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Analytic description of the scattering of electrons by molecules
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The scattering of electrons by molecules is considered. The structure of the molecule is described
in terms of the vibron model, which is an algebraic approach to the description of rotational and
vibrational molecular excitations. The dynamics of electron-molecule collision is discussed in terms of
coupled-channel calculations, where we assume an isocentrifugal approximation. In the sudden limit,
where the excitation energies of the molecule are neglected, the coupled-channel system decouples
into eigenchannels. The scattering amplitudes of the eigenchannels, characterized by 1/r potentials,
are obtained analytically. The resulting probabilities of excitation of the molecular states and the
limiting values of the quasielastic cross sections are evaluated. in the U(3) and the O(4) hmits.
A comparison of the results for the difFerential cross sections with experimental data and other
calculations is made for LiF and KI.
PACS number(s): 34.g0.—i, 34.50.—s, 31.15.—p, 24.10.Eq

I. INTRODUCTION

The scattering of electrons &om polar molecules is a
complex process governed by the long range dipole inter-
action and involving the coupling of many channels [1,
2]. To solve this problem, one needs to employ coupled-
channel calculations, which are extremely time consum-
ing since they involve a large number of channels and at
the same time need to consider a very long ranged cou-
pling interaction ( —, for the dominant dipole coupling)
[3]. In order to simplify the coupled channels calculations
several approximations have been proposed. The cen-
trifugal sudden approximation, or the coupled-state (CS)
approximation [4], introduced in the study of molecular
collisions, consists of substituting the centrifugal poten-
tial h L /2ljr, which changes as the states couple, by
some constant value h I(I + 1)/2pr Lis the .orbital
angular momentum operator, while L is a constant, cor-
responding to some average value of the orbital angu-
lar momentum. In this way, the coupled-channel system
partially diagonalizes. If, moreover, one ignores the ex-
citation energies of the states coupled together (sudden
approximation), the coupled channel equations can be to-
tally diagonalized and the scattering amplitudes and the
S matrices can be written as linear combinations of the
corresponding magnitudes derived from the eigenchan-
nels. The reduced coupled equations resemble the expres-
sions that one would get in the rotating frame with the z
axis pointing to the projectile, ignoring the Coriolis force.
Nevertheless, it was noticed [5] that the CS approxima-
tion does not involve, in general, the conservation of the
projection of the angular momentum along the z axis of
the rotating kame. This is only the case when I is inde-
pendent of the boundary conditions, for example, when
L = J, and in this case it leads to the paradoxical result
that, even in the limit of having only spin-independent
forces, the spin of the molecule will precede conserving its
projection along the z axis of the rotating frame. Com-
parative studies of the CS approximation taking diferent

choices of L were made [6] and the best option was found
to be L = (L, + Ly)/2. The I = J choice was found
to fail drastically for spin-dependent observables. The
CS approximation, together with the I = J choice, was
used, under a different name (rotating frame approxi-
mation), in nuclear physics to study heavy ion collisions
[7—12]. Nevertheless, when applied to polarized nuclei, it
was found [13,14] that one had to take I = (L; + Lf)/2
in order to reproduce the experimental results, and that
this implied that the projection of the spin of the nu-
cleus along the bisectrix direction of the trajectory was
conserved. Thus the isocentrifugal approximation, con-
sisting of substituting h L2/2pr by h L(L+ 1)/2prz,
where I = (I, + Lf)/2, coincides with the CS approxi-
mation plus the I = (L; + Ly)/2 choice. The adequacy
of the CS approximation with the choice L = (L; +Ly)/2
was recently discussed again by Alhassid, I iu, and Shao
[15].

Recently, the interest in approximate treatments of the
scattering of electrons by molecules has been revived be-
cause of the development of algebraic treatments of the
structure of molecules. It was shown by Iachello [16]
that it is possible to describe the rotational and the vi-
brational states of molecules by a simple algebraic model.
This model, called the vibron model, was shown to pro-
vide a good description of the spectra of simple molecules
[17,18]. Bijker, Amado, and Sparrow [19] had proposed
an eikonal approach to the study of electron-molecule
scattering wherein the vibron model was used for the
description of the structure of the molecule. The eikonal
approach is suitable for high energy collisions. To include
short range correlations in the algebraic eikonal approach
some hybrid approaches have been proposed [20, 21]. In
all the cases, however, a numerical evaluation of the scat-
tering amplitudes is necessary.

In this work, we describe the scattering of electrons by
molecules due to the dipole potential and derive fully an-
alytical expressions for the scattering amplitudes in the
sudden and isocentrifugal approximation and obtain a
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closed expression for the quasielastic cross section. In
Sec. II we discuss the evaluation of the matrix elements
of the dipole operator in terms of the vibron model. Both
the O(4) and the U(3) limits are discussed. The eigen-
values of the dipole operator are obtained in the above
two limits. In Sec. III we briefly show how the cou-
pled system can be decoupled and study the behavior
of the scattering by a family of dipoles. Expressions for
the scattering amplitudes and quasielastic cross sections
are derived in this section. In Sec. IV the results of a
model calculation on the probabilities of excitation and
quasielastic cross sections are presented. In Sec. V we
compare our results with experimental data and exist-
ing calculations using other models. The summary and
conclusions are presented in Sec. VI.

