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Abstract

In this paper we address the problem of scheduling jobs on a single machine with

cyclical machine availability periods. In this problem, the scheduling horizon is com-

posed of periods where the machine is available followed by other periods where no

operation can be performed. In the literature, the problem is denoted as scheduling

with periodic maintenance, as it is usually assumed that these unavailability periods

are employed to perform maintenance activities. Another situation is the one inspiring

our research, i.e. the need of completing manufacturing operations within a shift. More

specifically, we focus the single machine scheduling problem with makespan objective

subject to periodic machine availability. There are several contributions proposing ap-

proximate procedures due to the NP-hardness shown for the problem. However, we are

not aware of a computational evaluation among these procedures. Furthermore, the

problem is similar to the classical bin packing problem, so it is of interest to explore

the relation between both problems. In this paper, we address these two issues, and

propose new approximate solution procedures for the problem.

Keywords: Single machine scheduling, makespan, Heuristics, periodic maintenance,

periodic machine availability

∗This is an Accepted Manuscript of an article published by Elsevier in Computers and Industrial Engineer-
ing Volume 123, September 2018, Pages 180-188, available online: http://dx.doi.org/10.1016/j.cie.2018.06.025

1



1 Introduction

In many manufacturing companies, operations are not performed continuously over the scheduling

horizon, since resources stop cyclically due to the end of the shifts, hours/days off (e.g. nights or

weekends), periodic maintenance activities, etc. Regardless the cause of the unavailability of the

resources, this problem is known in the literature as scheduling with periodic maintenance (Low

et al., 2010a; Yu et al., 2014). In our case, the research is inspired by a manufacturing process

within the aerospace industry, more specifically the assembly of wiring harness. This rather complex

operation is performed manually by specialized teams, and it is not desirable that a task started by

one team is completed by another, as this usually decreases the efficiency and quality of the task.

Therefore, schedules are built so all tasks starting within a working shift must be also completed in

this shift. Our objective is to minimise the maximum completion time across all jobs, or makespan.

Note that this problem is NP-hard in the strong sense when cyclical availability periods are included

(Lee, 1996), even if its classical counterpart is trivial.

For this problem, several approximate solution procedures, many of them based on bin packing

methods, have been presented in the literature: Ji et al. (2007); Hsu et al. (2010); Yu et al. (2014)

develop several constructive heuristics and Low et al. (2010a) propose a metaheuristic. However, it

seems that these procedures have been developed in an independent manner, and consequently no

computational analysis has been carried out to compare them. Therefore, their relative efficiency

has not been established and the state of the art remains unclear. Furthermore, the problem is

clearly related to the well-known bin packing problem, however, such relationship has not been

analysed in the literature. Our paper is aimed towards filling these gaps: First we explore the

relations between the bin packing problem and our problem by comparing the solutions provided by

mixed integer linear programming models for both problems. Second, we carry out a computational

experimentation among the heuristics proposed in the literature for the problem under consideration.

Based on the excellent results obtained by two fast constructive heuristics, we include them in a

local search procedure and propose two new heuristics. The computational experience carried out

shows that our proposals outperform the constructive heuristics and the metaheuristic existing for

the problem while requiring less CPU time.
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Figure 1: Proposed problem Ji et al. (2007)

The rest of the paper is organised as follows. Section 2 includes the notation for the problem

and the state-of-the-art. Section 3 describes the mathematical models employed to compare the bin

packing problem and the proposed problem. In Section 4 we review and classify the constructive

heuristics identified in the literature, and in Section 5 we describe the new heuristics proposed. In

Section 6 we discuss the set of instances employed to carry out the computational experience, and

present the results obtained. Finally, in Section 7 the main conclusions are presented, along with

future research lines.

2 Problem statement and background

The decision problem consists on scheduling n jobs, J1, . . . , Jn on a single machine with processing

times pj , j = 1, . . . , n. The machine is not available at any time in all the scheduling horizon, which

is composed of availability periods of T time units followed by a non-availability period of t time

units (see Figure 1).

