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ABSTRACT  

We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate 

synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, 

spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and 

spsa2/spsb/spsc mutants displayed wild type  (WT) vegetative and reproductive 

morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth 

of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was 

reduced compared with WT plants. Furthermore, these plants displayed a high dark 

respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly 

germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, 

except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural 

carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and 

activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and 

accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose 

conversion process, even under continuous light conditions. Results presented in this 

work show that SPS is essential for plant viability, reveal redundant functions of the four 

SPS isoforms in processes that are important for plant growth and nonstructural 

carbohydrate metabolism, and strongly indicate that accelerated starch turnover and 

enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc 

leaves. 
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1. Introduction 

In the majority of higher plants sucrose is the main end-product of photosynthesis. It 

serves as the mobile form of photoassimilate that is transported from leaves to sink 

organs. This disaccharide plays a major role in growth, and also acts as a signaling 

molecule in the control of the expression of genes involved in multiple processes such as 

central carbon and nitrogen metabolisms [1], storage of proteins [2], cell cycle and 

differentiation [3], flowering [4] and seed development [5]. During the day, 

photosynthetically fixed carbon is either retained within the chloroplast of leaf mesophyll 

cells to fuel the synthesis of transitory starch, or exported to the cytosol as triose 

phosphates by means of the triose-phosphate/phosphate translocator (TPT) to be 

converted into activated forms of hexoses and sucrose (Fig. S1A). Sucrose is synthesized 

by the action of two enzymes: sucrose-phosphate synthase (SPS, which catalyzes the 

conversion of fructose-6-phosphate (F6P) and UDP-glucose (UDPG) into sucrose-6-

phosphate (S6P)), and sucrose-phosphate phosphatase (SPP, which hydrolyzes S6P to 

produce sucrose) (Fig. S1A). During the night, starch is mobilized to produce maltose 

that is transported to the cytosol by means of the MEX1 translocator (Fig. S1B). Once in 

the cytosol maltose is converted into heteroglycans, glucose-1-P (G1P), UDPG, S6P and 

sucrose by the stepwise reactions of the cytosolic disproportionating enzyme DPE2, 

glucan phosphorylase PHS2, UDPG pyrophosphorylase (UGP), SPS and SPP [6-8] (Fig. 

S1B). Glucose, another starch breakdown product, can be transported to the cytosol by 

means of the pGlcT transporter [9]. Once in the cytosol, glucose can be converted into 

glucose-6-P (G6P), G1P, UDPG, S6P and sucrose by the stepwise reactions of 

hexokinase (HK), phosphoglucomutase (PGM), UGP, SPS and SPP [9] (Fig. S1B).  

 SPS is a key control point of carbon flux into sucrose that is regulated by a 

hierarchy of mechanisms including posttranslational modification via protein 

phosphorylation, activation by G6P and inhibition by inorganic orthophosphate (Pi) 

[10,11], and transcriptional regulation of SPS gene expression [12,13]. SPS isoforms in 

the many plant species examined to date are encoded by a small SPS multigene family. 

Studies of the predicted amino acid sequences and gene structure have shown that the 

Arabidopsis SPS family consists of four SPS genes, referred to as AtSPSA1 (At5g20280), 

AtSPSA2 (At5g11110), AtSPSB (At1g04920) and AtSPSC (At4g10120) [14,15]. Genome-
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wide expression analyses (https://www.geneinvestigator.ethz.ch) and comparative studies 

of SPS gene expression in Arabidopsis [14,15] provided evidence for distinct, but 

partially overlapping spatial and temporal expression patterns for the four SPS genes. 

Metabolic studies of an spsa1/spsc double knockout Arabidopsis mutant revealed effects 

on growth and leaf nonstructural carbohydrate metabolism in this mutant [15]. Thus 

spsa1/spsc plants cultured under 8 h light/16 h dark photoregime displayed a dwarf 

phenotype. Also, these plants accumulated low levels of sucrose and moderately high 

levels of both starch and maltose when compared with wild type (WT) plants, strongly 

indicating that SPSA1 and SPSC have overlapping functions in aspects related with 

growth and leaf nonstructural carbohydrate metabolism. According to Volkert et al. [15], 

the increase in starch was probably not due to an increased partitioning of carbon into 

starch, but was rather caused by an impaired starch mobilization during the night due to 

impairment in downstream metabolization of maltose.  

