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                              ABSTRACT

Certified symbolic manipulation is an emerging new field 
where programs are accompanied by certificates that, suita-
bly interpreted, ensure the correctness of the algorithms. In 
this paper, we focus on algebraic algorithms implemented in 
the proof assistant ACL2, which allows us to verify correct-
ness in the same programming environment. The case study 
is that of bivariate simplicial polynomials, a data structure 
used to help the proof of properties in Simplicial Topology. 
Simplicial polynomials can be computationally interpreted in 
two ways. As symbolic expressions, they can be handled 
algorithmically, increasing the automation in ACL2 proofs. 
As representations of functional operators, they help proving 
properties of categorical morphisms. As an application of this 
second view, we present the definition in ACL2 of some 
morphisms involved in the Eilenberg-Zilber reduction, a cen-
tral part of the Kenzo computer algebra system. We have 
proved the ACL2 implementations are correct and tested 
that they get the same results as Kenzo does.

∗Partially supported by Ministerio de Ciencia e Innovación, 
project MTM2009-13842, and by European Union’s 7th 
Framework Programme under grant agreement nr. 243847 
(ForMath).

1. INTRODUCTION
A certificate is some datum added to an expression that

can be used to verify (in an independent way) some property
of the expression. The typical example is the certificate
used to check the non-primality of a (big) natural number
n: a pair of numbers whose product is equal to n. Many
contributions have been made in this area, in particular in
the area of algebraic certificates (see, for instance, [3]).

In an extreme case, we could identify a certificate with
a complete proof, encoded in a concrete formalism, of the
property under study. This is the point of view in the proof-
carrying code paradigm [11], where a code producer attaches
a proof of some property to the program; then a code con-
sumer invokes a proof checker, that ensures a safety condi-
tion.

In this paper, we explore another path: programs, proofs,
certificates and checking are generated in the same environ-
ment, the one of the theorem prover ACL2 [6]. In ACL2,
once a proof has been mechanized, a certificate file is crea-
ted, and the system only checks this file, without redoing the
proof (which is, usually, a very time-consuming task) every
time the mechanization is included in further developments.

Our area of application is verified computer algebra, and
specifically algebraic computing in Algebraic Topology.
Even more concretely, we are interested in applying formal



methods to specify and analyze the behavior of Kenzo [5], a
program to compute in Homological Algebra and Simplicial
Topology. Kenzo is a Common Lisp program, created by F.
Sergeraert, that can deal with infinite dimensional spaces,
and is able to compute results that cannot be determined
by any other means (theoretical or computational). In [13]
a theorem corrected thanks to Kenzo is presented, together
with other results computed with Kenzo which seem out of
reach for any other method.
Due to these Kenzo features, a project was launched some

years ago to formally study its correctness, trying to give
to Kenzo results an status as close as possible to standard
mathematical properties. To this aim, different methods
and tools have been used. For instance, the proof assis-
tants Isabelle and Coq have been used to model important
algorithms appearing in Kenzo [2, 4].
Both Isabelle/HOL and Coq are very powerful tools (in

particular, both are based on higher-order logic), but they
are far from the Kenzo programming language: Common
Lisp. So it is natural to use ACL2, a theorem prover inti-
mately linked to this language. Even if ACL2 is not suitable
to model all Kenzo features (Kenzo uses higher-order func-
tional programming, while ACL2 is a first-order tool; this
explains the role of Isabelle/HOL and Coq in the global
project), it is superior to any other tool to formalize the
actual Kenzo source code (for an example of such a forma-
lization, see [9]).
In this area of ACL2 applications to Algebraic and Simpli-

cial Topology, several contributions have been already made
[1, 7, 9]. Our last development is a complete ACL2 proof
of the so-called Eilenberg-Zilber theorem [8]. This is a cen-
tral theorem in Computational Algebraic Topology. This
fundamental aspect of Eilenberg-Zilber is reflected in its
computational counterpart: experimental studies of Kenzo
log files showed that most of the running time is devoted
to Eilenberg-Zilber computations (and more concretely to
the computation of the morphism which will be called Shih
later). Thus, giving a mechanized proof of it seems a good
challenge to demonstrate the usability of this kind of formal
methods in computer algebra verification.
The formal proof of the Eilenberg-Zilber Theorem needed

around 13000 lines of ACL2 code (326 definitions and 1368
lemmas and theorems whitout the generic development of
polynomials and basic arithmetic properties), so being quite
a big endeavour. In this paper, instead of explaining the
main lines of the proof, we focus on some technical achive-
ments, that we consider can be more interesting for a wider
audience in symbolic computation. Specifically, we intro-
duce the notion of bivariate simplicial polynomial, a data
structure instrumental to getting a greater automation in
the mechanized proofs. Let us remark that, when choo-
sing the data structure representations, we have followed
the most natural ideas (emulating, to a certain extent, the
Kenzo way of working), guessing that they will produce the
easiest proofs. Our data structures are inspired by those
of Kenzo, but adapting them to the constraints imposed by
ACL2. For instance, when in Kenzo an array is chosen to
represent an entity, our ACL2 version would be a list.
In addition, simplicial polynomials can be executed, giving

an experimental flavour to the deductive standard machi-
nery, and can be evaluated (on concrete topological spaces),
allowing an automated testing for some parts of the Kenzo
system. To illustrate the way of working in ACL2, we chose

an operation on simplicial polynomials called derivative,
essential to define and prove properties about the above-
mentioned Shih morphism.