II. MATH. IX, ELEMENTS
OF THE DIPOLE OPERATOR

Following Ref. [19], we start with the Hamiltonian of
the electron-molecule system

H = K+H )+ V(r, (),
where E is the kinetic energy operator for the electron-
molecule relative motion, H ~ is the molecular Hamilto-
nian, and V (r, () is the electron-molecule coupling inter-
action. We shall take V(r, () as a pure dipole operator

A. The O(4) lixnit

The O(4) limit of the vibron model corresponds to the
following decomposition of the U(4) group:

U(4) 0 O(4) 0 O(3) D O(2).

In this case, the states are characterized by the labels rep-
resenting the irreducible representations (irreps) of the
different groups in the chain: ~K ~ I M), where K is the
total number of bosons; u is the label representing the
symmetric irreducible representations of O(4), which can
take the values N, %—2, ..., 0 or 1 depending on whether
N is even or odd, respectively; I is the angular momen-
tum taking the values 0,1, ..., u; and M is the projection
of I on a selected axis with the usual reduction rules.
Our aim is to diagonalize the dipole operator with this
basis or equivalently to And an alternative basis in which
the dipole operator is diagonal. For the sake of clarity
we will add to the quantum numbers characterizing the
states the label (04) in the case of the O(4) states and
(D) in the case of the base in which the dipole opera-
tor is diagonal. In the O(4) case, this alternative basis
is very simple to find by using the isomorphism between
the O(4) and the SU(2) 6) SU(2) groups [23]. From the
O(4) generators we can alternatively construct two SU(2)
generators

V(r", () = r. Y((), — (2)

where T(() is the dipole operator that acts on the inter-
nal states of the molecule. The matrix elements of the
dipole operator T(() will be relevant for the evaluation of
the coupling terms in the coupled-channel equations. We
discuss below these matrix elements in the context of the
vibron model [16]. In this model, the rotation-vibration
spectra of diatomic molecules are generated by the dy-
namic U(4) algebra. This is realized in terms of a scalar
boson O. t and a vector boson art (p = —1,0, 1). For the
dipole operator we choose the simple form

r(')g) = d, D(') = d, (~t~+~ta)('), (3)

although more involved expressions of the dipole operator
[22] can be easily accommodated. One of the attractive
features of the vibron model is that its algebraic structure
allows one to And two cases in which complete algebraic
solutions can be evaluated. These two cases correspond
to two limit cases of molecular structure: (i) an approxi-
mation to the three-dimensional Morse oscillator [called
the O(4) limit] and (ii) the case of nonrigid molecules
[called the U(3) limit].

In this section we look for the eigenvalues of the dipole
operator in the two limits of the vibron model. We
are interested in the evaluation of the eigenstates and
eigenvalues of the component Do of the dipole opera-
tor. More specifically, we want to calculate the overlap
of these states with the ground state.

Do~ ~ (D) N —m~ m, = (mp —m, ) (D) IV —mp m~).P P 2

(6)

~~t is worth noting that the eigenvalues of the dipole op-
erator are integer numbers since they are the di8'erence
of two integer or half-integer numbers.

The transformation coefficients f'rom the O(4) basis to
the SU(2) SU(2) basis are just Clebsch-Gordan coeffi-
cients

i(04) N (u I M)

mz, mt
(—m, "—m, S~) (a) ~ —, m, m) .

From this it is clear that the overlap between any O(4)
state in the ground state band (u = 2V) with M = 0 and
a dipole state is given by

t(1) 1 (I(1) D(1))
P, 2 P P

Thus the states can be labeled as ~(D) 1V (pm~) (tmq)).
For the symmetric states in which we are interested
p = t =

2 and we can write the states in this basis
as

~
(D) W u/2 m~ mq). In this basis, the dipole operator

is already diagonal,
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(04) N N I 0 (D) N —m~ mq

N N=b~, ~, —mp —mg IO . 8

It is shown in Appendix A that this expression leads
to the probability amplitude given in Ref. [19] provided
the transition operator defined there is used.

The ground state in the O(4) limit is characterized by
u = N, I = 0, and M = 0. The dipole operator is a
generator of the O(4) group, thus it is diagonal in u and
only states with cu = N will be coupled to the ground
state via the dipole operator. The relevant eigenstates
that overlap with the ground state are those for which
u = N and m~+ mq ——0. Then, de6ning

N d d
ld) = (D) N —— ——

2 2 2

we have

Do" ld) = d ld) (1o)

l(0+le)l'= l((o4) N N o o
2NdNd1

where d takes values &om —N to N in steps of 2 and the
probability of ending the ground state on the eigenchan-
nel d is

As in the previous case, the states are characterized by
the labels representing the irreducible representations of
the diferent groups in the chain lN N I M), where N
is the total number of bosons; N is the number of vr

bosons, which can take the values N, N —1, ..., 0; I is the
angular momentum, taking the values N, N —2, ..., 0 or
1 depending on whether N is even or odd, respectively;
and M is the projection of I on a selected axis with the
usual reduction rules.

Again we look for a basis in which the dipole operator
is diagonal and for its relation with this U(3) basis. For
the sake of clarity, we will include as before a label (U3)
in the U(3) states and a label (D) in the dipole states. As
we show below we will need to introduce an intermediate
basis, which we label (I).

