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SUMMARY

DNA breaks are complex lesions that can be repaired
either by non-homologous end joining (NHEJ) or by
homologous recombination (HR). The decision be-
tween these two routes of DNA repair is a key point
of the DNA damage response (DDR) that is controlled
by DNA resection. The core machinery catalyzing the
resection process is well established. However, little
is known about the additional requirements of DNA
resection over DNA structures with high complexity.
Here, we found evidence that the human helicase
PIF1 has a role in DNA resection, specifically for
defined DNA regions, such as those prone to form
G-quadruplexes. Indeed, PIF1 is recruited to the
site of DNA damage and physically interacts with
proteins involved in DNA resection, and its depletion
causes DNA damage sensitivity and a reduction of
HR efficiency. Moreover, G4 stabilization by itself
hampers DNA resection, a phenomenon suppressed
by PIF1 overexpression.
INTRODUCTION

DNA is constantly exposed to different sources of DNA damage

that can alter its chemical or physical structure. Within the

different types of DNA lesions, DNA double-strand breaks

(DSBs) are considered one of the most cytotoxic DNA injuries

because they can lead to chromosomal aberrations and cell

death. In order to maintain genomic stability, cells have devel-

oped a well-coordinated signaling cascade to sense and repair

these DNA alterations known as the DNA damage response

(DDR), which results in cell cycle arrest, senescence, activation

of DNA repair pathways, stress responses, and/or apoptosis.

There are two main pathways to repair DSBs: non-homolo-

gous end joining (NHEJ) and homologous recombination (HR).

On the one hand, NHEJ is based on the direct ligation of the

broken DNA ends with little or no DNA end processing and it is

the main mechanism to repair DSBs during G0 and G1 phases
3262 Cell Reports 24, 3262–3273, September 18, 2018 ª 2018 The A
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of the cell cycle (Davis and Chen, 2013). On the other hand,

HR can accurately restore the DNA molecule using an intact

homologous DNA sequence from the sister chromatid as

the repair template (Jasin and Rothstein, 2013). Because HR

prefers the sister chromatid to repair the DSB, this pathway is

usually restricted to the S and G2 phases of the cell cycle. If

HR uses as donor sequence a DNA molecule different from

the sister chromatid, loss of heterozygosity and even chromo-

some aberrations might be produced. Thus, the choice of the

incorrect repair pathway might lead to genomic instability and,

in consequence, to different diseases, including cancer. Addi-

tionally, DSBs might be sealed by a third type of repair pathways

known as alternative-NHEJ (alt-NHEJ) or microhomology-

mediated end joining (MMEJ). This alternative repair shares

characteristics with both HR and NHEJ, uses short stretches

of homology (microhomologies), and is always mutagenic (Sfeir

and Symington, 2015).

DNA resection is the first step of HR and acts to promote this

repair pathway and blocks NHEJ (Huertas, 2010; Symington,

2014). MMEJ also requires resection to expose the short homol-

ogies implicated in the repair process but to a much shorter

extent (Sfeir and Symington, 2015). During resection, 50 ends
at DSBs are processed to obtain 30 single-stranded DNA over-

hangs, which will invade a homologous DNA molecule and will

act as primers for DNA synthesis. Resection is initiated by the

MRE11-RAD50-NBS1 (MRN) complex that recognizes the

DSB. Although MRE11 has endonuclease and exonuclease ac-

tivities, it needs an additional factor, CtIP, to integrate several

cellular signals in order to license resection only when the appro-

priate criteria aremet (Cejka, 2015; Huertas, 2010; Makharashvili

and Paull, 2015; Symington, 2014). This initial resection, termed

short-range resection, is followed by an extension of the length

of single-stranded DNA (ssDNA) in a process denominated

long-range resection and catalyzed by either EXO1 or the heli-

case-nuclease pair BLM-DNA2 (Cejka, 2015; Huertas, 2010; Sy-

mington, 2014). This resection machinery is well conserved in all

eukaryotes (Cejka, 2015; Huertas, 2010; Symington, 2014).

Indeed, the human CtIP-MRN complex, or its counterpart

Sae2-MRX in budding yeast, has been proven to constitute the

minimal core resection initiation machinery in vitro (Anand

et al., 2016; Nicolette et al., 2010; Shim et al., 2010).
uthor(s).
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Figure 1. PIF1 Depletion Effect in Homologous Recombination and Survival to DNA Damage Induction

(A) An overview of the effect of the depletion of DNA helicases in DNA repair pathway choice. A schematic representation of the SeeSaw Reporter (SSR) is shown

on the left. An I-SceI-induced DSB can be repaired by NHEJ, thus reconstructing an active GFP gene, or by homologous recombination using RFP fragments,

thus creating a functional RFP gene. The results in the NHEJ/HR balance upon depletion of several DNA helicases, obtained from López-Saavedra et al. (2016),

are shown on the right. Helicase genes for which depletion produces an unbalance toward increased HR are marked in red. Genes that encode pro-recombi-

nation helicases, i.e., NHEJ increased when they were downregulated, are marked in green. The plot represents the average and SD of three independent

experiments

(B) Effect of PIF1 depletion in the DR-GFP reporter. A scheme of the reporter is shown on the top. Induction of a DSB using I-SceI meganuclease renders GFP-

positive cells when the donor repeat (iGFP) is used in a gene conversion event. The efficiency of classical recombination was calculated as the percentage of

GFP-positive cells in response to I-SceI expression upon downregulation of the indicated genes and normalized with the control. The average and SD of at least

three independent experiments are shown.

(C) Same as (B) but using the single-strand annealing (SSA) reporter SA-GFP (top). In this case, the induction of a DSB located between two repeats in direct

orientation will render GFP-positive cells only when intramolecular SSA takes place.

