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Abstract Population Dynamics P systems are a type of

multienvironment P systems that serve as a formal modeling

framework for real ecosystems. The accurate simulation of

these probabilistic models, e.g. withDirect distribution based

on Consistent Blocks Algorithm, entails large run times.

Hence, parallel platforms such as GPUs have been employed

to speedup the simulation. In 2012, the first GPU simulator of

PDP systems was presented. However, it was able to run only

randomly generated PDP systems. In this paper, we present

current updates made on this simulator, involving an input

modu le for binary files and an output module for CSV files.

Finally, the simulator has been experimentally validated with

a real ecosystem model, and its performance has been tested

with two high-end GPUs: Tesla C1060 and K40.

Keywords Membrane computing � Ecological modelling �
PDP systems � Parallel simulation � GPU computing �
CUDA

1 Introduction

P systems (Păun 2000; Păun et al. 2010) have become good

candidates for computational modeling thanks to the

compartmental and discrete features, both in Systems

Biology (Pérez-Jiménez and Romero-Campero 2006;

Romero-Campero and Pérez-Jiménez 2008) and Population

Dynamics (Colomer-Cugat et al. 2014). In this sense, it is

worth to mention the achieved success in real ecosystem

modeling through probabilistic P systems, such as the case

of Bearded Vulture in the Catalan Pyrenees (endangered

species) (Cardona et al. 2010), and the zebra mussel in

Ribarroja reservoir (exotic invasive species) (Cardona

et al. 2011). These works have led to a formal, computa-

tional modeling framework called Population Dynamics P

systems (PDP systems) (Colomer et al. 2013).

In order to experimentally validate these P systems

based models, the development of simulators is requested

(Păun et al. 2010). P-Lingua Garcı́a-Quismondo et al.

(2010), http://www.p-lingua.org is a simulation framework

for P systems, which aims to be generic, multi-platform (it

is written in Java) and to provide a standard description

language for P systems. It has been used to develop sim-

ulators for many variants of P systems, specially for PDP

systems. Furthermore, experts and model designers are able

to run virtual experiments in an abstracted way (without the

need of accessing to details of P systems) through a special

software called MeCoSim (Pérez-Hurtado et al. 2010,

http://www.p-lingua.org/mecosim). MeCoSim uses P-Lin-

gua as the simulation core.

The run times offered by these general simulation

frameworks are high for some scenarios involving large and

complexmodels. This lack of efficiency ismainly entailed by

the facts of both using Java Virtual Machine and imple-

menting sequential algorithms (Martı́nez-del-Amor 2013).
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The paper is structured as follows: Sect. 2 provides an

overview of the required concepts to understand this paper.

Section 3 presents the new feature of the simulator con-

sisting in a input module to read binary files, and also some

preliminary results. Section 4 deals with experimental

results (validation and performance analysis) for a real

ecosystem. Finally, Sect. 5 discuses future developments to

take into consideration.

2 Preliminaries

In this section we briefly provide the minimum concepts

for the understandability of the paper. We will not formally

introduce the model of PDP systems and the concept of

GPU computing into detail. Instead, we provide short

descriptions along with the corresponding references.

2.1 PDP systems model and simulation: DCBA

PDP systems (Colomer et al. (2013; Colomer-Cugat et al.

2014) constitute a variant of multienvironment P systems

(Garcı́a-Quismondo et al. 2014), which consists in a

directed graph whose nodes are called environments. Each

environment contains a single cell-like P system. More-

over, the arcs of the graph is implicitly given by a set of

communication rules which allow the movement of objects

between environments in a one-to-many fashion. Thus,

these rules are of the form: ðxÞej �!
pr ðy1Þej1 � � � ðyhÞejh , where

x; y1; . . .; yh are objects from the environment alphabet. All

the P systems within each environment have the same

skeleton. In other words, they have the same membrane

structure (with three polarizations associated with the

membranes), the same working alphabet, and the same set

of evolution rules. These rules are of the form:

u ½ v �ai ! u0 ½ v0 �bi , where u; v; u0; v0 are multisets over the

working alphabet, i a membrane id, and a; b polarizations

from the set f0;þ;�g. In some sense, these P systems can

be seen as an extension of the active membranes model.