In the literature, the availability periods are denoted batches, bins or blocks (we will use this

last term in the paper). Jobs have non-resumable operations, so it has to be assumed that T ≥

pj ∀j = 1, . . . , n in order to guarantee the feasibility of the problem. Additionally, we consider

makespan minimization, so this problem is denoted 1|nr−pm|Cmax by Ji et al. (2007) according to

the standard notation. 1 means that we are considering a single machine layout, nr− pm indicates

that periodical maintenance (pm) unavailability periods are considered as constraint, and jobs are

non-resumable (nr), that means, jobs must not be interrupted (or if it, it must be completely

processed again). Finally Cmax indicates that the minimization objective is the completion time of

the last job in the machine.
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For a given schedule, we denote the slack of a block as the idle time of each block, i.e. the differ-

ence between T and the sum of the processing times of all jobs assigned to that block. Additionally,

the load of a block refers to the total processing time of all jobs assigned to that block.

To the best of our knowledge, the 1|nr − pm|Cmax problem was considered firstly by Ji et al.

(2007). They propose an algorithm –labelled LPT (Longest Processing Time first)– consisting in

first sorting the jobs in descending order of their processing times and then assigning them according

to the First Fit bin packing policy, i.e, to the first block with sufficient slack. They also show that

the worst-case ratio of the LPT algorithm is 2.

Low et al. (2010a) propose a Particle Swarm Optimization (PSO) algorithm for the 1|nr −

pm|Cmax problem. They use different constructive heuristics (for descriptions see Section 4) to gen-

erate an initial population with 10 individuals, and compare different versions of the PSO algorithm.

From their experiments, it turns out that one of these versions yields the best results.

Finally, Yu et al. (2014) provide three constructive heuristics for 1|nr−pm|Cmax, called LS, LPT

and MLPT: The List Scheduling algorithm (LS) generates a random order and applies the already

mentioned First Fit algorithm; LPT has been described previously since it was proposed by Ji et al.

(2007). Finally, MLPT is an adaptation done by Yu et al. (2014) of a method originally applied

to the bin packing problem by Yue and Zhang (1995). The complexity of these three algorithms

is proved by Yu et al. (2014) to be O(n2), showing that all three have a worst case bound of 2.

Additionally, they compare the performance bounds, concluding that MLPT is the best among

them. However, they do not carry out computational experiments due to the theoretical approach

of their paper.

Other related problems have been addressed in the literature. Hsu et al. (2010) study a version

of the problem where the machine stops for maintenance after T units of time or after processing

K jobs. Clearly, this problem is equivalent to 1|nr − pm|Cmax for K = n. For this problem, Hsu

et al. (2010) present two approaches. Firstly, a two-stage BIP (Binary Integer Programming) model

is proposed in order to optimally solve the problem. In this model, the authors determine the

minimum number of blocks L required for processing the n jobs in the first stage and minimize

the total slack within the first L− 1 blocks (which is equivalent to minimize the makespan) in the

second stage. Secondly, they present two heuristics. The first heuristic –called Decreasing order
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with Best Fit– sorts the jobs according to LPT and then assigned them to the block with the current

minimum slack, i.e. using the Best Fit bin packing policy. The second heuristic, called Butterfly

order with Best Fit, sorts the jobs in the so-called butterfly order (given the jobs in LPT, select

first the largest one, then the smallest, the second largest, the second smallest, and so on) and then

applies the Best Fit bin packing policy. In their experiments, they show that the butterfly order

performs better than the decreasing order when K ≤ dn2 e, and the opposite otherwise.

Low et al. (2010b) study another related problem where the periodic maintenance period are not

fixed, but they are flexible, being each maintenance done within a given time window. Additionally,

they include the same constraint considered by Hsu et al. (2010) regarding the maximum number

K of jobs assigned to an availability period. They propose six constructive heuristics obtained by

combining a sequencing priority list (random order, SPT order and LPT order) with the First Fit

or Best Fit policies. Additionally, they provide theoretical results about worst case ratios of some

of the proposed algorithms for different special cases.

The problem 1|nr−pm, sij |Cmax, with sij the sequence dependent setup-time of job i scheduled

prior to job j, is studied by Angel-Bello et al. (2011) and Pacheco et al. (2012). Angel-Bello et al.

(2011) develop a MILP (Mixed Integer Linear Programming) model and show that it can only be

used for small-sized instances. Therefore, they propose a GRASP improved by a Tabu Search phase.

Pacheco et al. (2012) provide a MILP too, and a Multi-Start Tabu algorithm (MST). The authors

conclude that MST is better than the GRASP by Angel-Bello et al. (2011) for the biggest instances.

Finally, additional contributions on scheduling with availability constraints can be consulted in Ma

et al. (2009).