(legend continued on next page)
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Although the central core of DNA resection is, therefore, well

established, only little is known about how the velocity or proc-

essivity of DNA resection is modulated. As an illustration, the tu-

mor suppressor BRCA1 affects the processivity of resection

(Cruz-Garcı́a et al., 2014). Such regulation will impact in the de-

cision betweenHR andNHEJ but also between different HR sub-

pathways (Ceccaldi et al., 2016). An important open question is

whether the resection machinery needs additional effectors

when faced with DNA regions of unusual configurations. One

example would be G-quadruplexes (G4s), a DNA-secondary

structure formed by four guanines associated through Hoogs-

teen hydrogen bonding that forms a G-quartet. The planar

G-quartets stack on top of each other, giving rise to

four-stranded helical structures (Lipps and Rhodes, 2009). Inter-

estingly, recently it has been described that G-quadruplex-stabi-

lizing compounds, such as pyridostatin (PYR) or CX-5461, are

toxic to BRCA1-deficient cells (Xu et al., 2017; Zimmer et al.,

2016). Thus, it remains possible that such toxicity might stem

of an impairment of DNA resection in the presence of stable

G4s and in the absence of processivity factors, such as

BRCA1. Several helicases, including FANCJ, BLM, or WRN,

have been shown to be able to unwind G4s (Mendoza et al.,

2016; Murat and Balasubramanian, 2014; Sanders, 2010), but

PIF1 helicase is considered themost specific and active on these

structures (Bochman et al., 2012). The PIF1 family of helicases is

highly conserved from yeast to humans and belongs to the

superfamily of helicases 1 (Sabouri, 2017). PIF1 plays a role in

multiple DNA transactions, including regulation of telomere ho-

meostasis, replication induced by DSBs, transcription, and

G4s resolution (Bochman et al., 2010; Gagou et al., 2014; Sabo-

uri, 2017). This helicase binds to partially ssDNA and unwinds G4

structures suppressing G4-induced DNA damage (Sanders,

2010). Although the human genome encodes a single PIF1

gene, through alternative splicing, it produces two different tran-

scripts. The long transcript produces PIF1a protein that is

located in the nucleus, and the short one produces PIF1b that

is found in the mitochondria (Sabouri, 2017).

Here, we report several lines of evidence that involve human

PIF1a (from here on PIF1) in HR. Indeed, we propose an addi-

tional role for this helicase specifically at the resection step of

the recombination process. Our data suggest that the helicase

activity of PIF1 is particularly relevant for resection when G4

structures are stabilized on the DNA.

RESULTS AND DISCUSSION

PIF1 Is Involved in DNA DSB Repair
As previously mentioned, little is known of the additional factors

that might help DNA resection machinery when confronted with

DNA structures that are problematic. We reasoned that, as for
(D) Same as (B), but using the NHEJ reporter EJ5-GFP. In this case, two I-SceI-ind

accumulation of functional GFP.

(E) Clonogenic assays of U2OS cells depleted with a siRNA against PIF1 or with c

camptothecin (CPT) (right).

(B–E) A Student’s t test comparing cells depleted with a siRNA against PIF1 with

***p < 0.001.

See also Figure S1.
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almost every single DNA transaction, helicases would be in

charge to reshape such unusual DNA configurations to facilitate

the process. To find those helicases, we used an indirect

approach and took advantage of the SeeSaw Reporter (SSR)

(see Figure 1A, left) and the genome-wide screening we recently

published (Gomez-Cabello et al., 2013; López-Saavedra et al.,

2016) to look for different helicases in the choice between DSB

repair pathways. This reporter analyses the choice between

HR and NHEJ at very early stages; thus, it is particularly sensitive

to changes in DNA resection velocity and/or processivity. Briefly,

the SSRmeasures the balance between NHEJ and HR based on

the accumulation of distinct fluorescent proteins (GFP for NHEJ

events and red fluorescent protein (RFP) for HR events; in this

case, a specific subpathway termed single-strand annealing

[SSA]; Ceccaldi et al., 2016). Alterations of the normal balance

toward a relative increase of HR or NHEJ can be detected using

this reporter (Gomez-Cabello et al., 2013; Jimeno et al., 2015;

López-Saavedra et al., 2016). As expected (see Figure 1A, right),

depletion of either BLM or RTEL1, proteins with known roles in

HR at the level of DNA resection, skewed the balance toward

an increase in NHEJ (Gomez-Cabello et al., 2013; Gravel et al.,

2008; Youds et al., 2010). Impairing the activity of the replication

helicase minichromosome maintenance (MCM) by downregula-

tion of almost any of its subunits also increased the relative

contribution of NHEJ, probably due to an accumulation of S

phase cells due to their role in DNA replication (Martinez et al.,

2017). In addition, depletion of the chromatin remodeler INO80

showed the opposite effect, with an increased HR, suggesting

a role of this helicase favoring NHEJ. This agrees with the fact

that mutations in INO80-specific subunits in yeast impair the

binding of Mre11, Ku80, and Mec1 kinase at the DSB, resulting

in defective error-prone NHEJ (van Attikum et al., 2007; Cham-

bers and Downs, 2012). Interestingly, the depletion of PIF1 had

a similar phenotype of RTEL1 or BLM, suggesting a possible

additional role of this DNA helicase in the HR branch of DSB

repair (Figure 1A). In order to validate this idea, we first per-

formed pathway-specific repair assays (Figures 1B–1D). In all

cases, CtIP depletion, which blocks DNA resection, was used

as a positive control. Briefly, in all reporters, a DSB is created

by expression of the meganuclease I-SceI and its repair through

one defined pathway renders the accumulation of GFP-positive

cells. We observed that PIF1 depletion (for depletion efficiency,

see Figures S1A–S1C) indeed impaired homology-directed

repair, both the Rad51-independent single-strand annealing

pathway, and also the Rad51-dependent gene conversion

pathway (SA-GFP and DR-GFP reporters, respectively; Figures

1B and 1C). On the contrary, the impact on NHEJ was minimal

(Figure 1D). Cell cycle is a major regulator of HR, as resection

is limited or not existent in G1. However, we discarded that the

observed HR defect was caused by an accumulation of G1 cells
uced DSBs could be repaired by conservative or mutagenic NHEJ granting the

ontrol non-target siRNA (siNT) after treatment with different doses of IR (left) or

control siNT was performed; statistical significance at *p < 0.05, **p < 0.01, or
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Figure 2. PIF1 Recruitment to DNA-Damage-Induced Foci

(A) GFP-PIF1 accumulation upon DNA damage induction with NCS using an antibody against GFP (shown in red). gH2AX accumulation was used as a control of

DNA damage induction. Representative images of treated and untreated cells are shown. The scale bar represents 10 mm.

(B) Same as (A) but in cells exposed to 10 Gy of radiation. The scale bar represents 10 mm.

(C) Quantification of the number of GFP-PIF1 foci in untreated and irradiated, as indicated, in individual cells. The number of foci was scored automatically using

Metamorph.

(D) Schematic representation of the experimental system to measure protein recruitment to DSBs. A single I-SceI target site is located close to 256 copies of the

lacO sequence, allowing its visualization using a Cherry-LacI fusion. I-SceI is induced with the addition of doxycycline to induce a break.