However, no dissolution neither division are allowed, and

special care on the consistency of rules has to be taken.

PDP systems have also a probabilistic flavor in terms of

probabilities associated with the rules. On the one hand, a

probability is assigned to each (skeleton) evolution rule for

each environment, thus being of the following form:

u ½ v �ai �!
fr;j

u0 ½ v0 �bi . On the other hand, a probability

function is assigned to each communication rule (see pr in

the above description). Rules are executed in a maximal

parallel way according to the probabilities. Rules having

the same left-hand side must satisfy the following condi-

tion: the summing of their probabilities has to be 1.

Indeed, simulating massively parallel devices like P systems 
in a sequential fashion is twice inefficient. This issue can be 
addressed by harnessing the highly parallel architecture 
within modern processors to map the massively parallelism 
of P systems (Martı́nez-del-Amor 2013; Martı́nez-del-Amor 
et al. 2015).

Whereas commodity CPUs can contain dozens of pro-
cessors, current graphic processors (GPUs) (Harris 2005; 
Owens et al. 2008) provide thousands of computing cores. 
They can be programmed using general-purpose frame-

works such as CUDA (Kirk and Hwu 2010; NVIDIA 
CUDA website 2015), OpenCL and OpenAcc. GPUs 
exploit data parallelism by using a very fast memory and 
simplistic cores. Given the high level of parallelism within 
modern GPUs (up to 3500 cores per device NVIDIA 
CUDA website 2015), they have provided a platform to 
implement real parallelism of P systems in a natural way. 
Many P system models have been considered to be simu-

lated with CUDA (Martı́nez-del-Amor et al. 2015): P 
systems with active membranes, solutions for SAT with 
families of P systems with active membranes and of tissue 
P systems with cell division, Enzymatic Numerical P sys-
tems, Spiking Neural P systems without delays, and Pop-
ulation Dynamics P systems (Martı́nez-del-Amor et al. 
2012c), among others. Most of these simulators are within 
the scope of PMCGPU (Parallel simulators for Membrane 
Computing on the GPU) software project (The PMCGPU 
project 2013), which aims to gather efforts on parallelizing 
P system simulators with GPU computing.

As shown by all of these research works, the develop-
ment of a new P system simulator requires a big research 
and development effort. For example, in the case of the 
simulator for PDP systems, the simulation algorithm called 
DCBA (Direct distribution based on Consistent Blocks 
Algorithm) (Colomer-Cugat et al. 2014; Martı́nez-del-

Amor et al. 2012c) was implemented. It is based on four 
different phases with completely different characteristics, 
and the parallelization effort is also different in each one 
(e.g. second phase of DCBA is a random sequential loop 
that cannot be easily parallelized). Therefore, the different 
semantical and syntactical elements of each P system 
variant lead to completely different GPU-based simulators. 
Not only does the GPU code depends on the simulated 
variant, but its efficiency also depend on the simulated P 
system within the variant (Martı́nez-del-Amor et al. 
2012b).

In this paper, we discuss new developments on the GPU 
simulator for PDP systems. In summary, a new input 
module for receiving binary files has been created, allow-
ing to run real ecosystem models defined with P-Lingua. 
Moreover, we present a road map proposal, a set of 
research lines for future work that is going to be addressed.



Inherently to the model is the concept of rule block: a block

is formed by rules having the same left-hand side.

For the syntax of the models, refer to Colomer-Cugat

et al. (2014), Colomer et al. (2013) and Garcı́a-Quismondo

et al. (2014). Concerning the semantics of the model,

several simulation algorithms have been proposed since the

introduction of PDP systems. Each new algorithm aimed at

improving the accuracy of mapping the reality to the

models. Perhaps, the most difficult feature to handle by the

simulation algorithms is the competition of objects

between rules from different blocks (note that rules within

a block have the same left-hand side, and the objects are

consumed according to the probabilities) (Martı́nez-del-

Amor 2013).

