðn22Þ11;out; c0 03ðn22Þ12; inÞ;

ðc0003ðn22Þ11;out; c0003ðn22Þ12; inÞ;

ðc3ðn22Þ12;out; c2
3ðn22Þ13; inÞ;

ðc03ðn22Þ12;out; c03ðn22Þ13 c03ðn22Þ13; inÞ;

ðc0 03ðn22Þ12;out; c0 03ðn22Þ13 c0 03ðn22Þ13; inÞ;

ðc0003ðn22Þ12;out; c0003ðn22Þ13 c0003ðn22Þ13; inÞ;

ðc3ðn21Þ;out; Tn;n; inÞ;

ðc03ðn21Þ;out; F 0n;n; inÞ;

ðc0 03ðn21Þ;out; An11; inÞ;

ðc0003ðn21Þ;out; A0n11; inÞ:

� Rules to generate in membrane 1 of configura-

tion C3n, the objects T 2n21

i ;F2n21

i ð1 � i � nÞ:

ðqi;0 ;out; qi;1 ; inÞ; 1 � i � n;

ðsi;0 ;out; si;1 ; inÞ; 1 � i � n;

ðqi;1 ;out; qi;2 ; inÞ; 1 � i � n;

ðsi;1 ;out; si;2 ; inÞ; 1 � i � n;

ðqi;2 ;out; qi;3 ; inÞ; 1 � i � n;

ðsi;2 ;out; si;3 ; inÞ; 1 � i � n;

ðqi;3p ;out; qi;3p11 ; inÞ; 1 � i � n; 1 � p � n22;

ðsi;3p ;out; si;3p11 ; inÞ; 1 � i � n; 1 � p � n22;

ðqi;3p11 ;out; q2
i;3p12 ; inÞ; 1 � i � n; 1 � p � n22;

ðsi;3p11 ;out; s2
i;3p12 ; inÞ; 1 � i � n; 1 � p � n22;

ðqi;3p12 ;out; qi;3p13 ; inÞ; 1 � i � n; 1 � p � n22;

ðsi;3p12 ;out; si;3p13 ; inÞ; 1 � i � n; 1 � p � n22;

ðqi;3ðn21Þ ;out; qi;3ðn21Þ11 ; inÞ; 1 � i � n;

ðsi;3ðn21Þ ;out; si;3ðn21Þ11 ; inÞ; 1 � i � n;

ðqi;3ðn21Þ11 ;out; q2
i;3ðn21Þ12 ; inÞ; 1 � i � n;

ðsi;3ðn21Þ11 ;out; s2
i;3ðn21Þ12 ; inÞ; 1 � i � n;

ðqi;3ðn21Þ12 ;out; Ti ; inÞ; 1 � i � n;

ðsi;3ðn21Þ12 ;out; Fi ; inÞ; 1 � i � n;

ðAi ;out; ai ; inÞ; 1 � i � n21;

ðA0i ;out; ai ; inÞ; 1 � i � n21;

ðBi ;out; ai ; inÞ; 1 � i � n21;

ðB0i ;out; ai ; inÞ; 1 � i � n21;

ðyi ;out; zi wi ; inÞ; 1 � i � n22;

ðyn21 ;out; wn21 ; inÞ;
ðwi ;out; ci11 c0i11 ; inÞ; 1 � i � n21;

ðzi ;out; vi11 ; inÞ; 1 � i � n22;

ðvi ;out; y2
i ; inÞ; 1 � i � n21;

ðai ;out; bi11 b0i11 ; inÞ; 1 � i � n21;

ðq1;1 ;out; r1;1 ; inÞ;

ðqi;j ;out; r2
i;j ; inÞ; 1 � i � n21; i � j � n21;

ðri;j ;out; si;j ui;j ; inÞ; 1 � i � n22; i � j � n22;

ðri;n21 ;out; si;n21 ; inÞ; 1 � i � n21;

ðu1;j ;out; q1;j11 q2;j11 ; inÞ; 1 � j � n22;

ðui;j ;out; qi11;j11 ; inÞ; 2 � i � j; 2 � j � n22;

ðTi;j ti;j;outÞ; 1 � i � j; 1 � j � n;

ðT 0i;j ti;j;outÞ; 1 � i � j; 1 � j � n;

ðFi;j fi;j;outÞ; 1 � i � j; 1 � j � n;

ðF 0i;j fi;j;outÞ; 1 � i � j; 1 � j � n:

� Rules to have multiplicity 2n21 of objects xi;j and �xi;j

such that xi 2 Cj and :xi 2 Cj in membrane 1 of

configuration Cn11, and change the name x by e:

ðxi;j ;out; d2
i;j;1 ; inÞ; 1 � i � n; 1 � j � m;

ð�xi;j ;out; �d
2

i;j;1 ; inÞ; 1 � i � n; 1 � j � m;

ðdi;j;k ;out; d2
i;j;k11 ; inÞ; 1 � i � n; 1 � j � m; 1 � k � n22;

ð�di;j;k ;out; �d
2

i;j;k11 ; inÞ; 1 � i � n; 1 � j � m; 1 � k � n22;

ðdi;j;n21 ;out; ei;j ; inÞ; 1 � i � n; 1 � j � m;

ð�di;j;n21 ;out; �ei;j ; inÞ; 1 � i � n; 1 � j � m:

� Output rule with affirmative answer: ðE0 f3n12m

yes ; outÞ.
� Output rule with negative answer: ðf3n12m

no ; outÞ.
� Rules to generate in membrane 1 of configura-

tion C3n, the objects E2n

1 , and in membrane 1 of

configuration C3n11, the objects E2n

0 ;E2n

2 ; . . . ;E2n

m :

ðdj;3p ;out; dj;3p11; inÞ; 0 � j � m; 0 � p � n21;

ðdj;3p11 ;out; d2
j;3p12; inÞ; 0 � j � m; 0 � p � n21;

ðdj;3p12 ;out; dj;3p13; inÞ; 0 � j � m; 0 � p � n22;

ðd1;3ðn21Þ12 ;out; E1; inÞ;
ðdj;3ðn21Þ12 ;out; dj;3ðn21Þ13; inÞ; 0 � j � m; j 6¼ 1;

ðdj;3n ;out; Ej; inÞ; 0 � j � m; j 6¼ 1;

ðfp ;out; fp11 ; inÞ; 0 � p � 3n12m21:
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� Rules to remove a part of the garbage objects:

ðti;k Ti;k ;outÞ; 1 � i < k; 2 � k � n;

ðti;k T 0i;k ;outÞ; 1 � i < k; 2 � k � n;

ðfi;k Fi;k ;outÞ; 1 � i < k; 2 � k � n;

ðfi;k F 0i;k ;outÞ; 1 � i < k; 2 � k � n;

ðti;i Ti;i ;outÞ; 1 � i � n;

ðfi;i F 0i;i ;outÞ; 1 � i � n;

ðbk Bk11 ;outÞ;n21 � k � n;

ðb0k B0k11 ;outÞ;n21 � k � n;

ðck Ak11 ;outÞ;n21 � k � n;

ðc0k A0k11 ;outÞ;n21 � k � n:

6. Rules in R2:

� Separation rule to produce all truth assignments

for the variables fx1; . . . ; xng associated with the

input formula: ½ S �2 ! ½C0 �2 ½C1 �2.

� Rules to produce objects Ti;i;Ai11;F
0
i;i;A

0
i11 in

membrane 2:

ðAi;out; ci c0i; inÞ; 1 � i � n;

ðA0i;out; ci c0i; inÞ; 1 � i � n;

ðBi;out; bi b0i; inÞ; 1 � i � n;

ðB0i;out; bi b0i; inÞ; 1 � i � n;

ðbi;out; Bi11 S; inÞ; 1 � i � n;

ðb0i;out; B0i11; inÞ; 1 � i � n;

ðci;out; Ti;i Ai11; inÞ; 1 � i � n;

ðc0i;out; F 0i;i A0i11; inÞ; 1 � i � n:

� Rules to produce an object E1 in each membrane

2 of configuration C3n11 and an object E0 in each

membrane 2 of configuration C3n12:

ðBn11;out; E1; inÞ ; ðB0n11;out; E1; inÞ;

ðAn11;out; E0; inÞ ; ðA0n11;out; E0; inÞ:

� Rules to produce a truth assignment in each

membrane 2 of configuration C3n11:

ðTi;j;out; ti;j; inÞ; 1 � i � j; 1 � j � n;

ðT 0i;j;out; ti;j; inÞ; 1 � i � j; 1 � j � n;

ðFi;j;out; fi;j; inÞ; 1 � i � j; 1 � j � n;

ðF 0i;j;out; fi;j; inÞ; 1 � i � j; 1 � j � n;