(legend continued on next page)

Cell Reports 24, 3262–3273, September 18, 2018 3265



(Figure S1D). Thus, we conclude that PIF1 affects the balance

between HR and NHEJ mainly by facilitating DNA HR.

As expected from the repair defect, PIF1-depleted cells were

mildly hyper-sensitive to agents that induce DSBs, such as

ionizing radiation or camptothecin (Figure 1E). Our results are

in agreement with the recently described new role of the PIF1 ho-

molog Rrm3 in Saccharomyces cerevisiae in HR (Muñoz-Galván

et al., 2017), suggesting that the role of PIF1 in HR might be

conserved through evolution. Moreover, also in budding yeast,

it has been shown that scPIF1, the other homolog of this heli-

case, is required for D-loop extension during break-induced

replication (Saini et al., 2013; Wilson et al., 2013).

PIF1 Is Recruited to DNA-Damage-Induced Foci
Proteins involved in DSB repair are commonly recruited to

broken chromatin and can be visualized under the microscope

as foci. We tested whether this was also the case for PIF1.

Upon the induction of DSBs with the DSB-inducing agent neo-

carzinostatin (NCS), we readily observed the focal accumulation

of GFP-PIF1 using an anti-GFP antibody (Figure 2A; Figure S2A

shows aGFP control). The same effect was observed upon treat-

ment with ionizing radiation (IR) (Figure 2B; Figure S2B shows a

GFP control). Computer-based automatic scoring of the number

of PIF1 foci per cell agreedwith an increase of PIF1 accumulation

upon DNA damage (Figure 2C). To confirm that such a punctu-

ated pattern reflected the recruitment of PIF1 to the sites of

DNA breaks, we used the U2OS19ptight13 cells, in which a sin-

gle DSB is induced with I-SceI upon the addition of doxycycline

at a chromosomal location carrying 256 repeats of the lacO that

can be visualized as the accumulation of a cherry-lacI discrete

dot (Figures 2D and 2E; Lemâıtre et al., 2014). As shown in Fig-

ure 2F, there was some background binding of PIF1 prior doxy-

cycline addition, likely due to the DNA structure created by the

256 repeats of the lacO. But importantly, a clear induction of

GFP-PIF1 recruitment was observed upon DSB induction with

doxycycline. Indeed, this accumulation mirrored DSB appear-

ance, measured as gH2AX accumulation (Figures 2E, 2F, and

S2C).

DNA Resection Requires PIF1
One likely explanation of the role of PIF1 in facilitating recombi-

nation and its recruitment to broken chromatin is that this heli-

case might be involved in DNA end resection. To test this idea,

we studied replication protein A (RPA) foci formation upon

ionizing radiation in PIF1 depleted cells. RPA is an ssDNA bind-

ing complex that accumulates at sites of DNA breaks as a direct

consequence of DNA resection (Cejka, 2015; Huertas, 2010;

Symington, 2014). Thus, the percentage of RPA-foci-positive

cells is the gold standard readout of resection in mammalian

cells. As shown in Figure 3A, depletion of PIF1 with two different

small interfering RNAs (siRNAs) rendered a defect in resection
(E) Immuno-fluorescence in situ hybridization (FISH) representative confocal imag

(+Dox) or not (�Dox) the I-SceI enzyme. An arrow points to the localization of the a

signal, on those cases in which no protein accumulation is observed (�DOX, wit

(F) Co-localization of the Cherry-LacI with GFP-PIF1. Cells were transfected with t

time. Values represent the average and SEM of three independent experiments.

One-way ANOVA analysis was performed to compare the indicated conditions in
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efficiency that resembles, albeit to a lesser extent, downregula-

tion of the key resection factor CtIP. To validate this observation,

we used an alternative approach by quantifying the exposure of

bromodeoxyuridine (BrdU)-labeled ssDNA in native conditions

by fluorescence-activated cell sorting (FACS) as a proxy for

ssDNA (Gómez-Cabello et al., 2017). BrdU epitope is hidden in

the double-stranded structure of the DNA, so it cannot be

detected by an antibody against it unless it is presented in a

single-stranded form, either by denaturing the DNA or in native

conditions by its exposure during DNA end resection. As seen

in Figure 3B, in control cells, an increase of BrdU exposure in

non-denaturing conditions after IR was observed. This was

dependent on DNA end resection, as was completely abolished

upon depletion of CtIP. Strikingly, PIF1 downregulation severely

impairs BrdU exposure, as the signal remained close to the un-

treated control cells. Again, this defect was milder than the

observed upon CtIP depletion, in agreement with an accessory

role of PIF1 in resection. Both RPA foci formation and BrdU

exposure depend at the same time on the number of breaks re-

sected per cell and the extension of DNA resection. In order to

analyze in more detail whether only resection initiation was

impaired or whether also resection processivity was compro-

mised, we used the single molecule analysis of resection tracks

(SMART) technique, a high-resolution approach that measures

resected DNA in individual DNA fibers (Cruz-Garcı́a et al.,

2014; Huertas and Cruz-Garcia, 2018; Figure 3C). Interestingly,

not only the number of breaks resected was reduced upon

PIF1 depletion, but the average length of ssDNA formed during

resection was severely reduced when measured. Indeed, our

data suggested that the main role of PIF1 is resection processiv-

ity, as in this case the observed defect was similar to that caused

by CtIP depletion. This will agree with the idea that PIF1 is not an

integral part of the resection machinery but an accessory factor

that acts during resection extension, unwinding atypical DNA

structures but has a very limited effect in the decision on which

breaks will be resected.

In order to determine whether PIF1 was acting exclusively in

one specific branch of resection, mainly the long-range resection

catalyzed by either EXO1 or DNA2/BLM, we dissected its ge-

netic relationship by targeting those factors with siRNA simulta-

neously to PIF1 depletion. We included also an siRNA against

MRE11 as a key factor in the short-range resection machinery.

We reasoned that, if PIF1 was exclusively in one of those path-

ways, its depletion would exacerbate the resection defect

caused by downregulation of the other branch. As seen in the

Figure 3D, PIF1 was epistatic with both EXO1 and DNA2, indi-

cating it is likely acting on both pathways at the same time and

that PIF1 depletion already hampers all long-range resection.