The latest introduced algorithm for PDP system is called

Direct distribution based on Consistent Blocks Algorithm

(DCBA) (Martı́nez-del-Amor et al. 2012c). The approach

taken in it is based on the idea of distributing the objects

along the rule blocks in a proportional way. After this

distribution, the rules within the blocks are selected

according to their probabilities using a multinomial dis-

tribution. In summary, DCBA consists in 4 phases: 3 for

selecting rules and the last one for performing the execu-

tion. The scheme of DCBA is the following:

1. Initialization of the algorithm: static distribution table

(columns: blocks, Rows: (objects,membrane))

2. Loop over Time

3. Selection stage:

4. Phase 1 (Distribution of objects along rule blocks)

5. Phase 2 (Maximality selection of rule blocks)

6. Phase 3 (Probabilistic distribution, blocks to rules)

7. Execution stage

The proportional distribution of objects along the blocks

is carried out through a table which implements the rela-

tions between blocks (columns) and objects in membranes

(rows). We always start with a static (general) table, and

depending on the current configuration of the PDP system,

the table is dynamically modified by deleting columns

related to non-applicable blocks. Note that after phase 1,

we have to assure that the maximality condition still holds.

This is normally conveyed by a random loop over the

remaining blocks.

Finally, DCBA also handles the consistency of rules by

defining the concept of consistent blocks (Martı́nez-del-

Amor et al. 2012c; Martı́nez-del-Amor 2013): rules within

a block have the same left-hand side and the same charge

in the right-hand side. There is a further restriction within

phase 1: if two non-consistent blocks (having different

associated right-hand charge) can be selected in a config-

uration, the simulation algorithm will return an error, or

optionally non-deterministically choose a subset of con-

sistent blocks.

2.2 GPU computing

Today, PC’s processors offer from 2 to 16 computing

cores, and this number can be increased to 64 or even 128

in high end equipment. These cores are complex enough to

run threads simultaneously, each one with its own context,

exploiting a coarse grain level of parallelism. For example,

OpenMP (http://www.openmp.org) is a threading library

for multicore processors, which can be used in C/C??.

High Performance Computing world has changed in the

past years. The introduction of the GPU (Harris 2005) as a

co-processor unit to compute and render 3-D graphics,

encouraged the change of trend in HPC solutions and

started to consider heterogeneous platforms having CPUs

and co-processors. The GPU has been devised as a highly

parallel processor since it was conceived, and now GPGPU

enables the GPU to be used for general purpose scientific

applications (http://www.gpgpu.org).

A GPU consists of SIMD multiprocessors intercon-

nected to a fast bus with the main memory system (Owens

et al. 2008; Kirk and Hwu 2010). Each multiprocessor has

a set of computing cores that execute instructions syn-

chronously (they always perform the same instruction over

different data) and a small portion of sketchpad memory

(similar to caches in CPUs, but manually managed by

programmers), among other elements. Current GPUs also

implement cache memories (one L2 at the level of the

memory system, and a L1 cache which resides within the

sketchpad memory).

Fortunately, all these aspects are abstracted to the pro-

grammer with high level programming models such as

CUDA (Kirk and Hwu 2010; NVIDIA CUDA website

2015). Introduced by NVIDIA in 2007, CUDA allows to run

thousands of lightweight threads concurrently arranged in

blocks. Threads belonging to the same block can cooperate

and be easily synchronized. Threads from different blocks

can only be synchronized by finishing their execution. All

these threads execute the same code, called kernel, in a

SPMD (single-program, multiple-data) fashion, since they

access to different pieces of data by using the identifiers

associated with each thread and block. Moreover, each

thread can also take different branches of execution, but this

is penalized when happened within a warp (a group of 32

threads), given that it will make the execution to be serial-

ized. The largest but slowest memory system is called global

memory, whereas the smallest but fastest sketchpadmemory

belonging to each block is called sharedmemory. The access

to these memories should be done carefully, since best

bandwidth is achieved when threads access to memory in

coalesced (to contiguous addresses) and alignedway (Owens

et al. 2008).