After reviewing the literature, the following conclusions can be stated: On the one hand, to

the best of our knowledge, the relationship between this problem and the well-known bin packing

problem has been hardly studied. Ji et al. (2007) identify such relationship as the availability period

can be seen as a bin with capacity T (see Figure 1). Taking into account Property 1 by Ji et al.,

2007, the optimal schedule has the minimum number of blocks, corresponding to an optimal solution

for the bin packing problem. Therefore, although both problems provide different solutions (since

1|nr − pm|Cmax tries to minimize the load of the last block), it might be that the solution of the

bin packing problem can be used to obtain high-quality solutions for the 1|nr− pm|Cmax problem.
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To analyse this issue, we propose a MILP model for the problem, and compare the results provided

by this model with the results obtained by the mathematical model of the classical bin-packing

problem. These models are presented in Section 3, and the computational results in Section 6.

On the other hand, regarding to approximate methods, to the best of our knowledge there are

no comparison assessing the performance of the different methods proposed. In addition, there has

been no exhaustive analysis on whether different choices of sorting criteria would yield better results

(for instance, the LS algorithm proposed by Yu et al., 2014 could be tested with the Best Fit bin

packing heuristic as suggested by Low et al., 2010a instead of with the First Fit). Furthermore,

the same method has been employed with different names, resulting in an unclear state of the art.

Since most of the proposed methods follow the same structure, we believe that a template can

be developed to classify existing methods. The template could also serve to identify unexplored

combinations of heuristics to be tested. In Section 4, we present and classify these methods in order

to carry out a computational evaluation in Section 6. As a result of these experiments, we detect

some opportunities to develop fast heuristics to further improve the results obtained by existing

methods. These proposals are presented in Section 5.

3 Mathematical model

In this section we present two mixed integer linear programming (MILP) models:

• BP-MILP model. This model, proposed by Martello, Silvano; Toth (1990) for the bin packing

problem, and using the notation considered for the problem 1|nr− pm|Cmax, assigns the jobs

to the blocks minimizing the number of blocks.

• PM-MILP model. This model is an adaptation of the previous model for the problem 1|nr−

pm|Cmax.

For the PM-MILP model, we have not adapted the model by Hsu et al. (2010) since they consider

the problem with a maximum number of jobs K scheduled in each block, proposing a formulation

based on two stages (i.e. they solve two models).

The notation used for BP-MILP and PM-MILP models is the following:
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• Data:

– n the number of jobs;

– pj the processing time of jobs, 1 ≤ j ≤ n;

– T the availability period (size of blocks).

• Variables:

– bi binary variables indicating if block i is occupied, 1 ≤ i ≤ n;

– xij binary variables indicating if job j is assigned to block i, 1 ≤ j ≤ n, 1 ≤ i ≤ n.

Note that we do not consider the value of t (see Section 1) since it does not affect to the optimal

solution, according to the aforementioned Property 1 by Ji et al. (2007).

3.1 BP-MILP model

min
n∑

i=1

bi (1)

s.t.
n∑

j=1

pjxij ≤ Tbi, 1 ≤ i ≤ n (2)

n∑
i=1

xij = 1, 1 ≤ j ≤ n (3)

xij, bi ∈ {0, 1}, 1 ≤ i, j ≤ n (4)

Equation (1) is the objective function to be minimized, i.e, the number of blocks to be occupied.

Constraints (2) impose that the sum of the processing times of jobs assigned to the block i must

be lower or equal to T , for all blocks. Constraints (3) impose that each job must be assigned to

one and only one block, for all jobs. Finally, Constraints (4) define the binary variables used in the

model.

The solution obtained for this model is the assignment of jobs to blocks. In order to generate

an (approximate) solution for the 1|nr − pm|Cmax problem, the makespan can be computed in the
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following way: Let k be the occupied block with lowest load, then the makespan is the number of

occupied blocks minus one multiplied by T plus the load the block k as it is shown in Equation (5).