We rede6ne the building bosons as

0, = (o. +sr, ), 0 = (0. —7ro), ~„7r „
2 2

where At (Qt ) stands for the symmetric (antisymmetric)
combination of the 0 components of 0 and vr bosons. The
states of the molecule can be labeled by using a totally
decoupled basis l(D) N, N Ni N i), where N, is the
number of 0, bosons in the state, N is the number of
0 bosons, and Nq, N ~ is the number of sr~, m ~ bosons,
respectively (N = N, + N +Ni+ N i). The normalized
form of one such state is

I(D) N. N- Ni N-. )

= [N, !N!Ni!N i!]

For a comparison of results for molecules with diBerent
numbers of bosons it is convenient to rescale the eigenval-
ues of the dipole operator by the matrix element of the
dipole moment between the ground state and the erst ex-
cited 1 state. The first dipole state in the O(4) limit is
given by ~ = N, I = 1, and M = 0. The reduced matrix
element, defined as in Ref. [24], of the dipole operator
between the ground state (0+) and the first (1 ) dipole
state is

(1 IIDllo+) = ((04) N N 1 olDo" l(o4) N N 0 0)

N(N + 2)

So we define

(16)

where lo) is the vacuum for bosons. In this decoupled
basis, the dipole operator is diagonal [as we have already
specified with the label (D)] since it can be rewritten

Its eigenvalues are given by d = N, —N . The overlap of
the totally decoupled basis with the U(3) basis is done in
two steps. First we introduce an intermediate basis, as
mentioned before, labeled by l(I) N N~ Ni N i), where
N„ is the total number of vr bosons. The explicit wave
function of such a state is written as

l(I) N N Ni N i)

Dllo+

with d = —N, —N+ 2, ..., ¹

B. The U{3) limit

The U(3) limit of the vibron model corresponds to the
following decomposition of the U(4) group:

U(4) z U(3) z O(3) & O(2).

= [(N —N~)! (N~ —Ni —N i)! Ni! N i!]

t)Nq (
t )N ~

( t)N 1V~( t)N~ Nq N— — —

(18)

The overlap between the totally decoupled basis and this
intermediate one is done readily by using their explicit
expressions (16) and (18) and it is nothing but a d func-
tion
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((I) N N Ni N il(D) N, N Ni N i )

= d', (—), (10)

with

2I+1 ' [(I+M)!]-[(I—M)!]-
IM !

with
—Ng —N i

2
—Ng —N g

2
8)

+Ng+N g

2
and

(I) ('I —k &

I—@+MM

I—/c+M t I t I—Ie —M t I —k —M
x2 ~ =(pro) (vr, ) ~ (0r, )

(21)

For the remaining overlap between the intermediate basis
l(I) N N~ Ni N i) and the U(3) basis, an explicit ex-
pression of the latter in terms of the 0. and the vr bosons
is needed [25]:

4m

(N + I+ 1)!!(N —I)!!(N—N )!
(22)

I(U3) N N I M)
With these expressions (20)—(22) and that corresponding
to the intermediate basis (18), the overlap can be calcu-
lated:

((U3) N N Ni N il(I) N N I M) = /2I+ 1

I—)Mi

(N —Ni —N i)!(Ni)!(N i)!
(N + I+ 1)!!(N —I)!!

(I + M)l 1 m~+w

(I —M)! M!
——I

rv, +rv, I+0 ( I .-k ) ( N —I
( 1) ' 2"

I I I M I Ii —w,—+sr, I+I—
A,' odd or even

N. , —, —N (0)—(2I+ 1) N !
(N + I+ 1)!!(N —I)!!

(24)

In Appendix 8 it is shown that this expression leads to
the probability amplitude given in Ref. [19] provided the
transition operator defined there is used. Then, defining
the dipole states coupled to the ground state as

Equations (19) and (23) give us the transformation from
the U(3) basis to the totally decoupled basis, in which
the dipole operator is diagonal.

The ground state in the U(3) limit corresponds to N o
bosons and zero m bosons. The eigenstates of the dipole
operator that could be coupled to the ground state are
those for which N~ ——N i ——0 and N, + N =

¹ In
this case, the expressions of the overlaps (19) and (23)
are simplified to

((U3) N N I ol(D) N. N 0 0)

Do 'I~) = ~ ld) (26)

1 /N)
2

For a comparison of results for molecules with different
numbers of bosons it is convenient to rescale the eigenval-
ues of the dipole operator by the matrix element of the
dipole moment between the ground state and the first
excited 1 state as we did before. The first dipole state
in the U(3) liinit is given by N = 1, I = 1, and M = 0.
The reduced matrix element of the dipole operator, de-
fined as in Ref. [24], between the ground state 0+ and
the first dipole state 1 is

where d takes values from —N to N in steps of 2 and the
probability of finding the ground state on the eigenchan-
nel d is

I&0+Id) I' = l((U3) N o o old) I'

id) = 0, =T,1V =, 0, 0),
N+8 N —d

2
' 2

(25)
(1-IIDllo+) = ((U3) N 1 1 olDo" l(U3) N 0 0 o) = ~~

(2S)

so we define
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(1 IIDllo+) v&
with d = —%, —N+ 2, ..., N.