Finally, the GPU architecture has been improving by the

different releases. GT800, Fermi, Kepler and Maxwell are

http://www.openmp.org
http://www.gpgpu.org


the codenames of each NVIDIA GPU generation. Each one

has been associated with a Compute Capability (CC), 1.X,

2.X, 3.X, and 5.X, respectively (NVIDIA CUDA website

2015).

2.3 PDP systems parallel simulation on the GPU

As mentioned above, the main objective of DCBA is to

improve the accuracy of the algorithm. However, it comes

at expenses of lower efficiency. Currently, P-Lingua

framework implements the algorithm, but it is usually not

recommend when dealing with large models because of the

large simulation times required. This lack of efficiency is

mainly due to the facts of using Java Virtual Machine and

implementing sequential algorithms. Indeed, simulating

massively parallel devices like P systems in a sequential

fashion is twice inefficient. A solution to outcome this issue

is by harnessing the highly parallel architecture within

modern processors to map the massively parallelism of P

systems (Martı́nez-del-Amor 2013).

GPUs provide a good platform to implement real par-

allelism of P systems in a natural way, by using their highly

level of parallelism (Martı́nez-del-Amor et al. 2015). Most

of P systems simulators based on GPU are within the scope

of PMCGPU (Parallel simulators for Membrane Comput-

ing on the GPU) software project (The PMCGPU project

2013), which aims to gather efforts on parallelizing P

system simulators with GPU computing. Specifically, there

is a subproject for PDP systems, called ABCD-GPU.

ABCD-GPU started with a multi-core version (Martı́-

nez-del-Amor et al. 2012a; Martı́nez-del-Amor 2013),

based on C?? and OpenMP, in which the environments

and/or the simulations are distributed along the processors.

Experiments showed that parallelizing by simulations leads

to better speedups; that is, in a multiprocessor CPU, it is

better to parallelize coarsely. In order to deal with finer-

grain parallelism, a CUDA version has been also developed

(Martı́nez-del-Amor et al. 2012b; Martı́nez-del-Amor

2013). In general, these parallel simulators are based on the

following principles:

• Efficient representation of the data, both for PDP

system syntactical elements and auxiliary structures of

DCBA. In this respect, the static and dynamic tables for

phase 1 are not really implemented. Instead, the

operations over these tables are translated to operations

over the syntactical elements of the PDP system,

together with much smaller structures. This approach is

called virtual table, and has shown to dramatically

decrease the required amount of data and time in

DCBA.

• Exploiting levels of parallelism presented in the

simulation of PDP systems: processing of rule blocks

and rules, evolution of environments, and conducting

several simulations to extract statistical data from the

probabilistic model.

As mentioned in previous section 2.2, CUDA requires a

large amount of parallelism to effectively use GPUs

resources (Kirk and Hwu 2010). Parallelizing only by

simulations as in the OpenMP version is not enough, and

the parallelism level is coarse. Instead, the solution was to

extract more parallelism from PDP systems as follows

(Martı́nez-del-Amor et al. 2012b):

• Thread blocks they are assigned to each environment

and each simulation. For each transition step, there is a

minimal communication along environments (only

when executing communication rules), and each sim-

ulation can be executed independently.

• Threads each thread is assigned to each rule block/-

column in selection phases (1, 2 and 3). In execution

phase (4), threads will execute rules in parallel. As it is

possible to have more rule blocks than threads per

thread block, they perform a loop over rule blocks in

tiles.

