
ASPECT-BASED SENTIMENT
ANALYSIS

###
A SCALABLE SYSTEM, A CONDITION MINER, AND AN

EVALUATION DATASET

FERNANDO O. GALLEGO

UNIVERSITY OF SEVILLA, SPAIN

DOCTORAL DISSERTATION
SUPERVISED BY DR. RAFAEL CORCHUELO

DECEMBER, 2018

First published in December 2018 by
The Distributed Group
ETSI Informática
Avda. de la Reina Mercedes, s/n
Sevilla, E-41012. SPAIN

Copyright c⃝ MMXVIII The Distributed Group
http://www.tdg-seville.info
contact@tdg-seville.info

Classification (ACM 1998): H.1.2 [User/Machine Systems] Human information
processing; H.3.4 [Systems and Software] Distributed systems; H.3.5 [On-line Infor-
mation Services] Web-based services; I.2.7 [Natural Language Processing] Text
analysis; I.5.1 [Models] Neural networks.

Support: Supported the Spanish R&D&I programme (grants TIN2013-40848-R and
TIN2016-75394-R) and Opileak.

http://www.tdg-seville.info
mailto:contact@tdg-seville.info

UniversityofSevilla,Spain

The committee in charge of evaluating the dissertation presented by Fer-
nando O. Gallego in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Software Engineering, hereby recommends

of this dissertation and awards the author the
grade .

Dr. Miguel Toro

Full Professor

University of Sevilla

Dr. Juan Pavón

Full Professor

Complutense Univ. of Madrid

Dr. Juan M. Corchado

Full Professor

University of Salamanca

Dr. José R. Villar

Associate Professor

University of Oviedo

Dr. Paula Montoto

Associate Professor

University of Coruña

To put record where necessary, we sign minutes in ,
.

Aspect-based sentiment analysis, by Adriana, aged twelve.

Mining conditions, by Lucía and Daniela, aged two and one, respectively.

Dedicated to my family, chiefly to my daughter Daniela, who gave me the encouragement to

go on improving myself as a professional.

Contents

Acknowledgements . vii

Abstract . ix

Resumen . xi

1 Introduction . 1
1.1 Research context . 2
1.2 Related work . 3
1.3 Research rationale . 5
1.4 Summary of contributions . 6
1.5 Collaborations . 6
1.6 Structure of this dissertation . 8

2 Torii: the aspect-based sentiment analysis system 9
2.1 Introduction . 10
2.2 The Data Storage component . 10
2.3 The Data Processors component . 15
2.4 The Client Application component . 23
2.5 Summary . 28

3 Kami: the proposals to mine conditions 29
3.1 Introduction . 30
3.2 A candidate-ranking proposal . 31

3.2.1 Main methods . 31
3.2.2 Generating candidates . 32
3.2.3 Computing matching scores . 34
3.2.4 Learning a regressor . 36

i

ii Contents

3.2.5 Removing overlaps . 38
3.3 An encoder-decoder proposal . 38

3.3.1 The encoder . 39
3.3.2 The decoder . 41

3.4 Experimental analysis . 43
3.4.1 Experimental setup . 43
3.4.2 Experimental results . 44
3.4.3 Statistical analysis . 44

3.5 Summary . 48

4 Norito: a dataset of conditions . 49
4.1 Introduction . 50
4.2 Description . 50
4.3 Connective distribution . 53
4.4 Condition similarity . 55
4.5 Summary . 57

5 Conclusions . 59

Bibliography . 61

Listoffigures

2.1 Domain model: actors and filters. 11
2.2 Domain model: reviews. 11
2.3 Domain model: terms and gazetteers. 12
2.4 Domain model: boosters. 12
2.5 Services: data storage. 13
2.6 Services: loading reviews. 16
2.7 Services: discovering aspects and summarising sentiment. 17
2.8 Communications: loading reviews. 18
2.9 Communications: discovering aspects and summarising sentiment. 19
2.10 Review loading and preprocessing: example (1/2). 20
2.11 Review loading and preprocessing: example (2/2). 21
2.12 Aspect discovering: example. 21
2.13 Sentiment analysis: example. 22
2.14 Administrator interface: aspect gazetteer. 24
2.15 Administrator interface: sentiment word gazetteer. 25
2.16 User interface: filters and sentiment chart. 26
2.17 User interface: table of aspects with sentiment. 27
2.18 User interface: table of sentences with sentiment. 27

3.1 Candidate ranking: main methods. 31
3.2 Candidate ranking: sample candidate generation. 33
3.3 Candidate ranking: sample matching scores. 34
3.4 Candidate ranking: neural network architectures. 36
3.5 Encoder-decoder: GRU-GRU model. 39
3.6 Encoder-decoder: GRU-BiGRU model. 40
3.7 Encoder-decoder: BiGRU-GRU model. 41
3.8 Encoder-decoder: BiGRU-BiGRU model. 42
3.9 Encoder-decoder: example. 43

iii

iv List of figures

4.1 Description: typical numbers of words. 52
4.2 Connective distribution: analysis of distribution. 54
4.3 Condition similarity: Isomap projections. 56
4.4 Condition similarity: TSVD projections. 57

Listof tables

3.1 Experimental analysis: results. 45
3.2 Statistical analysis: candidate-ranking alternatives. 46
3.3 Statistical analysis: encoder-decoder alternatives. 46
3.4 Statistical analysis: comparison to the baselines. 47

4.1 Description: summary of our dataset. 51
4.2 Connective distribution: connective samples. 53
4.3 Connective distribution: fitting the connective distribution. 55

v

vi List of tables

Acknowledgements

Auliq-Ice said: “the single greatest cause of happiness is gratitude”.
Whilst writing these lines I am feeling happy to get to the finish line of my
PhD and I wish to express my gratitude to the people who, to a greater or a
lesser extent, positively contributed to this stage of my life.

First of all, I would like to thank my parents for their entire life of sup-
port and love. I also thank Fátima, for not allowing me to fall down in my
worst moments. I really appreciate that she has always supported the de-
cisions that I have made regarding my career. And of course, I cannot
forget the biggest happiness in my life: my daughter, Daniela; her exis-
tence gave me a strong reason to never give up and to become a reference for
her in terms of human values, responsibility, and effort. I cannot neglect my
best friend, Fran, one of the best architects I know, who has specialised in ar-
chitectural visualisation (franciscotirado.es). He is a role model to me. I thank
him for our long talks regarding work, technology, business, video-games,
films, TV shows, and many other topics.

Special thanks go to the TDG family and the many colleagues from the
faculty, the department, and the conferences that I have attended for our
fruitful discussions and the time that we have spent together.

I also thank the team at Dinamic Area, S.L. for their happiness and joy. It
is always a pleasure to meet all of you. And special thanks go to my partners
Roberto and Pablo, who have always trusted me; I can feel our partnership
growing into a strong friendship.

Finally, I wish to thank my supervisor, Rafael Corchuelo. He has been the
best mentor that I could have had during my PhD, I have always supported
his point of view regarding teaching and researching and I will continue to
do that. He supported me in my decision not to continue my academic career
and return to industry. I am pretty sure that I will not regret that.

vii

viii Acknowledgements

Abstract

Aspect-based sentiment analysis systems are a kind of text-mining sys-
tems that specialise in summarising the sentiment that a collection of reviews
convey regarding some aspects of an item. There are many cases in which
users write their reviews using conditional sentences; in such cases, min-
ing the conditions so that they can be analysed is very important to improve
the interpretation of the corresponding sentiment summaries. Unfortunately,
current commercial systems or research systems neglect conditions; cur-
rent frameworks and toolkits do not provide any components to mine them;
furthermore, the proposals in the literature are insufficient because they
are based on hand-crafted patterns that fall short regarding recall or ma-
chine learning models that are tightly bound with a specific language and
require too much configuration.

In this dissertation, we introduce Torii, which is an aspect-based sentiment
analysis system whose most salient feature is that it can mine conditions; we
also introduce Kami, which provides two deep learning proposals to mine
conditions; and we also present Norito, which is the first publicly available
dataset of conditions. Our experimental results prove our proposals to mine
conditions are similar to the state of the art in terms of precision, but improve
recall enough to beat them in terms of F1 score. Finally, it is worth mentioning
that this dissertation would not have been possible without the collaboration
of Opileak, which backs up the industrial applicability of our work.

ix

x Abstract

Resumen

Los sistemas de análisis de sentimiento basados en aspectos son un ti-
po de sistemas de minería de texto que están especializados en resumir el
sentimiento que una colección de revisiones transmite respecto a diversos as-
pectos de un item. En muchas ocasiones, los usuarios escriben sus revisiones
utilizando condiciones; minarlas de manera que puedan ser analizadas es
muy importante para mejorar la interpretación de los correspondientes suma-
rios de sentimiento. Por desgracia, los sistemas comerciales y los sistemas
académicos existentes ignoran las condiciones; los frameworks y bibliote-
cas existentes no proporcionan ningún componente para minarlas; además,
las propuestas de la bibliografía son insuficientes ya que están basadas en
patrones diseñados manualmente que no ofrecen suficiente cobertura o mo-
delos de aprendizaje automático que están muy ligados a un idioma concreto
y requieren de demasiada configuración específica.

En esta tesis presentamos Torii, que es un sistema de análisis de sentimien-
to basado en aspectos cuya característica más destacada es que puede minar
condiciones; también presentamos Kami, que proporciona dos propuestas
de aprendizaje profundo para minar condiciones; finalmente presentamos
Norito, que es el primer dataset de condiciones disponible públicamen-
te. Nuestros resultados experimentales prueban que nuestras propuestas de
minería de condiciones son similares al estado del arte en términos de pre-
cisión, pero mejoran la cobertura suficientemente como para batirlos en
términos de F1. Finalmente, es digno de mención que esta tesis no habría si-
do posible sin la colaboración de Opileak, que garantiza la aplicabilidad
industrial de nuestro trabajo.

xi

xii Resumen

Chapter1

Introduction

T
his chapter introduces our PhD work. It is organised as follows: Sec-
tion §1.1 introduces the context of our research work; Section §1.2
presents an overview of the related work; Section §1.3 presents the
hypothesis that has motivated our work and states our thesis; Sec-

tion §1.4 summarises our main contributions; Section §1.5 sketches the
collaborations that we have conducted throughout the development of this
dissertation; finally, Section §1.6 describes the structure of this document.

1

2 Chapter 1. Introduction

1.1 Research context

The Web is growing at an ever increasing pace, which confirms that we
are in the age of data [4]. Furthermore, it has changed the lives of most
people forever. There are tones of new data and services that sprout out ev-
eryday [36, 60]. Consequently, many related research fields have grown
quickly in recent years, including business intelligence, big data, data science,
or text mining.

The goal of text mining is to process the text in a collection of docu-
ments in order to produce structured information that can be used to feed
business processes [12]. It has a set of features that clearly makes it differ-
ent from regular data analysis or data mining, for instance: text is sparse and
highly-dimensional and it can be analysed at different levels of representa-
tion [3]. Sentiment analysis is an important text-mining task [50, 52]. It
consists in computing whether the sentiment that a piece of text conveys
about an item or any of its aspects is positive, negative, or neutral. Senti-
ment analysis has found its way in the industry because it helps make
many business decisions [1, 28]. For instance, analysing a collection of re-
views like “it’s a pity that they don’t provide a virtual credit card when you register
at their offices” unveils a negative sentiment that may help a bank dis-
cover a new market need; analysing a collection of reviews like “my first
impression was that I didn’t feel too excited about the new box design” also un-
veils a negative sentiment that may help a sushi company forecast the impact
of a business decision; and analysing a collection of reviews like “the check-
out page is very responsive on desktop computers” unveils a positive sentiment
that may help a retailer understand their strengths.

Conditions are important in sentiment analysis [42]. Note that the senti-
ment about the credit cards and the new box design cannot be generally
flagged as negative due to the influence of conditions “when you register at their
offices” and “my first impression”; it is the fact that no virtual credit card is pro-
vided when someone registers at the a bank’s office what is considered
negative; similarly, the initial negative sentiment about the new box does not
necessarily entail that the customer feels unhappy with it now; analogously,
condition “on desktop computers” entails that the positive sentiment about the
check-out page is valid on desktop computers, not necessarily on tablets or
mobile phones. Mining conditions clearly enhances the results of text mining
tasks since it helps interpret the semantics of the original text better.

1.2. Related work 3

Unfortunately, mining conditions is not easy at all. Our experience proves
that traditional machine-learning approaches do not work well, includ-
ing Random Forests [9], Support Vector Machines [11], Conditional Random
Fields [33], Bayesian Networks [48], or even instance-based learning [2].
Currently, deep learning is gaining impetus thanks to its ability to learn
feature-based representations of the input data that facilitate learning classi-
fiers or regressors [34]. They typically build on non-linear transformations
that are organised in layers so that the outputs of a layer constitute the inputs
of the succeeding one. They have achieved relevant results in computer vi-
sion [56, 58] and natural language processing (NLP) [55, 62]. In the case of
NLP, it is necessary to transform the input text into vectors using so-called
word embedders [5, 39, 49].

Most deep learning approaches build on neural networks [51]. There are
two models that are very appropriate in NLP, namely: recurrent neural net-
works (RNN) and convolutional neural networks (CNN). An RNN is a neural
network in which the connections between its units form a directed graph
across a sequence [29], which makes them particularly well-suited to deal
with sequences of data in which each element depends on the previous ones.
Bi-directional recurrent neural networks (BiRNN) [53] are a particular class of
recurrent neural networks that can take both the past and the future elements
of a sequence into account. Unfortunately, both RNNs and BiRNNs suffer
from the so-called exploding and vanishing gradient problems [7, 47], which
can be addressed by controlling the data that is passed on to the next training
epoch by means of gated recurrent units (GRUs) [29] or bi-directional gated
recurrent units (BiGRUs) [44]. A CNN [15, 32] is a class of neural network
that is composed of convolution layers, which consist of computation units
whose purpose is to transform some regions of the input vectors by means of
non-linear functions, and pooling layers, which consists of filters that are in-
tended to subsample the output of the previous convolutions in an attempt to
reduce the number parameters that need to be computed in the network.