 Mutants impaired in TPT and cytosolic fructose 1,6-bisphosphatase display a 

nearly WT growth phenotype [16-19], strongly indicating the operation in these mutants 

of mechanism(s) of diurnal sucrose biosynthesis additional/alternative to that illustrated 

in Fig. S1A, and showing that TPT and cytosolic fructose 1,6-bisphosphatase are not 

essential for plant viability. While SPS catalyzes an undoubtedly crucial step in sucrose 

biosynthesis, the challenge still remains to determine if SPS is an essential function for 

plant viability and if, in addition to the functional overlapping occurring between SPSA1 

and SPSC in planta, there are other functional interactions between the four SPS 

isoforms. Towards the end of exploring possible interactions between the four SPS 

isoforms in planta, and between sucrose biosynthesis and other metabolic pathways when 

SPS-mediated sucrose production is limited, in this work we conducted a comprehensive 

study of different multiple SPS knock-out mutants. Results presented in this work show 

that, in Arabidopsis, (a) SPS is essential for plant viability, implying that sucrose is 

mainly synthesized through the SPS-SPP pathway and (b) the four SPS isoforms are 

functionally redundant in processes that are important for plant growth, vegetative and 

reproductive development, and nonstructural carbohydrate metabolism. Furthermore, the 

results provide strong evidence supporting the occurrence in illuminated spsa1/spsc 

leaves of mechanisms alleviating the blockage of the starch-to-S6P conversion process 
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such as accelerated starch turnover, and channeling of starch breakdown products 

towards the glycolytic, oxidative pentose phosphate (OPP) and tricarboxylic acid cycle 

(TCA) pathways. 

 

2. Materials and methods 

2.1. Plants, growth conditions and sampling 

Unless otherwise indicated WT Arabidopsis thaliana L. (Heynh) ecotype Columbia and 

T-DNA insertion lines in this background were cultured in soil in growth chambers under 

the indicated photoperiod conditions (light intensity of 90 µmol photons s–1 m-2) (22oC 

during the light period and 18oC during the dark period). Harvested source leaves were 

immediately freeze-clamped and ground to a fine powder in liquid nitrogen with a pestle 

and mortar.  

 

2.2. Production of multiple T-DNA knock-out lines 

The T-DNA insertion mutants spsa1 (SALK_119162), spsa2 (SALK_064922), spsb 

(GABI_368F01) and spsc (SAIL_31_H05) were obtained from the European Arabidopsis 

Stock Center (NASC) (Fig. S2). The T-DNA insertion in spsa1 mutant is in the third 

intron, whereas the T-DNA insertions in spsa2, spsb and spsc are in the fifth, ninth and 

fifth exon of SPSA2, SPSB and SPSC, respectively (Fig. S2). By crossing these mutants, 

self-pollinating the resulting heterozygous mutants, and PCR screening for homozygous 

progeny using the oligonucleotide primers listed in Table S2 we produced the 

spsa1/spsa2, spsa1/spsb, spsa1/spsc, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsb/spsc, 

spsa1/spsa2/spsb, spsa1/spsa2/spsc, spsa2/spsb/spsc, and spsa1/spsa2/spsb/spsc mutants 

(Table S1, Fig. S3). 

 The knock-out status of the T-DNA mutants was confirmed by RT-PCR for SPS 

transcripts using specific primers that spanned the T-DNA insert site of each gene (Table 

S3). To this end, total RNA was extracted from leaves using the trizol method according 

to the manufacturer´s procedure (Invitrogen). RNA was treated with RNAase free 

DNAase (Takara). RT-PCR was conducted with SuperScript III one-step RT-PCR with 

Platinum Taq DNA polymerase kit (12574-018; Invitrogen) using 100 ng of RNA and the 

SPSA1, SPSA2, SPSB and SPSC specific primers listed in Table S3. 18S RNA was used 
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as the positive control. PCR products were separated on 1% (w/v) agarose gels containing 

ethidium bromide and visualized by ultraviolet light. SPSA1, SPSA2, SPSB and SPSC 

PCR products were detected in WT plants, but were undetectable in spsa1, spsa2, spsb 

and spsc mutants, respectively (Fig. S4).  

 

2.3. Enzyme assays 

One g of the frozen powder (see above) was resuspended at 4oC in 3 mL of 100 mM 

HEPES (pH 7.5), 2 mM EDTA, 2 mM dithiothreitol, 1 mM PMSF and 10 mL/L protease 

inhibitor cocktail (Sigma P9599), and centrifuged at 14,000 x g for 20 min. The 

supernatant was desalted by ultrafiltration on Vivaspin 500 centrifugal concentrator 

(Sartorius, Ref. VS0102) and the protein extract thus obtained was assayed for enzymatic 

activities. ADP-glucose (ADPG) pyrophosphorylase (AGP) and UGP activities were 

measured following the two-step assay method described in [20]. Phosphoglucose 

isomerase (PGI) and sucrose synthase (SuSy) activities were measured as described in 