Cmax = T ·

(
n∑

i=1

bi − 1

)
+

n∑
j=1

pjxkj (5)

3.2 PM-MILP model

PM-MILP model is based in the previous model, but taking into account the following new in-

formation: M is a parameter with a high value (M ≥ T ), max slack is a continuous variable

which computes the maximum slack (empty space) of the blocks, and finally δi are binary variables

indicating if the maximum slack is given by the block i.

minT ·
n∑

i=1

bi −max slack (6)

s.t.
n∑

j=1

pjxij ≤ Tbi, 1 ≤ i ≤ n (7)

n∑
i=1

xij = 1, 1 ≤ j ≤ n (8)

max slack ≤M(1−δi)+Tbi−
n∑

j=1

pjxij, 1 ≤ i ≤ n (9)

n∑
j=1

xij ≥ bi, 1 ≤ i ≤ n (10)

n∑
i=1

δi = 1 (11)

δi ≤ bi, 1 ≤ i ≤ n (12)

xij, bi, δi ∈ {0, 1}, 1 ≤ i, j ≤ n (13)

max slack ≥ 0 (14)

Equation (6) is the objective to be minimized, i.e, the makespan given by T multiplied by the

number of occupied blocks minus the maximum slack of the blocks. Constraints (7) and (8) are the

same constraints than Constraints (2) and (3) respectively. Constraints (9) set the maximum slack
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among the used blocks. For each block, Constraints (10) imply that, if a block is not occupied, then

no job is assigned to this block. Constraint (11) states that only one block provides the maximum

slack, and Constraints (12) imply that, if a block is not occupied, then this block does not provide

the maximum slack. Finally, Constraints (13) and (14) define the binary and continuous variables

used in the model, respectively.

It is clear that, among all optimal solutions for the BP-MILP model, the one containing the

block with the greatest slack value is an optimal solution for the PM-MILP model. In this regard,

the optimal solutions for the PM-MILP model are a subset of the optimal solutions for the BP-

MILP. Therefore, although both problems are different, it is possible that, in practice, the solutions

provided by the two models are very similar, which would indicate that, essentially, the 1|nr −

pm|Cmax problem is a bin packing problem and that solution procedures borrowed from the latter

could be used to solve the former. This idea is used in the next section, where a constructive

heuristic that employs concepts from the bin-packing problem is proposed for our problem.

4 Existing Heuristics: Analysis and Classification

In this section, we classify the constructive heuristics from different authors into a common template.

As a part of this classification effort, new variants of these constructive heuristics are proposed to

be subsequently tested.

The constructive heuristics employed in the literature consist of two phases. In the first phase,

jobs are sorted by certain sorting criterion depending on the processing times of the jobs. In

the second phase, a specific bin packing policy is adopted. Therefore, a general template for the

constructive heuristics can be proposed to classify the existing heuristics for the problem.

Regarding the first phase, without loss of generality, let us assume that the processing times of

the jobs to be scheduled are given in non decreasing order, i.e. pi ≤ pi+1, i = 1, . . . , n−1. Therefore,

the so-indexed jobs can be sorted according to the following sorting criteria:

• Random (R), i.e. sorting the jobs randomly.

• Decreasing (D), i.e. sorting the jobs according to the LPT (Longest Processing Time first)

rule. More specifically: pn, . . . , p1
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• Increasing (I), i.e. sorting the jobs according to the SPT (Shortest Processing Time first)

rule. More specifically: p1, . . . , pn

• V-Sharp (V), i.e. sorting the jobs with lowest processing times towards the middle of the

sequence. More specifically: pn, pn−2, . . . , p1, . . . , pn−3, pn−1

• A-Sharp (A), i.e. sorting the jobs with highest processing times towards the middle of the

sequence: p2, p4, . . . , pn−1, pn, pn−2, . . . , p3, p1

• Inserting High and Low processing times (HILO). More specifically:

pn, p1, pn−1, p2, pn−2, p3, . . . (following the notation by Framinan et al., 2003)

• Inserting Low and High processing times (LOHI). More specifically:

p1, pn, p2, pn−1, p3, pn−2, . . . (following the notation by Framinan et al., 2003)

Note that the above criteria include all sorting orders proposed in the literature, including the

LPT rule by Ji et al. (2007) and Yu et al. (2014) (which is denoted D in the following), the List

Scheduling order by Yu et al. (2014) (denoted here as R), the A-Sharp, V-Sharp, and SPT rules by

Low et al. (2010a) (denoted as A, V, and I, respectively), and the decreasing order and butterfly

order by Hsu et al. (2010) (denoted here as D and HILO, respectively).

In the second phase, jobs are assigned to the blocks applying a bin packing policy to the sequence

obtained from the first phase. Assuming that a sequence Π := (π1, . . . , πn) has been obtained from

the first phase, one of the following bin packing policies can be applied:

• First Fit (FF) bin packing policy, i.e. take jobs in Π one by one and try to assign them in

the first existing block where there is sufficient slack.