1.2 Related work
There are many commercial text-mining services, e.g., Lithium, Sprout So-

cial, Lexalytics, Brand Watch, Sysomos, or Opileak. They all can analyse
text from sources like blogs, e.g., Word Press or Blog Spot, social net-
works, e.g., Twitter or Facebook, customer review sites, e.g., Le Guide or
Kelkoo, or news sites, e.g., New York Times or NBC News, just to mention a
few. Their focus is on extracting topics, measuring the impact of some con-
tents, performing aspect-based sentiment analysis, or computing volumetric
insights. Unfortunately, none of them can mine conditions.

4 Chapter 1. Introduction

There are also several research text-mining systems, for instance: entity-
relation extractors [17, 40] mine entities and relations that are used to
populate a knowledge base; aspect-based sentiment analysis systems [45, 61]
analyse the sentiment that people express in social media regarding some as-
pects of an item; recommenders [13, 43] make suggestions building on a
user’s search history, his or her previous orders, or the messages that he or
she has exchanged with other people. Unfortunately, none of them can mine
conditions.

Regarding text-mining frameworks, UIMA [19] and GATE [14] range
amongst the most popular ones. They both help design and implement
pipelines in which each stage gets an input message and the annotations
produced by the previous stages and computes further annotations. The an-
notations range from the word stems or part-of-speech tags of the input
words to their dependency tags and sentiment scores, to mention a few. They
both found their way into the text-mining field since they provide many off-
the-shelf components, there are many third-party components, and they are
open to integrate custom in-house components. They both support multi-
ple languages and can read text from a variety of sources, including plain
text, HTML documents, PDF documents, or databases. There are also many
toolkits that provide components to implement specific natural-language-
processing tasks, e.g., Stanford Core NLP [35], Freeling [46], and NLTK [8].
Recently, toolkits like OpenNLP [59] and spaCy [30] have gained popularity
thanks to their focus on efficiency without sacrificing effectiveness. Unfortu-
nately, none of the previous frameworks or toolkits provide any components
to mine conditions.

In the literature, Narayanan and others [42] highlighted the problems of
not dealing with conditions in the field of opinion mining. Their proposal is a
machine-learning model to compute the sentiment of a conditional sen-
tence, but they did not report on a proposal to mine the conditions; they
assumed that the sentences were previously labelled so as to make the
conditions explicit. Recently, Skeppstedt and others [54] presented a comple-
mentary proposal that can automatically classify a sentence as speculative,
contrast, or conditional, but neither was their goal to mine conditions.
The naivest proposals to mine conditions are based on searching for user-
defined patterns that rely on syntactic anchors. Mausam and others [38]
studied the problem in the field of entity-relation extraction; they realised
that many usual conditions can be identified by locating adverbial clauses
whose first word is one of the sixteen one-word condition connectives in
English; unfortunately, they did not report on the effectiveness of their
proposal to mine conditions, only on the overall effectiveness of their pro-

1.3. Research rationale 5

posal for entity-relation extraction. Their system was updated recently with
new features [37], but their proposal to mine conditions was not. Chikersal
and others [10] reported on a similar, but simpler proposal: search for se-
quences of words in between connectives “if”, “unless”, “until”, and “in case” and
the first occurrence of word “then” or a comma. Unfortunately, the previ-
ous proposals are not appealing because there are many unusual ways to
introduce conditions, which makes hand-crafting patterns with high re-
call very difficult; furthermore, it is not straightforward to adapt them to
other languages in which common connectives are multi-word or there is not
a unique, context-agnostic translation for some English connectives. We
confirmed the previous claims with our experimental analysis. The only ex-
isting machine-learning proposal was introduced by Nakayama and Fujii
[41], who worked in the field of opinion mining in Japanese. They de-
vised a model that is based on features that are computed by means of a
syntactic parser and a semantic analyser. The former identifies so-called bun-
setus, which are Japanese syntactic units that consists of one independent
word and one or more ancillary words, as well as their inter-dependencies;
the latter identifies opinion expressions, which requires to provide some
specific-purpose dictionaries, taxonomies, and heuristics. They used Condi-
tional Random Fields and Support Vector Machines to learn classifiers that
make bunsetus that can be considered conditions apart from the others. Un-
fortunately, their proposal was only evaluated on a small dataset with 3 155

sentences from hotel reviews and the best F1 score attained was 0.58.

1.3 Research rationale
The information that customer reviews convey is very valuable for com-

panies. According to Forrester [18], sentiment analysis is one of the most
important text mining tasks since it is the key to understanding the opinion
that customers convey in their reviews [16]. Furthermore, Tractica [6] forecast
that the worldwide revenue from sentiment analysis will increase from $123
million in 2017 to $3.80 billion in 2025. According to our own estimations,
roughly 10% of the sentences in our evaluation dataset contain condi-
tions that must be mined so that sentiment summaries can be interpreted
appropriately. This argumentation leads to the following hypothesis:

There is a growing industrial interest in analysing customer reviews
and conditions must not be neglected.

If the previous hypothesis makes sense, then our analysis of the re-
lated work reveals that the existing text-mining systems, frameworks, or

6 Chapter 1. Introduction

toolkits cannot mine conditions, and the few proposals in the literature are in-
sufficient. This clearly justifies working on mining conditions. But there is an
additional requirement: the solution must be able to work at web scale.
This argumentation leads to the following thesis, which we prove in this
dissertation:

It is possible to construct an aspect-based sentiment analysis sys-
tem that can work at web scale and mine conditions. We conjecture
that micro services and deep learning are the key.

1.4 Summary of contributions
Our main contributions are the following:

Torii: it is an aspect-based sentiment analysis system whose most salient fea-
ture is that it is the only system that can mine conditions. It can easily
scale due to its micro-service architecture. Torii uses Kami to mine con-
ditions. Torii has significatively improved the services that Opileak
provide to some of their customers. We have two conference papers [20,
21] and a journal article [27] regarding Torii.

Kami: it consists of two proposals to mine conditions, namely: the first one
relies on a deep-learning regressor and the second one relies on a deep
neural encoder-decoder. They do not require any user-defined patterns,
any specific-purpose dictionaries, taxonomies, or heuristics, can mine
conditions in both factual and opinion sentences, and rely on readily-
available components. We have two conference papers [23, 26] and a
journal article [25] regarding Kami.

Norito: it is a dataset of conditions. It consists of 4.7M sentences in En-
glish, Spanish, French, and Italian that were gathered from Ciao.com
between April 2017 and May 2017. They were classified into 16 cate-
gories according to their sources, namely: adults, baby care, beauty,
books, cameras, computers, films, headsets, hotels, music, ovens, pets,
phones, TV sets, and video games. We have a conference paper [24] and
a poster [22] regarding Norito.

1.5 Collaborations
The motivation to work in the topic of this dissertation comes from a close

collaboration with Opileak, a product line of Dinamic Area, S.L. whose main

1.5. Collaborations 7

service is a social media analysis system. Dinamic Area, S.L. is a small
company with 20 employees whose the annual turnover is about e350K. Fer-
nando O. Gallego is a shareholder of Dinamic Area, S.L. and a co-founder of
Opileak, where he led the development of the system as a CTO. Opileak
helped us validate our proposal in two real-world case studies.

The first case study was in the context of a pilot e10K project with the en-
gineering department of a power utility company. Their projects revolve
around green energy, power infrastructures, consulting, technology, and
chemicals. One of their projects consists in analysing power distribution data
that comes from their distribution centres and target consumers. Frequently,
they have to design and implement new dashboards to compare those data to
a variety of factors, including the power intake of smart cities or the evolu-
tion of registered customers. Social media data caught their eye. They started
to pay attention to new measures like the number of tweets regarding their
company or how many likes their last Facebook publication got. They hired
Opileak’s opinion mining services and integrated them into their dashboards.
The integration was performed by means of the REST API that Opileak pro-
vides to retrieve the data. They were interested in exploring the opinion of
their customers regarding topics like smart cities, public lights, or the com-
pany itself in social media like Twitter or Facebook. This customer used
the data to display statistics about the topics in which they were inter-
ested. Our proposal helps improve the results by means of a fine-grained
analysis at the aspect level that takes conditions into account.

The second case study was in the context of a e1.78M project with the
town hall of a well-known city in Spain that is visited by thousands of tourists
every year. The town hall has a tourism division that manages guided tours,
attractions, monuments, and tourist information offices. They had several
sites related to tourism, and they wanted to integrate them all, to improve the
front-end design, to improve the availability of their services, and to imple-
ment new business rules. Furthermore, they wished to integrate a friendly
assistant to help people find their tourism services by means of interactions in
natural language. The town hall is also interested in learning about the opin-
ion that people cast in social media about their services. The project is
currently ongoing. The town hall will benefit from our results thanks to the
finer-grained sentiment summaries that our aspect-based approach provides
and the fact that conditions are taken into account. But it is also expected that
our deep neural proposals to mine conditions be integrated in a friendly
virtual assistant so that it can recognise conditional sentences properly.

Finally, it is worth mentioning that the development of this dissertation
has involved a comprehensive study of several approaches to text mining

8 Chapter 1. Introduction

and the depths of deep learning. This is the reason why Fernando O. Gallego
caught Emagine GmbH’s eye to work as an NLP engineer for their R&D de-
partment in a project in the automotive industry. This company has a yearly
turnover of e53M.

1.6 Structure of this dissertation

This dissertation is organised as follows:

• The introduction comprises this chapter, in which we motivate our re-
search work and conclude that there is a need to devise an aspect-based
sentiment analysis system that takes conditions into account.

• Chapter §2 reports on our aspect-based sentiment analysis system.
We describe the details of our system taking special attention to the
way that we implement aspect identification, sentiment analysis, and
condition mining in a micro-services architecture.

• Chapter §3 describes our two proposals to mine conditions, namely: a
candidate-ranking regressor and an encoder-decoder network. Further-
more, it provides a comprehensive experimental evaluation to support
that we have advanced the state of the art not only conceptually, but
also empirically.

• Chapter §4 presents our dataset of conditions, which is used to perform
our experimental analysis.

• Chapter §5 concludes this dissertation. It summarises our key findings
and sketches some future work.

Chapter2

Torii: theaspect-basedsentiment
analysissystem

T
orii is described in this chapter, which is organised as follows: Sec-
tion §2.1 introduces our system; Section §2.2 presents our data
storage component; Section §2.3 describes our data processors com-
ponent; Section §2.4 describes our client application component;

finally, Section §2.5 summarises our conclusions.

9

10 Chapter 2. Torii: the aspect-based sentiment analysis system

2.1 Introduction

In this chapter, we describe the architecture of our system. It relies on
three components to which we refer to as Data Storage, Data Processors, and
Client Application. The Data Storage component is responsible for persisting
and indexing reviews, the related entities, and some meta-data that al-
lows the system to work properly. The Data Processors component helps load
reviews, mine conditions, discover new aspects, and summarise the senti-
ment. The Client Application component provides user interfaces to interact
with the system, both as an administrator and a user to fine tune its
configuration parameters and visualise its results, respectively.

Micro services have become one of the most suitable approaches to design
software architectures whose requirements include high scalability, reliability,
and inter-operability. Since they can be easily distributed across a network,
message queuing is then the ideal approach to communicate them. This
paradigm revolves around the following concepts: producers, consumers,
messages, and queues. A producer is a micro service that produces a message
and sends it to a queue; a consumer is a micro service that receives messages
from a queue; a message encapsulates the data exchanges between a pro-
ducer and a consumer; a queue is an intermediate cache that helps producers
and consumers work as asynchronously as possible. This paradigm has a
number of advantages, including that it facilitates decoupling micro services,
it ensures the reliability of messages by means of acknowledgements and
timeouts, and it allows systems to easily scale out. (Since there is no room for
confusion, in the sequel, we refer to our micro services as simply services.)

We implemented our components using a micro service approach with
the technologies provided by Spring Boot 2.1.0; the deployment was per-
formed on a cluster of Tomcat 7.0 application servers; the queuing system
was implemented using RabbitMQ 3.7.

2.2 The Data Storage component

The Data Storage component is responsible for persisting and querying the
data with which our system works. The domain model provides the classes
and associations that model them. We use two custom stereotypes in this
model, namely: «persistent» and «transient». The difference is that the «per-
sistent» stereotype implies that the objects of the corresponding class are

2.2. The Data Storage component 11

Figure 2.1: Domain model: actors and filters.

Figure 2.2: Domain model: reviews.

12 Chapter 2. Torii: the aspect-based sentiment analysis system

Figure 2.3: Domain model: terms and gazetteers.

Figure 2.4: Domain model: boosters.

2.2. The Data Storage component 13

Figure 2.5: Services: data storage.

persisted in our database, whereas the objects whose class has the «transient»
stereotype are not; that is, they are computed and consumed on the fly.

Figure §2.1 describes the domain model regarding the actors and the in-
ternationalised filters. There are two kinds of actors, namely: Administrator,
which is responsible for managing the configuration of the system, and User,
which can visualise the results. There are two kinds of internationalised fil-
ters, namely: Language, which represents the language in which a review can
be written, and Category, which represents the category of the item in a
review.