(29)

III. COUPLED-CHANNEL EQUATIONS
FOR ELECTRON-MOLECULE SCATTERING

L(L+ 1)

The coupled system of equations for a given total an-
gular momentum J (J = L + I), where L is the orbital
angular momentum of the relative motion and I the spin
of the molecular state, is given by

ative to positive values. In particular, if we write the
eigenvalues of the dipole operator as the product of the
reduced matrix element of the dipole operator between
the ground state (0+) and the lowest dipole state {1 ) of
the molecule, (1 llTllO+), times an adimensional factor
Ep of the order of 1, the eigenchannel equations are

+O' M (r)

If we de6ne

with

) (AIL JlT Tl A L I J) Ug, r, L, (r), (30)
A', L ',I'

then the eigenchannel scattering amplitudes can be writ-
ten, using the results of Appendix C, for e' )& 1, as

1 7t
Ag(0) = exp +a {e'~Eg~ ~ ——)2 k g2 sin 0 Os~2 2

2p
k~r =

~~ (@—ur) (31)

while for e' (~ 1 one has

(35)

Here A designates all additional quantum numbers
needed to specify the molecular eigenstate and cpp is
the excitation energy. The coupled channels equations
can be partially decoupled if one assumes that the phase
shifts in the angular momentum of interest do not vary
rapidly with L. One thus introduces the isocentrifugal
approximation [13, 14], substituting the centrifugal po-
tential of the channels coupled together by the average
of the potentials in the incident and outgoing channels.
Then, writing the channel wavefunctions in the tidal spin
basis, which is characterized by the projection K of the
spin along the radial coordinate, one gets

f d2 L(L+ 1)

) (AIKlTMlA'I'K) u„r rc(7), (32)
h r2

The isocentrifugal approximation may be very inaccurate
for long range potentials. Nevertheless, it has been shown
[15, 26] that this effect can be taken into account by a
suitable redefinition of the form factor. For the case that
we are interested in, we just have to multiply the form
factor by 2/vr. It should also be noted that, if the ground
state of the molecule has I = 0, then only the values of
the tidal spin K = 0 will contribute to the scattering.

%e assume that at least the qualitative behavior of
scattering can be reproduced by neglecting the excita-
tion energies op~. Thus we set k&&

——k . Then, the
only aspect of the molecular structure that aKects the
scattering are the dipole matrix elements (AIOlTipl A'I'0).
If we 6nd a basis of the molecular states in which the
dipole matrix elements are diagonal, then the coupled
equations get replaced by a family of eigenchannel [7—10]
equations describing the scattering of the electron by a
family of dipoles with dipole moments varying from neg-

2eP&(1 IITIIO+)

h A;0
(36)

where (dlAI) are the coefficients that diagonalize the
dipole operator. Note that, if e' (( 1, the amplitudes
Ay{8) are proportional to the eigenvalues of the dipole
operator. That implies that the scattering will populate
only the first dipole state, which can be obtained by the
dipole operator acting on the ground state. The cross
section will be given by

dO'p+ ~i-
dO 16 A:2 04 (3S)

The difFerential cross section for the excitation of a
state AI of the molecule, for e' )) 1, is oscillatory
with characteristic periods depending upon the molecu-
lar structure and the number of molecular states strongly
coupled. The quasielastic cross section, defined as the
sum of the elastic and inelastic cross sections, can be ob-
tained using the completeness of the final states, to give

CLO g~
QQ 8 /g2 g2 sin g

where

F~~ = ) II"~l I(0+Id) I' .

The amplitude for the transition from the ground state
to a final state (AIM) of the molecule can be expressed
as [13,14]

App~ggM(0) = dMp l l ) (0+id) Ag(0)(dlAI),
&~+ 0)

)
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Unlike the inelastic cross sections to individual states,
the quasielastic cross sections are not oscillatory. All the
dependence on the structure of the molecule appears in
the factor Fg~. The angular and the energy dependence

is characteristic of the scattering by a —,potential. The
probability of excitation of a given molecular state AI,
defined as the ratio of the cross section to that state to
the quasielastic cross section, is given by

&ir = ) « l&)(~I&~)I &~I' ~xr +~ (~' I~~I' ——
)Eg~ 2

(41)

They oscillate as a function of the scattering angle
through the parameter e'. In the simple case, where we
consider only the coupling of the lowest 1 state to the
ground. state, one obtains that the probability of staying
in the ground state is sin (e'), while the probability of
exciting to the 1 state is cos (e'). In the general case
where more states are coupled, one would expect a more
complicated dependence on e'. Nevertheless, when a very
large number of (degenerate) molecular states is included
in the calculation (geometrical limit) one would expect
to see a general pattern of these probabilities depending
upon the molecular structure.

If one considers an average over a suitable range of
values of ~', the oscillatory terms in the excitation prob-
abilities cancel and one has the following "incoherent"
excitation probabilities:

) (o+ld)'(dl»)'I F
I

QR

Note that they do not depend on E'.

IV. RESULTS AND DISCUSSION

The expression for the quasielastic di8'erential cross
section is given in Eq. (39). This expression can be
rewritten in terms of the scattering energy as

e&1 IITllo+)
dA E 282 sin j9

The first factor on the right-hand side contains the depen-
d.ence on the scattering energy and on the dipole coupling
strength between the ground state and the first dipole
state. The second factor describes the dependence on
the scattering angle. Eq~ contains the dynamical efFects
d.ue to coupling to states beyond the first dipole state.
Equation (43) is not valid for very small angles. One
should then use Eq. (38), &om which one gets that all
the quasielastic cross sections go to the first dipole state

&~gz ~~o+~i- e'(1 IITIlo+)'»
dO dO EA 82

(44)

Note that Eq. (44) corresponds to the result of the
Born approximation, substituting 0 by 2 sin 2. Compar-
ing Eqs. (43) and (44), both show that the cross sections
are inversely proportional to the scattering energy. For
Eg@ ——1, both expressions coincide at a critical angle 0,
given by

2 sin 0
c e(1 ll&IIO+)2

(45)

where 0 = 0„and e' = v2. For a typical value of
(1 IITIIO+) = lek, we get 0, = 7.6 . The parameter
e' can be taken as a characterization of the validity of
the Born approximation for scattering governed by the
dipole force.