ðti;j;out; Ti;j11 T 0i;j11; inÞ; 1 � i � j; 1 � j � n21;

ðfi;j;out; Fi;j11 F 0i;j11; inÞ; 1 � i � j; 1 � j � n21;

ðTi;n;out; Ti; inÞ; 1 � i � n;

ðT 0i;n;out; Ti; inÞ; 1 � i � n;

ðFi;n;out; Fi; inÞ; 1 � i � n;

ðF 0i;n;out; Fi; inÞ; 1 � i � n:

� Rules to check the clause j through the truth

assignment encoded by a membrane 2:

ðEj Ti;out; ei;j; inÞ; 1 � i � n; 1 � j � m;

ðEj Fi;out; �ei;j; inÞ; 1 � i � n; 1 � j � m:

� Rules to restore the truth assignment encoded by

a membrane 2 which make true, the clause j:

ðei;j;out;Ej11 Ti; inÞ; 1 � i � n; 1 � j � m21;

ð�ei;j;out;Ej11 Fi; inÞ; 1 � i � n; 1 � j � m21:

� Rules to send to the membrane 1 of configuration

C3n12m11, an object E0, meaning that some truth

assignment encoded by a membrane labelled by 2

makes true the input formula u:

ðei;m E0 ; outÞ; 1 � i � n;

ð�ei;m E0 ; outÞ; 1 � i � n:

7. Rules in R3:

� Rules to produce objects f 03n12m11 and no in

membrane 1 of configuration C3n12m12 to produce

a proper answer in the negative case (not satisfi-

able formula).

ðf 0p;out; f 0p11; inÞ; 0 � p � 3n12m;

ðf 03n12m11 no ; outÞ:

8. iin 5 1 and iout 5 0.

5. AN OVERVIEW OF THE COMPUTATIONS
Let u5C1� . . . �Cm be an instance of the SAT problem

consisting of m clauses Cj5lj;1� . . . �lj;rj
; 1 � j � m, where

VarðuÞ5fx1; . . . ; xng and lj;k 2 fxi;:xij1 � i � ng; 1 � j � m;

1 � k � rj. Let us assume that the number of variables n,

and the number of clauses m, of u, are greater than or

equal to 2.

We consider the polynomial encoding (cod, s) of

instances from SAT in P defined as follows: sðuÞ5hm;ni
and codðuÞ5fxi;jjxi 2 Cjg [ f�xi;jj:xi 2 Cjg, for each

u 2 ISAT . The Boolean formula u will be processed by the

system PðsðuÞÞ1codðuÞ. In what follows, we informally

describe how that system works.
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The solution proposed follows a brute force algorithm

in the framework of recognizer P systems with SAS P sys-

tem, and it consists of the following phases:

� Generation phase: using separation rules, all truth

assignments for the variables fx1; . . . ; xng associated

with u are produced. This phase takes 3n11 compu-

tation steps.

� Checking phase: checking whether or not the input

formula u is satisfied by some truth assignment gen-

erated in the previous phase. This phase takes 3m11

steps, where m is the number of clauses of u.

� Output phase: sending the right answer into the

environment according to the results of the previous

phase. This phase takes 1 step if the answer is

affirmative or 3 steps if the answer is negative.

5.1. Generation Phase
In this phase, all truth assignments for the variables

associated with the Boolean formula uðx1; . . . ; xnÞ are

going to be generated, by applying separation rules in

membranes labelled by 2. In this way, after completing

the phase, there exist 2n membranes labelled by 2 such

that each of them encodes a different truth assignment of

the variables fx1; . . . ; xng.
This phase consists of a loop with n iterations and one

additional final step. Each iteration of the loop takes three

steps. So, this phase takes 3n11 steps.

To do this, in the configurations C3p12 (0 � p � n21),

there exist 2p membranes labelled by 2 containing objects

Ap12; A0p12; Bp12; B0p12; Tp11;p11; F 0p11;p11; S;

along with 2p-tuples of objects ðp1;p11;p01;p11; . . . ;pp;p11;

p0p;p11Þ with p 2 fT ;Fg, in such a way that the correspond-

ing tuples in the different membranes are different from

each other.