The organization of the paper is as follows. Next section
is devoted to state the mathematical problem, while Section
3 deals with the description of the ring of bivariate simplicial
polynomials. We explain the notion of derivative in Section
4. Experimental results and computational aspects are pre-
sented in Section 5. The paper ends with conclusions and
the bibliography.

2. MATHEMATICAL CONCEPTS AND

APPLICATIONS
In this section, we introduce briefly the mathematical no-

tions needed to understand the rest of the paper (for details
and context about Simplicial Topology, see [10]).

Definition 1. A simplicial set K is a graded set
{Kn}n∈N together with functions:

∂n
i : Kn → Kn−1, n > 0, i = 0, . . . , n,

ηn
i : Kn → Kn+1, n ≥ 0, i = 0, . . . , n,

subject to the following equations:

(1) ∂n−1

i ∂n
j = ∂n−1

j ∂n
i+1 if i ≥ j,

(2) ηn+1

i ηn
j = ηn+1

j+1 η
n
i if i ≤ j,

(3) ∂n+1

i ηn
j = ηn−1

j−1 ∂
n
i if i < j,

(4) ∂n+1

i ηn
j = ηn−1

j ∂n
i−1 if i > j + 1,

(5) ∂n+1

i ηn
i = ∂n+1

i+1 ηn
i = idn,

The elements of Kn are called simplices of dimension n,
or simply n-simplices. The functions ∂ and η are called
face and degeneracy operators, respectively. A simplex x is
called degenerate if it can be written as x = ηiy for some
index i and some simplex y1. Otherwise, it is called non-
degenerate. The set of non-degenerate n-simplices of K is
denoted by KND

n .
With any simplicial set K we can associate an algebraic

structure C(K), a chain complex, in such a way that the
homology of K is exactly the homology of C(K):

Definition 2. A chain complex is a family of pairs
C := {(Cn, dn)}n∈Z where each Cn is an abelian group, and
each dn is a homomorphism from Cn to Cn−1 such that the
boundary condition holds: dn ◦ dn+1 = 0.

[Given a chain complex C, the boundary condition implies
Im dn+1 ⊆ Ker dn; then the homology groups of C are well-
defined: Hn(C) = Ker dn/Im dn+1. These homology groups
are the objects Kenzo finally computes.]

Let K be a simplicial set. For each n ∈ N, let us con-
sider Z[KND

n ], the free abelian group generated by the non-
degenerate n-simplices, denoted as Cn(K). Then, the ele-
ments of such a group are formal linear combinations∑r

j=1
λjxj , where λj ∈ Z and xj ∈ KND

n , ∀j = 1, . . . , r.
These linear combinations are called chains of simplices or,
in short, chains.

Now, given n > 0, we introduce the homomorphism
dn : Cn(K) → Cn−1(K), first defining it over each gene-
rator, and then extending it by linearity. Given x ∈ KND

n ,
define dn(x) =

∑n

i=0
(−1)i∂i(x), where a term ∂i(x) is erased

1Note that, if the context is clear enough, the superindexes
denoting dimension will be skipped.



when it is degenerate. It can be proved that the equations
in the definition of simplicial set imply that dn ◦ dn+1 = 0,
∀n ∈ N. That is to say, the family {dn}n∈N defines a
differential (or boundary) homomorphism on the graded
group {Cn(K)}n∈N, and then, the family of pairs
{(Cn(K), dn)}n∈N is the chain complex2 associated to the
simplicial set K, denoted by C(K).
An alternative definition can be given, by taking as genera-

tors all the simplices (degenerate and non-degenerate ones)
in each dimension, and with the same expression for diffe-
rentials:

∑n

i=0
(−1)i∂i(x) (now, it is not necessary to drop

out any term). This (bigger) chain complex associated with
a simplicial set K has homology groups canonically isomor-
phic to those of C(K); more concretely, the so-called Nor-
malization Theorem establishes a reduction between both
chain complexes associated with a simplicial set (that re-
duction was programmed in ACL2 and proved correct in
[7]).

Definition 3. Given two chain complexes
C1 := {(C1

n, d
1
n)}n∈Z and C2 := {(C2

n, d
2
n)}n∈Z, a reduction

between them is a triple (f, g, h) where f : C1 → C2 and
g : C2 → C1 are chain morphisms (that is to say, they
are families of homomorphisms fn : C1

n → C2
n and

gn : C2
n → C1

n such that fn−1 ◦ d1n = d2n ◦ fn and
gn−1 ◦ d2n = d1n ◦ gn), and h is a family of homomorphisms
(called homotopy operator) hn : C1

n → C1
n+1 satisfying

1. fn ◦ gn = id,
2. d1n+1 ◦ hn + hn−1 ◦ d

1
n + gn ◦ fn = id,

3. fn+1 ◦ hn = 0,
4. hn ◦ gn = 0, and
5. hn+1 ◦ hn = 0.

We denote a reduction as (f, g, h) : C1 =⇒ C2. The main
property of a reduction is that it establishes a canonical
isomorphism between the homology groups of C1 and C2. In
fact, the components f and g are enough to determine such
a canonical isomorphism, but the homotopy h is necessary
to give stability to the concept and to construct reductions
from other reductions (see the key instrument called Basic
Perturbation Lemma in [2]).
To prove in ACL2 the Normalization Theorem, a data

structure called simplicial polynomial was introduced in [7].
Before defining simplicial polynomials, let us start with an
example. Consider ∂6

2η
5
3∂

6
2η

5
5η

4
2∂

5
1 , a composition of simpli-

cial operators, defined on simplices of dimension 5. This
defines a map from K5 to K5. First note that once we know
the dimension on which it is applied, the superindexes are
completely determined, so we can omit them. Second, note
that if we apply the simplicial identities as rewriting rules,
applied from left to right, we obtain an unique canonical
form [1]: η4η2∂1∂3. In general, every composition of sim-
plicial operators can be written as an equivalent expres-
sion consisting of a strictly decreasing sequence (w.r.t. its
subindexes) of degeneracies and a strictly increasing sequen-
ce of faces. This canonical form is what we call a simplicial
term and we represent it in ACL2 as a pair of lists of natural
numbers, the first strictly decreasing and the second strictly
increasing (in our example, ((4 2) (1 3))).