This design is normally tight to the simulated model

(depends on the number of environments and blocks) and

to the user (number of desired simulations), but it would

allow to launch enough CUDA threads and warps to hide

memory latencies (Kirk and Hwu 2010). Note that it could

be difficult to split rule blocks also to different thread

blocks, since we need to synchronize the consumption of

objects for phases 1 and 2, and this is allowed only within

thread blocks in CUDA.

Furthermore, a special implementation was required for

phases 2 and 3, as summarized next (see Martı́nez-del-

Amor et al. 2012b; Martı́nez-del-Amor 2013 for details):

• Phase 2: Since this phase is inherently sequential, the

first approach was a random loop over the remaining

blocks, loosing in this way parallelism within thread

blocks. The second approach was to dynamically check

which blocks compete with each other, in a O(n) loop

which tests this condition in shared memory. Once the

algorithms indicate which blocks compete for objects,

it can assign directly the maximal applications in

parallel (for each non-competing group of blocks).

• Phase 3: CUDA comes along with a set of scientific

libraries that ease the development of new algorithms.

Specifically, there is a simple and parallel library for

pseudorandom and quasirandom numbers generation

which provides implementation for uniform, normal

and poisson distributions. However, the simulator

requires multinomial random numbers. In this phase,

a new library called CURNG_BINOMIAL was imple-

mented, which generates binomial random variates in



two ways: using the algorithm called BINV for low

values of n � p (for a binomial B(n,p)), or using a normal

approximation otherwise.

So far, ABCD-GPU simulator has been tested by using

randomly generated PDP systems. The goal was to provide

a flexible way to construct benchmarks for performance

analysis, by stressing the simulator with different topolo-

gies. In Martı́nez-del-Amor et al. (2012b), the performance

of the simulator was tested with PDP systems having dif-

ferent lengths of the left-hand sides (in terms of number of

different objects in the multisets u and v), in average.

Running on a NVIDIA Tesla C1060 GPU (which has 240

cores and CC 1.3), these results clearly showed that phase 2

is the bottleneck of the simulator, since it is the less parallel

phase. Moreover, when the competition for objects

increase (having more objects in the LHS leads to more

competitions), the overall performance drastically decrea-

ses. Finally, the achieved speedup was of up to 79.

3 A new input module: binary files

After the first version of ABCD-GPU (Martı́nez-del-Amor

et al. 2012b), the efforts were focused on creating a input

module to read PDP system descriptions. In this section,

we briefly present the new features of the ABCD-GPU

simulator, which is a module to read binary files defining

PDP systems models. We will also show the first results of

the simulator with a real ecosystem model in next section.

3.1 Format definition

Similarly to the simulator of P systems with active mem-

branes (Martı́nez-del-Amor 2013; Martı́nez-del-Amor

et al. 2015), the design decision for the input file was a

binary format. The reason for this is twofold:

• Size of files the GPU simulator is conceived for running

very large models. Otherwise, it is not worth to be used.

Thus, the communication with the simulator should be

as efficient as possible to avoid overheads. Since we use

P-Lingua for describing PDP system models, it makes

sense to use pLinguaCore to parse the files. In this

respect, P-Lingua is used as the parser and compiler

which send a file to the simulator with unwrapped rules

(recall that rules in P-Lingua can be defined in a

symbolic way). Thus, in order to reduce the size of the

file as much as possible, we have defined a binary

format which assign the less amount of bits to each

syntactic element.

• Efficiency related with the latter, the binary file is also

organized in such a way that it fits well with the

initialization of structures in the simulator. This helps

the efficiency of the parser, while reducing the size of

the files.

Although using this kind of format leads to a coupled

design (between the P-Lingua parser and the simulator),

this will allow to use the GPU engine while reducing the

communication/storage cost.

Next, we show the structure of the format for the binary

file, which is divided into five sections. The aim is to

distribute the information in such an order that the simu-

lator can start allocating space for internal data structures

‘‘on the fly’’.

• Header unequivocally identify this file as a binary

description file for PDP systems.