Strikingly, PIF1 depletion mildly increased the defect observed

upon MRE11 downregulation, likely due to targeting at the

same time as both the short and long-range resection. Again,
es of Cherry-lacI in red, gH2AX (white), or GFP-PIF1 in green in cells expressing

rray in each image. Empty arrowsmark where the array is, according to the LacI

hout DSB induction). The scale bar represents 7.5 mm.

he plasmid containing GFP-PIF1 and treated with doxycycline for the indicated

each graph. *p < 0.5; **p < 0.01. See also Figure S2.
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Figure 3. PIF1 Effect in DNA Resection

(A) DNA resection proficiency measured as the percentage of RPA-foci-positive cells in cells transfected with either an siRNA against PIF1, CtIP, or control siNT.

The average and SD of three independent experiments are shown. Significance was determined by Student’s t test comparing each condition to siNT cells.

Representative images of the experiments are shown on the right side. The scale bar represents 25 mm.

(B) BrdU exposure under native conditions by FACS in cells transfected with the indicated siRNAs, either irradiated (+IR) or non-treated (�IR) as indicated. BrdU

signal (x axis) is only observed in native conditions when resection exposes the BrdU epitope. Kolmogorov-Smirnov test was used to calculate the statistical

significance of the different curves, with the following results: siNT-IR versus siNT+IR p < 0.001; siNT+IR versus siCtIP+IR p < 0.001; and siNT+IR versus

siPIF1+IR p < 0.001.

(C) Resection length measured with SMART assay using DNA fibers extracted from U2OS downregulated for endogenous CtIP or PIF1. A siNT was used as

control. The average and SEM of the median length in three independent experiments are plotted in the right graph. Other details are as in (A).

(D) RPA foci formation 1 hr after irradiation in cells cotransfected with the indicated pairs of siRNAs.

(legend continued on next page)
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Figure 4. G4 Stabilization Impairs Resection

(A) SMART assay using DNA fibers extracted from irradiated U2OS over-

expressing GFP-PIF or GFP as control and pretreated or not with 10 mm

pyridostatin for 1 hr. Other details are as in Figure 3C.

(B) G4 detection in individual ssDNA fibers. (Top) Representative ssDNA fiber

containing G4 structures is shown. ssDNA was detected using the SMART

assay in individual fibers with an anti-BrdU antibody (green) and G4 with a

specific antibody (red). (Bottom) Quantification of the number of ssDNA fibers

containing at least one G4 upon depletion with the indicated siRNAs is shown.

(C) Same as (B) but in cells treated or not with 10 mMof pyridostatin for 1 hr and

bearing aGFP, aGFP-PIF1wild-type, or helicase dead construct, as indicated.

(D) DNA resection, measured as the percentage of RPA-foci-positive cells,

induced by pyridostatin (10 mM) treatment for 1 hr in cells transfected either

with a siRNA against PIF1 or with control siNT. Other details are as in (A).

*p < 0.05; **p < 0.01.
these observations agree with an accessory role of PIF1 during

resection extension. Therefore, we conclude that PIF1 is an

accessory factor that is helping resection progression mainly

at the level of long-range resection, both in the DNA2 and

EXO1 branches. To be sure that the observed phenotype was

due to PIF1 and not to an off-target effect, we study resection

at the level of RPA foci formation in cells bearing siRNA-resistant,

GFP-tagged versions of PIF1 gene. Indeed, the resection impair-

ment caused by depletion of PIF1 was rescued by wild-type

GFP-PIF1 (Figure 3E). More importantly, this was not observed
(E) DNA resection proficiency measured as the percentage of RPA-foci-positive ce

protein (E307Q), or GFP and transfected either with an siRNA against the 30 UTR
25 mm.

*p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S3.
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with expression of a helicase dead version of the protein (Figures

3E and S3A). Thus, we can confirm that PIF1 is acting on long-

range DNA end resection through its helicase activity, most likely

by unwinding atypical DNA structures.
PIF1 Is Required to Resect over Sequences Prone to
Forming G-Quadruplexes
Wewondered then why this additional helicase might be needed

for DNA end processing, i.e., which kind of atypical DNA species

PIF1 is unwinding. Based on the role of PIF1 in facilitating DNA

transactions on specific DNA structures, such as those DNA se-

quences prone to form G-quadruplexes, we reasoned that those

structures might act as roadblocks for resection. Indeed, addi-

tion of the G4 stabilizer pyridostatin (Rodriguez et al., 2012), on

its own, reduced the length of resected DNA formed upon induc-

tion of DSBs with ionizing radiation (Figure 4A). Interestingly, this

decrease in the length of resected DNA was rescued when PIF1

was overexpressed (Figure 4A), but not by overexpression of a

helicase-dead version of the protein. In order to validate this

observation, we adjusted our SMART assay by adding a second

primary antibody that recognizes G4s. Then, we could analyze in

how many events resection went through one or more G4 struc-

ture(s) (Figure 4B). Strikingly, we quantifiedmore than 50%of the

resection events in which the processing happens over at least

one sequence prone to form G4s. Moreover, this percentage

dropped significantly if PIF1 was depleted. This drop was not

simply due to the fact that the resection tracks are shorter, as

CtIP depletion, which also reduced the length of resected DNA

to a level comparable with PIF1 downregulation, does not cause

this reduction in the % of G4-containing fibers (Figure 4B). Simi-

larly, pyridostatin addition reduced the number of fibers contain-

ing G-quadruplex (Figure 4C), in agreement with the idea that the

stabilization of such structure hampers the ability of the resection

machinery to process DNA through them. Interestingly, wild-

type PIF1 overexpression, but not a helicase-dead version of

the protein, suppresses such reduction (Figure 4C). Thus, our

data collectively suggested that sequences that tend to form

G4s are indeed an impairment for DNA resection and PIF1

and, more importantly through its helicase activity, is involved

in resolving these structures during DNA end processing. How-

ever, our data do not exclude the possibility that other factors

might be also able to open G4s to facilitate resection.

Additionally, the simple addition of pyridostatin, with no addi-

tional source of DNA damage, caused an increase in sponta-

neous RPA foci formation that was completely dependent on

PIF1 (Figure 4D). Interestingly, PIF1 depletion on its own in-

creases the spontaneous levels ofRPA in the absence of pyridos-

tatin.We reasoned this reflects an increase in chances of specific

DNA structure to break in the absence of PIF1. Thus, PIF1 deple-

tion is acting at two levels. On one hand, its presence prevents

spontaneous breakage of G4-forming sequences, but at the

same time, PIF1 is required for their full processing. In the
lls in cells expressing either GFP-PIF1 wild-type, a helicase dead version of the

of PIF1 or a control siNT. Other details are as in (A). The scale bar represents
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See also Figure S3.
absence of PIF1, more breaks will occur but would be subjected

to limited resection, accounting for the mild increase in RPA foci.