Figure §2.2 describes the domain model regarding the reviews. A re-
view is a piece of text that provides an assessment regarding some aspects of
an item. Reviews contain one or more sentences. A sentence is a piece of text
that is typically delimited by punctuation symbols and expresses a complete
though. A sentence contains one or more tokens. A token is the minimum lin-
guistic unit with a syntactical function. A sentiment token is a specialisation
of a token that is necessary to compute sentiment. A tagged token is a token
that contains some linguistic tags. A sentence may contain one or more con-
ditions. A condition is a clause that conveys a circumstance, a state, or
a situation that must be true so that the whole sentence holds. A sen-
tence may also contain one or more aspect samples. An aspect is a feature of

14 Chapter 2. Torii: the aspect-based sentiment analysis system

an item and an aspect sample is an instantiation of an aspect in a sentence.

Figure §2.3 describes our term model. A term is kind of an annota-
tion that we use to characterise the tokens of which a sentence is composed.
Every term has, at least, a lexical form. A lexical form has a stem that re-
sults from lowercasing a word and removing gender, number, and/or case
prefixes and/or suffixes in the case of nouns and adjectives or gender, num-
ber, and tense forms in the case of verbs. Terms can be either aspects,
sentiment words, negations, or context boosters. An aspect is a term that rep-
resents a feature of an item. For each aspect, there is a confidence score in
range [0.00,+1.00] that determines how likely it is an actual aspect. Each as-
pect may be assessed by one or more sentiment words. A sentiment word is a
term that represents an assessment that is made explicit by means of a senti-
ment weight in range −1.00 (very negative) up to +1.00 (very positive). A
negation is a term that changes the sign of the sentiment weight regarding an
aspect. A context booster is a term that boosts the sentiment weight regard-
ing an aspect. A gazetteer represents a collection of samples of a specific kind
of term. There are four gazetteers, namely: AspectGazetteer, which represents
a collection of aspects, SentimentWordGazetteer, which represents a collec-
tion of SentimentWord, NegationGazetteer, which represents a collection of
negations, and ContextBoosterGazetteer, which represents a collection of con-
text boosters. Note that these gazetteers are readily-available resources for
most common languages, except for the gazetteer of aspects. To build the
gazetteer of aspects, we start with an initial set of aspects that can be grown
by means of an aspect identification process that we describe later.

Figure §2.4 represents the booster model. Generally speaking, a booster is
a word that increases the sentiment weight regarding an aspect. They can be
classified as context boosters, which are terms, and inner-boosters, which are
writing styles.

Note that our model was optimised in a number of ways. The first optimi-
sation is regarding the orientation of the associations; note that they are
oriented from the many endpoint to the one endpoint since this can be imple-
mented very efficiently using foreign keys. We have also added attribute
lastUpdate to class Sentence and interface Term, which helps determine if a
sentence or a term needs to be re-analysed in cases in which a gazetteer is up-
dated. An additional optimisation consists in using attributes beginIndex and
endIndex in classes Token, Condition, and AspectSample, which provide their
offsets in the sentences in which they are contained. Note, too, that classes
SentimentWord, Booster, and Negation are transient because their objects can be
computed on the fly very easily and they are only used in the process that

2.3. The Data Processors component 15

computes sentiment scores, at the sentence or the aspect level, or the senti-
ment weight, the negation weight, and the booster weight of a token; we
provide additional details on that process in the following section. Note, too,
that the gazetteer classes are transient since they are used as entry points to
the corresponding collections of terms only at run time; so, there is no need to
persist them explicitly. Last, but not least, we created an ElasticSearch index
to improve performance when retrieving objects of class Sentence.

Figure §2.5 presents the services that the DataStorage component provides,
their public methods, and an ancillary class QueryFilter that summarises the
parameters of some of those methods. Note that the classes that model ser-
vices are annotated with the «service» stereotype; some of them are also
annotated with the «crud» stereotype, which indicates that they provide
create, retrieve, update, and delete methods.

The DataStorage component has three services, namely: DataPersister,
which is responsible for persisting the data from the services of the DataPro-
cessors component, DataRetriever, which is responsible for retrieving the
data of the services of the DataProcessors component, and ClientApplication-
Repository, which is responsible for managing the queries issued by the
ClientApplication component. The ClientApplicationRepository service provides
some additional methods, namely: find the aspects for a given language and
category; find the number of positive, negative, and neutral sentences in a
given language and category that comment on some given aspects and con-
tain some given key words; find the aspects and their average sentiment in
the aspect samples of the sentences in a given language and category that
comment on some given aspects and contain some given key words; find the
sentences in a given language and category that comment on some given as-
pects and contain some given key words; and find the aspect samples and the
conditions in the sentences that result from the previous query.

The DataStorageComponent was implemented using the following tech-
nologies: we used the Spring Data component provided by Spring Boot 2.1.0
to implement the repositories that handle writing data to the database and
querying them, MySQL 5.5 to persist our data, and ElasticSearch 6.3.0 to
implement full-text indices.

2.3 The Data Processors component

The Data Processors component is responsible for loading reviews, prepro-
cessing them, and running the processes to mine conditions, discover new

16 Chapter 2. Torii: the aspect-based sentiment analysis system

Figure 2.6: Services: loading reviews.

aspects, and summarise the sentiment. Figures §2.6 and §2.7 present the ser-
vices, their relevant attributes, if any, their public methods, which can be
called by external services synchronously, their listener methods, which are
subscribed to queues, and their private methods, which are used to execute
their corresponding algorithms.

Figure §2.8 shows the communications involved in loading new re-
views into the DataStorage component. External resources are annotated with
the «resource» stereotype.

We assume that there is an external service that helps search for a collec-
tion of reviews on the Web and download them to a CSV file with the
following columns: unique identifier, text, language, category, and publica-
tion date. The CSV file is loaded into our system (1.1) by means of the
ReviewLoader service, which forwards them to the Preprocessor service (1.2),
which is responsible for splitting the input reviews into sentences, the sen-
tences into tokens, and stemming them. The results are persisted to the
Data Storage component (2.1) and they are also forwarded to the Con-
ditionMiner service (2.2), which is responsible for mining conditions and
persisting them to the Data Storage component (3). Note that the previous ser-
vices run in a pipeline every time that an administrator loads a new collection
of reviews into the system.

Example 1: Figure §2.10 shows an example of review, which we assume was
retrieved from a web site and stored in a CSV file. After reading from it, the

2.3. The Data Processors component 17

Figure 2.7: Services: discovering aspects and summarising sentiment.

ReviewLoader produces the Review object (1). Then, the Preprocessor service
splits the review text into sentences (2). Finally, for each sentence, a sequence
of tokens is produced. Figure §2.11 shows the tokens of the first sentence. �

The proposals that can be used in the ConditionMiner service are detailed in
the following chapter. Given that we present two proposals, we imple-
mented this service as independently as possible from them; that is, we just
pass the sentence to the model and it returns the Condition objects from the
conditions of the sentence.

Figure §2.9 shows the communications involved in discovering new
aspects and summarising sentiment.

There is a service called AspectDiscovererLauncher that initiates the process.
It first uses the DataRetriever service to retrieve the sentences to be anal-

18 Chapter 2. Torii: the aspect-based sentiment analysis system

:Review

(1.1)

:Review

(1.2)

:Sentence
:Token

(2.1)

:Sentence
:Token

(2.2)

:Condition

(3)

Figure 2.8: Communications: loading reviews.

ysed (1.1). It then informs the AspectFilter service of the number of sentences
(1.2). It then starts passing the sentences on to the AspectDiscoverer service
(1.3), which discovers as many new aspects as possible. Every time the As-
pectDiscoverer service finishes working on a sentence, it passes them on to the
AspectFilter service (1.4), which retains the most representative ones and
stores them in the database by means of the DataPersister service (1.5).

The process to discover new aspects was inspired by Hu and Liu’s [31] re-
sults, namely: given an input sentence, it iterates over the tokens of the
sentence, creates the corresponding tagged tokens, and initialises their part-
of-the-speech tags and their dependency tags. Then, it selects the nouns and
noun-phrases that are non-stop words and occur in, at least, one per-
cent of the sentences; this results in a set of candidate aspects for which we

2.3. The Data Processors component 19

:Sentence

(1.3)

:Aspect

(1.4)

:AspectSample
:Sentence

(2.3)

:Sentence
:Token

(2.2)

:Sentence

(1.1)

:Aspect

(1.5)

:Sentence
:Token

(2.1)

(1.2)

Figure 2.9: Communications: discovering aspects and summarising
sentiment.

compute a confidence score that normalises the aspect frequency as follows:

ck = fk−min{fi,...,fn}
max{fi,...,fn}−min{fi,...,fn}

where ck represents the confidence score of aspect k, fk represents its fre-
quency in the sentences that have been analysed, min{f1, . . . , fn} represents
the minimum frequency of all aspects, and max{f1, . . . , fn} represents the
maximum frequency of all aspects. It is not difficult to realise that the previ-
ous computation results in a score in range [0.00,+1.00], so that the closer to
zero the less confidence that the corresponding aspect is an actual aspect and
the closer to one the more confidence that it is an actual aspect.

Example 2: Figure §2.12 shows the four sentences of our running exam-

20 Chapter 2. Torii: the aspect-based sentiment analysis system

���� ���� �	
��	�� 	������ ������	���
��	��

���������

������	
��

����

������
��

�

����
��������������

�
�����������
���

��
�
������������

����� !"#��������$�%��

��#���&�'��������

&���������$(�����)

"��$��� ��%� �*�+,�*,*+

���� �	
��	�� 	������ ��
����
� �	������	��

����
���������������
�) "��$��� ��%� *#* �*�+,��,�	

�������$�%����# "��$��� ��%� *#* �*�+,��,�	

��&�'��������&������) "��$��� ��%� *#* �*�+,��,�	

���������%��������-$����
�) "��$��� ��%� *#* �*�+,��,�	

.�/

.�/

��������+���*�+�� ����
���������������
�����������
�����
�
���������������

����� !"#���������$�%����#����&�'��������&���������$(��������
��������
'�$�

����������
�����$�($
����
����0�-�����(�
����$��������#�����������%��������-$��

��
��-�������&����-���&
������
'���-�����&����
$��-#�

Figure 2.10: Review loading and preprocessing: example (1/2).

ple in the first column. The second column represents the aspect samples that
are discovered by the AspectDiscoverer service, namely: it discovers the as-
pect samples argument and main character from the first sentence; it cannot
discover any aspect samples from the second sentence; it discovers the as-
pect samples writing, reader, places, and peaceful from the third sentence; and it
discovers the aspect samples style and reality from the last sentence. Re-
alise that all of the aspect samples correspond to noun or noun phrases in the
original sentences. �

There is another service called SentimentSummariserLauncher that initi-
ates the process to summarise sentiment. It first uses the DataRetriever service
to retrieve the sentences to be analysed (2.1). It then passes them on to

2.3. The Data Processors component 21

���� �����	
���� ��	
����

��� � �

���	
��� � �

�� � �

��� � �

��� � ��

�	� �� ��

��� �� ��

��� � ��

��������� �� ��

�� �� ��

��� �� ��

�������� �� ��

Figure 2.11: Review loading and preprocessing: example (2/2).

���

���

���

���

��������� ������	�
�����

��������	�
���
����������������	��
�

�������������������������
����	�
���	��
����������

�����
���������� �

���� �������������
�����!������������

������ �����������������"���!������
��

�
#�$�����!����"����"����	

�����
�����������!������!����"��

����������
���"��$��������$���
����

���
�$�����
������ ����$������
�

������$

�$����������$

Figure 2.12: Aspect discovering: example.

the SentimentSummariser service (2.2), which actually summarises the senti-
ment on a per-aspect basis and stores the results by means of the methods
offered by the DataPersister service.

The process to summarise the sentiment was inspired by Taboada and oth-
ers’s [57] results, namely: it first iterates over the tokens of the input sentence,
next creates their corresponding sentiment tokens, and then initialises their
derived attributes as follows: attribute sentimentWeight is initialised to the

22 Chapter 2. Torii: the aspect-based sentiment analysis system

�������� �	
��

����

���
�

����

���
�

�
�	��
�	�

�
���	

�
��	����

�
���	

���	
��

�
���	

��� ��� � � ���� ���� ����

	
����� 	
����� � �� ���� ���� ����

�� �� �� �� ���� ���� ����

��� ��� �� �� ���� ���� ����

�	� �	� �� �� ����� ����� ����

��� ��� �� �� ���� ���� ����

��� ��� �� �� ���� ���� ����

	�� 	�� �� �� ���� ���� ����

��	
	���
 ��	
	���
 �� �� ���� ���� ����

�� �� �� �� ���� ���� ����

��� ��� �� �� ���� ���� ����

�� !"#$ ��

��% �� �� ����� ���� ����

���	���

������

Figure 2.13: Sentiment analysis: example.

sentiment weight of the corresponding word, which is looked up in the senti-
ment word gazetteer; attribute negationWeight is initialised to −1.00 if there is
a nearby negation word, which are provided by the negation gazetteer; and
attribute boosterWeight is initialised to a value that accounts for the con-
text boosters and the inner boosters that are found in the nearby tokens and
the tokens themselves; then it searches for samples of the aspects that were
discovered by the AspectDiscoverer service; for each aspect sample, its de-
rived sentiment attribute is computed as the sum of the most negative and the
most positive overall sentiment weight of the tokens of the sample (the over-
all sentiment weight of a token is the sum of its sentiment weight and
booster weight multiplied by the negation weight). The process also com-
putes the sentiment at the sentence level using the same procedure on the
whole sentence instead of the aspect samples.