• Sub-header defines the accuracy used along the file, for

the different fields. This allows to use the exact number

of bytes according to the number of objects, rules, etc.

• Global sizes define the size of alphabet, number of

rules, membranes, environments and membrane

structure.

• Rule blocks their information is given in three subsec-

tions, each one giving information for allocating space

related with the next one.

• Initial configuration description.

The detailed structure of the binary file is available as a

text file since version 1.0 of ABCD-GPU project at

PMCGPU (The PMCGPU project 2013).

3.2 Input/output parsers

The ABCD-GPU simulator has been extended with an

input module which is able to read files with the above

described binary format. Currently, the version is still

experimental, and in order to decouple the input parser

from the simulator structures, the module creates extra

temporal data structures. In the final version, these struc-

tures will be avoided, making the reading of input files

much more efficient. The input PDP systems can be used

both by the CPU and the GPU simulators within the

ABCD-GPU platform.

On the other side, a first output module has been also

developed. So far, the results were printed on screen just

for debugging purposes. Today, it is possible to generate

CSV (Comma Separated Values) files, which can be

opened by statistics software such as R, and office tools

like Excel and Calc. Outputs modules for binary files and

data bases interconnection are still under development, and

might come with future versions.

Last but not less, P-Lingua has been also extended with

a new compiler option for generating binaries from PDP

systems. In Cecilia et al. (2010), P-Lingua was first time

extended with a compiler for binary files, in which binaries



were generated for P systems with active membrane

models. In this case, similar ideas have been used to gen-

erate PDP systems binaries. This new compiler will be

included in future releases of pLinguaCore. However, a

java binary (jar) file is attached to ABCD-GPU since ver-

sion 1.0, in order to allow the generation of input files

easily.

4 Experimental results with a real ecosystem
model

The new input module for binary files has enabled to run

tests on this simulator with real ecosystem models. In this

paper, the model of the Bearded Vulture ecosystem in the

Pyrenees, presented in Cardona et al. (2010), was chosen

for its simplicity, allowing to carry out debugging and

performance testing, and experimental validation.

4.1 Experimental validation

To carry out the experimental validation, 100 simulations

were performed for 42 time steps (as required by the model

for 14 years, and 3 steps for each cycle), by comparing

results for the sequential simulator for DCBA implemented

in P-Lingua (already validated) with our simulator running

on GPU. Population distribution of Bearded Vulture for the

14 simulated years are shown in Tables 1 and 2. Results are

sound, hence we can deduce that our simulator is working

adequately.

4.2 Performance analysis

One benchmark has been carried out, running 1000 simu-

lations for 42 time steps (as required by the model for

14 years, and 3 steps for each cycle), and using two GPUs

from different generations: (a) Tesla C1060 (GT800

architecture, 240 cores at 1.3 Ghz, 4 GBytes of memory at

800 Mhz and 512-bit bus width, no cache memories), and

(b) Tesla K40 (Kepler architecture, 2880 cores at 0.75 Ghz,

12 Gbytes of memory at 3 Ghz and 384-bit bus width,

1.5 MB L2 memory). Table 3 shows the results extracted

from both GPU and CPU simulators.

The results show that the K40 GPU achieves better

performance, up to 18.19 of speedup with respect to the

sequential version, while the Tesla C1060 achieves barely

4.99. As shown before, Tesla C1060 can achieve up to 79

of speedup with randomly generated P systems. However,

there are two new behaviors that were not present before:

• Phase 2 is not the bottleneck. Indeed, it is easy to see

that the considered model has no competition for

objects. Thus, phase 2 is not required for this simula-

tion, although the only mechanism carried out is the

checking of remaining active blocks.

• Phase 1 is the bottleneck for both GPUs, as for the

CPU. This phase consists in fact in the execution of

three different kernels, having therefore three global

synchronization points. However, phase 1 is well

accelerated on K40, with 189, and 10 times faster

than C1060.