Equation (43) and all the expressions obtained in Sec.
III for e' )) 1 will be valid for 0 & 0 . Thus the cross sec-
tions will be proportional to the dipole matrix element
and the angular dependence will be given by 0 2/sin0.
Also, all the states of the molecule would be populated,
according to Eq. (41). Equation (44) and all the expres-
sions obtained for e' && 1 will apply for 0 & 0 . Then,
the cross section will be proportional to the square of the
dipole matrix element and the angular dependence will
be given by 8 . Besides, only the first dipole state will
be populated. In the following, we will discuss the case
in which 0 & 0.

When the number of states included in the calcula-
tion is large, the results should converge to the geomet-
ric limit. In the O(4) case, the geometric limit corre-
sponds to having a molecule with a static intrinsic dipole
moment. The eigenstates of the dipole operator in the
geometric limit correspond to states with a fix orienta-
tion of the intrinsic dipole moment with respect to the
z axis. The ground state 0+ corresponds to a superposi-
tion of all the orientations weighted with Yjo(0 P) wllile
the dipole state 1 corresponds to a superposition with
Yjo(0, $). Fg~ can be obtained integrating over all the
orientations, resulting in ~3/2. In the U(3) case, the
geometric limit corresponds to having a molecule with
a dynamic dipole moment. The ground. state 0+ corre-
sponds to a superposition of dipole moments weigthed
by the ground. state of a harmonic oscillator, while the
1 state corresponds to the first excited state. Eg@ is
obtained by integrating over all the values of the dipole
moment, resulting in g2/vr.

In Figs. 1(a) and 1(b) we plot the values of E~~ in the
O(4) and the U(3) limits, respectively, versus the num-
ber of bosons included. in the calculation. The incoherent
contribution of individual states to the quasielastic cross
sections, as defined in Eq. (42), is indicated in the his-
tograms. Note that, as more bosons are included, the
contribution of the individual states is reduced, but the
Eg~ converge to the geometric limits. The convergence
is oscillatory, but faster in the O(4) case than in the U(3)
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1.2
O(4)

0.8- ~
~

R

case. This is due to the fact that the dipole matrix ele-
ments between excited states are larger in the U(3) case
than in the O(4) case. We conclude that the dynamical
efFects of the structure of the molecule on the quasielas-
tic cross sections are not very large. So, the quasielastic
cross section depends mostly on the dipole matrix ele-
ment between the ground and the first excited state.

The excitation probability of the diferent states is
given by Eq. (41). It depends on the structure of the
molecule, as well as on the scattering conditions through

We show the excitation probability versus e' in the
O(4) limit, for 5 bosons [Fig. 2(a)] and 15 bosons [Fig.
3(a)], to molecular states characterized by the angular
momentum I. Note that only states with u = N/2 are
excited. We also show the excitation probability in the
U(3) limit, for 5 bosons [Fig. 2(b)] and 15 bosons [Fig.
3(b)], to states characterized by the number of m bosons
N . Note that only those states with Nq ——N q

——0 are
populated. The probability of exciting states with given
angular momentum I can be simply obtained using the
transformation of Eq. (24). All these figures show that,
for small values of e', the dominant probability is for the
first dipole state. This is consistent with the fact that for
sinall scattering angles, only the first dipole state would
be populated. The calculations with 5 bosons [Figs. 2(a)
and 2(b)] show an oscillating pattern, where the con-
tribution of highly excited states [I=5 in the O(4) case
and 1V =5 in the U(3) case] is dominant for some values
of e'. This feature, however, seems to be an artifact of
the truncation because it does not appear in the calcu-
lations with 15 bosons [Figs. 3(a) and 3(b)]. Instead, a
fairly regular pattern appears for which each state shows
a peak for a certain value of e' and for larger values oscil-

0.4-

1 0

0.2—

2 3 4 5 6 7 8 910

1.2
0.4

0.2

0.0
0

1.0

0.4-

0.2—
0.6

0.4

2 3 4 5 6 7 8 910

FIG. 1. Quasielastic factor in (a) the O(4) and (b) the
U(3) limit versus the total number of bosons N. Also shown
are the incoherent contributions of the states with diferent
values of I(O(4)) and N (U(3)). The full rectangles corre-
spond to even values of I or N, while the open ones are odd
values. They are displayed in ascending order, from I, N =0
to ¹

0.0
0

FIG. 2. Excitation probabilities in a calculation with N =
5 bosons versus e'. The probability of exciting the state (a)
with a given angular momentum I for the O(4) limit and (b)
with a given number of m bosons (N ) for the U(3) limit.
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lates around its incoherent contribution. Thus, for each
state, one can determine the value of e' for which the
excitation is optimal. This is similar to the situation in
multiple Coulomb excitation of nuclei [29], where the ex-
citation probability of rotational and vibrational states,
plotted versus a suitable strength parameter, which de-
pends on the energy and on the scattering angle, shows
the same oscillatory behavior. Nevertheless, it should be
stressed that in our case, e' is independent of the scat-
tering energy, which appears just as a scale factor for the
quasielastic cross sections, while the excitation probabil-
ities are independent on it.