2In our general definition of chain complex, the subindex
ranges over Z, so it is necessary to complete this definition
with null groups and differentials in negative degrees.

In general, simplicial terms represent maps from Kn to
Km, where m − n is called the degree of the term. The
set of simplicial terms is endowed with a binary operation
(composition): first, concatenate the terms and then reduce
to canonical form. Thus, simplicial terms form a monoid.

Next, we can consider the monoid ring of the simplicial
terms monoid over the integers Z. This is the ring of sim-
plicial polynomials. In ACL2, polynomials are stored in a
canonical form: monomials have non-zero coefficients and
they are sorted with respect to a total order on terms.3 If
all the terms in a simplicial polynomial represent maps from
Kn to Kn+r, then the polynomial defines a linear map from
Cn(K) to Cn+r(K), for any simplicial set K. This is the tool
we used to prove in ACL2 the Normalization Theorem [7],
by using polynomial expressions to describe the morphisms
f , g and h in a reduction.

Our next observation was that the same tool could be use-
ful in proving the correctness of other simplicial theorems,
such as the Eilenberg-Zilber Theorem. We need the defi-
nitions of Cartesian product (of two simplicial sets) and of
tensor product (of two chain complexes), in order to state
that theorem.

Definition 4. Given two simplicial sets K1 and K2,
their Cartesian product is a new simplicial set, denoted by
K1 × K2, such that (K1 × K2)n = K1

n × K2
n and faces

and degeneracies, denoted as ∂× and η×, are defined in a
natural way: ∂×

i (a, b) = (∂ia, ∂ib) and η×

i (a, b) = (ηia, ηib),
respectively.

The tensor product of two chain complexes can be defined
in a general way, but in the following definition we focus on
the tensor product of two freely generated chain complexes,
the only case of application in our problem (because chain
complexes associated to simplicial sets are freely generated).

Definition 5. Given two freely generated chain
complexes C1 := {(C1

n, d
1
n)}n∈Z and C2 := {(C2

n, d
2
n)}n∈Z

(in other words, C1
n and C2

n are freely generated Abelian
groups for all n ∈ Z), the tensor product of C1 and C2,
denoted by C1 ⊗ C2, is the chain complex defined as
follows. The groups (C1 ⊗ C2)n are defined by the for-
mula (C1 ⊗C2)n =

⊕
p+q=n

C1
p ⊗C2

q , with C1
p ⊗C2

q the free

abelian group generated by the pairs (xp, yq) (denoted
xp ⊗ yq), where xp (yq) ranges over the generators of
C1

p (of C2
q , respectively). Differentials are defined by

d⊗n (xp ⊗ yq) = d1p(xp)⊗ yq + (−1)pxp ⊗ d2q(yq) over genera-
tors4, and then extended linearly over elements of
(C1 ⊗ C2)n.

And, now, the statement:

Theorem 1 (Eilenberg-Zilber reduction). Given
two simplicial sets K1 and K2, there exists a reduction
C(K1 ×K2) =⇒ C(K1)⊗ C(K2).

Since we want to formalize, and execute, a proof of this
theorem in ACL2, it will be necessarily a constructive

3Kenzo also stores combinations in a canonical form (or-
dered with respect to a total order over the set of generators
in each dimension), in order to improve the efficiency of the
operations among them.
4The operator ⊗ has been overloaded to denote its linear
extension for combinations.



proof, providing explicitly the triple of the reduction5.
Then, we need to consider mappings with the shape
t : Z[K1

p × K2
q ] → Z[K1

p′ × K2
q′ ], where K1 and K2 are

simplicial sets. Following the same ideas as above, we can
represent such a transformation t as a polynomial over pairs
of simplicial terms. We called it a bivariate simplicial poly-
nomial, and we explain the formalization of that notion in
ACL2 in the next section.

3. BIVARIATE SIMPLICIAL

POLYNOMIALS
As we have said, the basic components of the reduction

homomorphisms in the Eilenberg-Zilber theorem are map-
pings from Z[K1

p × K2
q ] to Z[K1

p′ × K2
q′ ]. More concretely,

these morphisms can be expressed as linear combinations
of pairs of compositions of faces and degeneracies. To have
a faithful formalization of the standard presentation of the
theorem, these morphisms will have to be defined as func-
tions in the ACL2 logic (and in fact that will be our ap-
proach in Subsection 5.2). Nevertheless, it turns out that
most of the reasoning applied to prove the theorem is car-
ried out viewing those pairs of compositions of simplicial
operators (and their linear combinations) as symbolic ex-
pressions, and operating on them following certain rules de-
rived from the simplicial identities. This is the point of
view we adopt in this section, where we present what we
call bivariate simplicial polynomials6, linear combinations
of pairs of compositions of simplicial operators; they are
a representation of morphisms as symbolic expressions built
using lists and natural numbers. In ACL2, the bivariate
simplicial polynomials are stored in a canonical form: ev-
ery component has to be a non-zero coefficient and they
are sorted with respect to a total order on pairs of simpli-
cial terms. We have defined the function psp-p that checks
if an expression is a bivariate simplicial polynomial in this
canonical form. For example, as the simplicial term η3∂1∂2

is represented by the two element list ((3) (1 2)) and the
simplicial term η1∂0 by the list ((1) (0)), then the pair
of simplicial terms (η3∂1∂2, η1∂0) is represented by the two
element list (((3) (1 2)) ((1) (0))), and the linear com-
bination of pairs of simplicial terms q1 = 3 · (η3∂1∂2, η1∂0)−
2·(η4η2∂3, ∂0∂1) by the list ((3 (((3) (1 2)) ((1) (0))))