Example 3: Figure §2.13 shows the sequence of SentimentTokens of sen-
tence “The argument isn’t harsh, but the main character is too HORRIBLE”. Note
that there are two updates to the tuples after the computation of their ini-
tial values. Our method focuses on the two sentiment words in our example,
namely: “harsh”, which changes its negation weight due to the nearby “n’t”,
and “HORRIBLE”, which changes its booster weight due to the context booster
“too” and the inner booster that consists in writing the whole word with capi-
tal letters. Then, the sentence is split into two sequences of tokens that
correspond to aspects “argument” and “main character”; token “but” does not be-
long to any sequences since it is just a nexus between them. The sentiment

2.4. The Client Application component 23

for the first aspect is 0.60 and −1.00 for the second aspect. The sentence
sentiment is the sum of those scores, that is, 0.60+ (−1.00) = −0.40. �

The DataProcessors component was implemented using the general
technologies provided by Spring Boot 2.1.0 and the following specific tech-
nologies: the Preprocessor service was implemented using Stanford Core
NLP 3.8.0 to split and tokenise sentences; the ConditionMiner service was im-
plemented using Gensim 2.3.0 to compute word embedders using a
Word2Vec implementation, Keras 2.0.8 with Theano 1.0.0 to build and train
our deep neural network, and DeepLearning4j 1.0.0-beta3 to bridge it to
Java; and the AspectDiscoverer service was implemented using Stanford Core
NLP 3.8.0 to compute the part-of-speech tags and generate dependency trees.
The deep neural network on which the ConditionMiner relies was devel-
oped in-house; we provide the many additional details behind the scene in
the following chapter.

2.4 The Client Application component

The Client Application component provides the user interfaces used to
interact with the system depending on the role of the user.

The administrator role can use the following functionalities: managing the
gazetteer of aspects, managing the gazetteer of sentiment words, managing
the review loading process, managing the sentiment summarisation pro-
cess, and managing the aspect discovery process. (Note that the negation and
the booster gazetteers need not be managed, since they are readily-available
resources in most common languages.)

Figure §2.14 shows the page in which an administrator can manage the
gazetteer of aspects. To add a new aspect, an administrator must write, at
least, one stem and one variant form. When an administrator adds a new as-
pect, the confidence value is 1.00, so they are the perfect seeds to discover
new aspects. Furthermore, the list of current aspects is shown as a ta-
ble with their stems and their corresponding confidence scores. Figure §2.15
shows the page in which an administrator can manage the gazetteer of senti-
ment words. To add a new sentiment word, an administrator must write, at
least, one stem, one variant form, and the sentiment weight.

The user role can display a dashboard with the following widgets: a set of
filters, a sentiment chart, a list of aspects with sentiment, and a list of sen-
tences with sentiment. Figure §2.16 shows the filters and the sentiment chart.

24 Chapter 2. Torii: the aspect-based sentiment analysis system

Figure 2.14: Administrator interface: aspect gazetteer.

There are three types of filters, namely: main filters, which allow to filter the
results by language and category; aspect filters, which allow to filter the re-
sults by the sentences whose aspect samples are related to them; and text
filters, which allow to filter the results by key word. A user must always se-
lect a language and a category to display the results. Regarding the aspects,
the dashboard shows a paginated list with their stems in the filtered reviews
and allows the user to select zero, one, or more aspects to filter the results.
Regarding the key words, the user can write a string to filter the results. This
filter performs an exact-match search. The sentiment chart represents the dis-

2.4. The Client Application component 25

Figure 2.15: Administrator interface: sentiment word gazetteer.

tribution of sentiment across the three sentiment classes, namely: positive,
neutral, and negative. This distribution is computed as the sum of reviews
whose sentence-level sentiment score is above, approximately, or below 0.00,
respectively. Figure §2.17 shows a paginated list of aspects with sentiment. It
is a table with two columns, namely: aspect and sentiment. the aspect col-
umn represents the stem of the aspects and the sentiment column represents
the averaged sentiment of the aspect for all reviews. Figure §2.18 shows the
paginated list of sentences with sentiment. It is a table with two columns,
namely: the text of the sentence and its corresponding sentiment. The text of
the sentence represents the original text of the sentence, without any prepro-
cessing. Furthermore, aspect samples and conditions are highlighted so that
the user can spot them more easily. The sentiment column represents the

26 Chapter 2. Torii: the aspect-based sentiment analysis system

Figure 2.16: User interface: filters and sentiment chart.

sentiment sentence-level that we have computed for each sentence.

This component was implemented using the following technologies:
Spring Boot 2.1.0 to develop the application as a whole, Spring Secu-
rity 5.0 to secure the application, Thymeleaf 3.0.4 to create application
views, JavaScript 1.8 to implement some client-side functionalities, and Boot-
strap 4.0.0 with CSS3 to apply some style templates and personalise them,
respectively.

2.4. The Client Application component 27

Figure 2.17: User interface: table of aspects with sentiment.

Figure 2.18: User interface: table of sentences with sentiment.

28 Chapter 2. Torii: the aspect-based sentiment analysis system

2.5 Summary

In this chapter, we have presented Torii, which is the first aspect-based
sentiment analysis system that can mine conditions. It relies on three compo-
nents, namely: the Data Storage component, which is responsible for
persisting and indexing reviews; the Data Processors component, which pro-
vides some micro services to load reviews, plus some micro services to
mine conditions, discover new aspects, and summarise the sentiment; and
the Client Application component, which provides user interfaces to inter-
act with the system, both as an administrator and a user. It can scale out
due to its micro service architecture. Furthermore, it supports working on
different languages and domains so that it is flexible enough.

Chapter3

Kami: theproposals tomine
conditions

K
ami provides two proposals to mine conditions that are de-
scribed in this chapter. It is organised as follows: Section §3.1
introduces our proposals; Section §3.2 describes our candidate-
ranking proposal; Section §3.3 describes our encoder-decoder

proposal; Section §3.4 presents our experimental analysis; finally, Section §3.5
summarises our conclusions.

29

30 Chapter 3. Kami: the proposals to mine conditions

3.1 Introduction
In this chapter, we present two deep learning proposals to mine conditions

that overcome the drawbacks of the state-of-the-art.

A conditional sentence, or conditional for short, is composed of two
clauses, namely: a condition and a consequent. The condition describes a
state, a factor, or a circumstance that must hold so that the consequent holds.
Usual conditionals are expressed by means of grammatical patterns that are
used to make a difference amongst zero-conditionals, which convey gen-
eral truths, first conditionals, which convey possible conditions and their
likely results, second conditionals, which convey hypothetical conditions and
their likely results, and third conditionals, which convey unreal past condi-
tions and their likely results in the past. The connectives and the verb tenses
that are used to introduce these conditionals are well-known in the literature.
Typical connectives include “if”, “when”, “even if”, “only if”, “as long as”, “provid-
ing”, “provided”, “supposed”, “supposing”, “what if”, “unless”, or “in case”. For
instance, “if you heat ice, then it melts” is a zero conditional sentence; “un-
less I don’t pass my exams, I will get my degree” is a first conditional sentence; “I’d
quit my job as long as I weren’t in debt” is a second conditional sentence; and
“we’d have attended the show even if she hadn’t bought the tickets” is a third condi-
tional sentence. Unusual conditionals do not fit the patterns that characterise
the previous types of conditionals. There is not a standard set of connectives
or verb tenses to introduce their conditions. For instance, in sentence “put a
grain in the tank and the engine will break”, the condition “put a grain in the tank”
describes an action that is sufficient to break an engine. In sentence “people
who like The Beatles will enjoy The Kinks”, condition “who like The Beatles” ex-
presses a taste that characterises a group of people that will likely enjoy “The
Kinks”. In sentence “after you book Aladdin, you’ll get a discount for a DVD”, condi-
tion “after you book Aladdin” expresses a specific time after which one can get a
discount. In sentence “it smells terribly bad near the main gate”, the condition
“near the main gate” expresses a place where it does not smell well. In sen-
tence “you must show your ID due to law restrictions”, the condition “due to law
restrictions” expresses the reason why an ID is mandatory.

Our proposals are based on deep learning, whose focus is on learning
feature-based representations of the input data that facilitate learning classi-
fiers or regressors. They typically build on non-linear transformations that
are organised in layers so that the outputs of a layer constitute the in-
puts of the succeeding one. It is worth mentioning that we also experimented

3.2. A candidate-ranking proposal 31

method train(ds) returns r

T := ∅
for each (s, L) ∈ ds do

C := generateCandidates(s)

for each c ∈ C do
z := computeScore(c, L)

T := T ∪ {(c, z)}

end
end
r := learnRegressor(T)

end

method apply(s, r, θ) returns R

C := generateCandidates(s)

R := ∅
for each c ∈ C do

z := apply r to c

if z > θ then
R := R ∪ {(c, z)}

end
end
R := removeOverlaps(R)

end

Figure 3.1: Candidate ranking: main methods.

with a variety of approaches, including Random Forests, Support Vec-
tor Machines, Conditional Random Fields, Bayesian Networks, or even
instance-based learning. Unfortunately, none of them were good enough.
We have performed a comprehensive experimental analysis on Norito, a
dataset of conditions that is presented in the following chapter. Our re-
sults prove that our proposals are comparable to others in terms of precision,
but they improve recall enough to beat them in terms of F1 score.

3.2 A candidate-ranking proposal
In this section, we describe our first proposal to mine conditions, which

consists in learning a regressor that assesses how likely a candidate condition
is an actual condition†1. Hereinafter, we refer to condition candidates as can-
didates and to actual conditions as conditions since there is no room for
confusion. We first describe the main methods and then provide an insight
into the ancillary methods.

3.2.1 Main methods

Figure §3.1 shows the main methods of our proposal, namely: train,
which learns a regressor that assesses candidates, and apply, which
computes the best candidates in a sentence.

Method train takes a dataset ds as input and returns a regressor r. The in-
put dataset is of the form {(s(i), L(i))}ni=1, where each s(i) denotes a sentence and

†1The implementation is available at https://github.com/FernanOrtega/candidate-ranking.

https://github.com/FernanOrtega/candidate-ranking

32 Chapter 3. Kami: the proposals to mine conditions

each L(i) denotes a set of labels that identify the conditions in that sentence
(n ≥ 0). The output regressor is a function that given a candidate returns a
score that assesses how likely it is an actual condition. The method first ini-
tialises training set T to the empty set and then loops over dataset ds; for each
sentence s and set of labels L in ds, it first computes a set of candi-
dates; then, for each candidate c, it computes a score z and stores a tuple of
the form (c, z) in training set T . When the main loop finishes, it learns a
regressor from T using a deep-learning approach.

Method apply takes a sentence s, a regressor r, and a threshold θ as input
and returns a set R of tuples of the form {(c(i), z(i))}ni=1, where each c(i) de-
notes a candidate and z(i) its corresponding score, which must be equal to or
greater than threshold θ (n ≥ 0). The method first generates the candidates in
s, stores them in set C, and initialises R to an empty set; it then iter-
ates over set C; for each candidate c in set C, it first computes its score by
applying regressor r to it; if it is equal to or greater than threshold θ, then can-
didate c is added to the result set. When the main loop finishes, R provides
a collection of candidates and scores; before returning it, we must re-
move the candidates that overlap others with a higher score. The candidates
in R are considered the actual conditions in the input sentence s.

3.2.2 Generating candidates

Our first ancillary method is generateCandidates, which takes a sen-
tence as input and returns a set of candidates. A naive approach would
simply generate as many sub-strings as possible, but it would be very ineffi-
cient because a sentence with n words has O(n2) such sub-strings. In order to
reduce the candidate space, we use a non-overlapping sequence of blocks
that created from a dependency tree.

Method generateCandidates first computes the dependency tree of the
input sentence, lowercases the words in its nodes, and stemmises them. It
then computes a non-overlapped sequence of blocks, which are sequences of
tokens of the form (w,d, p), where w denotes a stem, d the dependency tag
that links its node in the dependency tree to its parent, if any, and p its posi-
tion in the sentence. To compute a non-overlapped sequence of blocks, we
first recursively select the sub-trees whose depth is exactly two because it
helps select syntactical units like noun-phrases, adjective-phrases, or verb-
phrases; then, we repeat the procedure for the nodes whose depth is equal to
one because it helps to select smaller syntactical units; and, finally, we select
the nodes that have only one token. The depth of a sub-tree is the dis-
tance from its root node to its deepest leaf node. Note that we need to ensure

3.2. A candidate-ranking proposal 33

����

������	

�
�

�	

�������

�

����

��

������

����

���

���

����

�����

������

����

��

��

����

�������������	� �����

�������������� �����������

� ! " # $ % & '

�(

�

����

����

��

�	

�

�
�

����

����

������

���

���

������	

����

����

��

��

������

�������

�����

�)

� ! " # $ % & '

�(

�

����

����

��

�	

�

�
�

����

����

������

���

���

������	

����

����

��

��

������

�������

�����

�

����

����

��

�	

�

�
�

����

����

������

���

���

������	

����

����

��

��

������

�������

�����

�

����

����

��

�	

�

�
�

����

����

������

���

���

������	

����

����

��

��

������

�������

�����

�

���

)

�

���

)

�

���

)

����*���+��,���� �������������	������

��������� ���

��������

������-����

����.�-����,��� ��+����

�

���

�

���

Figure 3.2: Candidate ranking: sample candidate generation.

that the tokens in a block are consecutive. For that reason, we split ev-
ery block that contains holes. Finally, we generate the candidates as the
sequences of tokens from all of the sequential combinations of the blocks.