In the presence of pyridostatin in control cells, there will be many

more breaks and those will be fully processed as PIF1 is present.

The depletion of PIF1 is epistatic over pyridostatin treatment, as

the G4s will be already causing breaks but cannot be completely

processed in the absence of PIF1. This suggests that sequences

prone to formG4s caused DNA lesions that are processed by the

resection machinery in a PIF1-dependent fashion. Therefore,

PIF1 prevents G4-mediated genomic instability by avoiding the
appearance of breaks on those structures but also will affect

how breaks at or close by to this G4-forming sequences will be

repaired. Interestingly, this seems to be a conserved feature of

PIF1 that has been shown to prevent G4-induced genomic rear-

rangements in yeast (Paeschke et al., 2013).

PIF1 Direct Interaction with the Resection Machinery Is
Required for G4 Resolution
Our data suggested a functional relevance of PIF1 in DNA end

resection, especially over regions with a tendency to form G4s.
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Interestingly, a recent study has shown that BRCA1 depletion

causes sensitivity to pyridostatin (Xu et al., 2017; Zimmer et al.,

2016). Considering the role of BRCA1 in facilitating resection,

we speculated that these two factors might be connected in a

more direct way. Thus, we first tested whether they physically

interact. We could observe an interaction between BRCA1 and

PIF1 both in untreated cells and in cells exposed to ionizing radi-

ation (Figure 5A). Using antibodies against PIF1 or BRCA1, we

could also confirm the interaction of those proteins by reciprocal

co-immunoprecipitations (Figure 5B). Moreover, we could also

observe the interaction between overexpressed GFP-PIF1 and

the endogenous CtIP (Figure 5C). Reciprocally, using GFP-

CtIP, we were able to immunoprecipitate endogenous PIF1 (Fig-

ure 5D). Interestingly, and different to BRCA1, we could never

detect interaction between PIF1 and CtIP in cells that did not

overexpress one of those factors. This might indicate that the

interaction between PIF1 and CtIP is weaker than the one be-

tween BRCA1 and PIF1 or that it is indirect. To cement the

idea that BRCA1 and PIF1 interact directly, we used recombi-

nant histidine (HIS)-tagged BRCA1 and GFP-PIF1 and per-

formed an in vitro binding assay. As shown in Figure 5E, purified

HIS63-BRCA1 efficiently pulled down recombinant GFP-PIF1.

Considering the physical interaction between PIF1 and

BRCA1, one possibility was that PIF1 depletion affected the

steady-state levels of BRCA1 and that partial depletion of

BRCA1 was the cause of the resection and recombination phe-

notypes. We excluded that possibility, as neither BRCA1 nor

CtIP levels were affected by PIF1 depletion (Figure S3B).

Once the interaction of PIF1 with BRCA1 was established, we

wanted to study whether this interaction was somehow related

to the resolution of G4s. In order to test this hypothesis, we

used total cell extracts from U2OS cells expressing GFP-PIF1

to co-immunoprecipitate BRCA1, both in the presence and

absence of pyridostatin. Interestingly, there was a significant in-

crease in the immunoprecipitation (IP) efficiency after treatment

with pyridostatin compared to the mock control (Figure 6A), in

agreement with a shared role in unwinding G4-forming se-

quences for BRCA1 and PIF1.

To confirm the relationship between PIF1 and BRCA1 in DNA

resection, repair, and G4s resolution, we quantified PIF1 foci for-

mation in U2OS cells expressing GFP-PIF1 either with or without

irradiation in cells depleted or not of BRCA1. Interestingly, the re-

localization of PIF1 after IR treatment, shown before in Figure 2,

was dependent on BRCA1, because its depletion completely

abolished such effect without affecting the basal levels of PIF1

foci (Figure 6B). Depletion of BRCA1 was verified by immuno-

blotting (see Figure S3B). From these results, we hypothesized
Figure 6. BRCA1 Loads PIF1 to Damaged Chromatin

(A) A BRCA1 antibody was used to immunoprecipitate BRCA1 and PIF1 after 4

enrichment of three independent experiments are shown on the right. Significa

conditions to mock-treated cells. *p < 0.05.

(B) Quantification of GFP-PIF1 foci formation after 10 Gy of irradiation (+IR) or in m

control siNT. Representative images of the experiment are shown on the right.

antibody and is shown in red. gH2AX, in black and white, was used as a control

(C) Model describing the possible mechanism of PIF1 activity in DNA resection.

promotes the unwinding of these structures and facilitates resection and homol

machinery will have problems to function.

See also Figure S3.
that BRCA1 is needed to recruit PIF1 specifically to DNAdamage

sites. Interestingly, and in accordance with the functional rela-

tionship observed between PIF1 and BRCA1, a mutation in

PIF1 has been described to be present in patients that present

a predisposition for breast cancer (Chisholm et al., 2012). This

functional relationship of PIF1 and BRCA1 in resolving G4s spe-

cifically during HR might explain why BRCA1-deficient cells are

sensitive to G4-stabilizing drugs (Xu et al., 2017; Zimmer et al.,

2016). Moreover, it opens a window for therapeutic intervention

in BRCA1-deficient tumors. Our data imply that G4-stabilizing

agents will synergize with DSB-inducing treatments, such as

radiotherapy, topoisomerase poisons, etc.

In summary, our data suggest amodel (see Figure 6C) in which

DNA resection is impaired by the presence of certain DNA struc-

tures, such as sequences with a tendency to form G4s. Thus, in

order to resect over such structures, the helicase PIF1 is loaded

to breaks located in the vicinity of such structures, a process that

requires BRCA1. Once recruited, PIF1 would facilitate DNA

resection through such special DNA structures. Despite a large

overlap in G-quadruplexes unwinding by many helicases (Rho-

des and Lipps, 2015), our data indicate a preponderant role of

PIF1 during DSB processing. However, we cannot exclude that

they also contribute to resection over this G4-forming region.