(-2 (((4 2) (3)) (() (0 1))))).
We define componentwise the composition of pairs of

simplicial terms. Then, we also define on polynomials the
operations of addition, composition and scalar (integer)
product, formalizing the corresponding operations on the
functions they represent. For example, the composition of
q1 above and 2 · (η2∂1, η0∂1)− (η4η2, ∂0∂1) is the polynomial
6 · (η3∂1∂2, η1∂1)−3 · (η3η2∂1, η1∂0∂1∂2)−4 · (η4η2∂1, ∂0∂1)+
2 · (η5η4η2, ∂0∂1∂2∂3), a result we obtain applying composi-
tion of pair of simplicial terms, distributing with respect to
the sums and obtaining again a linear combination in canoni-
cal form. We defined in ACL2 three functions add-psp-psp,

5There are more general versions of the Eilenberg-Zilber
theorem (see [10]); but the formalization of those general
versions seems harder than the task we undertake in our
work
6Multivariate polynomials would appear if we extend
the Eilenberg-Zilber reduction to any number of factors:
C(K1 × . . .×Km) =⇒ C(K1)⊗ . . .⊗C(Km). The genera-
lization is straightforward, even if the formalization could
become a bit cumbersome.

cmp-psp-psp and scl-prd-psp, respectively implementing
addition, composition and scalar product on simplicial poly-
nomials. We will denote these operations as p1+p2, p1 ·p2

and k · p, respectively. We also denote 0 the zero polyno-
mial (represented by the empty list in ACL2) and id the
identity polynomial (that is a polynomial with only one pair
of terms; each of these terms has empty lists of faces and
degeneracies).

If we denote by P× the set of bivariate simplicial polyno-
mials (that is, the set characterized by the function psp-p),
we proved in ACL2 that (P×,+, ·) is a ring, with 0 being its
identity with respect to addition and id the identity with
respect to composition. For example, this is one of the pro-
perties proved, establishing right distributivity7:

Theorem: cmp-psp-psp-add-psp-psp-distributive-r

(p1 ∈ P× ∧ p2 ∈ P× ∧ p3 ∈ P×)
→ p1 · (p2 + p3) = (p1 · p2) + (p1 · p3)

Some of these ring properties are not trivial to prove due
to the fact that all these operations return its result in
canonical form (see details in [8]). Nevertheless, note that
the main advantage of requiring canonical forms is that we
easily can check if two given polynomials represent the same
function: just check if they are syntactically equal.

4. DERIVATIVES
We can use the bivariate simplicial polynomials to forma-

lize the maps in the proof of the Eilenberg-Zilber Theorem.
For instance, we can define the differential in the Carte-
sian product. First, let ∂×

i denote the pair of simplicial
terms (∂i, ∂i) considered as a particular case of polynomial.
Then, we can introduce the following function cartesian-

diff that recursively defines d×
n , the polynomial represen-

ting the differential in the Cartesian product8:

Definition: [d×
n ]

cartesian-diff(n) :=
if n 6∈ N

+ then ∂×

0

else (−1)n · ∂×
n + cartesian-diff(n− 1)

For example, d×

3 is the polinomial (∂0, ∂0) − (∂1, ∂1) +
(∂2, ∂2)− (∂3, ∂3).

The most difficult morphism in the Eilenberg-Zilber Theo-
rem is the one corresponding to h, the homotopy. Due to
historical reasons this arrow is called Shih morphism [14].
To define polynomials representing Shih, we are going to
define an operation on polynomials called derivative [12].
Given a simplicial term ηi1 . . . ηik∂j1 . . . ∂jl , its derivative is
the simplicial term obtained inceasing by one the indexes
of its operators, that is: ηi1+1 . . . ηik+1∂j1+1 . . . ∂jl+1. This
operation is extended componentwise to pairs of simplicial
terms, and by linearity, to polynomials. In our formaliza-
tion, derivative-psp(p) implements the derivative of a psp
p (we will denote it as p′). We can prove that the derivative
is coherent regarding the operations of the polynomial ring,
as stated by the following properties:

7In this and other statements, we adapt notations for the
sake of readability, but they are the exact translation of
ACL2 expressions; see [8].
8Note the expression between square brackets in the first
line of the definition; in general, this will be the way we will
show how a function will be denoted subsequently.