• Phase 4 is the second slowest phase in Tesla C1060.

Since a few ratio of rules is executed, the generation of

objects is not performed completely efficiently. The

main reason is the usage of atomic operations for

adding new objects.

• Phase 3, where the random number generation takes

place, is well accelerated in both GPUs. This is the

most intensive computing phase in the simulation

process, and so, GPUs are faster.

Table 1 Population distribution

of the Bearded Vulture—CPU
Year Average Deviation

1 21 3

2 22 3

3 23 4

4 25 5

5 26 5

6 27 6

7 28 7

8 30 7

9 32 8

10 33 10

11 34 10

12 36 11

13 38 12

14 40 14

Table 2 Population distribution

of the Bearded Vulture—GPU
Year Average Deviation

1 21 2

2 22 4

3 23 4

4 24 5

5 25 6

6 27 7

7 28 7

8 29 8

9 30 9

10 32 10

11 33 11

12 35 12

13 36 13

14 38 14



In Table 3, it is also possible to see that K40 GPU

achieves better performance results than its predecessor

C1060, as expected. Specifically, phase 1 and 4 are up to

10 times faster than in C1060. These phases are data

intensive, because it requires the upload (and download

respectively) of object multiplicities from (to) the global

memory system. L2 and L1 cache memories, and also the

higher memory bandwidth, have improved the run time for

these phases. This result shows that better bandwidth and

L2 cache help to accelerate the simulation of PDP systems,

since this task is memory bandwidth bounded (Martı́nez-

del-Amor 2013).

5 Road map

Figure 1 shows the current structure of the ABCD-GPU

project. The simulation engine implements DCBA in both

multicore (CPU) and manycore (GPU) platforms. The

input files are generated by pLinguaCore, which acts as a

parser in the creation of binary files. The output files will

be both in CSV and binary formats soon, and a module to

upload results to a database is also still under considera-

tion. Moreover, the platform still support the input of

randomly generated PDP systems and the output of cor-

responding profiling and debugging information, in order

to conduct performance benchmarks in future versions of

the simulator.

As mentioned, ABCD-GPU project is still under

development. The results discussed above belong to the

latest version, but improvements for both accuracy and

efficiency are planned. Next, the list of future research lines

are presented.

1. The retrieval of information from the GPU is still not

made efficiently, since the current version has just

validation purposes. For example, it is possible to

asynchronously copy data from GPU to CPU with

Table 3 Profiling performance

with the Bearded Vulture

ecosystem model (2008)

Tesla C1060 Tesla K40

% CPU1 % GPU Acc % GPU Acc (CPU2) Acc (C1060)

Phase 1 79.7 89.4 4.49 79.4 18.19 109

Phase 2 2.4 1.6 7.69 5.5 7.99 2.59

Phase 3 11.8 3.8 14.99 10.3 19.19 3.49

Phase 4 6.1 5.2 5.89 4.8 28.29 9.69

Total 4.99 18.19 99

CPU1 is a Intel Xeon E5504 at 2 Ghz, and CPU2 is a Intel Xeon E3-1230 at 3.3 Ghz. They master, on

different machines, Tesla C1060 and Tesla K40 GPUs respectively

Fig. 1 Structure of ABCD-GPU

project



pinned memory. Although it would require a double

buffer for the multisets, the transaction of PDP system

configurations can be made in parallel to the simula-

tion of the next step. Another idea is to filter the

multisets on the GPU, according to some parameters

defined by the user.

2. The output module shall be finished for binary files,

along with the development of a module that uploads

the results into a database (interoperability with

MeCoSim framework) in parallel with the simulation.

3. Phase 2 can be slow for models with high rate of object

competition, as seen with randomly generated PDP

systems. Some ideas in this respect are: (a) Auto-detect

if phase 2 is really required (by checking if the model

has no competition of objects, or if no active blocks

remain after Phase 1), (b) compact active blocks after

phase 1 for more efficiency, and (c) impose a (real)

random disorder of rule blocks (maybe taking some

ideas from Gastalver-Rubio 2012).