This model explains why the absence of this helicase activity

causes defective DNA end resection, HR impairment, and finally

DNA damage sensitivity. The strong defect in DNA resection

observed upon PIF1 depletion might suggest that this helicase

is involved in the processing of breaks located close to other, still

unknown, unusual DNA structures and not only in those that are

close to sequences that tend to form G4. For example, it has

been shown that PIF1 can unwind R-loops (Boulé and Zakian,

2007). Albeit we cannot discard the relevance of these additional

structures, at least we can suggest its relevance for resection

over sequences prone to form G4s. It has been proposed that

there are more than 700,000 sequences with the ability to form

such structures in the human genome (Chambers et al., 2015),

so it is not surprising that over 50% of resected DNA tracts in

our SMART assay contain at least one of them.

One interesting consideration is why G4 structures affect

resection in the first place. G4s are supposed to form only

when the DNA is already single stranded, as the interactions

between both DNA strands will prevent its formation. Thus, it

is likely that PIF1 role would be restricted to those physiological

situations in which G4s appear, including during transcription,

replication, and/or at telomeric DNA (Hänsel-Hertsch et al.,

2017). Promoter regions are specially enriched in G4 structures,

and over 40% of the genes have a G4 in its vicinity (Huppert
hr of 10 mm pyridostatin treatment or mock treatment. The average and SEM

nce was determined by Student’s t test comparing the pyridostatin-treated

ock-treated cells (�IR) transfected either with a siRNA against BRCA1 or with

The scale bar represents 10 mm. GFP-PIF1 was detected using an anti-GFP

of DSB induction. *p < 0.05

PIF1 is recruited by BRCA1 to G4s in the vicinity of DSBs. Such recruitment

ogous recombination. In the absence of PIF1, G4s remain, thus the resection
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and Balasubramanian, 2007). Indeed, G4s likely play regulatory

roles during transcription (Kim, 2017). Recently, it has been

shown that G4 indeed form in vivo at least at those promoter

locations (Biffi et al., 2013; Hänsel-Hertsch et al., 2016). It is

also worth mentioning that G4 can form in the ssDNA strand

opposite to cotranscriptional R-loops helping to their stabiliza-

tion (Kim, 2017). Indeed, and as mentioned above, PIF1 can

remove also R-loops (Zhou et al., 2014). So either a G4-forming

sequence, a G4-stabilized R-loop, or the combination of both

can be the relevant structure that PIF1 must unwind for resec-

tion. Strikingly, it has been shown that transcribed regions are

more likely to be resected and undergo HR than not transcribed

regions (Aymard et al., 2014). So PIF1 importance might

highlight the fact that it is especially required for resection

under the context of transcribed chromatin, where G4 or other

atypical structures, such as R-loops, are more likely to form.

Additionally, it is clear that HR has an important role in rescuing

and stabilizing stalled replication forks (Yeeles et al., 2013).

In parallel, G4 structures are more evident in human cells

during S phase, indicating they are forming during replication

(Biffi et al., 2013). So again, PIF1 might be more important in

this scenario of recombination-mediated rescue of stalled

forks.

Based on the high degree of conservation between PIF1

orthologs (Bochman et al., 2010) and the involvement of the

yeast counterpart in DSB repair (Saini et al., 2013; Wilson

et al., 2013), it will be of interest analyzing whether the require-

ment of PIF1 to resect over G4 structures is conserved. Indeed,

the role of RRM3 in sister chromatid exchange (Muñoz-Galván

et al., 2017) might partially reflect a resection impairment. Less

evidence is present of the hypothetical scPIF1 in resection, as

it has been related with break-induced replication (BIR) (Saini

et al., 2013;Wilson et al., 2013), which does not require extensive

end processing. Moreover, the role of PIF1 in controlling the bal-

ance between repair pathways in regions containing G4s might

explain why, in its absence, gross chromosomal rearrangements

are increased when such structures are present (Paeschke et al.,

2013).
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Pablo

Huertas (pablo.huertas@cabimer.es).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and growth conditions
U2OS cell lines (female, RRID: CVCL_0042) were authenticated and obtained from the ATCC, then grown in DMEM (Sigma-Aldrich)

supplemented with 10% fetal bovine serum (Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich), 100 units ml–1 penicillin and 100 mg

ml–1 streptomycin (Sigma-Aldrich) at 37�C in 5%CO2. U2OS stably expressing GFP or GFP-hPIF1 plasmids (Rodriguez et al., 2012)

were grown in standard U2OS medium supplemented with 0.5 mg ml–1 G418 (Sigma) at 37�C in 5% CO2. U2OS19ptight13 cells

(Lemâıtre et al., 2014) were grown in the absence of phenol red and supplemented with 0.8 mg ml–1 G418 at 37�C in 5% CO2.

U2OS19ptight13 populations were generated by transfection of the different plasmids and selection with 1 mg ml–1 puromycin. Dox-

ycyline (Sigma-Aldrich) was added to U2OS19ptight13 medium at a final concentration of 1 ug/mL 14/20 h prior fixation to induce

I-SceI cutting.

METHOD DETAILS

siRNAs, plasmids and transfections
siRNA duplexes were obtained from Sigma-Aldrich or Dharmacon (See Key Resources Table) and were transfected using RNAiMax

Lipofectamine Reagent Mix (Life Technologies), according to the manufacturer’s instructions. Briefly, cells were seeded and grown

for 24 h. The day of transfection, medium was replaced by fresh DMEM without antibiotics and cells were incubated with a mix of

siRNA and Lipofectamine diluted in Opti-MEM. Cells were then incubated at 37�C for 6 h before replacing the media with fresh

DMEM. All siRNA-mediated knockdowns were validated 48 h after transfection by western blot or RT-PCR.

GFP-PIF1was a gift fromStephen P. Jackson (TheGurdon Institute, Cambridge). The helicase-deadGFP-hPIF1mutant (GFP-PIF1

E307Q) was previously published (Gagou et al., 2014). It was obtained replacing a glutamic acid by a glutamine in the wild-type

plasmid using the QuickChange Lightning Site-DirectedMutagenesis Kit (Agilent Technologies) according tomanufacturer’s instruc-

tions. Briefly, mutagenesis was performed using designed primers containing the desired mutations. After the PCR, DNA was ampli-

fied and sent to CNIO Genome Unit (Madrid, Spain) for DNA sequencing. Plasmid transfection of U2OS cells was carried out using

FuGENE 6 Transfection Reagent (Promega) according to the manufacturer’s protocol.