Theorem: derivative-psp-add-psp-psp
p1 ∈ P× ∧ p2 ∈ P× → (p1 + p2)

′ = p′

1 + p′

2

Theorem: derivative-psp-cmp-psp-psp
p1 ∈ P× ∧ p2 ∈ P× → (p1 · p2)

′ = p′

1 · p
′

2

Theorem: derivative-psp-scl-prd-psp
p ∈ P× ∧ k ∈ Z → (k · p)′ = k · p′

To prove these properties, we have to deal with how adding
one to the subindexes of the simplicial operators affects the
ring operations, taking into account that the polynomials
are in canonical form. In particular, to prove the property
derivative-psp-cmp-psp-psp, we needed two main lem-
mas.
First, we showed that the derivative distributes over com-

position of simplicial terms; recall that when we compose
simplicial terms, they are returned in canonical form, and
that canonical form is obtained exhaustively rewriting with
the simplicial identities. Thus, the property on terms is a
consequence of the fact that the simplicial identities are pre-
served if we add one to the subindexes. The second lemma
deals with the ordering on terms needed for a polynomial
to be considered in canonical form. We proved that this
ordering is preserved by the derivative operation.
Note that these two lemmas were“suggested”by the ACL2

theorem prover, in a way we will explain now. Although the
prover is automatic in the sense that there is no user interac-
tion once a proof attempt starts, we can say that ACL2 is
interactive in a wider sense. If a proof attempt fails, one can
inspect the output, trying to guess in which point the prover
digresses from the intended proof one has in mind. Usually
this happens because it needs previously proved results that,
used as simplification rewrite rules, would lead the prover to
a successful proof.
In the case of the derivative of a composition, the two main

lemmas mentioned above were suggested by inspecting failed
proof attempts. In turn, to prove these two lemmas, several
sublemmas were suggested about how derivatives affect to
the canonical form of a simplicial term. Carrying out proofs
in this way, the user provides the prover a collection of lem-
mas that finally let it to prove the intended lemma, only
using induction and simplification. This is a standard way
to interact with ACL2, called The Method [6] by the authors
of the system. In the development of the formal proof of the
Eilenberg-Zilber theorem, we followed The Method.
Finally, having defined derivatives, the function SH-pol(n)

obtains the corresponding polynomial representing the Shih
homomorphism in dimension n:

Definition: [SHn]
SH-pol(n) :=

if n 6∈ N
+ then 0

else −1 · ((SH-pol(n− 1))′ +
(
∑n

i=0
EMLn−i,i ·AW n,i)

′ · η×

0 )

where AW and EML are the polynomials associated with
the morphisms f and g, respectively, in the Eilenberg-Zilber
reduction (see [14] for details), and η×

0 is the polynomial
(η0, η0).

5. EXECUTING AND EVALUATING

POLYNOMIALS
Simplicial polynomials can be dealt with in two ways: as

symbolic expressions, which can be handled by means of
algorithms; and as codes for morphisms, which can be eva-
luated over chains of simplices. We will see now that both
kinds of manipulations are useful for certified computing.

5.1 Simplifying and executing
The first point of view is very useful when proving proper-

ties, as we showed in the previous section. Identities between
simplicial polynomials can be used as simplification rules for
ACL2, in such a way that automation can be increased in
proofs.

But we can use simplicial polynomials to help proofs in
another way. Because ACL2 is also a programming envi-
ronment, we can execute the recursive definitions, as that
of SH in the previous section. Then we can also execute
the expressions involved in statements. This could give us
experimental insights about how proving the theorem, as
well as guide us to the statement of new lemmas needed in
the development. In fact, it has been the case in several of
the most complicated parts of the mechanized proof of the
Eilenberg-Zilber theorem. Let us illustrate these ideas with
an example, only involving the Shih operator.

First, we can compute the explicit expression of SH for
some (small) values of the dimension n.

ACL2 !>(sh-pol 4)

((-1 (((0) ()) ((4 3 2 1) (1 2 3))))

(1 (((1) ()) ((4 3 2) (2 3))))

(1 (((1 0) (4)) ((4 3 2) (1 2))))

(-1 (((2) ()) ((4 3) (3))))

(-1 (((2 0) (4)) ((4 3 1) (1 2))))

(1 (((2 1) (4)) ((4 3) (2))))

(-1 (((2 1 0) (3 4)) ((4 3) (1))))

(1 (((3) ()) ((4) ())))

(1 (((3 0) (4)) ((4 2 1) (1 2))))

(-1 (((3 1) (4)) ((4 2) (2))))

(1 (((3 1 0) (3 4)) ((4 2) (1))))

(1 (((3 2) (4)) ((4) ())))

(-1 (((3 2 0) (3 4)) ((4 1) (1))))

(1 (((3 2 1) (3 4)) ((4) ())))

(1 (((3 2 1 0) (2 3 4)) ((4) ())))

(-1 (((4 0) (4)) ((3 2 1) (1 2))))

(1 (((4 1) (4)) ((3 2) (2))))

(-1 (((4 1 0) (3 4)) ((3 2) (1))))

(-1 (((4 2) (4)) ((3) ())))

(1 (((4 2 0) (3 4)) ((3 1) (1))))

(-1 (((4 2 1) (3 4)) ((3) ())))

(-1 (((4 2 1 0) (2 3 4)) ((3) ())))

(1 (((4 3) (4)) ((3) ())))

(-1 (((4 3 0) (3 4)) ((2 1) (1))))

(1 (((4 3 1) (3 4)) ((2) ())))

(1 (((4 3 1 0) (2 3 4)) ((2) ())))

(-1 (((4 3 2) (3 4)) ((2) ())))

(-1 (((4 3 2 0) (2 3 4)) ((1) ())))

(1 (((4 3 2 1) (2 3 4)) ((1) ())))

(-1 (((4 3 2 1 0) (1 2 3 4)) ((0) ()))))