4. Avoid current synchronization of DCBA phases,

specially for phase 1. That is, run all the phases with

one single kernel (perhaps one global kernel which

calls to __device__ versions of current kernels). It

could be convenient to keep current version (separated

kernels) for GPUs that are used by the graphic system

on the computer, because of the limitation of kernel

time (normally up to 7 s).

5. In PDP systems, the working alphabets for the skeleton

and for the environments are disjoint sets (Garcı́a-

Quismondo et al. 2014). Therefore, we can work with

all the communication rules apart from the virtual table.

6. Implement a variant of DCBA, called l DCBA. The aim

of this variant is to extract more parallelism within each

environment. If we pre-calculate the group of rules that

really depend on each other because they compete for

objects, we will be able to apply DCBA separately to

each group, i.e. more locally and in parallel. Moreover,

there will be less resources to handle (and perhaps we

would be able to move more data into shared memory,

such as the multisets). We define a transitive relation

between rule blocks, called competition: block bi
directly compete for objects with block bj if they have

overlapping but not equal left-hand side.Moreover, if bk
directly compete with Bj, but not with Bi, then Bi and Bk

also compete for objects (however, indirectly through

Bj). Before starting the simulation, we could apply this

algorithm to define disjoint sets of rule blocks holding

the competition relation, and then apply DCBA locally

to each one (synchronized in each computational step).

Finally, it would be desirable to use lDCBA only when

the sets are balanced. We could also assign different

‘‘small’’ sets to one thread block.

7. Implement model-oriented optimizations. That is,

analyze the PDP system model prior to the simulation

and extract properties that will help to the efficiency.

For example, test if there is competition for objects,

inconsistent rule blocks, etc.

8. Parallel P-Lingua: it would be interesting to let the

model designer to provide the above mentioned

properties to the simulator. For example, to allow in

P-Lingua the usage of directives for defining modules

of rules that can be executed in parallel, similarly to

the pragma directives in OpenMP.

9. Hybrid simulation of PDP systems, by using both the

CPU and GPU platforms at the same time, and

implement a merge module of simulations at the end

of the process.

6 Conclusions

In this paper, new version of the CPU/GPU simulators for

PDP systems (ABCD-GPU project) is presented. This

version (1.0 beta) of ABCD-GPU can be downloaded from

PMCGPU website. The new feature is a input module

which supports files with a binary format, aiming to com-

press the information provided in the models. The purpose

of using a restricted, binary format is for efficiency in its

communication. Moreover, this input module has allowed

to run tests with real ecosystem models. Specifically, we

have chosen the ecosystem of the Bearded Vulture in the

Catalan Pyrenees presented in Cardona et al. (2010), in

order to experimentally validate the simulator. Further-

more, performance analysis has been made using a Tesla

C1060 and a Tesla K40 GPUs.

The results show that with this real ecosystem model,

phase 1 of DCBA is the bottleneck, since there is no

competing blocks, what effectively disable phase 2 in the

simulation. Moreover, we have shown that next generation

GPUs, such as K40, achieves better performance, given

their higher memory bandwidth and their L2 caches. For

example, phases 1 and 4, which are the most data intensive

in DCBA, are 10 times faster in K40 than in its prede-

cessor, demonstrating our theory that P system simulations

are memory bandwidth bounded.

Finally, it is worth to mention that, in this case, Parallel

Computing is not only used to get faster solutions, but also,

to obtain better results, because it will enable the users to

run DCBA-based simulations in an affordable time.
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Simulating P systems on GPU devices: a survey. Fundam Inform

136(3):269–284. doi:10.3233/FI-2015-1157

NVIDIA CUDA website (2015). https://developer.nvidia.com/cuda-

zone

OpenMP webiste. http://www.openmp.org

Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC

(2008) GPU computing. Proc IEEE 96(5):879–899
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