[21] and [22], respectively. PGM and amylolytic activities were assayed as described in 

[23] and [24], respectively. Acid and alkaline invertases were measured as described in 

[25]. HK activity was assayed as described in [26]. Alkaline pyrophosphatase (PPase) 

and SPS were measured as described in [27]. Starch synthase (SS) activity was measured 

as described in [28]. Fructose-1,6-bisphosphate (F1,6P2) aldolase, glyceraldehyde-3-

phosphate dehydrogenase (G3PDH), 3-phosphoglycerate (3PGA) kinase and pyruvate 

kinase (PK) were measured as described in [29]. G6P dehydrogenase (G6PDH), 6-

phosphogluconate dehydrogenase (6PGDH) and isocitrate dehydrogenase (IDH) were 

measured as described in [30]. Malate dehydrogenase (MDH) and succinate 

dehydrogenase (SDH) were measured as described in [31] and [32], respectively. One 

unit (U) is defined as the amount of enzyme that catalyzes the production of 1 µmol of 

product per min.  

 

2.4. Non-reducing western blot analyses of AGP 

For non-reducing western blots of AGP, 50 mg of the homogenized frozen material (see 

above) was extracted in cold 16% (w/v) trichloroacetic acid in diethyl ether, mixed, and 

stored at –20oC for at least 2 h as described in [20]. The pellet was collected by 



 8

centrifugation at 10,000 x g for 5 min at 4oC, washed 3 times with ice-cold acetone, dried 

briefly under vacuum, and resuspended in 1x Laemmli sample buffer containing no 

reductant. Protein samples were separated on 10% SDS-PAGE, transferred to 

nitrocellulose filters, and immunodecorated by using antisera raised against maize AGP 

as primary antibody [20], and a goat anti-rabbit IgG alkaline phosphatase conjugate 

(Sigma) as secondary antibody. 

 

2.5. Native gel assay for PGM activity 

PGM zymograms were performed essentially as described in [23]. Protein extracts (see 

above) of both WT and spsa1/spsc leaves were loaded onto a 7.5% (w/v) polyacrylamide 

gel. After electrophoresis gels were stained by incubating in darkness at room 

temperature with 0.1 M Tris-HCl (pH 8.0), 5 mM G1P, 1 mM NAD+, 4 mM MgCl2, 0.2 

mM methylthiazolyldiphenyl-tetrazolium bromide (Sigma M5655) and 0.25 mM 

phenazine methosulfate (Sigma P9625) and 1 U/mL of G6PDH from Leuconostoc 

mesenteroides (Sigma G8404). 

 

2.6. Analytical procedures 

ADPG content was measured by HPLC-MS/MS as described in [33]. 3PGA was 

determined as described in [34]. For measurement of sucrose, glucose, maltose and 

fructose, a 0.1 g aliquot of the frozen leaf powder (see above) was resuspended in 1 mL 

of 90% ethanol, left at 70oC for 90 min and centrifuged at 13,000 x g for 10 min. For 

measurement of G6P, F6P, F1,6P2, S6P, UDPG and G1P 0.1 g aliquot of the frozen leaf 

powder was resuspended in 1 mL of 1 M HClO4, left at 4oC for 2 h and centrifuged at 

10,000 x g for 5 min. The supernatant was neutralized with K2CO3 and centrifuged at 

10,000 x g. Sucrose, glucose, fructose, maltose, F6P, F1,6P2, G6P, S6P and G1P from the 

above supernatants were determined by HPLC with pulsed amperometric detection on a 

DX-500 Dionex system by gradient separation with a CarboPac 10 column according to 

the application method suggested by the supplier (100 mM NaOH/100 mM sodium 

acetate to 100 mM NaOH/500 mM sodium acetate in 40 min). UDPG was measured as 

described in [35] by HPLC on a system obtained from Waters Associates fitted with a 

Partisil-10-SAX column. Starch was measured by using an amyloglucosydase–based test 
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kit (Boehringer Mannheim, Germany). Oxaloacetate, pyruvate, phospho-enol-pyruvate 

(PEP) and isocitrate were determined as described in [36]. Recovery experiments were 

carried out by the addition of known amounts of metabolites standards to the frozen 

tissue slurry immediately after addition of extraction solutions. The difference in the 

measured amounts between the samples with and without added standards was used as an 

estimate of the percentage of recovery. All data were corrected for loss during extraction. 

 

2.7. Iodine staining and microscopic localization of starch granules  

Leaves harvested at the end of the light period were fixed by immersion into 3.7% 

formaldehyde in phosphate buffer. Leaf pigments were then removed in 96% ethanol. Re-

hydrated samples were stained in iodine solution (KI 2% (w/v) I2 1% (w/v)) for 30 min, 

rinsed briefly in deionized water and photographed. Samples for sectioning were 

immersed in cryoprotective medium OCT (Tissue-Tec, USA) and frozen at -50ºC. 