Note that some of the pairs in the result are represen-
ting degenerate operators, that is, they produce degene-
rate simplices when they are evaluated over chains of sim-
plices. In the Cartesian product, this means that they have



a common index in the degeneracy list of each simplicial
term in the pair. With our syntax, they are detected be-
cause there is a common integer in the first list of each
simplicial term. For instance, in the last simplicial term
(((4 3 2 1 0) (1 2 3 4)) ((0) ())) the index 0 is pre-
sent in (4 3 2 1 0) and (0). As bivariate simplicial polyno-
mials, the degenerate pairs are kept, but they are eliminated
later in a normalization process because the morphisms they
represent always produce degenerate simplices.
By examining the previous expression, the ocurrence of

shuffles can be expected, as foreseen in the formula presen-
ted in [14]. A (p, q)-shuffle (α1, . . . , αp, β1, . . . , βq) is a per-
mutation of the set {0, 1, . . . , p+ q− 1} such that αi < αi+1

and βj < βj+1, when i = 1, . . . , p − 1 and j = 1, . . . , q − 1.
Let us look for such shuffles in the two first monomials
of the previous expression. The first monomial is
(-1 (((0) ()) ((4 3 2 1) (1 2 3)))). After the coeffi-
cient −1, we have a pair of terms: the first one is ((0) ()),
denoting a term with only a degeneracy η0 and
no faces; and the second one is ((4 3 2 1) (1 2 3)) with
η4η3η2η1 in the degenerate part. Here we find the
(1, 4)-shuffle ((0), (1, 2, 3, 4)). In the second monomial,
(1 (((1) ()) ((4 3 2) (2 3)))), we find the first deri-
vative (the level of derivation is determined by the small-
est degenerate index in the first term) of the (1, 3)-shuffle
((0), (1, 2, 3)). By carefully examining the results of execu-
tion, new organizations of the formula presented in [14] can
be found, that can be helpful when proving some properties
of morphisms.
For instance, the morphism Shih must satisfy condition

(5) in the definition of a reduction (that is to say, h◦h = 0).
Since the Eilenberg-Zilber theorem is stated in terms of the
normalized chain complex, this means that the composition
of SH with itself must give always degenerate terms. We
can compute that composite for particular cases:

ACL2 !>(cmp-psp-psp (sh-pol 3) (sh-pol 2))

((-1 (((2 1 0) (2)) ((3 1) ())))

(1 (((3 1 0) (2)) ((2 1) ())))

(-1 (((3 1 0) (2)) ((3 2) ())))

(-1 (((3 2 0) (2)) ((2 1) ())))

(1 (((3 2 0) (2)) ((3 1) ())))

(1 (((3 2 1) (2)) ((2 1) ())))

(-1 (((3 2 1) (2)) ((3 1) ())))

(1 (((3 2 1 0) (1 2)) ((1 0) ())))

(-1 (((3 2 1 0) (1 2)) ((2 0) ())))

(1 (((3 2 1 0) (1 2)) ((3 0) ()))))

It can be checked that, as foreseen, all the terms are deno-
ting degenerate simplices in the Cartesian product, because
there is always a common integer in the first list of each
simplicial term.
Thus, by inspecting those expressions, we can test that the

property holds, and even better, we can establish conjectures
to organize the general proof of the property.

5.2 Evaluating
In order to interpret a simplicial polynomial as a mor-

phism between chain complexes, we need to represent in
ACL2 chain complexes (associated with simplicial sets) and
then define how symplicial polynomials can be evaluated
on chains of simplices. Finally, in order to get an exe-
cutable function (corresponding to a simplicial polynomial)

we need to instantiate generic simplicial sets (appearing in
the proofs) to concrete ones.

Let us first deal with how we represent simplicial sets.
Note that a simplicial set is characterized by a set K and
families of functions (faces and degeneracies) satisfying cer-
tain properties. Since the Eilenberg-Zilber theorem is about
any two simplicial sets, we have to introduce them in a com-
pletely generic way. Although in ACL2 the usual way to
introduce functions in the logic is by the definition principle
(using defun), it also provides the encapsulation principle
(using encapsulate), which allows to introduce functions
in the logic without defining them completely, only stating
about them some assumed properties [6].

In our formalization, a generic simplicial set is defined
by means of three functions K, d and n. The function K is
a predicate of two arguments, with the intended meaning
that K(n,x) holds when x ∈ Kn. Faces and degeneracies are
represented, respectively, by the functions d and n, both with
three arguments. The idea is that d(m,i,x) and n(m,i,x)
respectively represent ∂m

i (x) and ηm
i (x). These three func-

tions are introduced using encapsulate, only assuming
about them well-definedness and the simplicial identities.
For example, the following are the assumptions correspon-
ding respectively to the well-definedness of d and the first
simplicial identity:

Assumption: d-well-defined
(x ∈ Km ∧ m ∈ N

+ ∧ i ∈ N ∧ i ≤ m) → ∂m
i (x) ∈ Km−1

Assumption: simplicial-id1
(x ∈ Km ∧ m, i, j ∈ N ∧ j ≤ i ∧ i < m ∧ 1 < m)

→ ∂m−1

i (∂m
j (x)) = ∂m−1

j (∂m
i+1(x))

We omit here the rest of the assumptions (i.e., well-defi-
nedness of n and the rest of the simplicial identities), since
they are stated in an analogous way.