HR and NHEJ analysis
U2OS cells bearing a single copy integration of the reporters DR-GFP (Gene conversion) (Pierce et al., 1999), SA-GFP (SSA) (Ben-

nardo et al., 2008) or EJ5-GFP (NHEJ) (Bennardo et al., 2008) were used to analyze the different DSB repair pathways. In all cases,

40,000 cells were plated in 6-well plates in duplicate. One day after seeding, cells were transfected with the indicated siRNA and the

medium was replaced with fresh one 24h later. The next day, each duplicate culture was infected with lentiviral particles containing

I-SceI–BFP expression construct atMOI 10 using 8 mg/ml polybrene in 1.5mL of DMEM. Then, cells were left to grow for an additional

24 h before changing the medium for fresh DMEM. One day later, cells were washed with PBS, trypsinised, neutralized with DMEM,

centrifuged for 5 min at 700 g, fixed with 4% paraformaldehyde for 20 min and collected by centrifugation. Then, cell pellets were

washed once with PBS before resuspension in 150 ml of PBS. Samples were analyzed with a BD FACSAria with the BD FACSDiva

Software v5.0.3. Four different parameters were considered: side scatter (SSC), forward scatter (FSC), blue fluorescence (407 nm

violet laser BP, Filter 450/40), green fluorescence (488 nm blue laser BP Filter 530/30). Finally, the number of green cells from at least

10,000 events positives for blue fluorescence (infected with the I-SceI–BFP construct) was scored. The average of both duplicates

was calculated for each sample of every experiment. To facilitate the comparison between experiments, this ratio was normalized

with siRNA control. At least four completely independent experiments were carried out for each condition and the average and stan-

dard deviation is represented.

Clonogenic cell survival assays
To study cell survival after DNA damage, clonogenic assays were carried out seeding cells in 6-well plates at two different concen-

trations in triplicates. DSBs were produced by IR or by acute treatment with topoisomerase inhibitor camptothecin (CPT; C9911,

Sigma). For IR, 250 and 500 transfected cells were seeded per well and, for drug treatments, 500 and 1,000 cells per well. The

following day, cells were exposed to DNA damaging agents: 2 Gy, 4 Gy or mock treated or incubated for 1h with 0.01, 0.05 or

0.1 mM CPT or vehicle (DMSO) as control. After two washes with PBS, fresh medium was added and cells were incubated at

37�C for 7-14 days to allow colony formation. Afterward, cells were stained and visualized in solution of 0.5% Crystal Violet

(1.15940.0025, Merck) and 20% ethanol (1.00983.1000, Merck). Once the colonies were stained, this solution was removed and
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plates were washed with water. The surviving percentage at each dose was calculated by dividing the average number of visible col-

onies in treated versus control (untreated or vehicle-treated) dishes. The experiment was repeated three times, and the average and

standard deviation for each condition was calculated.

RT-qPCR
RNA was extracted from U2OS cells using RNeasy Mini Kit (QIAGEN), and cDNA was produced from RNA samples with QuantiTect

Reverse Transcription Kit (QIAGEN), according to the manufacturer’s instructions. qPCR was performed using iTaq Universal SYBR

Green Supermix (Bio-Rad) and the primers are listed in the Key Resources Table. The comparative threshold cycle (Ct) method was

used to determine relative transcript levels, using b-actin expression as internal control. Expression levels relative to b-actin were

determined with the formula 2-DDCt. At least three completely independent replicas were performed for each case.

SDS-PAGE and western blot analysis
Protein extracts were prepared in 23 Laemmli buffer (4%SDS, 20%glycerol, 125mMTris-HCl, pH 6.8) and passed 10 times through

a 0.5 mm needle–mounted syringe to reduce viscosity. Proteins were resolved by SDS-PAGE and transferred to low fluorescence

PVDF membranes (Immobilon-FL, Millipore). Membranes were blocked with Odyssey Blocking Buffer (LI-COR) and blotted with

the appropriate primary antibody and infra-red dyed secondary antibodies (LI-COR) (See Key Resources Table). Antibodies were

prepared in blocking buffer supplemented with 0.1% Tween-20. Membranes were air-dried in the dark and scanned in an Odyssey

Infrared Imaging System (LI-COR), and images were analyzed with ImageStudio software (LI-COR).

Immunoprecipitation
IP with endogenous antibodies

U2OS cells or U2OS cells containing GFP or GFP-CtIP were harvested in lysis buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1 mM

EDTA, 0.2% Triton X-100, 1X protease inhibitors (Roche), 1X phosphatase inhibitor cocktail 1 (Sigma)) and incubated for 30 minutes

on ice with Benzonase (100 U/ml). Protein extract (1 mg) was then precleared with washed magnetic protein A Dynabeads (Novex)

under gentle agitation at 4�C for 1 h. Precleared samples were then incubated with 10 mL of anti-PIF1 or anti-BRCA1 antibody or with

an equivalent amount of IgG (Mouse of Rabbit) as negative control for 30 min at 4�C. The remaining beads were added to the mixture

of proteins and antibody and then incubated overnight at 4�C with gentle agitation. Beads were then washed three times with lysis

buffer, and the precipitate was eluted in 50 mL of Laemmli buffer 2x. At least three independent IPs were performed.

IP with GFP-TRAP

U2OS cells expressing GFP, GFP-CtIP or GFP-PIF1 were harvested in lysis buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM

EDTA, 0.5% NP-40, 13 protease inhibitors [Roche] and 13 phosphatase inhibitor cocktail 1 [Sigma]) and incubated for 30 minutes

on ice with Benzonase. Protein extract (1 mg) was mixed with 35 mL of washed magnetic anti-GFP beads (GFP-Trap_M, Chromotek)

and incubated 2h at 4�C with gentle rocking. For the incubation NP-40 concentration is reduced to 0,2%. Beads were then washed

3 timeswith wash buffer (10mMTris-HCl pH 7.5, 150mMNaCl, 0,5mMEDTA, 0,01%NP-40, 13 protease inhibitors [Roche] and 13

phosphatase inhibitor cocktail 1 [Sigma]), and the precipitate was eluted in SDS sample buffer by boiling the beads and loaded onto a

gel. For the pyridostatin treatment, the drug was added 4 hour prior to the initiation of the experiment and time points were taken as

indicated in each case. The experiment was repeated three times.