Cryosections of 10 µm thick were obtained in AS620 Cryotome (Shandon, England). 

After thawing, sections were stained in iodine solution for 2 min at room temperature, 

mounted to microscope slides and observed using a stereomicroscope Olympus MVX10 

(Japan). Microphotographs were captured with video camera DP72 (Olympus, Japan) and 

Cell D software (Olympus, Japan). 

 

2.8. Gas exchange determinations 

Fully expanded apical leaves were enclosed in a LCipro portable photosynthesis system 

(ADC BioScientfic Ltd., Hoddesdon, Herts). Gas exchange parameters including net 

photosynthetic CO2 fixation rate (An), stomatal conductance (gs) and intercellular CO2 

concentrations (Ci) were measured at 25ºC with photosynthetic photon flux densities of 

90 and 350 µmol m-2 s-1 and CO2 concentration of 450 µmol mol-1. An was calculated 

using equations developed in [37]. gs values were determined as described in [38]. The 

rate of mitochondrial respiration in the dark was determined by measuring the rate of CO2 

evolution in the dark.  

 

2.9. Statistical analysis 

The data presented are the means of three independent experiments, with 3-5 replicates 
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for each experiment (means ± SE). The significance of differences between the control 

and the different sps mutants was statistically evaluated with Student´s t-test using the 

SPSS software. Differences were considered significant at a probability level of P<0.05. 

 

3. Results  

3.1. Phenotypic characterization of double, triple and quadruple AtSPS knockout mutants 

We produced and characterized spsa1/spsa2, spsa1/spsb, spsa1/spsc, spsa2/spsb, 

spsa2/spsc and spsb/spsc double knock-out mutants, the spsa1/spsb/spsc, 

spsa1/spsa2/spsb, spsa1/spsa2/spsc and spsa2/spsb/spsc triple knock-out mutants, and the 

spsa1/spsa2/spsb/spsc quadruple knock-out mutant (Fig. S3, Table S1).  

 As shown in Fig. 1A,B, soil-grown spsa1/spsa2, spsa1/spsb, spsa2/spsb, 

spsa2/spsc and spsb/spsc double mutants grew at the same rate as WT plants, and 

displayed WT vegetative morphology. Furthermore, these mutants produced flowers and 

siliques displaying WT phenotype and fertile seeds (not shown). Noteworthy, the 

spsa2/spsb/spsc and the spsa1/spsa2/spsb triple mutants grew at the same rate as WT 

plants, displayed WT vegetative morphology (Fig. 1A,B), and produced flowers and 

siliques displaying WT phenotype (Fig. 1C), showing that SPSA1 expression in the total 

absence of SPSA2+SPSB+SPSC expression, and SPSC expression in the total absence of 

SPSA1+SPSA2+SPSB expression guarantee normal seed development, germination and 

subsequent development of the plant.  

 Growth of spsa1/spsc rosettes was reduced when compared with WT plants (Fig. 

1), which is consistent with Volkert et al. [15]. This phenotype could be reverted to WT 

when plants were cultured in MS supplemented with sucrose (Fig. S5). Furthermore, 

spsa1/spsc flowers and siliques were small when compared with those of WT plants (Fig. 

1C). Moreover, this mutant produced few seeds when compared with WT plants (not 

shown), the overall data thus strongly indicating that SPSA1 and SPSC play overlapping 

functions in processes that are important for both vegetative and reproductive growth. 

The spsa1/spsa2/spsc mutant was viable although its vegetative and reproductive growth 

was reduced when compared with that of spsa1/spsc (Fig. 1). Therefore, SPSB 

expression in the total absence of SPSA1+SPSA2+SPSC expression is enough to 

guarantee plant viability.  
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 During the process of generation of the spsa1/spsa2/spsb/spsc quadruple mutant 

we produced the spsb/spsc double mutant heterozygous for the spsa1 and spsa2 

mutations (spsb/spsc/het-spsa1/het-spsa2) and the spsa2/spsb/spsc triple mutant 

heterozygous for the spsa1 mutation (spsa2/spsb/spsc/het-spsa1). PCR analyses of 300 

plants of the progeny of self-crossed spsb/spsc/het-spsa1/het-spsa2 and 

spsa2/spsb/spsc/het-spsa1 mutants did not allow us to identify any viable 

spsa1/spsa2/spsb/spsc plant. Noteworthy, some of the seeds produced by self-crossed 

spsb/spsc/het-spsa1/het-spsa2 and spsa2/spsb/spsc/het-spsa1 mutants poorly germinated 

in MS with or without sucrose supplementation, and produced plants with an extremely 

reduced size and aberrant growth phenotype that were unable to produce flowers (Fig. 