Example 4: Figure §3.2.a shows the dependency tree of sentence “I would buy
PSP1 when the battery will be improved”. The nodes that correspond to the con-
dition are highlighted in grey. Figure §3.2.b shows a legend that helps
understand how a token (w,d, p) is mapped onto our graphical notation. Fig-

34 Chapter 3. Kami: the proposals to mine conditions

� � � � � � � � 	

�

�

����

�����

���

���

�

����

����

����

������

���

���

����� �

����

����

���

��

���!�

��! ���

���"�

�

����

�����

���

���

�

����

����

����

������

���

���

����� �

����

����

���

��

���!�

��! ���

���"�

�

����

�����

���

���

�

����

����

����

������

���

���

����� �

����

����

���

��

���!�

��! ���

���"�

�

����

�����

���

���

�

����

����

����

������

���

���

����� �

����

����

���

��

���!�

��! ���

���"�

�

���

#

�

���

#

�

���

#

� #

�
$

� �$

�
$	�

Figure 3.3: Candidate ranking: sample matching scores.

ure §3.2.c shows the blocks that are generated from the previous dependency
tree. Figure §3.2.d shows the candidates that are generated from the previous
blocks. Candidate c(1) is generated from block b(1), candidate c(2) is gener-
ated from block b(2), and candidate c(3), which corresponds to the whole
sentence, is generated from blocks b(1) and b(2). �

3.2.3 Computing matching scores

Our second ancillary method is computeScore, which takes a candidate c

and a set of labels L as input and returns its corresponding score. A naive ap-
proach would simply return 0.00 if c does not exactly match any of the labels
in L and 1.00 otherwise, but that is too crisp. An approach in which a candi-
date gets a score in range [0.00, 1.00] better captures the chances that it is an
actual condition.

Our idea was to use an approach that is based on the well-known F1 score
in order to balance the precision and the recall of a candidate. The F1 score is
computed as 2 tp

(tp+fp)+(tp+fn)
, where tp, fp, and fn denote, respectively, the

number of true positives, false positives, and false negatives. Given a candi-
date c and a label l, it makes sense to interpret the tokens that they have in
common as true positive tokens, the tokens in c that are not in l as false posi-
tive tokens, and the tokens in l that are not in c as false negative tokens. We
also realised that the first few tokens in a condition typically provide an an-
chor that characterises it by means of a connective. So, we decided to
measure the matching between a candidate and a label as follows:

3.2. A candidate-ranking proposal 35

match(c, l) =

|l|∑
i=1

{
1/i if li ∈ c

0 otherwise

}

Simply put: let li denote the i-th token in the label (i = 1 . . |l|); if li is in the
candidate, we then add 1/i to the score and zero otherwise. This way, the first
few tokens in the label contribute much more to the score than the remain-
ing ones. That is, given a candidate c and a label l, match(c, l) may be
interpreted as a measure of the number of true positive tokens in c.

Given the previous definition, the maximum matching for a candidate or
a label x is defined as follows:

match∗(x) =

|x|∑
i=1

1/i

Realise that given a candidate c, match∗(c) is a measure of the num-
ber of true positive tokens (the tokens that belong to both the candidate and
the label) plus the false positive tokens (the tokens that belong to the candi-
date, but not to the label); similarly, given a label l, match∗(l) is a measure of
the number of true positive tokens (the tokens that belong to both the la-
bel and the candidate) plus the number of false negative tokens (the tokens
that belong to the label, but not to the candidate).

Our proposal to compute the matching score of candidate c with respect
to the set of labels L is then as follows:

score(c, L) = max
l∈L

2 match(c, l)

match∗(c) +match∗(l)

Note the similarity to the F1 score since match(c, l), match∗(c), and
match∗(l) are measures of tp, tp+ fp, and tp+ fn, respectively.

Example 5: Figure §3.3 shows label l, which corresponds to the condi-
tion in our running example, and how the candidates match it. Candidate
c(1) does not match any true positive tokens, but four false positive to-
kens and six false negative tokens, which results in a matching score of 0.00.
Candidate c(2) matches the label perfectly, i.e., it matches six true positive to-
kens and no false positive or false negative token, which results in a matching
score of 1.00. Candidate c(3) represents the whole input sentence, which obvi-
ously contains the label, i.e., six true positive tokens, but also four false
positive tokens, which results in a matching score of 0.91. �

36 Chapter 3. Kami: the proposals to mine conditions

����

�����������

�� η×δ
��� ��η×���δ
	
�� ���	

���

��� ����

	�����

�� �η×�
δ
��� �η×�
���� ���

����� ������

����

�� �η×�
��� �
η×�

	
�� ������

��� ����

����

�� �
η×�

��� �×�

	
�� �������

��� ����

����� ����

����

�� η×δ
��� η×��δ
	
�� ��!

��� ����

����

�� η×��δ
��� �×�

	
�� �������

��� ����

���

�� η×δ
��� η×�

	
�� ��!

��� ����

����

�� η×�

��� �
η×�

	
�� ������

��� ����

����

�� �
η×�

��� �×�

	
�� �������

��� ����

"�����

�����

�� η×δ
��� �η×�
	
�� ��!

��� ����

����

�� �η×�

��� �
η×�

	
�� ������

��� ����

���"�����

�����������

�� η×δ
��� ��η×�
δ
	
�� ���	

���

��� ����

	�����

�� ��η×�
δ
��� ��η×�
δ
���� ���

����� ��#��$%�&

�����

�� ��η×�
δ
��� 'η×�
	
�� ��!

��� ����

����

�� �'η×�
��� �
η×�

	
�� ������

��� ����

����

��
η×�

��� �×�

	
�� �������

��� ����

����

�� �
η×�

��� �×�

	
�� �������

��� ����

�����������

�� ��η×���δ
��� �η×�δ
	
�� ���	

��� �(

��� ����

�����

����

�� η×δ
��� η×��δ
	
�� ��!

��� ����

����

�� η×��δ
��� �×�

	
�� �������

��� ����

����

�� η×δ
��� η×��δ
	
�� ��!

��� ����

����������������������������

���������������������������

	
��� �����	
������������
�����

��������������������

������������������

��������������������
���

������������������������ �

Figure 3.4: Candidate ranking: neural network architectures.

3.2.4 Learning a regressor

Our third ancillary method is learnRegressor, which takes a training set
T as input and returns a regressor r.

Prior to learning a regressor, the candidates in the training set must be
vectorised; note that it is necessary to put a limit to the maximum candi-
date length, to which we refer to as η, and that padding must be used when
analysing shorter candidates.

3.2. A candidate-ranking proposal 37

Given a candidate of the form ⟨(wi, di)⟩ni=1, we transform it into a se-
quence of the form ⟨wi ⊕ di⟩ηi=1, where wi denotes the word embedding of
stem w using Word2vec, d denotes the vectorisation of dependency tag d us-
ing one-hot encoding, w ⊕ d the vector that results from catenating the
previous ones, and η denotes the size of the longest possible condition;
padding tokens need to be added if the original condition is shorter than η.
Note that the vectorisation of a condition can then be interpreted as a ma-
trix with η rows and δ columns, where δ denotes the dimensionality of the
word embedding plus the dimensionality of the one-hot encoding.

Figure §3.4 summarises some of the neural network architectures that we
have devised. We used the Mean Squared Error as the loss function and we
trained them using Stochastic Gradient Descent Optimisation with batch size
equal to 32. In order to prevent over-fitting as much as possible, we used
some drop-out regularisations and early stopping when the loss did not im-
prove significatively after 10 epochs. We did not apply a decay momentum
because we observed that the loss always converges smoothly.

Our baseline architectures are the following: a shallow multi-layer percep-
tron (MLP1), which has an input layer and an output layer, and a deep
multi-layer perceptron (MLP2), which has an input layer, a hidden layer, and
an output layer. We devised a dozen more architectures with several combi-
nations of Dense Networks, Gated Recurrent Units, Bi-directional Gated
Recurrent Units, and Convolutionary Network layers and different configu-
rations of activation functions, loss functions, regularisation parameters,
and optimisation methods. In the sequel, we focus on the best architec-
tures, namely: the one with gated recurrent units (GRU), the one with
bi-directional gated recurrent units (BiGRU), the one with convolutional
neural networks (CNN), and a hybrid approach that combines convolu-
tional neural networks and bi-directional gated recurrent units (CNNBiGRU).
The CNN network includes two convolution layers and a pooling layer.
Our proposal is to use a convolution layer with a large number of fil-
ters in order to create a wide range of first-level features, but a smaller
number of filters in the second convolution layer to obtain a more spe-
cific range of second-level features that combine the first ones. Finally, the
pooling layer combines the previous deep features using a global maxi-
mum function as the global pooling strategy since our experiments prove that
it performs better than others. The CNNBiGRU network uses a convolu-
tion with a number of filters similar to the input length, and then applies a
local pooling that captures the most relevant features only. We then ap-
ply a BiGRU layer that takes the dependencies between tokens into account,
from both the beginning to the end of the sentences and vice versa.

38 Chapter 3. Kami: the proposals to mine conditions

3.2.5 Removing overlaps

The fourth ancillary method is removeOverlaps, which takes a set of tu-
ples of the form (c, z) as input, where c denotes a candidate and z its
corresponding score, and filters those whose candidates overlap a candi-
date with a higher score. In other words, given the input set of tuples R, it
computes the following subset:

{(c, z) ∈ R |̸ ∃(c ′, z ′) : (c ′, z ′) ∈ R∧ c ′ ∩ c ̸= ∅∧ z ′ > z}

We do not provide any additional details since this method can be
implemented very straightforwardly.

Example 6: Assume that the threshold to select the best candidates is set to
θ = 0.50. In our running example, method apply would return candidates
c(2) and c(3) since they are the only whose scores exceed the threshold, cf. Fig-
ure §3.3. Note that both candidates overlap, so the one with the lowest score
is filtered out. In this case, method apply would then return candidate c(2)

only, which, indeed, represents the condition in our running example. �

3.3 An encoder-decoder proposal

In this section, we describe our second proposal to mine conditions,
which consists of an encoder-decoder model that is based on recurrent and
bi-directional recurrent neural networks†2.

Figures §3.5, §3.6, §3.7 and §3.8 sketch its architecture. The input are sen-
tences are encoded as vectors of the form (xλ, xλ−1, . . . , x1), where each xi
represents the corresponding lowercased, stemmed word (term) in the sen-
tence (i ∈ [1, λ], λ ≥ 1); note that λ must be set a priori to a large enough
length and that padding must be used when analysing shorter sentences. The
input vectors are first fed into an embedding layer that transforms each term
into its corresponding word embedding vector Ei, which is assumed to pre-
serve some similarity to the vectors that correspond to semantically similar
terms (Ei ∈ Rt, where t denotes the dimensionality of the word embedding).
In order to improve efficiency without a significant impact on effective-
ness, we replaced numbers, email addresses, URLs, and words whose

†2The implementation is available at https://github.com/FernanOrtega/encoder-decoder.

https://github.com/FernanOrtega/encoder-decoder

3.3. An encoder-decoder proposal 39

��������

�

�

�

���

�

���

�

���

�

���

�

�

�

�

�

�

�

���

�

���

�

���

�

���

�

�

�

�

�

� � � � � �

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

ϕ
Ŷ

�

Ŷ

���

Ŷ

�

Ŷ

�

Ŷ

�

Ŷ

�

Ŷ

�

ϕ ϕ ϕ ϕ ϕ ϕ

�����

�����

�����

���� �

���� �

Figure 3.5: Encoder-decoder: GRU-GRU model.

frequency is equal or smaller than five by class words “NUMBER”, “EMAIL”,
“URL”, and “UNK”, respectively. Note that the input vectors encode the re-
versed input sentences because Sutskever and others’s [55] suggested that
this approach works better with bi-directional recurrent neural networks and
does not have a negative impact on regular recurrent neural networks. Fur-
thermore, in order to prevent over-fitting, we used drop-out regularisations
and early stopping when the loss did not improve significatively after 10

epochs. We used the Adam method with batch size 32 as the optimiser.

3.3.1 The encoder

We decided to implement the encoder using a single-layer neural
network, for which we tried two alternatives, namely: a recurrent neural net-
work (RNN) and a bi-directional recurrent neural network (BiRNN). The
reason is that these networks are particularly well-suited to dealing with nat-
ural language because of their inherent ability to process varying-length
inputs (even if they must be encoded using fixed-sized vectors with padding,

40 Chapter 3. Kami: the proposals to mine conditions

��������

�

�

�

���

�

���

�

���

�

���

�

�

�

�

�

�

�

���

�

���

�

���

�

���

�

�

�

�

�

� � � � � �

�

���� �

���� �

���� �

�

�

�

���

�

�

�

�

�

�

�

�

�

�

ϕ
Ŷ

�

Ŷ

���

Ŷ

�

Ŷ

�

Ŷ

�

Ŷ

�

Ŷ

�

ϕ ϕ ϕ ϕ ϕ ϕ

���� �

���� �

Figure 3.6: Encoder-decoder: GRU-BiGRU model.

like in our problem). The difference is that RNNs cannot take future elements
of the input into account, whereas BiRNNs can.

Unfortunately, such networks suffer from the so-called exploding and
vanishing gradient problems. These problems can be addressed by using
long-short-term-memory units (LSTM) or gated recurrent units (GRU), which
basically help control the data that is passed on to the next training epoch.
Our decision was to use GRU units because they seem to be more efficient
because they do not have a separate memory cell like LSTM units.

Hereinafter, we refer to the alternative in which we use an RNN with
GRU units as GRU and to the alternative in which we use a BiRNN with
GRU units as BiGRU. The encoder returns a context vector C that cap-
tures global semantic and syntactic features of the input sentences. In the case
of the GRU alternative, it is computed as the output of the last GRU unit, that
is, C ∈ Rt; in the case of the BiGRU alternative, it is computed from the last
right-to-left GRU unit and the last left-to-right GRU unit, that is, C ∈ R2 t.