Figures 2(a) and 2(b) can be compared to Figs. 1 and
2 of [19]. There, the magnitudes plotted correspond to
the excitation probabilities versus a parameter e that is
proportional to our e', if a classical correspondence be-
tween the impact parameter 6 and the scattering angle is
made. A similar oscillatory behavior is obtained in the
excitation probabilities, but in Ref. [19] it is shifted in
such a way that, for c = 0, the maximum probability
corresponds to the ground state, while here, for e' = 0,
the maximum probability corresponds to the first dipole
state. It should be noticed that, in a scattering process
that is governed by a central potential, there is a corre-
spondence between the scattering angle and the impact

parameter b. However, in our case, there is no such cen-
tral potential and there are contributions for the scatter-
ing amplitudes at each scattering angle from many difer-
ent impact parameters that interfere in a complex way.
Thus, while the excitation probability for a given scat-
tering angle is directly comparable to experimental data,
the excitation probability for a given impact parameter
is not.

In Figs. 4(a) and 4(b) we show the probability of re-
maining in the ground state for di8erent values of e', cal-
culated using different number of bosons, in the O(4) and
the U(3) limits, respectively. The results converge fairly
rapidly in the O(4) case and more slowly in the U(3)
case. This is consistent with the situation in quasielastic
scattering and it is caused by the larger value of the U(3)
matrix elements for excited states as compared to those
of O(4). Also, it can be seen that the convergence is
faster for small values of e', for which the excited states
play a minor role. The calculations with an odd num-
ber of bosons converge more rapidly than those with an
even number of bosons. This is because in the diago-
nalization of the dipole operator in a subspace of states
corresponding to even number of bosons, an eigenstate
corresponding to zero dipole moment appears that does
not contribute to the scattering. Figures 4(a) and 4(b)
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0.6
0.4
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0.0

0.0
0

1.0

1.0—
0.8

0.8
0.6

0.4

0.2

0.0

0.0
0

FIG. 3. Same as Fig. 2, but for W =15 bosons.

FIG. 4. Probability of remaining in the ground state ver-
sus e', for diff'erent numbers of bosons (a) in the O(4) limit
and (b) in the U(3) limit.
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can be useful to find out the number of states that should
be included in a full coupled channels calculation to get
a certain accuracy in the result.

We would like to stress here the difference between our
treatment, which is fully algebraic, giving at the end sim-
ple analytic formulas for the different cross sections, and
previous algebraic treatments in which at some step in
the evaluation of the cross sections numerical methods
should be used. In the pioneering work of Ref. [19] the
transition matrix elements are evaluated algebraically,
but then for the evaluation of the scattering amplitude
using the eikonal approximation a numerical evaluation
of a one-dimensional integral over the impact parameter
is reqxured. In Ref. [28] the same formalism is used,
but it is generalized to include in first order more real-
istic interactions, including terms nonlinear in the gen-
erators. Again, at the end a numerical evaluation of in-
tegrals containing Bessel functions is needed before get-
ting the cross sections of the different processes. In Ref.
[15], the centrifugal sudden approximation is used, but
to calculate the scattering amplitude numerical methods
are used (although for large radii, the analytic proper-
ties of. the Bessel functions are used). In Refs. [20, 21]
the short range correlations are included by doing a hy-
brid approach. The coupled-channel equations are solved
for the low partial waves and then a match is done with
the algebraic eikonal approach [20] or rotating frame ap-
proach [21] used to calculate the high partial waves.

In spite of the simplicity of the approach presented
here, all the features observed in more complex ap-
proaches are present. For example, the zeros obtained
in the elastic and the quasielastic cross sections in Refs.
[19,28] are well reproduced with the present formalism.

1000.0 = ! ! ! !
)

! ! ! !
[

! I

100.0

a
10.0

b
1.0

Born
This work

e—LiF

for example, Refs. [27,28]). The calculations of this work
were obtained by using the rotational [O(4)] limit and
the limit of large number of states. Thus I'g~ = ~3/2
and the reduced matrix element (1 [[T[[0+) is just 1/~3
times the static dipole moment d. For I iF, d = 6.58 D,
and for KI, d = 10.82 D. The agreement in all the cases
is fairly good. We also show in these figures the results
of a plane wave Born approximation.

In Figs. 5(b), 6(b), and 7(b) we present our calcula-
tion together with existing calculations using other mod-
els. The calculations presented in the figures are the fol-
lowing: SE, coupled-channel calculations with a realistic
interaction and a local exchange potential derived assum-
ing that the electrons in the molecule form a II'ree Fermi
gas [1]; DCO, coupled-channel calculations with dipole
forces characterized by a form factor ~(l —exp[ —(—')s])
(the cutoff radius ro is taken as 0.5ao for LiF and 0.9ao
or 1.35ao for KI [1]);BA, algebraic-eikonal approach, in-

V. COMPARISON WITH OTHER
CALCULATIONS AND EXPERIMENTAL DATA

0.1
0 50 100 150

8 (degrees)

In order to illustrate the quality of the results obtained
with the formulation presented in this paper, we present
in this section some comparisons with data and other
more traditional calculations for polar molecules. One
should be aware that in this paper we have introduced a
formalism leading to very simple analytic formulas, but
in it we have included only the dipole force with a 1/r2
form factor. No exchange forces, other multipoles, or de-
viations from the 1/r2 dipole form factor are considered,
although they are known to be important for a detailed
description of the data. Thus this model, in its present
formulation, rather than be considered as a competitor to
more sophisticated coupled-channel calculations, should
be taken as a simple model that will hopefully help to
understand the results of those complex calculations.