1A). PCR analyses revealed that these plants were spsa1/spsa2/spsb/spsc mutants (Fig. 

S3). These analyses also revealed that some of the aberrant plants obtained from seeds 

produced by the self-crossed spsb/spsc/het-spsa1/het-spsa2 mutant possessed a 

spsa1/spsb/spsc genotype (Fig. S3). The overall data thus provided strong evidence that 

(a) SPSA1, SPSB and SPSC play overlapping functions in processes that are essential for 

normal seed development and germination and subsequent development of the plant, and 

(b) SPSA2 expression does not compensate the detrimental effects caused by the 

complete loss of SPSA1+SPSB+SPSC expression.   

  

3.2. Gas exchange analyses of double and triple AtSPS knockout mutants 

An, Ci and gs in leaves of viable sps mutants (including the spsa1/spsa2, spsa1/spsb, 

spsa1/spsc, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsc, spsa1/spsa2/spsb and 

spsa2/spsb/spsc mutants) cultured under ambient CO2 levels and either 90 µmol photons 

s–1 m-2 or saturating light (350 µmol photons s–1 m-2) were comparable to those of WT 

plants (Fig. S6). Dark respiration in leaves of all sps mutants except spsa1/spsc and 

spsa1/spsa2/spsc was normal when compared with that of WT leaves (Fig. 2). In clear 

contrast, dark respiration in leaves of spsa1/spsc and spsa1/spsa2/spsc was exceedingly 

higher than that of WT plants (Fig. 2) indicating that SPSA1 and SPSC play overlapping 

functions that are important for plant respiration.  

 

3.3. Metabolic characterization of double and triple AtSPS knockout mutants 
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We measured the levels of metabolites closely linked to sucrose and starch metabolism 

(starch, maltose, sucrose, glucose, fructose, G1P, G6P, S6P, UDPG and ADPG) in leaves 

of all viable sps mutants cultured under 16 h light/8 h dark photoperiod conditions. 

Because of their aberrant growth and extremely reduced size, non-viable spsa1/spsb/spsc 

and spsa1/spsa2/spsb/spsc mutants could not be included in this study. As shown in Fig. 

3, soil-grown spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, 

spsa1/spsa2/spsb and spsa2/spsb/spsc mutants accumulated WT levels of nonstructural 

carbohydrates at the end of the light period, strongly indicating that SPSA1 expression in 

the total absence of SPSA2+SPSB+SPSC expression, and SPSC expression in the total 

absence of SPSA1+SPSA2+SPSB expression guarantee normal nonstructural 

carbohydrate metabolism of the plant. 

 Sucrose content at the end of the light period in leaves of the spsa1/spsc and 

spsa1/spsa2/spsc mutants was ca. 70% of that of WT plants (Fig. 3). S6P levels in 

spsa1/spsc and spsa1/spsa2/spsc leaves were exceedingly lower than in WT leaves (Fig. 

3), indicating that SPSA1+SPSC expression is a major determinant of leaf SP6 and 

sucrose biosynthesis in Arabidopsis. Levels of glucose, G1P, G6P and UDPG (all 

intermediates of the nocturnal starch-to-sucrose conversion pathway, Fig. S1B) in 

spsa1/spsc and spsa1/spsa2/spsc leaves were 3-4 fold higher than in WT leaves. 

Noteworthy, maltose content in leaves of spsa1/spsc and spsa1/spsa2/spsc plants cultured 

under a 16 h light/8 h dark photoregime were ca. 80- and 100-fold higher than in WT 

leaves (Fig. 3), respectively, which is exceedingly higher than that previously reported 

using spsa1/spsc plants cultured under an 8 h light/16 h dark photoregime [15]. 

Furthermore, starch content in leaves of spsa1/spsc and spsa1/spsa2/spsc plants cultured 

under a 16 h light/8 h dark photoregime was 15-fold higher than in WT leaves, reaching 

values of 400-450 µmol glucose/g fresh weight (FW) that are comparable to those 

occurring in reserve organs such as potato tubers [25], and exceedingly higher than those 

previously reported for spsa1/spsc plants cultured under an 8 h light/16 h dark 

photoregime [15]. Iodine staining analyses were consistent with the presence of high 

levels of starch in spsa1/spsc and spsa1/spsa2/spsc leaves (Fig. S7 and data not shown). 