• Best Fit (BF) bin packing policy, i.e. take jobs in Π one by one and try to assign them in the

first existing block with the minimum slack where it fits.

• Modified First Fit (MFF): See (Yu et al., 2014) for the description of this heuristic.

Using the two phases described above, all constructive heuristics can be classified, see Table 1.

From this table it can be seen that not all combinations of both phases have not been considered

in the literature up to now.
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Phase 1 Phase 2 Notation Description Reference

Random FF FFR First Fit Random Yu et al. (2014)
Low et al. (2010b)

LPT FF FFD First Fit Decreasing Ji et al. (2007)
Low et al. (2010a)
Low et al. (2010b)
Yu et al. (2014)

SPT FF FFI First Fit Increasing Low et al. (2010a)
Low et al. (2010b)

V-Sharp FF FFV First Fit V-Sharp Low et al. (2010a)
A-Sharp FF FFA First Fit A-Sharp Low et al. (2010a)
HILO FF FFHILO First Fit HILO Low et al. (2010a)
LOHI FF FFLOHI First Fit LOHI Not considered
Random BF BFR Best Fit Random Low et al. (2010b)
LPT BF BFD Best Fit Decreasing Hsu et al. (2010)

Low et al. (2010a)
Low et al. (2010b)

SPT BF BFI Best Fit Increasing Low et al. (2010a)
Low et al. (2010b)

V-Sharp BF BFV Best Fit V-Sharp Low et al. (2010a)
A-Sharp BF BFA Best Fit A-Sharp Low et al. (2010a)
HILO BF BFHILO Best Fit HILO Hsu et al. (2010)

Low et al. (2010a)
LOHI BF BFLOHI Best Fit LOHI Not considered
LPT MFF MFFD Modified FFD Yu et al. (2014)

Table 1: Constructive Heuristics
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5 Proposed heuristic

As discussed previously, the problem 1|nr−pm|Cmax is similar to the classical bin packing problem.

Therefore, as seen in the related literature discussed in Section 2, most methods use bin packing

policies (such as Best First or First Fit).

In order to take full advantage of the bin packing policies for designing a heuristic method for

the problem, we propose using a new solution encoding. More specifically, we will use a given bin

packing assignment policy as an operator to be applied to permutation sequences.

Considering the definition of semiactive schedules as a feasible schedule where no operation that

can be completed ealier without changing the order of jobs (Framinan et al., 2014), in our solution

encoding, giving an order of the jobs Π := (π1, . . . , πn) and an operator, we obtain only one semi-

active schedule, unequivocally determined by the order of the jobs obtained after apply a specific

operator to Π, denoted Soperator(Π). Note that the number of blocks used is not known in advance,

but it is univocally determined by the schedule.

Taking into account this consideration, we use the following options:

• Not applying any operator (none): It is possible not apply any operator, and in this case, the

feasible semi-active schedule, denoted Snone(Π), is constructed assigning the jobs directly in

the blocks in the order given by the sequence Π. Cmax(Snone(Π)) is the value of the makespan

of solution Snone(Π).

• First Fit operator (FF): Starting from j = 1 and one block with slack T , take job πj and

try to assign it in the first existing block where there is sufficient slack (i.e. apply the FF

bin packing policy). If there is no block with enough slack, then use a new block and assign

the job to the newly created block. Then, repeat the procedure until all jobs in Π have been

assigned to the blocks. Let us denote SFF (Π) to the so-obtained assignment of the jobs, and

Cmax(SFF (Π)) the value of the makespan of solution SFF (Π).

• Best Fit operator (BF): Starting from j = 1 and one block with slack T , take job πj and try

to assign it in the first existing block with the minimum slack where it fits (i.e. apply the BF

bin packing policy). If there is no block with enough slack, then use a new block and assign

the job to the newly created block. Then, repeat the procedure until all jobs in Π have been
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assigned to the blocks. Let us denote SBF (Π) to the so-obtained assignment of the jobs, and

Cmax(SBF (Π)) the value of the makespan of solution SBF (Π).