In this way, a separation rule can be applied to each of

the membranes labelled by 2, producing that in the con-

figuration C3p13 (0 � p � n22),there exist 2p11 membranes

labelled by 2, with 2p membranes of them containing

objects Ap12 and Bp12, as well as ðp11Þ-tuples ðp1;p11; . . . ;

pp11;p11Þ with p 2 fT ;Fg, in such a way that pp11;p115

Tp11;p11 and the corresponding tuples in the different

membranes are different from each other. The other 2p

membranes labelled by 2, contain the objects A0p12 and

B0p12, as well as ðp11Þ-tuples ðp01;p11; . . . ;p0p11;p11Þ with

p 2 fT ;Fg, in such a way that p0p11;p115F 0p11;p11 and the

corresponding tuples in the different membranes are dif-

ferent from each other.

Finally, in the configuration C3n, there exist 2n mem-

branes labelled by 2, where 2n21 membranes of them con-

tain the objects An11 and Bn11, as well as n-tuples

ðp1;n; . . . ; pn;nÞ with p 2 fT ;Fg, in such a way that pn;n5Tn;n

and the corresponding tuples in the different membranes

are different from each other; the other 2n21 membranes

labelled by 2, contain the objects A0n11 and B0n11, as well as

n-tuples ðp01;n; . . . ; p0n;nÞ with p 2 fT ;Fg, in such a way that

p0n;n5F 0n;n and the corresponding tuples in the different

membranes are different from each other.

This phase ends in step 3n11, where the configuration

C3n11 contains 2n membranes labelled by 2, each of these

2n membranes contains the objects An11 and E1, as well

as n-tuples ðp1; . . . ; pnÞ with p 2 fT ;Fg, and the corre-

sponding tuples in the different membranes are different

from each other.

During the generation phase, 2n21 copies are generated

from each object contained in the input multiset placed

initially in the skin membrane. Due to technical reasons,

we change variables xi;j and �xi;j to ei;j and �ei;j, respectively.

This is accomplished using the following rules from R1:

ðxi;j ;out; d2
i;j;1 ; inÞ; 1 � i � n; 1 � j � m;

ð�xi;j ;out; �d
2

i;j;1 ; inÞ; 1 � i � n; 1 � j � m;

ðdi;j;k ;out; d2
i;j;k11 ; inÞ; 1 � i � n; 1 � j � m; 1 � k � n22;

ð�di;j;k ;out; �d
2

i;j;k11 ; inÞ; 1 � i � n; 1 � j � m; 1 � k � n22;

ðdi;j;n21 ;out; ei;j ; inÞ; 1 � i � n; 1 � j � m;

ð�di;j;n21 ;out; �ei;j ; inÞ; 1 � i � n; 1 � j � m:

The multiset that codifies the input formula will be

denoted by ðcodðuÞÞ2
n21

e .

5.2. Checking Phase
This phase begins at computation step 3n12 and con-

sists of a loop with m iterations, where each iteration

takes two steps. So, the checking phase takes 2m steps.

In the configuration C3n11, the presence of an object E1

in each membrane labelled by 2, along with the code of a

truth assignment, marks the beginning of this phase. In

the first iteration of the loop, the truth assignments mak-

ing true the first clause of u are found. To do this, the fol-

lowing rules of R2 are applied:

ðE1 Ti;out; ei;1; inÞ; 1 � i � n;

ðE1 Fi;out; �ei;1; inÞ; 1 � i � n:

In step ð3n11Þ12, the object E0 is incorporated to each of

the membranes labelled by 2, by means of the application

of the following rules of R2: ðAn11;out;E0; inÞ and

ðA0n11;out;E0; inÞ. The presence of an object ei;1 or an

object �ei;1 in a membrane 2 of the configuration Cð3n11Þ11

indicates that this membrane codifies a truth assignment

making true the first clause. In the next computation step,

those membranes containing object ei;1 or �ei;1 will incor-

porate an object E2 from the skin membrane by applying

the following rules from R2:
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ðei;1;out;E2 Ti; inÞ; 1 � i � n;

ð�ei;1;out;E2 Fi; inÞ; 1 � i � n:

In this way, the presence of an object E2 in a membrane 2

of the configuration Cð3n11Þ12 indicates that this membrane

codifies a truth assignment making true, the first clause and

that the system is ready to check the second clause of the

formula. That is, from this moment, the membranes labelled

by 2 not making true, the first clause will not evolve.