Subsequent light microscopy analyses of leaf sections showed that iodine stained starch 

granules were localized within chloroplasts of mesophyll cells (Fig. S7 and data not 
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shown). The overall data strongly indicate that (a) SPSA1, SPSA2 and SPSC overlap in 

functions that are important for nonstructural carbohydrate metabolism, and (b) there 

occurs a blockage of the nocturnal starch-to-S6P conversion pathway in spsa1/spsc and 

spsa1/spsa2/spsc leaves. 

   

3.4. Enzymatic characterization of multiple AtSPS mutants 

We measured the maximum catalytic activities of enzymes closely connected to sucrose 

and starch metabolism in leaves of all viable sps mutants cultured under 16 h light/8 h 

dark photoperiod conditions. Due to their extremely reduced size and aberrant growth, we 

could only measure SPS activities in the spsa1/spsa2/spsb/spsc mutants. As shown in 

Fig. 4, SPS activities in protein extracts from the spsa1/spsa2/spsb/spsc mutant were 

negligible. Also, the maximal extractable SPS activity from mature source leaves of 

spsa1/spsc and spsa1/spsa2/spsc plants was ca. 30-35% of the WT activity (Fig. 4). SPS 

activities in leaves of the spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, 

spsa1/spsa2/spsb and spsa2/spsb/spsc mutants were ca. 50-60% of that of WT leaves 

(Fig. 4). Only minor changes likely due to statistical variation were observed for SS, HK, 

AGP, PPase, SuSy, UGP, acid and alkaline invertases, α-amylase and β-amylase 

activities in leaves of these mutants (Fig. S8). In clear contrast, total PGM activities in 

leaves of the spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, 

spsa1/spsa2/spsb and spsa2/spsb/spsc mutants were 3-5 fold higher than that of WT 

leaves (Fig. 4). Noteworthy, total PGM activity in spsa1/spsc and spsa1/spsa2/spsc 

leaves was ca. 20 fold higher than that of WT leaves (Fig. 4).  

 Three PGM isoforms exist in Arabidopsis, one in the plastid (PGM1) and two 

(PGM2 and PGM3) in the cytosol [23,39]. To test which one(s) of the three PGM 

isoforms(s) is/are up-regulated in the spsa1/spsc mutant, we carried out zymogramic 

analyses of PGM activity on WT and spsa1/spsc leaves. As shown in Fig. S9, these 

analyses revealed that the three isoforms were strongly up-regulated in the spsa1/spsc 

mutant when compared with WT plants. Essentially the same results were obtained using 

the spsa1/spsa2/spsc mutant (not shown). 

 AGP activity is subjected to redox regulation of the small AGP subunit (APS1) 

[20,40]. Whether changes in redox status of APS1 explain the high starch content 
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phenotype of spsa1/spsc and spsa1/spsa2/spsc leaves was investigated by carrying out 

APS1 immunoblot analyses of proteins from leaves of WT and the spsa1/spsc plants that 

had previously been extracted and electrophoretically separated under non-reducing 

conditions. In these conditions APS1 is present as a mixture of ca. 50 kDa active 

(reduced) monomers and ca. 100 kDa inactive (oxidized) dimers formed by 

intermolecular links involving Cys bridges. Consistent with previous reports [20,40], 

these analyses revealed that most of APS1 is largely oxidized (inactive) in both WT and 

spsa1/spsc leaves (Fig. S10). These analyses also revealed that leaves of the spsa1/spsc 

mutant accumulate identical amounts of ca. 50 kDa monomers and ca. 100 kDa dimers of 

APS1 than WT leaves, the overall data strongly indicating that the high starch content of 

spsa1/spsc leaves is not ascribed to redox activation of APS1.  

 

3.5. The oxidative pentose phosphate pathway, glycolysis and the tricarboxylic acid cycle 

are up-regulated in spsa1/spsc leaves 

Previous theoretical arguments have proposed that a substantial increase in flux can only 

be achieved by a co-ordinate up-regulation of a pathway and simultaneous increase of the 

activity of several enzymes in response to increasing demand for a pathway product 

[41,42]. The high cytosolic PGM activity (Fig. 4, Fig. S9) and the high dark respiration 

of spsa1/spsc and spsa1/spsa2/spsc leaves (Fig. 2) pointed to the possible activation of 

the OPPP, glycolysis and/or the respiratory pathways as a possible mechanism to 

alleviate the blockage of the starch-to-S6P conversion pathway occurring in spsa1/spsc 

and spsa1/spsa2/spsc leaves (see above). To test this hypothesis we measured the 

activities of OPPP enzymes such as PGI, G6PDH, 6PGDH, and glycolytic enzymes such 

as F1,6P2 aldolase, G3PDH, 3PGA kinase and PK in leaves of spsa1/spsc plants cultured 

under 16 h light/8 h dark photoperiod conditions. We also analyzed the activities of 

enzymes of the TCA such as IDH, MDH and SDH. Furthermore, we measured the levels 

of F6P (a glycolytic and OPPP intermediate), four glycolytic intermediates (F1,6P2, 

3PGA, pyruvate and PEP), and two TCA intermediates (oxalacetate and isocitrate). As 

shown in Fig. 5A, these analyses showed that the levels of glycolytic, OPPP and TCA 

metabolic intermediates in spsa1/spsc leaves were higher than in WT leaves. Not 
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surprisingly, the activities of enzymes of the glycolytic, OPPP and TCA pathways in 

spsa1/spsc leaves were higher than in WT leaves (Fig. 5B).  