As for the formalization of chains of simplices, since they
are formal linear combinations of non-degenerate simplices,
it is quite natural to represent them as lists of pairs of an
integer coefficient and a non-degenerate simplex. As with
polynomials, we consider chains in canonical form (as Kenzo
does; see footnote 3): we do not allow zero coefficients and
we require the pairs to be increasingly ordered with respect
to a strict ordering on simplices. The following function
scn-p defines chains in a given dimension n. It uses the
auxiliary functions ssn-p, which recognizes pairs of a non-
null integer and a non-degenerate simplex, and ssn-< which
defines the lexicographic strict order between such pairs:

Definition: [c ∈ Cn(K)]
scn-p(n,c) :=

if endp(c) then c = nil

elseif endp(rest(c))
then ssn-p(n,first(c)) ∧ rest(c) = nil

else ssn-p(n,first(c)) ∧
ssn-<(n,first(c),second(c)) ∧
scn-p(n,rest(c))

We also define addition of chains, and the scalar product
of an integer and a chain. These operations act on chains in
the canonical form described above, and return chains also
in canonical form. We proved that the set of chains of a
given dimension is an Abelian group with respect to addi-
tion, where the identity is represented by the empty list.



Now, we have to formally specify the functional interpre-
tation of a polynomial. That is, we define an ACL2 function
such that given a polynomial and a chain of pairs of simplices
of a given dimension, it computes the result of evaluating
the function that the polynomial is supposed to represent,
on the given chain.
First, we have to define some well-formedness conditions

on polynomials. Think for example in the following sim-
plicial term: η5η1∂3. This term cannot be interpreted as a
function on C4(K), regardless of the simplicial set K, be-
cause in such case, η5 would have to be applied to a simplex
in C4(K), which is not possible. Nevertheless, it makes sense
to apply it to any chain of dimension n ≥ 5. We will say
that a simplicial term is valid for dimension m, when inter-
preted as composition of simplicial operators, can be applied
to any simplex of dimension m. Another notion to take into
account is what we called previously the degree of a term: if
a term is valid for n and it represents a function from Kn

to Km, its degree is m − n (for example, the degree of the
previous term is 1). Extending these concepts to pairs, we
will say that a pair of simplicial terms (t1, t2) is valid for
dimension (m1,m2) with degree (j1, j2) if ti is valid for mi

and with degree ji (i = 1, 2). We say that a polynomial is
well-formed for dimension (m1,m2) if all its terms are valid
for that dimension and with the same degree. The degree of
a polynomial is the common degree of its terms.
Well-formed polynomials for dimension (m1,m2) repre-

sent valid morphisms whose evaluation can be defined on
Z[K1

m1
× K2

m2
], where K1 and K2 are simplicial sets. We

have defined in ACL2 a function eval-psp(p,m1,m2,c) that
computes the result of evaluating a polynomial p on a linear
combination c of pairs of simplices of dimension (m1,m2).
This function does not remove degenerate simplices because
this property is different if the result is in the Cartesian
product or in the tensor product, but the evaluation is the
same in both. We also proved that eval-psp is a homomor-
phism on the ring of polynomials. For example, under the
corresponding well-formedness conditions, the evaluation of
the composition of two polynomials is equal to the composi-
tion of the evaluations of the polynomials, and analogously
for addition and scalar product. This is proved in a sim-
ilar way as it is described in [7] for “univariate” simplicial
polynomials.
Finally the definition of the SH function from the corres-

ponding polynomial is as follows (SHn is a function from
Cn(K

1 × K2) to Cn+1(K
1 × K2)). We can prove that the

polynomial SHn defined at the end of Section 4, is well-
formed for dimension (n, n), with degree (1, 1). So it is valid
to define SHn on a given chain, as first evaluating SHn

on the chain and then eliminate degenerate addends with
respect to the Cartesian product (the function Fx-norm is in
charge of eliminating these degenerate elements)

Definition: [SHn(c)]
SH(n,c) := Fx-norm(n+ 1,eval-psp(SHn,n,n,c))

Therefore, we have obtained a function SH from the
simplicial polynomial associated with the morphism Shih.
Nevertheless, it is not still executable, because proofs are
carried out on generic simplicial sets, ensuring the proper-
ties are true for any two simplicial sets. In order to get run-
ning examples, we instantiate the previous generic theory
over two concrete simplicial sets, proving all the assump-
tions that have been set on the generic simplical sets. As

an example, we use the standard simplex ∆ [10]. This sim-
plicial set has some universal properties, since the simplicial
identities are the unique constraints in it. In particular, any
generic formula relating simplicial equalities will be faith-
fully drawn on ∆ (see [10]). The definition of this simplicial
set is the following: simplices in ∆ are non-decreasing lists
of natural numbers (lists of length n+ 1 if we are in dimen-
sion n); a face of index i consists in erasing the element at
position i; and a degeneracy of index i consists in repeating
the element at position i in the list.

5.3 An example
Once the proof of the Eilenberg-Zilber theorem has been

instantiated on the standard simplex ∆, we can run the
different morphisms. We concentrate on the Shih morphism,
being the more complex one. Furthermore, we can make
computing Kenzo in the same examples, and then compare
both results. Even if the data structures used in our im-
plementation are different from that of Kenzo, and conse-
quently the algorithms are also different, in essence both im-
plementations are based on the same definition of the triple
of the reduction.

The test is running over the Cartesian product ∆ × ∆,
and then applied over the chain with only one component,
with coefficient 1 and generator ((0, 1, . . . , n), (0, 1, . . . , n)),
belonging to Cn(∆×∆). Next we include the chain obtained
by ACL2, in the case n = 4.