In Figs. 5—7 we show the differential quasielastic cross
sections for e-LiF at 5.4 eV (Fig. 5) and 20.0 eV (Fig.
6) and for e-KI at 6.74 eV (Fig. 7). The experimental
data have been taken &om Ref. [30] for LiF and from
Ref. [31] for KI. The other theoretical results have been
taken from Refs. [1,27].

In Figs. 5(a), 6(a), and 7(a) the experimental data are
normalized to our results at 40, as it is usually done (see,

1000— ! ! !
i

! ! ! 1

100

C)
a5

SK
DCO
BA

This work

! ! ! ! I ! ! ! ! I ! ! ! ! I ! !

50 100 150
8 (degrees)

FIG. 5. Quasielastic difFerential cross sections for electron
scattering ofF I iF at 5.44 ev. The experimental data are taken
from Ref. [30]. The experimental data are normalized (a) to
our results at 40' and (b) to the coupled channel results by
Collins and Norcross [1]. The meaning of the difFerent lines
is explained in the text.
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eluding coupling to rotational and vibrational states [27].
In all these figures [5(b), 6(b), and 7(b)] we have kept
the normalization of the data fi d t ha a xe o t e values given
by Collins and Norcross [1]. Th fi he gures s ow that the
e ect of the cutofF in the dipol t t 1e po en ia gives rise to an
increase at backward angles wh 1 th h, w i e e exchange eKects

mentioned before, are not considered in our calculations.
e deviations of our results &om th 1 d he coup e channels

calculations at small angles (ab t 40')ou
~ are possibly due

to the inaccurac of they e isocentrifugal approximation as
well as to the eva u

)

the method of
uation of the scattering amplitud b

e od of steepest descent [see Eq. (C10)]. It should
be noted that the value of e' at 0 = 40
e-LiF an

a = is just 2.89 for
no muc arger thane- i and 4.75 for e-KI, which are not h 1 h

one. espite the limitations of the model, we should
stress that we have obtained an t 1n ex reme y simple expres-
sion for the quasielastic scattering of electrons b olar

q. ~
&~& that is in qualitative agreement with

other much m
de

ore involved calculations and d' tpre ic s the
n e energy jproportionalependence of the scattering on th

o &), on the static dipole moment (proportional to d )

rather than to d, as would be predicted by the Born ap-

as in e orn approximation, for small 0). But even
more important than that is the fact that the dynamical
eÃects due to the structure of th 1e o e mo ecule on the scat-
ering are described by a single factor E ~, which can

easily calculated.

VI. SUMMARY AND CONCLUSIONS

We have shown that the electron-molecule interac-
tion can be diagonalized in b f sa asis o molecular states
that contains the projection of th d' 1o e ipo e moment of the
molecule along the relative coordinate of the electron as
a conserved quantum number. I ther. n e vi ron model, we
have found the transformation of the bases in the 0 4

We find that the eigenvalues of th d 1e ipo e operator are

in the di o
proportional to integer numbers. Th brs. e pro a"i ity of find-

in the 0
ing e ipo e eigenstates in the ground st tn s a e is constant

U(3
in e 4 limit and has a binomial d t b t

imit.
ia is ri ution in the
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FIG. 6. Same as Fi . 5
at 2O. O eV.

g. , ut for electron scattering o8'I iF FIG. 7. Same as Fi . 5 but f
at 6.74 eV. T

g. , u or electron scattering ofF KI
6.7 . The data are taken from Ref. [31].
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Ignoring the excitation energies of the states included
in the calculation and the difference of the centrifugal
potentials, a diagonalization of the coupled-channel sys-
tem can be performed. The scattering amplitudes of the
decoupled channels can be calculated analytically in the
semiclassical limit. Recombining these amplitudes, the
transition amplitudes to physical states are obtained.
The elastic and the inelastic cross sections depend in-
versely on the scattering energy.

For small scattering angles, only the erst dipole state is
populated and the cross sections are proportional to the
square of the dipole matrix element and inversely propor-
tional to the square of the scattering angle. For scatter-
ing angles not too small, the quasielastic cross sections
depend linearly on the dipole matrix element &om the
ground state to the first 1 state and the angular depen-
dence is 8 2(sin8) ~. The dependence on the structure
of the molecule can be factorized out. Its effect on the
quasielastic cross section is not too important (= 20%%up)

and is more acute in the U(3) limit than in the O(4)
limit. As more states are included in the calculation, the
results converge to the geometric limits of a static dipole
moment for O(4) and a dynamic dipole moment with a
harmonic oscillator distribution for U(3).

The excitation probabilities for the different states are
very sensitive to the structure of the molecule. They
depend on the scattering angle, but not on the scattering
energy. Our calculations show that, as the scattering
angle increases, the probabilities of populating different

]

excited states show characteristic peaks in a way that
resembles multiple Coulomb excitation of nuclei.