 

3.6. spsa1/spsc leaves accumulate high levels of metabolic intermediates of the nocturnal 

starch-to-sucrose conversion process even under continuous light conditions 

Volkert et al. [15] reported that leaves of spsa1/spsc plants cultured under 8 h light/16 h 

dark photoperiod conditions accumulated 3-fold and 6-fold more starch and maltose than 

WT leaves at the end of the light period, respectively, and concluded that accumulation of 

maltose (the main starch breakdown product) in spsa1/spsc leaves is due to reduced 

metabolization of maltose into sucrose during the night.  

 Although it has been proposed that starch breakdown in leaves solely occurs 

during darkness [43,44], several studies have shown the occurrence of starch breakdown 

during illumination. Thus, pulse-chase and starch-preloading experiments using isolated 

chloroplasts [45], intact leaves [16-18,46], or cultured photosynthetic cells [47] have 

shown that chloroplasts can synthesize and mobilize starch simultaneously (for a review 

see [48]). Furthermore, recent metabolic flux analyses carried out using illuminated 

Arabidopsis plants cultured in 13CO2-enriched environment revealed rapid labeling of 

maltose [49]. Moreover, enzymes involved in starch breakdown such as GWD, SEX4, 

isoamylase 3, and plastidic α-amylases 1 and 3 are redox-activated under environmental 

stress conditions and at physiologically relevant potentials occurring in the illuminated 

chloroplast [50-53]. Maltose content in leaves of spsa1/spsc plants cultured under a 16 h 

light/8 h dark photoregime (cf. Fig. 3) was exceedingly higher than that of leaves of 

spsa1/spsc plants cultured under a 8 h light/16 h dark photoregime [15], pointing to the 

possible occurrence of very active starch mobilization not only during the night, but also 

during the light in spsa1/spsc leaves. To test this hypothesis we measured the content of 

maltose-to-sucrose metabolic intermediates in leaves of WT and spsa1/spsc plants 

cultured under continuous light (CL) conditions. We reasoned that, if amylolytic 

production of maltose and subsequent conversion of this disaccharide into sucrose solely 

occurs during the dark period, leaves of spsa1/spsc plants cultured in the absence of a 

dark period should accumulate WT levels of maltose. Alternatively, if amylolytic starch 

breakdown and subsequent conversion of maltose into sucrose also occurs during the day, 
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levels of maltose and of intermediates in the maltose-to-S6P conversion process in leaves 

of spsa1/spsc plants cultured under CL conditions should be high when compared with 

WT leaves. Furthermore, due to feedback inhibition of amylolytic breakdown of starch 

by excess maltose, levels of starch in spsa1/spsc leaves should be high when cultured 

under CL conditions. As shown in Fig. 6A, spsa1/spsc plants cultured under CL 

conditions displayed a dwarf phenotype. Furthermore, their leaves accumulated higher 

levels of G6P, G1P and UDPG than WT leaves, and exceedingly higher levels of starch 

and maltose than WT leaves (Fig. 6B). Expectedly, sucrose and S6P contents in 

spsa1/spsc were lower than in WT leaves (Fig. 6B). The overall data thus provided strong 

evidence that (a) continuously illuminated spsa1/spsc leaves degrade starch, and (b) the 

accumulation of high levels of maltose, G6P, G1P and UDPG, and low levels of sucrose 

and S6P in leaves of spsa1/spsc plants cultured under CL conditions is the consequence 

of impaired conversion of maltose into S6P.  

 We also measured maltose and starch contents at the end of the light and dark 

periods in leaves of WT and spsa1/spsc plants cultured under three different 

photoregimes (12 h light/12 h dark, 16 h light/8 h dark and 20 h light/4 h dark), and 

compared them with those of leaves of plants cultured under CL conditions. As shown in 

Fig. 7, irrespective of the photoregime, WT and spsa1/spsc leaves accumulated lower 

levels of starch and higher levels of maltose at the end of the dark period than at the end 

of the light period, indicating the occurrence of amylolytic starch breakdown during the 

night. Furthermore, irrespective of the photoperiod condition and day moment, starch and 

maltose contents in spsa1/spsc leaves were exceedingly higher than those of WT leaves. 