ACL2 !>(SH 4 (Delta1 4))

((1 ((0 0 0 0 0 1) (0 1 2 3 4 4)))

(-1 ((0 0 0 0 1 1) (0 1 2 3 3 4)))

(-1 ((0 0 0 0 1 2) (0 2 3 4 4 4)))

(1 ((0 0 0 1 1 1) (0 1 2 2 3 4)))

(1 ((0 0 0 1 1 2) (0 2 3 3 4 4)))

(-1 ((0 0 0 1 2 2) (0 2 3 3 3 4)))

(1 ((0 0 0 1 2 3) (0 3 4 4 4 4)))

(-1 ((0 0 1 1 1 1) (0 1 1 2 3 4)))

(-1 ((0 0 1 1 1 2) (0 2 2 3 4 4)))

(1 ((0 0 1 1 2 2) (0 2 2 3 3 4)))

(-1 ((0 0 1 1 2 3) (0 3 3 4 4 4)))

(-1 ((0 0 1 2 2 2) (0 2 2 2 3 4)))

(1 ((0 0 1 2 2 3) (0 3 3 3 4 4)))

(-1 ((0 0 1 2 3 3) (0 3 3 3 3 4)))

(-1 ((0 0 1 2 3 4) (0 4 4 4 4 4)))

(1 ((0 1 1 1 1 2) (0 1 2 3 4 4)))

(-1 ((0 1 1 1 2 2) (0 1 2 3 3 4)))

(1 ((0 1 1 1 2 3) (0 1 3 4 4 4)))

(1 ((0 1 1 2 2 2) (0 1 2 2 3 4)))

(-1 ((0 1 1 2 2 3) (0 1 3 3 4 4)))

(1 ((0 1 1 2 3 3) (0 1 3 3 3 4)))

(1 ((0 1 1 2 3 4) (0 1 4 4 4 4)))

(1 ((0 1 2 2 2 3) (0 1 2 3 4 4)))

(-1 ((0 1 2 2 3 3) (0 1 2 3 3 4)))

(-1 ((0 1 2 2 3 4) (0 1 2 4 4 4)))

(1 ((0 1 2 3 3 4) (0 1 2 3 4 4))))

Let us interpret some of the components of this expression.
The first one is (1 ((0 0 0 0 0 1) (0 1 2 3 4 4))).
That means that the operator (η3η2η1η0∂2∂3∂4, η4)
has been applied to ((0 1 2 3 4) (0 1 2 3 4)). And
this corresponds to the bivariate simplicial monomial
(1 (((3 2 1 0) (2 3 4)) ((4) ()))) which appears in
the expression obtained by executing (sh-pol 4) in Sub-
section 5.1. It is the same for the rest of monomials, except



for the degenerate ones, that, as announced in 5.1, have
been cancelled during the normalization process. Of course,
the results are also coherent in all dimensions in which the
testing has been carried out.
The result of executing (SH-n 4 (Delta1 4)) in ACL2 is

also equal (up to combinations representation) to the one
obtained with Kenzo (and it has been always the case in all
the automated test cases we have checked). In addition, the
implementation in Kenzo was based in the explicit formulas
from [14]. As explained in Subsection 5.1, these formulas
nicely correspond with the bivariate simplicial polynomials
defined in Section 4. And it is from evaluating this poly-
nomials how we have obtained the ACL2 executable mor-
phisms. The coherence of these four components in this
architecture gives a solid evidence that the formulas appea-
ring in our constructive proof of the Eilenberg-Zilber theo-
rem are the same implemented in Kenzo. As a consequence,
the confidence in the correctness of Kenzo is reinforced.

6. CONCLUSIONS
In this paper, we have illustrated the role of symbolic

manipulation in a context of certified computing. Even
if the case study is taken from a rather specialized area
(namely, Computational Simplicial Topology), we hope that
the consequences of our methods can be useful for a range
of researchers, working in automated reasoning, in algebraic
computing or, at it is our case, in the frontier between both
disciplines.
The main technical contribution of the paper is the intro-

duction of bivariate simplicial polynomials, a data structure
which allows us to enhance the ACL2 theorem prover with
a kind of algebraic rewriting, greatly increasing the automa-
tion of the proofs.
Simplicial polynomials can be viewed from two different

perspectives. In the first one, a simplicial polynomial is re-
presenting symbolically a family of natural transformations;
interestingly enough, this allows us a kind of logical reduc-
tion: representing some higher-order constructs (i.e. natu-
ral transformations between functors) as first-order elements
(lists of integers); recall that ACL2 is a first-order tool.
From the second point of view, a simplicial polynomial

can be used to define morphisms between chain complexes,
by means of a evaluation of the polynomial over chains of
simplices.
In both perspectives executability is important (ACL2, as

some other proof assistants, allows running definitions and
expressions). In the first one, unfolding recursive defini-
tions of polynomials was useful for conjecturing some lem-
mas which guided the proof of the main theorems. In the
second perspective, executing morphisms (on concrete sim-
plicial sets) permits us an automated testing of the Kenzo
program: Kenzo results were confronted to their ACL2 ve-
rified counterpart.
Verifying technology is still too poor to undertake the

complete correctness analysis of a software system as com-
plex as Kenzo. So, we approach the problem with several
tools and apply a separation of concerns strategy: some-
times we use proof assistants to verify the correctness of al-
gorithms and in other occasions we concentrate on verifying
actual running code. In this paper, we focused on a concrete
result in Simplicial Topology: the Eilenberg-Zilber theorem,
showing the feasibility and usefulness of our proposals.

As for further work, there is many room for extensions
and improvements. Let us mention simply the possibility
of using ACL2 tools (compilation, guards, single-threaded
objects, and so on; see [6]) to speed up computation in the
certified side; then the testing of Kenzo would be more com-
plete, and so the confidence in its correctness would be still
more reinforced.
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