3.3. An encoder-decoder proposal 41

��������

�

�

�

���

�

���

�

���

�

���

�

�

�

�

�

�

�

���

�

���

�

���

�

���

�

�

�

�

�

�

� � � � � �

�

���� �

���� �

���� �

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

ϕ
Ŷ

�

Ŷ

���

Ŷ

�

Ŷ

�

Ŷ

�

Ŷ

�

Ŷ

�

ϕ ϕ ϕ ϕ ϕ ϕ

���� �

���� �

Figure 3.7: Encoder-decoder: BiGRU-GRU model.

3.3.2 The decoder

We decided to implement the decoder using a recurrent neural net-
work with four layers since our preliminary experiments proved that this
approach was better than using a single layer. We implemented two alterna-
tives, namely: one in which we used recurrent neural networks with gated
recurrent units (GRU) and another in which we used bi-directional recurrent
neural networks with gated recurrent units (BiGRU).

The decoder gets a context vector from each recurrent unit of the first
layer. Then, it computes an output vector D from each recurrent unit of the
last layer. Since the number of recurrent units for each layer is λ, the compo-
nents of the output vector D indicate whether the corresponding input term
belongs to a condition or not using the well-known IOB tags, namely: I,
which indicates that a term is inside a condition, O, which indicates that it is

42 Chapter 3. Kami: the proposals to mine conditions

��������

�

�

�

���

�

���

�

���

�

���

�

�

�

�

�

�

�

���

�

���

�

���

�

���

�

�

�

�

�

�

� � � � � �

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

ϕ
Ŷ

�

Ŷ

���

Ŷ

�

Ŷ

�

Ŷ

�

Ŷ

�

Ŷ

�

ϕ ϕ ϕ ϕ ϕ ϕ

���� �

���� �

���� �

���� �

���� �

�

�

�

Figure 3.8: Encoder-decoder: BiGRU-BiGRU model.

outside a condition, and B, which indicates that it is the beginning of a condi-
tion. The individual components of the output vector are then passed onto a
collection of perceptrons that compute the output of our system as follows:

Ŷi = φ(WDi + b)

where φ is an activation function, W is a weight matrix, Di is the output of
the decoder, and b is a bias vector. Ŷi represents the probability distribu-
tion of the IOB tags as 3-dimensional vectors. We decided to implement the
activation function φ using either the Softmax function or the Sigmoid func-
tion, since the preliminary experiments that we carried out proved that other
choices resulted in worse results.

To reconstruct the conditions from this output, we simply take the tag
with the highest probability and then return all of the sub-sequences of words
in the original sentence that start with a term with tag B that is followed by
one, two, or more terms with tag I.

3.4. Experimental analysis 43

���� ���� ���	
����		��

�� �� �� ������	

���� �� �� ������	

� �

��� �� �� ������	

��� �� �� ������	

��� �
�����	 �
���� ������������������������

�� �� �� ������������������������

�� ���� ���� ������������������������

�� ������ ������ ���������!�����������!��

�	 �"� �"� ������������������������

�
 �"�� �"�� ��!�������������������

�� #$#� �%�� �������������������������

�� �& �& �������������������������

�� ��&�	 ���� �����������������������

�� ' � ����!�������������������

� (������������������������

)�*

������
������ ���
���

������	 +

������	 +

� �

������	 +

������	 +

����������������������� '

����������������������� '

����������������������� '

����������������������� '

����������������������� '

����������������������� ,

����������������������� +

����������������������� +

����������������������� +

����������������������� +

)�*)�*)�*

Figure 3.9: Encoder-decoder: example.

Example 7: Figure §3.9 shows our running example as an input of our
encoder-decoder model. First, it converts the input tokens into its lower-
cased stems. (We use “\0” as a padding symbol that is ignored across the
entire network). Next, it computes their word embeddings (1). Now, the
encoder network produces a vector C. It is then used as input for every first-
layer unit of the decoder (3). Finally, the decoder returns the most likely IOB
tag for each token. In our example, the condition is then “when the battery will
be improved”. �

3.4 Experimental analysis
In this section, we first describe our experimental setup, then comment on

our results, and finally present our statistical analysis.

3.4.1 Experimental setup

We run our experiments on a virtual computer that was equipped with
one Intel Xeon E5-2690 core at 2.60 GHz, 2 GiB of RAM, and an Nvidia Tesla
K10 GPU accelerator with 2 GK-104 GPUs at 745 MHz with 3.5 GiB of RAM

44 Chapter 3. Kami: the proposals to mine conditions

each; the operating system on top of which we run our experiments was
CentOS Linux 7.3.0.

We used the proposals by Chikersal and others [10] and Mausam and oth-
ers [38] as baselines. The proposal by Nakayama and Fujii [41] was not taken
into account because it is bound to the Japanese language and it is not clear
how it can be extended to deal with other languages; neither could we find an
implementation.

Regarding our candidate-ranking proposal, we evaluated our five alterna-
tives using the following values for the threshold: θ = 0.25, θ = 0.50, or
θ = 0.75. For the sake of readability, we refer to them using their names and
the threshold as subscripts, namely: MLP1θ, MLP2θ, GRUθ, BiGRUθ, CNNθ,
and CNNBiGRUθ.

Regarding our encoder-decoder proposal, we evaluated the eight alterna-
tives that result from combining the two alternatives to implement the
encoder (GRU or BiGRU), with the two alternatives to implement the de-
coder (GRU or BiGRU), using the following values for the activation function:
φ = soft, to mean the Softmax function, and φ = sig, to mean the Sigmoid
function. For the sake of readability we refer to them using the names of the
alternatives and the activation function as subscripts, namely: GRU-GRUφ,
GRU-BiGRUφ, BiGRU-GRUφ, and BiGRU-BiGRUφ.

3.4.2 Experimental results

We evaluated the baselines and our alternatives on our dataset using
4-fold cross-validation. We measured the standard performance measures,
namely: precision, recall, and the F1 score. Table §3.1 presents the results of
our experiments. The conclusion is that the state-of-the-art baselines can at-
tain relatively good precision; Mausam and others’s [38] proposal attains a
recall that is similar to its precision, but Chikersal and others’s [10] proposal
falls short regarding recall. Our baseline performs slightly worse than our al-
ternatives in most situations. Most of our alternatives beat the baselines
regarding recall because they can learn complex patterns that a person can-
not easily spot. Note that the improvement regarding recall is enough for the
F1 score to improve the baselines.

3.4.3 Statistical analysis

To make a decision regarding which of the alternatives performs the best
according to their F1 score, we used a stratified strategy that builds on Hom-
mel’s statistical comparison test at the standard significance level (α = 0.05).

3.4. Experimental analysis 45

� � �

�

� � �

�

� � �

�

� � �

�

�����������	
 �
� �
�� �
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
��

��������	�����	
 �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

� � �

�

� � �

�

� � �

�

� � �

�

����

����

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

����

����

�
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
� �
�� �
�

����

����

�
�� �
�� �
�� �
�� �
� �
�� �
� �
�� �
�� �
�� �
�� �
��

����

����

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

����

����

�
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

����

����

�
�� �
�� �
� �
�� �
�� �
�� �
�� �
� �
�� �
�� �
�� �
��

���

����

�
�� �
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

���

����

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�

���

����

�
�� �
�� �
� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

�����

����

�
�� �
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
� �
�� �
�

�����

����

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
� �
�� �
�� �
��

�����

����

�
�� �
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

�

����

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

�

����

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

�

����

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

� �����

����

�
�� �
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

� �����

����

�
�� �
� �
�� �
�� �
� �
�� �
�� �
�� �
�� �
� �
�� �
��

� �����

����

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

� � �

�

� � �

�

� � �

�

� � �

�

���!���

���

�
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

���!���

�	
�

�
�� �
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�

���!�����

���

�
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
� �
�� �
��

���!�����

�	
�

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

�����!���

���

�
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

�����!���

�	
�

�
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

�����!�����

���

�
�� �
�� �
�� �
� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

�����!�����

�	
�

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

������ 	
����

"�#�����	�$��

"%#���$&�&���!��$��$'��	���$���(��

"&#�)$*+&��!&�*+&����	���$���(��

��
����
���

������ ������

������ 	
����

��
����
���

������ ������ ������ 	
����

��������

������ ������

Table 3.1: Experimental analysis: results.

46 Chapter 3. Kami: the proposals to mine conditions

���������	�
��� � �	���� ���������	�
��� � �	����

��������
����

�	
� � � ��������
����

�	� � �

�����
����

�	� �	� �	�� ���
����

�	�� �	�� �	��

���
����

	�
 �	�
 �	�� �����
����

	� �	�� �	��

���
����

	�� �	�� �	

 ����
����

	� �	� �	��

����
����

�	
� �	�
 �	�
 ���
����

	�� �	�� �	�

����
����

�	�
	� �	�� ����
����

�	��
	� �	��

���������	�
��� � �	����

��������
����

�	� � �

�����
����

�	�� �	� �	��

���
����

�	�� �	�� �	�� ���������	�
��� � �	����

����
����

	��
	�� �	�� ��������
����

�	� � �

���
����

�	
� �	� �	�� ��������
����

�	�� �	
 �	��

����
����

	� �	

 �	�� ��������
����

�	
� �	�� �	�

������������� �!�"#�θ �$��	�	 �%����������� �!�"#�θ �$��	�	

�&����������� �!�"#�θ �$��	�	 �'����������� ��(�%)�"��*")� �"�+)�	

Table 3.2: Statistical analysis: candidate-ranking alternatives.

���������	�
��� � �	���� ���������	�
��� � �	����

���������
����

��		 � � ���������
���

��� � �

�������
����

���
��� 	�	 �����������
���

��
� 	�� 	��

�����������
����

���
��
 	�	 ���������
���

��		 ���� 	�	�

���������
����

����
�
 	�	 �������
���

��	 ���� 	�	�

���������	�
��� � �	����

���������
����

��	 � �

���������
���

��	 	�		
�		

��������������������ϕ ������ �!������������������ϕ ���� �

�"��������������#�!$����%�$�����&$��

Table 3.3: Statistical analysis: encoder-decoder alternatives.

The test computes the empirical ranking of every alternative; it then com-
pares the best-ranked ones to the others by computing a z statistic and
its corresponding p-value, which must be compared to the α significance
level as follows: if the it is smaller than or equal to α, then the conclu-
sion is that there is enough evidence in the experimental data to support the
hypothesis that the difference between two alternatives is statistically signifi-

3.4. Experimental analysis 47

�������� ��	
 � ������

��������
����

�	�
 � �

���������
����

�	� �	
� 	��

������������	 �	� �	�� 	

���������������	 �	�
 �	�� 	

Table 3.4: Statistical analysis: comparison to the baselines.

cant; otherwise, the conclusion is that the experimental data cannot sustain
that there is a statistically significant difference.

In Tables §3.2.a, §3.2.b, and §3.2.c, we report on the results of the statistical
analysis regarding our alternatives. The best-ranked alternative is CNNBi-
GRU in every case, independently from the value of the threshold. Note that
the difference in F1 score is not significant with respect to the BiGRU, the
GRU, or the CNN alternatives when θ = 0.25, it is not significant with respect
to the GRU, the BiGRU, the MLP2, or the CNN alternatives when θ = 0.50,
and it is not significant with respect to the BiGRU or the GRU alterna-
tives when θ = 0.75. Our conclusion is that the CNNBiGRU alternative is the
best one in terms of F1 score. In Table §3.2.d, we report on the results of com-
paring the CNNBiGRU alternative with the three values of θ. Note that the
p-value is greater than the standard significance level, which means that the
differences in F1 score are not significant. Thus, we select the CNNBiGRU
alternative with θ = 0.50 as the best candidate-ranking alternative.

In Tables §3.3.a and §3.3.b, we report on the results of our statistical analy-
sis regarding our encoder-decoder alternatives. The best-ranked alternative is
GRU-BiGRU in every case, independently from the activation function. Note
that the difference in F1 score is not significant with regard to the other
alternatives when φ = soft and that it is not significant with regard to
BiGRU-BiGRU when φ = sig. Our conclusion is that the GRU-BiGRU alter-
native can be considered the best of our encoder-decoder alternatives in
terms of F1 score. In Table §3.3.c, we report on the results of comparing the
GRU-BiGRU alternatives with the two values of φ. Note that the p-value is
greater than the standard significance level, which means that the dif-
ferences in F1 score are not significant. Thus, we select the GRU-BiGRU
alternative with φ = soft as the best encoder-decoder alternative.

In Table §3.4, we report on the results of comparing our best alterna-
tive to the baselines. The best-ranked alternative is the candidate-ranking

48 Chapter 3. Kami: the proposals to mine conditions

CNNBiGRU alternative with θ = 0.50. The difference with our recurrent neu-
ral network baseline in terms of F1 score is not significant from a statistical
point of view since the p-value is greater than the standard significance level.
Note, however, that the difference is very significant with respect to the base-
lines since the p-value is nearly zero. Thus, we select the CNNBiGRU
alternative with θ = 0.50 as our best proposal to mine conditions.

3.5 Summary

In this chapter, we have presented two proposals to mine conditions
and our experimental analysis. The first proposal relies on a deep-learning
regression approach to rank a set of candidates that are computed from a de-
pendency tree. The second proposal relies on an encoder-decoder approach
to perform sequence labelling. They do not rely on user-defined patterns,
they do not require any specific-purpose dictionaries, taxonomies or heuris-
tics, they can mine conditions in both factual and opinion sentences, and they
are not bound to a specific language. Furthermore, we presented an experi-
mental analysis that shows that our proposals can beat the state-of-art in
terms of F1. We confirmed this claim by means of statistical tests.