In the jth iteration ð2 � j � mÞ of the aforementioned

loop, the truth assignments making true, the clause j of

the formula are checked, taking into account that only the

truth assignments containing the object Ej will be

checked, since only these membranes make true, the

clauses 1; . . . ; j21 of u. This is accomplished by applying

the following rules from R2:

ðEj Ti;out; ei;j; inÞ; 1 � i � n; 1 � j � m;

ðEj Fi;out; �ei;j; inÞ; 1 � i � n; 1 � j � m:

The presence of an object ei;j or an object �ei;j in a mem-

brane 2 of the configuration Cð3n11Þ12�ðj21Þ11 indicates that

this membrane codifies a truth assignment making true

the clauses 1; . . . ; j of u. Then, those membranes will

incorporate an object Ej11 from the skin membrane by

applying the following rules from R2:

ðei;j;out;Ej11 Ti; inÞ; 1 � i � n; 1 � j � m21;

ð�ei;j;out;Ej11 Fi; inÞ; 1 � i � n; 1 � j � m21:

If the input formula u is satisfiable, then in some mem-

brane labelled by 2 of the configuration Cð3n11Þ12ðm21Þ11,

there exists an object ei;m or an object �ei;m, which indi-

cates that the truth assignment codified by this membrane

makes true, all the clauses from u and, consequently,

makes true, the input formula. In this case, by applying a

rule from R2 of the form ðei;m E0 ; outÞ or ð�ei;m E0 ; outÞ, an

object E0 goes to the skin membrane of the configuration

Cð3n11Þ12ðm21Þ12, and the checking phase ends, where the

object f3n12m has also been produced.

If the input formula u is not satisfiable, then no mem-

brane labelled by 2 of the configuration Cð3n11Þ12ðm21Þ11

contains an object ei;m or an object �ei;m. In this case, by

applying the rule ðf 03n12m ;out; f 03n12m11 ; inÞ 2 R3 (in fact,

this is the only rule applicable to the configuration

Cð3n11Þ12ðm21Þ11), the object f 03n12m11 appears in the skin

membrane, and the checking phase ends.

In general, the checking phase ends at step ð3n11Þ1
2ðm21Þ1253n12m11.

5.3. Output Phase
If the input formula u is satisfiable, then objects E0 and

f3n12m will appear in the skin membrane of the configura-

tion C3n12m11. By applying the rule ðE0 f3n12m yes ; outÞ in

the skin membrane, the object yes is released into the envi-

ronment, providing an affirmative answer at computation

step ð3n11Þ12m1153n12m12.

If the input formula u is not satisfiable, then object

f 03n12m is present in the skin membrane of the configura-

tion Cð3n11Þ12ðm21Þ115C3n12m, but not the object E0. In this

case, only the rule ðf 03n12m ;out; f 03n12m11 ; inÞ 2 R3 is appli-

cable and applied, and in the next step only the rule

ðf 03n12m11 no ; outÞ 2 R3 is applicable and applied. Conse-

quently, objects f3n12myes; f 03n12m11 no appear in the skin

membrane of the configuration C3n12m12. Then, by apply-

ing the rule ðf3n12m no ; outÞ in the skin membrane, an

object no is released into the environment, providing a

negative answer in step 3n12m14.

In general, the output phase takes one computation

step in the case of an affirmative answer, and three com-

putation steps in the case of a negative answer.

As a result of the above overview of the computations,

we have the following theorem.

Theorem 5.1

SAT 2 PMCCSCð3Þ.

Noting that the SAT problem is a NP-complete prob-

lem and the complexity class PMCCSCð3Þ is closed under

polynomial-time reduction and under complement, we

have the following corollary.

Corollary 5.1

NP [ co2NP � PMCCSCð3Þ:

6. CONCLUSIONS
In this work, cell-like P systems with SAS P system

have been investigated from a computational complexity

point of view. Two main results have been obtained. On

the one hand, only tractable problems can be efficiently

solved by families of P systems with symport/antiport

rules of length at most two and membrane separation

rules, that is, PMCCSCð2Þ5P. On the other hand, a uniform

polynomial time solution to the SAT problem by a family

of such P systems which use symport/antiport rules of

length at most three has been provided. Thus, a new opti-

mal tractability border has been obtained. Specifically, we

have shown that in the framework of SAS P systems, the

length of symport/antiport rules passing from 2 to 3

amounts to the computational power passing from nonef-

ficiency to efficiency, assuming that P 6¼ NP. So, in the

biology inspired computational models, cell-like P systems

with SAS P system, the length of symport/antiport rules is

an essential parameter for the computational power.
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