Immunofluorescence and immuno-FISH
For RPA foci visualization, U2OS cells knocked-down for different proteins were seeded on coverslips. At 1 h after irradiation (10 Gy),

coverslips were washed once with PBS followed by treatment with pre-extraction buffer (25mMTris-HCl, pH 7.5, 50mMNaCl, 1 mM

EDTA, 3 mM MgCl2, 300 mM sucrose and 0.2% Triton X-100) for 5 min on ice. Cells were fixed with 4% paraformaldehyde (w/v) in

PBS for 20 min. Following two washes with PBS, cells were blocked for 1 h with 5% FBS in PBS, co-stained with the appropriate

primary antibodies (See Key Resources Table) in blocking solution overnight at 4�C or for 2 h at room temperature, washed again

with PBS and then co-immunostained with the appropriate secondary antibodies in blocking buffer. After washing with PBS and

dried with ethanol 70% and 100% washes, coverslips were mounted into glass slides using Vectashield mounting medium with

DAPI (Vector Laboratories). RPA foci immunofluorescences were analyzed using a Leica Fluorescence microscope with a HCX

PL APO 63x/1.4 OIL objective.

For PIF1 foci visualization, U2OS cells expressing GFP or GFP-hPIF1 were seeded on coverslips. The procedure was similar to the

described for RPA foci visualization but using anti-GFP antibody.

For immuno-FISH, U2OS19ptight13 cells were co-transfected with a Cherry-lacI and GFP-PIF1a plasmids and treated or not with

doxycycline for 14h or 20 h, as indicated. Then, cells were fixed with 4% paraformaldehyde for 15 min, permeabilized in 0.5% Triton

for 15min, blocked in 3%BSA in PBS 0.1% Tween and incubated with primary and secondary antibodies (See Key Resources Table)

prepared in blocking solution for 1 h each. Coverslips were mounted using Vectashield mounting medium (Vector Laboratories) con-

taining DAPI. To visualize and acquire the images, a LEICA confocal microscope TCS SP5was usedwith a HCX PL APO lambda blue

63X/ 1.4 OIL objective.

In all cases, at least 100 cells were analyzed per condition and the experiments were replicated independently at least three times.
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SMART
SMART (single-molecule analysis of resection tracks) was performed as described (Huertas and Cruz-Garcia, 2018). Briefly, cells

were grown in the presence of 10 mM BrdU for less than 24 h. Cultures were then irradiated (10 Gy) and harvested after 1 h. Cells

were embedded in low-melting agarose (Bio-Rad), followed by DNA extraction. DNA fibers were stretched on silanized coverslips,

baked for 2 hr at 60�C and incubated directly without denaturation with an anti-BrdUmouse monoclonal (See Key Resources Table).

After washing with PBS, coverslips were incubated with the secondary antibody (See Key Resources Table). Finally, coverslips were

mounted with ProLong Gold Antifade Reagent (Molecular Probes) and stored at �20�C. Samples were observed with a Nikon NI-E

microscope and PLAN FLOUR403 /0.75 PHL DLL objective and images were taken and processed with the NIS ELEMENTS Nikon

Software. For each experiment, at least 200 DNA fibers were analyzed, and the length of the fibers wasmeasured with Adobe Photo-

shop CS4. At least three independent replicas per condition were performed. For the pyridostatin treatment, the drug was added

1 hour prior to the irradiation.

Flow Cytometry analysis
Cell cycle analysis

Cells were fixed with cold 70% ethanol overnight, incubated with 250 mg ml–1 RNase A (Sigma) and 10 mg ml–1 propidium iodide

(Fluka) at 37�C for 30 min and analyzed with a FACSCalibur (BD). Cell cycle distribution data were further analyzed using ModFit

LT 3.0 software (Verity Software House Inc). The experiments were repeated three times.

Flow Cytometric Analysis of DNA End Resection

Cells were grown in the presence of 10 mMbromodeoxyuridine (BrdU; GEHealthcare) for 16–18 hr and then detached using accutase

(eBioscence). Cells were fixed with 4% paraformaldehyde for 10 min at 4�C, permeabilized with 0.1% Triton X-100 in PBS, washed

in PBS, and then blockedwith 5%FBS in PBS. After blocking, cells were incubated with an anti-BrdUmousemonoclonal for 1–2 hr at

room temperature and then with the appropriate secondary antibody for 30 min at room temperature. Cells were then washed and

resuspended in PBS. Samples were analyzed with a BD FACSCalibur FlowCytometer (BD Biosciences, Ref: 342975). At least 10,000

events were recorded for each sample and the experiments were repeated independently three times.

In vitro protein synthesis
GFP-hPIF1 was synthesized in vitro using the PURExpress in vitro protein synthesis kit (E6800S, New England BioLabs). A

PCR-amplified DNA from GFP-hPIF1 plasmids (Rodriguez et al., 2012) using appropriate primers to insert a T7 promoter and an

Escherichia coli ribosome entry site upstream of the gene-specific sequence was used as a template, according to the manufac-

turer’s instructions. Protein synthesis was carried out using 250 ng of DNA template in a final volume of 25 ml. Reactions without

DNA were set up as negative controls.

Pull-down assay using recombinant proteins
To study PIF1 direct interaction with BRCA1, 250 ng of purified His6x-BRCA1 (ab82204, Abcam) resuspended in 200 ml of binding

buffer (50 mM Sodium Phosphate pH 8.0, 300 mM NaCl, 0.01% Tween-20) was incubated with 50 ml of pre-equilibrated magnetic

Dynabeads His-Tag Isolation & Pulldown (Life Technologies, 10103D) in a rocking wheel for 1h at 4�C. After incubation, in vitro syn-

thesized GFP-hPIF1 resuspended in 200 mL of pull-down buffer (3.25mMSodium Phosphate pH 7.4, 70mMNaCl, 0.01% Tween-20)

was incubated at 4�C for 1h with the His6-BRCA1 bound to the Dynabeads. A mock sample of the in vitro protein synthesis using a

non-related template was incubated with His6x-BRCA1-dynabeads as a control. Additionally, a third sample with GFP-PIF1 incu-

bated with Dynabeads without the His6x-BRCA1 was prepared. The mixture was washed three times with binding buffer, resus-

pended in elution buffer (2x SDS-PAGE sample loading buffer and binding buffer supplemented with 300 mM Imidazole) and boiled

for 2min at 100�C to obtain the proteins. Finally, precipitated proteins were resolved by SDS-PAGE and analyzed by western blotting

as described.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was determined with a Student’s t test using PRISM software (Graphpad Software Inc.). Statistically signifi-

cant differences were labeled with one, two or three asterisks if p < 0.05, p < 0.01 or p < 0.001, respectively. Specific replicate

numbers (N) for each experiment can be found in the corresponding figure legends. In all figures, means are plotted and standard

deviation (SD) is represented as error bars.
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