Chapter4

Norito: adatasetofconditions

N
orito is the dataset that we assembled to evaluate condition min-
ers. The rest of the chapter is organised as follows: Section §4.1
introduces our dataset; Section §4.2 describes its main features;
Section §4.3 presents our analysis of connective distribution; Sec-

tion §4.4 presents our analysis of condition similarity; finally, Section §4.5
summarises our conclusions.

49

50 Chapter 4. Norito: a dataset of conditions

4.1 Introduction

In this chapter, we present Norito, which is a publicly available dataset†1

to evaluate condition miners. It consists of 4.7M sentences on 16 com-
mon topics in English, Spanish, French, and Italian. As of the time of writing
this dissertation, we have labelled roughly 45 000 sentences since we intend
Norito to become a community effort by the researchers who are inter-
ested in condition mining. We also analyse the connective distribution and
the similarity between conditions†2.

The Web provides tones of data that can be used to create new datasets.
For instance, it is easy to assemble a dataset to evaluate a statistical model
that forecasts the weather in a specific area since there are a variety of web
sites that provide historic data regarding outlooks, temperatures, precipita-
tions, or wind speeds. The problem arises when the target class or function
that we wish to compute or approximate is not publicly available.

This problem frequently appears when assembling new datasets to eval-
uate text mining tasks, for instance, condition mining. It is possible to
gather many reviews from web sites like Amazon.com, shopping.google.com,
kelkoo.com, or booking.com, but, unfortunately, it is unknown where the condi-
tions are, if any. Neither works it the attempt to infer them from other text
mining tasks like textual entitlement, question answering, part-of-speech
tagging, or dependency parsing since they do not take conditions into ac-
count. Furthermore, none of the existing condition miners provides a public
evaluation dataset. This was clearly our motivation to work on Norito.

4.2 Description

As of the time of writing this dissertation, our dataset consists of 4 671 533
sentences in English, Spanish, French, and Italian that were gathered from
Ciao.com between April 2017 and May 2017. They were classified into 16 top-
ics according to their sources, namely: adults, baby care, beauty, books,
cameras, computers, films, headsets, hotels, music, ovens, pets, phones, TV
sets, and video games.

†1The dataset is available at https://www.kaggle.com/fogallego/reviews-with-conditions.
†2The analyses were performed with a Kaggle kernel that is available at

https://www.kaggle.com/fogallego/dataset-analysis.

https://www.kaggle.com/fogallego/reviews-with-conditions
https://www.kaggle.com/fogallego/dataset-analysis

4.2. Description 51

������ ����	
 ����
 ���� ���� ���� ������ ����	
 ����
 ���� ���� ����

������ ���	
 �	��� ������ ��	�� 	����� ������ ��	 ���
�� �����	 ��	 ��
�

�������� ��	� �	��	�	 ������ ��		 	���� �������� ���� �����	 ����	� ���� ��
��

������ ���� ������� ������ ���� ����� ������ ���	 ������ ����� ���� 	����

����� ��� ����
� �����	 ��� ����� ����� ��	 ����� �����	 ��� �����

������� ���� ���
� ������ ���� ����� ������� ���� ����� ������ ��

����

����� ��� �
�
� ����	 ��� ��	�� ��������� ��
� �	���	 ������ ��
�
�
��

������ ��	�� �	����� �����	 ��	� 	����� ����� ��
� �������� ������ ��

��
�

����� ����� �	�	�� ������ ����� ������ ������ ��� ��	��� ������ ��� ����

���� ��	� ������ �����	 ��	
� 	
��
� ����� ��	� �	
���� ����� ��	� 	����

��� �� ����	 �	��
	 ����	� ����	 �
���� ���� ��� ������� ������ ��
 ���

�!���� ����
 ���
�� ������ ���
� �
���� ��� �� ���	 �����	 ������ ���� �����

!�����"���� ����� ������� ������ ���
� �
���� �!���� ���� ����� ������ ���� �����

!�����"���� ���� ����
� ������ ���� �����

������ ����	
 ����
 ���� ���� ���� ������ ����	
 ����
 ���� ���� ����

����� ��
�� �������� �	���
 ��
�	 	
��� ������ ��� �
���� ��� ��� ���	�

��������� ���
� ���	��	� ������ ����� ����	� ����� ��
 �
���� ��

 ��
 �����

����� ��	�� �	������ ����� ����
 ����� ��������� ��	 ����� ���� ��	 ����

�������� ��	� ����			 ����		 ����
 ������ ����� ��	 �	���
 ���	�� ��	 �����

������ ����� �������� ����	� ����	 �
���� �������� ����� ����� ����	� ���	� �	��
�

����� ���� ����
� ������ ����� ����� ������ ���� ��
���
 ����
 ���
 �����

�!� ����� ������� ������ ���
	 �
���� ����� ���� ����	� ������ ����
����

���� ����� �����
 ������ ���� ���	�� �!� ��� �	��� ����� �� �	��

��� �� ���� �
���	� ������ ����	 ������

�!���� ����	 �����	�� �����
 ����� ����
�

!�����"���� ���
� �
����	� ������ ���� ������

�����
�

�����
�

������

������

Table 4.1: Description: summary of our dataset.

We developed an application to label the dataset†3. There is an administra-
tor role that can create labelling tasks and assign them to specific labellers; the
administrator may also set a reward per sentence, which we have found a
motivation for students. A labeller performs the task as follows: for each sen-
tence, he or she must spot its conditions, if any; for each condition, he or she
must highlight the piece of text that contains the connective; the application
computes the indices automatically.

Our approach to label the sentences is to obtain as many labelled sen-
tences as possible instead of labelling the same sentence several times in an

†3The application is available at http://conditionslabelling.fernanortega.es. You can log in as
“labellerTest”/“M1entr45”.

http://conditionslabelling.fernanortega.es

52 Chapter 4. Norito: a dataset of conditions

����������	
�	������������	��
��	�

Figure 4.1: Description: typical numbers of words.

attempt to measure the inter-labeller agreement. We tried the following ap-
proach: first, we used the well-known IOB tags to label each individual token
as a token inside a condition (tag I), outside it (tag O), or at the beginning of a
condition (tag B); then, we computed some agreement measures on a per-
token basis. Unfortunately, this approach did not work well because the
classes are heavily unbalanced and it does not take overlapping into ac-
count. This motivates the need for further research on this issue, but this
clearly falls out of the scope of this dissertation. The key is that current agree-
ment measures assume that there are a number of data that the labellers
must annotate using some pre-defined classes; in our problem, the la-
bellers must spot the conditions, that is: there are not any pre-defined data to
be labelled, they have to be found by the labellers.

In Table §4.1, we provide a summary of our dataset. The columns of the
table denote the language (Lang), the domain (Domain), the number of condi-
tions found (#Conds), the number of sentences (#Sents), the number of
sentences that we have labelled as of the time of writing this article (#Lab), the
number of sentences that contain at least one condition (#SwC), and the
corresponding percentage (%SwC).

In Figures §4.1.a and §4.1.b, we present a box and whisker plot that repre-
sents the number of words per condition and sentence in our dataset. Note

4.3. Connective distribution 53

���� ������	
�� ��� ���� ������	
�� ��� ���� ������	
�� ��� ���� ������	
�� ���

� ��� �����	
�� � �
 ��� �����
������ �

���� ��� ��� � ������ ��� ��������� �

�� �� ����!������ � "�� �� "������
 �

��	� �� ����!��� � �� �
��!���������� �

#���� �� "
� � �! �� ���������� �

��
!� �� #�	�
� � � �� �
���� �

���� ������	
�� ��� ���� ������	
�� ��� ���� ������	
�� ��� ���� ������	
�� ���

�
 �$� ������
 � �� %� ��!������	��
����
 �

�&����
 �� ���� � ������ �$
� �

"�� �$ �&����' � "� %
������ �

��
���
 � �
�#
�����' ����� % �� �

��������� �
������
����
 � ��"�		�		� �

����� � ����	 ��������� � ���
���!	� �

� �

(�) *�+�") (�)�*�%�,	��"����	
!�)

��

	
	

(�) *�+�") (�)�*�%�,	��"����	
!�)

(#) *�+�") (#)�*�%�,	��"����	
!�)

�� ��

(�) *�+�") (�)�*�%�,	��"����	
!�)

��

Table 4.2: Connective distribution: connective samples.

that 50 words for conditions and 100 words for sentences are sensible upper
limits to their maximum lengths, which helps set an appropriate dimen-
sionality regarding many problems, e.g., transforming the sentence into a
vector to feed a neural network. Note that these thresholds do not miss any
conditions, but some extremely long outlier sentences.

4.3 Connective distribution
Table §4.2 shows the frequency of the five most frequent connectives and

the five around the 75-th percentile. Note that there are a few usual connec-
tives that have high frequencies, whereas the others have frequencies that are
very low.

The previous table makes it intuitively clear that the distribution of con-
nectives might be a long-tail distribution. To confirm it, it is necessary to
compare it to the Power-Law and the Log-Normal distributions, which are
the standard long-tail distributions, and to the Exponential distribution,
which is not long-tail by definition.

In Figure §4.2, we plot the Complementary Cumulative Distribution
Functions (CCDF) of the previous distributions. Realise that the Power-Law
distribution and the Log-Normal distribution are very similar to the con-
nective distribution, whereas the Exponential one is not. We conducted

54 Chapter 4. Norito: a dataset of conditions

��������	
��

�������	
��

����������� ��������	���

Figure 4.2: Connective distribution: analysis of distribution.

a Likelihood Ratio Test to check the previous idea statistically. The re-
sults of the test are shown in Table §4.3: for each language in our dataset, we
compared the distribution of connectives to every two pairs of the previ-
ous standard distributions and computed R as the log likelihood ratio and the
corresponding p-value.

Independently from the language, the comparison to the Power-Law dis-
tribution and the Log-Normal distribution returns p-values that are greater
than the standard significance level α = 0.05, which indicates that there is not
enough empirical evidence to conclude that the connective distribution is sig-
nificantly different from a Power-Law or a Log-Normal distribution; note that
the comparisons to the Power-Law and the Exponential distribution or Log-
Normal and the Exponential distribution return a positive log likelihood ratio
with a p-value that is smaller than the standard significance level, which indi-
cates that there is enough empirical evidence to conclude that the connective

4.4. Condition similarity 55

���� ����

�

����

�

	
�����

��������� ��	�
����� ��� ����

��������� ����������� ���� ����

��	�
����� ����������� ����� ���

��������� ��	�
����� ����� ���

��������� ����������� ����� ����

��	�
����� ����������� ����� ����

��������� ��	�
����� ����� ����

��������� ����������� ���� ���

��	�
����� ����������� ���� ���

��������� ��	�
����� ����� ��

��������� ����������� ����� ����

��	�
����� ����������� ����� ����

��

��

��

��

Table 4.3: Connective distribution: fitting the connective distribution.

distribution is similar to the Power-Law or the Log-Normal distributions, but
very different from the Exponential distribution.

The conclusion is that there is enough statistical evidence to consider the
connective distribution a long-tail distribution. Simply put, relying on a
collection of handcrafted patterns will typically fall short in terms of recall be-
cause there are too many ways to introduce conditions, which clearly argues
for a machine-learning solution.

4.4 Condition similarity
We have also analysed the similarity of the conditions that are avail-

able in the sentences of our dataset. Our goal was to check if there are groups
of conditions that are similar enough to be modelled using some com-
mon features, e.g., verbs, adverbs, or prepositions. To carry this analysis out,
we changed every word into lowercase and then computed a vectorisa-
tion of each condition as follows: each component of the vectors corresponds
to a different word and represents its tf-idf frequency in the condition being
vectorised. The English vectorisation has 2 311 words, the Spanish vectorisa-
tion has 3 796 words, the French vectorisation has 1 386 words, and the Italian
vectorisation has 658 words.

In order to visualise them, we performed a dimensionality reduction by
means of two well-known techniques, namely: Isomap and truncated single

56 Chapter 4. Norito: a dataset of conditions

��������	
�� �������	
��

�����������

��������	���

Figure 4.3: Condition similarity: Isomap projections.

value decomposition (TSVD). Furthermore, we computed the Gaussian Ker-
nel Density Estimation to better visualise the density of samples with Scott’s
Rule to compute the estimator bandwidth. In Figures §4.3 and §4.4, we show
a graphical representation of the Isomap and the TSVD projections of the con-
ditions, respectively. The hues range from bright yellow, which represents the
highest densities (conditions that are very similar to each other), to dark blue,
which represents the lowest densities (conditions that are not similar to each
other). It is not difficult to realise that the conditions are organised as fol-
lows: there is one small group with high density, a larger group with average
density, and a very large group with low density.

As a conclusion, it must not be difficult for a person to learn a rule to
mine instances of the first group since there are many examples avail-
able and they seem very similar to each other; but it must not be that easy to
deal with the many other conditions since they are not similar to each other.

4.5. Summary 57

��������	
�� �������	
��

�����������

��������	���

Figure 4.4: Condition similarity: TSVD projections.

This also argues for a machine-learning solution.

4.5 Summary

In this chapter, we have presented our publicly available dataset of condi-
tions. We performed a detailed analysis of our dataset in which we confirm
that the distribution of connectives follows a long-tail distribution in which
there are many similar conditions, but too many dissimilar conditions for a
person to spot them all and handcraft a set of rules that can mine them.

58 Chapter 4. Norito: a dataset of conditions

Chapter5

Conclusions

The Web has become one of the most valuable sources of data for compa-
nies. Many research fields that are related to text mining have sprouted or
have grown quickly around web data in recent years. The goal of text min-
ing is to process the text in a collection of documents to produce structured
information that can be used to feed business processes. There is a grow-
ing interest in taking advantage of the information that customer reviews
convey. Specifically, sentiment analysis has grown up as one of the most
promising text mining tasks in terms of market sales. Furthermore, we esti-
mate that about 10% of the sentences in our dataset contain conditions, which
makes it clear that they are important enough to be taken into account. Min-
ing conditions is a text mining process that seeks to spot the pieces of a
review that contain conditions in an attempt to improve the interpretation of
the results of other text mining tasks.