We give an example in Figure 2, where we consider six jobs, and a given permutation Π =

(1, 2, 3, 4, 5, 6). We have the following options according to the operator applied:

a) If we do not apply any operator, jobs are scheduled following the given permutation and we

obtain the schedule Snone(Π) represented in Figure 2 a).

b) If we apply the FF operator to Π, job 1 is assigned to the first block, job 2 to the first block

too, then, job 3 is assigned to the second block since it does not fit in the first block. Job 4 is

assigned to the first block since this is the first block where it fits. In the same way, job 5 is

assigned to the third block and job 6 is assigned to the second block. Therefore, SFF (Π) is the

solution obtained by the FF operator, which implies a different schedule than the previous one,

represented in Figure 2 b).

c) If we apply the BF operator to Π, job 1 is assigned to the first block, job 2 to the first block too,

then, job 3 is assigned to the second block since it does not fit in the first block. Now, job 4 is

assigned to the second block since this is the block with the minimum slack where it fits. In the

same way, job 5 is assigned to the third block and job 6 is assigned to the first block. Therefore,

SBF (Π) is the solution, which implies a different schedule than the previous cases, represented

in Figure 2 c).

Therefore, our proposed method consists of two phases: First we construct a solution using the

LPT rule, and then apply one of the aforementioned operators before computing the makespan.

Then we apply a simple local search to explore the space of solutions. The neighbourhood structure

is based on insertion of a randomly selected job in all positions, considering a first improvement

strategy, i.e. if the new solution obtained after the insertion in a given position improves the best

solution so far, the current solution is changed and the rest of positions are not checked. If all

positions are checked without improvement the method stops. Note that, after the insertion, the

evaluation is not applied to the obtained sequences, but to the solution obtained by applying one of

the operators in order to provide a good assignation to the blocks. Therefore, the scheme followed

is:
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Figure 2: Example for different operators

Step 1. Let Π be the sequence obtained sorting the jobs according to the LPT rule.

Step 2. Let Soperator(Π) be the sequence obtained by applying the corresponding operator to Π.

Compute the makespan being best := Cmax(Soperator(Π)).

Step 3. Remove one job j from Π at random. Do i = 1.

Step 4. Insert j in the position i of Π. Let Π′ be the obtained solution.

Step 5. Apply the corresponding operator to Π′, and calculate the value of the makespan curr :=

Cmax(Soperator(Π
′)).

Step 6. If curr < best, then best := curr, Π := Π′ and go to Step 3. Else, i = i+ 1 and go to Step

4.

Three different heuristics have been designed with this scheme, NEW, NEW FF and NEW BF

depending on the operator none, FF or BF applied.
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6 Computational Experiments

Our objective is to determine the state of the art for the problem by comparing the existing con-

structive heuristics found in the literature and the new methods proposed in this paper described

in Section 4 and Section 5 respectively. The experiments are carried out using the sets of instances

presented in the following subsection.

6.1 Sets of instances

Among the references who tackle the same problem, only Low et al. (2010a) carry out a

computational experience providing a set of instances. More specifically, they consider n ∈

{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300} and pj ∼ U [1, 50] with 50 instances for each

size (700 instances). For each instance, they generate a value of T , with T ∼ U [150, 200]. In our

paper, we consider the following set of instances:

• LOW set of instances: Replicating the one by Low et al. (2010a).

• MOD set of instances: We consider the same values of n and pj than in LOW, but using

tighter values of T , i,e, T ∼ U [50, 100] (note that the problem is feasible if and only if pj ≤ T ,

∀j = 1, . . . , n).

As discussed before, note that we do not include the parameter of the problem t (see the

description of the problem in Section 1) since it does not have influence on the results.

For comparison, we consider the RPD (Relative Percentage Deviation) of each instance com-

puted as follows

RPD =
Cmax(METH)−MIN

MIN
· 100

where MIN is the optimal or best bound makespan value provided for the compared methods,

METH is the makespan value provided for each method. ARPD refers to Average RPD.

6.2 Comparison of heuristics

In order to determine the state of the art for the 1|nr − pm|Cmax problem, we test a total of 15

constructive heuristics (BFR, BFD, BFI, BFV, BFA, BFHILO, BFLOHI, FFR, FFD, FFI, FFV,
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FFA, FFHILO, FFLOHI and MFFD), and the three versions of the new heuristic (NEW, NEW BF

and NEW FF).

We have solved all instances for all methods. Table 2 shows the ARPD values obtained for

each heuristic for LOW and MOD sets of instances, for the different cases of n and the Total.