The results obtained for the quasielastic differential
cross sections for e-LiF at 5.4 and 20.0 eV and e-KI at
6.74 eV are in reasonable agreement with other calcu-
lations and experimental data, considering that we only
use the dipole interaction with a 1/r form factor. Work
is in progress to avoid the use of the isocentrifugal ap-
proximation.
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APPENDIX A

In this appendix we show that our treatment leads, as
a particular case, to the results given in Ref. [19] for the
O(4) limit of the vibron model. In Ref. [19]the transition

+(1)
operator used is written as T = e " & . By using Eq.
(8) we will diagonalize the same transition operator. For
that purpose we note that Do !is a generator of the O(4)
group and consequently does not change the u label. We
have to evaluate the matrix elements

Ug ~M o(e) =((04) N(u=NIM=O~e" ~(04) N(u=N I=0M=0) .

This is very simple, using the basis in which Do is diagonal. By using Eq. (8) we get

(A1)

(—1) ~ N N
Uw r M=o(e) = ) —m ——m IO eN+1

m= —~
2

(A2)

where the summation on m is extended to the eigenvalues of the dipole operator divided by 2. This can be evaluated
in closed form by using the relationship 'between the rotation matrices 17, (zo, z) and the Gegenbauer polynomials
C„"(vj)) [32],

) (—1)'+ (j m' j m!IM)D~, (xo, z)
mm'

where PrM (x) are the solid spherical harmonics and xo, x
are the coordinates of the vector x in a four-space (Euler-
Rodrigues parameters). Their relation with the usual
Euler angles is

P v+~
xp = cos —cos

2 2

For our case M = 0 implies m' = —m and choosing
the Euler-Rodrigues parameters apropriate to our prob-
lem, P = 0 and o. = p = e [thus we have in Eq. (A3)
Z)& (e, 0, e) = e 2", as required in Eq. (A2)], we 6nd

wrMo()=( ' ' ) I'
P —cI

xy = sin —sin
2 2

P —A
x2 ——sin —cos

2 2
P . w+~

x3 ——cos —sin
2 2

(A4)

1

(N —I)!(2I + 1). ',+,
(N + I+ 1)!(N+ 1)

which is the form obtained in Ref. [19].

(A5)
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APPENDIX. B

In this appendix we show that the treatment proposed
in this work leads, as a particular case, to the results
given in Ref. [19] for the U(3) limit of the vibron model.

I

In Ref. [19] the transition operator used is written as
D 1)T = e "Do . By using Eq. (24) we will diagonalize such

an operator. To verify the results presented in Ref. [19]
we should calculate the transition probability amplitude
from the ground state N = 0 to a given final state K,

U (e)=(NN IM=Oi e" ' iNN =OI=OM=O).

Again, the evaluation of this matrix element is very
simple if the basis in which Do is diagonal is used. By
using Eq. (24) we get

barrier, one gets

c pC
h (2I+1) (C4)

(2I+1) N!
N IM=o( ) (~ + I + 1)t!I~.&- -: -. =. -. (-, )

—2ie(N, —
2 ) d 2 (B2)

For the evaluation of this expression we use the exact
result [33]

The scattering amplitude is given by

Ac(0) = ) (2I + 1) (SI. —1) PI. (cos0) .1
' ' 'L=o

(c5)

PI.(cos0) = cos Ao —— (c6)

To obtain the semiclassical amplitude, we replace the
sum over L by an integral over A = L+ 2 and. use asymp-
totic forms for PI. (cos0). For Asin0 )) 1

Mp

(83)

while for AO g( 1

PI, (cos 0) = Jo(A0) .

By using this identity in Eq. (B2) we finally get

UN IM=o(e) = (co") ('s'ne)

(2I+ 1) %!
(N —N )! (N + I + 1)!!(N —I)!!'

(B4)

The validity of these expressions depend on the scatter-
ing angle and the angular momentum. In the evaluation
of the scattering amplitudes, an integration over all the
angular momenta is performed. However, only those an-
gular momenta close to the classical angular momentum

corresponding to the scattering angle, A'(0) — peer/h 0,
contribute. So if we define

which is precisely the expression given in Ref. [19].

APPENDIX C
e = A'(0)0 = vr p/C/0

(c8)

f d2 I(L + 1) „21 2PC

) h
(c1)

where p is the reduced mass of the colliding system. The
partial wave 8 matrix is simply obtained by introducing
the potential into the centrifugal term

We shall derive analytic expressions for the scattering
amplitudes due to a potential of the form C/r . The
Schrodinger equation for a given partial wave L is of the
form

Eq. (C6) will be valid for e )) 1, while Eq. (C7) will
be valid for e (( 1. It should also be noted that, for
I = A(0) —1/2, the phase shift bL is just e/2. Thus, in the
limit of e (( 1, the S matrix can be approximated by 1+
2ibL and the integration can be performed analytically
to give

0

In the limit of e && 1, one can evaluate the integral by
the method of steepest descent to get

where

(c2)
A, (0) = —

2 exp +i 2e ——,(C10)
1 7rp)CJ . vr

26 sino 2

( 1l ' 2pC r'

(c3)

When the potential is small compared to the centrifugal

where the plus and minus signs in the exponential apply
for the case of repulsive (C ) 0) and attractive (C ( 0)
potentials, respectively. It is worth noting here that, due
to the approximations made, the expression (C10) is not
valid for angles very close to vr.
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