In this dissertation, we have studied the problem of devising an aspect-
based sentiment analysis system that integrates a condition miner, which has
resulted in a system called Torii. It relies on a micro-service architecture to
fulfil the requirements of scalability, reliability, and flexibility. It integrates a
deep neural network to mine conditions, a frequentist approach to dis-
cover aspects, and a lexicon-based approach to summarise sentiment. It
also provides a user interface to interact with the system. Torii has signi-
ficatively improved the services that Opileak provides to their customers.
In future, we would like to explore how recommenders or entity-relation
extractors may benefit from mining conditions.

We have explored several approaches to mine conditions and we have de-
vised Kami, which consists of two proposals to mine conditions. The first
one relies on a deep-learning regression approach to rank a set of candi-
dates that are computed from the dependency tree of the input sentence. The

59

60 Chapter 5. Conclusions

second one relies on a deep neural encoder-decoder approach that per-
forms sequence labelling on the input sentence. Our proposals do not require
to provide any user-defined patterns, do not require any specific-purpose dic-
tionaries, taxonomies, or heuristics, can mine conditions in both factual
and opinion sentences, and rely on readily-available components (a stem-
mer, a word embedder, and a deep learner). Our results confirm that they can
beat the others in terms of F1 score. In future, we would like to explore trans-
fer learning. An approach might be to use machine translation engines to
translate the sentences in our dataset to another language and then use the re-
sults as the training set. This idea might help avoid over-fitting due to the
inherent noise that it introduces.

Finally, we have realised that it does not exist any publicly available
datasets to evaluate condition miners. This motivated us to assemble Norito,
which provides 4.7M sentences in English, Spanish, French, and Italian
that were classified into 16 categories according to their sources. We have
also analysed it regarding how connectives are distributed and how simi-
lar the conditions are. In future, we would like to extend our dataset to
Latin languages like Portuguese or Catalan, Germanic languages like Ger-
man or Dutch, and Asian languages like Japanese or Chinese. Furthermore,
we found that current labelling agreement measures do not work well in our
context basically because the set of labels does not pre-exist, but must be spot-
ted by the labellers; straightforward applications of the existing measures
at the token level do not work well because their IOB tags are heavily
unbalanced and overlapping is very common.

Summing up, assuming that our research hypothesis is accepted, we think
that we have sufficiently proven our thesis. We hope that our results can ef-
fectively help companies make better decisions from the reviews that are
available on the Web. We also think that we have opened up an interesting
research path that may soon lead to new research results.

Bibliography

[1] A. M. Abirami and A. Askarunisa. Sentiment analysis model to em-
phasize the impact of online reviews in healthcare industry. Online
Information Review, 41(4):471–486, 2017.

[2] C. C. Aggarwal. Instance-based learning: A survey. In Data Clas-
sification: Algorithms and Applications, pages 157–186. Springer,
2014.

[3] C. C. Aggarwal and C. Zhai. An introduction to text mining. Springer,
2012.

[4] G. Antoniou, S. Batsakis, R. Mutharaju, J. Z. Pan, G. Qi, I. Tach-
mazidis, J. Urbani, and Z. Zhou. A survey of large-scale reasoning on
the Web of Data. Knowledge Eng. Review, 33:e21, 2018.

[5] B. Athiwaratkun, A. G. Wilson, and A. Anandkumar. Probabilistic
FastText for multi-sense word embeddings. In ACL, pages 1–11, 2018.

[6] M. Beccue and A. Kaul. Emotion recognition and sentiment analysis,
2018. Available at https://www.tractica.com/research/emotion-recognition.

[7] Y. Bengio, P. Y. Simard, and P. Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Trans. Neural Networks, 5
(2):157–166, 1994.

[8] S. Bird. NLTK: the natural language toolkit. In ACL, pages 69–72, 2006.

[9] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[10] P. Chikersal, S. Poria, E. Cambria, A. F. Gelbukh, and C. E. Siong.
Modelling public sentiment in Twitter. In CICLing (2), pages 49–65,
2015.

[11] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

61

https://www.tractica.com/research/emotion-recognition

62 Bibliography

[12] P. Cortez, S. Moro, P. Rita, D. King, and J. Hall. Insights from a text
mining survey on expert systems research from 2000 to 2016. Expert
Systems, 35(3):1–10, 2018.

[13] E. Costa-Montenegro, A. Tsybanev, H. Cerezo-Costas, F. J. González-
Castaño, F. J. Gil-Castiñeira, A. B. Barragáns-Martínez, and
D. Almuiña-Troncoso. In-memory distributed software solution to im-
prove the performance of recommender systems. Softw., Pract. Exper.,
47(6):867–889, 2017.

[14] H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva. Getting more
out of biomedical documents with GATE’s full lifecycle open source text
analytics. PLoS Computational Biology, 9(2), 2013.

[15] C. N. dos Santos, B. Xiang, and B. Zhou. Classifying relations by ranking
with convolutional neural networks. In ACL (1), pages 626–634, 2015.

[16] E. I. Elmurngi and A. Gherbi. Unfair reviews detection on amazon re-
views using sentiment analysis with supervised learning techniques.
JCS, 14(5):714–726, 2018.

[17] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and Mausam. Open
Information Extraction: the second generation. In IJCAI, pages 3–10,
2011.

[18] B. Evelson and S. Sridharan. The forrester wave: AI-based text analytics
platforms, 2018. Available at https://www.forrester.com/report/The+Forrester+
Wave+AIBased+Text+Analytics+Platforms+Q2+2018/-/E-RES141340.

[19] D. Ferrucci, A. Lally, K. Verspoor, and E. Nyberg. Unstructured
information management architecture (UIMA), 2009. Available at
https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html.

[20] F. O. Gallego. Torii: A novel attribute-based polarity analysis. In PAAMS
(Doctoral consortium), pages 395–397, 2016.

[21] F. O. Gallego. Torii: Attribute-based polarity analysis with big datasets.
In SIGIR (Doctoral consortium), page 1187, 2016.

[22] F. O. Gallego and R. Corchuelo. A dataset to evaluate condition miners.
In MLSS, pages 1–10, 2018.

[23] F. O. Gallego and R. Corchuelo. A hybrid approach to mining
conditions. In HAIS, pages 264–276, 2018.

https://www.forrester.com/report/The+Forrester+Wave+AIBased+Text+Analytics+Platforms+Q2+2018/-/E-RES141340
https://www.forrester.com/report/The+Forrester+Wave+AIBased+Text+Analytics+Platforms+Q2+2018/-/E-RES141340
https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html

Bibliography 63

[24] F. O. Gallego and R. Corchuelo. A dataset to evaluate condition miners.
In ESWC, 2019. Under review.

[25] F. O. Gallego and R. Corchuelo. A deep-learning approach to mining
conditions. Knowl.-Based Syst., 2019. Under review.

[26] F. O. Gallego and R. Corchuelo. On mining conditions using
encoder-decoder networks. In ICAART, 2019. Under review.

[27] F. O. Gallego and R. Corchuelo. Torii: An aspect-based sentiment analy-
sis system that can mine conditions. Softw., Pract. Exper., 2019. Under
review.

[28] S. Grimes. Sentiment, subjectivity, and social analysis go to work: An
industry view. In WASSA@NAACL-HLT, page 2, 2016.

[29] H.-G. Han, S. Zhang, and J.-F. Qiao. An adaptive growing and prun-
ing algorithm for designing recurrent neural network. Neurocomputing,
242:51–62, 2017.

[30] M. Honnibal and I. Montani. spaCy: Industrial-strength natural
language processing, 2018. Available at https://spacy.io/.

[31] M. Hu and B. Liu. Mining opinion features in customer reviews. In
AAAI, pages 755–760, 2004.

[32] Y. Kim. Convolutional neural networks for sentence classification. In
EMNLP, pages 1746–1751, 2014.

[33] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence
data. In ICML, pages 282–289, 2001.

[34] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nature, 521:
436–444, 2015.

[35] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. Mc-
Closky. The stanford CoreNLP natural language processing toolkit. In
ACL (System Demonstrations), pages 55–60, 2014.

[36] F. Marozzo, D. Talia, and P. Trunfio. A workflow management system
for scalable data mining on clouds. IEEE Trans. Services Computing, 11
(3):480–492, 2018.

https://spacy.io/

64 Bibliography

[37] Mausam. Open information extraction systems and downstream
applications. In IJCAI, pages 4074–4077, 2016.

[38] Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Etzioni. Open lan-
guage learning for information extraction. In EMNLP-CoNLL, pages
523–534, 2012.

[39] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In
NIPS, pages 3111–3119, 2013.

[40] T. M. Mitchell, W. W. Cohen, E. R. Hruschka, P. P. Talukdar, J. Betteridge,
A. Carlson, B. D. Mishra, M. Gardner, B. Kisiel, J. Krishnamurthy,
N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. A. Platanios, A. Rit-
ter, M. Samadi, B. Settles, R. C. Wang, D. T. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. Never-ending learning. In
AAAI, pages 2302–2310, 2015.

[41] Y. Nakayama and A. Fujii. Extracting condition-opinion relations toward
fine-grained opinion mining. In EMNLP, pages 622–631, 2015.

[42] R. Narayanan, B. Liu, and A. N. Choudhary. Sentiment analysis of
conditional sentences. In EMNLP, pages 180–189, 2009.

[43] M. Nilashi, O. Ibrahim, and K. Bagherifard. A recommender sys-
tem based on collaborative filtering using ontology and dimensionality
reduction techniques. Expert Syst. Appl., 92:507–520, 2018.

[44] M. Nußbaum-Thom, J. Cui, B. Ramabhadran, and V. Goel. Acous-
tic modeling using bi-directional gated recurrent convolutional units. In
Interspeech, pages 390–394, 2016.

[45] A. G. Pablos, M. Cuadros, and G. Rigau. W2VLDA: almost unsuper-
vised system for aspect-based sentiment analysis. Expert Syst. Appl., 91:
127–137, 2018.

[46] L. Padró and E. Stanilovsky. Freeling 3.0: towards wider multilinguality.
In LREC, pages 2473–2479, 2012.

[47] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training
recurrent neural networks. In ICML, pages 1310–1318, 2013.

[48] J. Pearl. Probabilistic reasoning in intelligent systems. Morgan
Kaufmann, 1989.

Bibliography 65

[49] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543, 2014.

[50] K. Ravi and V. Ravi. A survey on opinion mining and sentiment analysis:
tasks, approaches and applications. Knowl.-Based Syst., 89:14–46, 2015.

[51] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

[52] K. Schouten and F. Frasincar. Survey on aspect-level sentiment analysis.
IEEE Trans. Knowl. Data Eng., 28(3):813–830, 2016.

[53] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks.
IEEE Trans. Signal Processing, 45(11):2673–2681, 1997.

[54] M. Skeppstedt, T. Schamp-Bjerede, M. Sahlgren, C. Paradis, and A. Ker-
ren. Detecting speculations, contrasts and conditionals in consumer
reviews. In WASSA@EMNLP, pages 162–168, 2015.

[55] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In NIPS, pages 3104–3112, 2014.

[56] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-V4,
Inception-ResNet, and the impact of residual connections on learning. In
AAAI, pages 4278–4284, 2017.

[57] M. Taboada, J. Brooke, M. Tofiloski, K. D. Voll, and M. Stede. Lexicon-
based methods for sentiment analysis. Computational Linguistics, 37(2):
267–307, 2011.

[58] P. Tang, H. Wang, and S. Kwong. GoogleNet based multi-stage fea-
ture fusion of deep CNN for scene recognition. Neurocomputing, 225:
188–197, 2017.

[59] The Apache Software Foundation. Apache OpenNLP, 2018. Available at
https://opennlp.apache.org.

[60] H.-L. Yang and Q.-F. Lin. Opinion mining for multiple types of emotion-
embedded products/services through evolutionary strategy. Expert
Syst. Appl., 99:44–55, 2018.

[61] S. Yoo, J. Song, and O. Jeong. Social media contents based sentiment
analysis and prediction system. Expert Syst. Appl., 105:102–111, 2018.

[62] F. Zhai, S. Potdar, B. Xiang, and B. Zhou. Neural models for sequence
chunking. In AAAI, pages 3365–3371, 2017.

https://opennlp.apache.org

66 Bibliography

This document was typeset on January 14, 2019 at 12:03 using class RC–BOOK α2.14 for
LATEX2ϵ. As of the time of writing this document, this class is not publicly available since it is

in alpha version. Only members of The Distributed Group are using it to typeset their docu-
ments. Should you be interested in giving forthcoming public versions a try, please, do

contact us at contact@tdg-seville.info. Thanks!

mailto:contact@tdg-seville.info?subject=Inquiry about RC-BooK

	Aspect-based Sentiment Analysis
	Document Lists
	Contents
	List of figures
	List of tables

	Front Matter
	Acknowledgements
	Abstract
	Resumen

	Introduction
	Research context
	Related work
	Research rationale
	Summary of contributions
	Collaborations
	Structure of this dissertation

	Torii: the aspect-based sentiment analysis system
	Introduction
	The Data Storage component
	The Data Processors component
	The Client Application component
	Summary

	Kami: the proposals to mine conditions
	Introduction
	A candidate-ranking proposal
	An encoder-decoder proposal
	Experimental analysis
	Summary

	Norito: a dataset of conditions
	Introduction
	Description
	Connective distribution
	Condition similarity
	Summary

	Conclusions
	Bibliography