ARPD results are shown graphically in Figures 3 and 4, giving the 95% confidence intervals for

each method. It can be seen that, for both sets of instances, the best ARPD is obtained by MILP,

although it does not provide the optimal values for all instances. In fact, in both set of instances,

it does not provide the minimum for all instances, mainly for the biggest instances of MOD. The

best heuristics among the tested algorithms are NEW BF and NEW FF. Note that NEW does

not provide good results, so the Local Search is not the key aspect of our new heuristic, but its

combination with the operators BF or FF. It is worth to note that the average ARPD of NEW BF

is lower than that of the rest of the heuristics for all values of n. Note also that MFFD by Yu et al.

(2014) provides the same results than FFD for LOW (ARPD are shown in the same row). The

explanation is that both methods provide the same makespan values unless ∃pj > T
2 . For MOD set

of instances, these heuristics yield different ARPD values since this set of instances provides tighter

values of T , and it can be seen that MFFD is not better than FFD.

Regarding the computation times, only the best methods with the lowest ARPD values have

been considered: BFD, FFD, MFFD, NEW BF, NEW FF and MILP. Table 3 shows the average

for each value of n. It can be seen that the MILP is the slowest method, requiring more CPU

times for MOD than for LOW. However MILP provides optimal solutions for LOW in less than one

minute for sizes up to 80 jobs. The constructive heuristics are almost instantaneous, and, although

the three new heuristics need higher computation times, these are negligible as compared to that

required by MILP. For LOW, the average computation times for NEW BF and NEW FF are similar

(2.183 and 2.112 respectively). In the case of MOD, the average computation times for LOW are

2.892 and 2.364 on average for NEW BF and NEW FF respectively. For both sets of instances,

NEW FF is the fastest method.

In order to see the ARPD differences in a clearer way, we analyse the seven algorithms with

the lowest ARPD values. For LOW (see Figure 5), the best overall results are provided by MILP,

although it requires much higher computation times than the rest (see Table 2). The best results
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Figure 3: 95% Confidence Interval for ARPD: All heuristics and MILP. Case LOW Set of Instances

among the heuristics are provided by NEW BF and NEW FF. These two heuristics are statistically

significant different to the rest and have the lowest standard deviation, which highlights their robust-

ness. A similar pattern can be observed for MOD (see Figure 6). The main differences are that, in

this case, there are no statistically significant differences among MILP, NEW BF and NEW FF, and

among FFD, BFD. Finally, the worst results are obtained by MFFD, being statistically significant.
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Figure 4: 95% Confidence Interval for ARPD: All heuristics and MILP. Case MOD Set of Instances

Figure 5: 95% Confidence Interval for ARPD: Best constructive heuristics and MILP. Case LOW Set of
Instances
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Figure 6: 95% Confidence Interval for ARPD: Best constructive heuristics and MILP. Case MOD Set of
Instances
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7 Conclusions

In this paper we have addressed the single machine scheduling problem with cyclic availability of

machines (usually denoted as periodic maintenance in the literature). This problem is NP-hard when

the objective is the makespan, and several approximate procedures were proposed, but they have not

been compared up to now. In this work we first explore the relationship between our problem and

the classical bin packing problem. To do so, we develop an MILP model for each problem, named

PM-MILP model (for the proposed problem), and BP-MILP model (for the bin-packing problem).

The optimal solutions of the PM-MILP model are a subset of the optimal solutions of the BP-

MILP model. Therefore, we can borrow some ideas from approximate methods for the bin packing

problem to develop constructive heuristics for the proposed problem. More specifically, we develop

new heuristics that use bin packing assignment rules as operators on a job sequence. These operators

are embedded into a local search. The idea is to apply the bin-packing operators before evaluating

each schedule obtained in the simple local search method. In this manner, three new heuristics

are tested: NEW, NEW BF and NEW FF using different bin-packing assignment policies. NEW

does not apply any bin-packing operator and it is used as a base heuristic for comparison, while

the other two use the Best Fit (BF) and First Fit (FF) bin-packing assignment rules, respectively.

These proposals are compared with constructive heuristics existing in the literature, together with

some new variants proposed. In total, 12 heuristics are tested against our heuristics. To assess the

efficiency of our proposals, an exhaustive computational evaluation is conducted using two different

sets of instances. The results show that NEW BF and NEW FF are the best methods in terms of

quality of solutions and in CPU time requirements.

For future research lines, and due to the practical interest of scheduling problems with periodic

maintenance, it could be useful to study this problem in other layouts as flowshop or parallel

machines. Additionally, other objectives different to makespan have not been considered in the

literature, so it could be another interesting option for future research.
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