Such differences in maltose and starch contents between leaves of WT and spsa1/spsc 

plants cultured under 12 h light/12 h dark, 16 h light/8 h dark and 20 h light/4 h dark 

photoregimes were much more pronounced than those occurring between leaves of WT 

and spsa1/spsc plants cultured under 8 h light/16 h dark photoperiod conditions ([15] and 

data not shown). Moreover, maltose and starch contents at the end of the light period in 

leaves of spsa1/spsc plants cultured under 16 h light/8 h dark and 20 h light/4 h dark 

photoregimes were similar to those of leaves of spsa1/spsc plants cultured under CL 

conditions (Fig. 7). The overall data thus strongly indicate that amylolytic production of 

maltose occurs not only during the night, but also during the day in spsa1/spsc leaves.   
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4. Discussion  

Results presented in this work describing the phenotypic and metabolic characteristics of 

different multiple SPS knockout mutants (summarized in Table S1) provide strong 

evidence that (a) the four SPS isoforms overlap in functions that are essential for normal 

seed development and germination and subsequent development of the plant, (b) the four 

SPS isoforms play redundant functions in process that are important for nonstructural 

carbohydrate metabolism (c) SPSA2 expression does not compensate the detrimental 

effects caused by the complete loss of SPSA1+SPSB+SPSC expression, (d) SPSB 

expression in the total absence of SPSA1+SPSA2+SPSC expression is enough to 

guarantee plant viability, and (e) SPSA1 expression in the total absence of 

SPSA2+SPSB+SPSC expression, and SPSC expression in the total absence of 

SPSA1+SPSA2+SPSB expression guarantee normal development, growth and 

nonstructural carbohydrate metabolism of the plant. That (a) the spsa1/spsc mutant has a 

reduced vegetative and reproductive growth phenotype that is exacerbated in the 

spsa1/spsa2/spsc mutant, and (b) the spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc mutants 

(both totally lacking SPSA1 and SPSC expression) are not viable (Fig. 1) strongly 

indicates that SPSA1 and SPSC (and to a lesser extent SPSA2 and SPSB) play 

predominant roles in processes that are important for fertility, development and growth. 

This is further strengthen by the observations that the spsa1/spsa2/spsb and 

spsa2/spsb/spsc mutants display a WT phenotype and produce fertile seeds (Fig. 1 and 

data not shown).  

 In vitro, SuSy catalizes the reversible conversion of sucrose and NDP into the 

corresponding NDPG and fructose [48]. It primarily works as a sucrose-degrading 

enzyme in planta, playing important roles in the regulation of carbon partitioning into 

various sink tissues or organs and in phloem loading and unloading. Although SuSy can 

potentially synthesize sucrose from UDPG and fructose, results presented in this work 

showing that (a) spsa1/spsa2/spsb/spsc mutants are not viable (Fig. 1), and (b) spsa1/spsc 

and spsa1/spsa2/spsc leaves accumulate reduced levels of sucrose (Fig. 3), provide strong 

evidence that (a) SuSy plays a minor role, if any, in the sucrose biosynthetic process, and 

(b) sucrose is mainly synthesized through the SPS-SPP pathway in Arabidopsis. 



 18

 Comparative studies of SPS gene expression in Arabidopsis using quantitative 

RT-PCR and promoter-reporter gene expression techniques showed that SPSA1 is 

expressed in all tissues except roots and, together with SPSC, constitutes the major SPS 

gene expressed in leaves [14,15]. SPSA2 is mainly expressed in roots, whereas SPSB is 

predominantly expressed in seeds and reproductive organs [14,15]. In addition, genome-

wide expression analyses (https://www.geneinvestigator.ethz.ch, [54]) showed strong 

expression of SPSA1 in most organs and tissues, medium/moderate expression levels of 

SPSA2, SPSB and SPSC in most organs and tissues, and high expression of SPSB in 

seeds. It is thus conceivable that the poor germination and aberrant growth of 

spsa1/spsb/spsc is due to impairments in processes mediated by SPSA1, SPSB and SPSC 

that are essential for fertilization and/or seed development and subsequent development 

and growth of the plant.    

 Recently, Brauner et al. [55] reported that growth reduction in near-starchless 

pgm1 mutants impaired in pPGM is caused by exaggerated root respiration. Taking into 

account that respiration in spsa1/spsc and spsa1/spsa2/spsc plants is exceedingly higher 

than in WT plants (Fig. 2) it is highly conceivable that restricted growth of these mutants 

(Figs. 1 and 6) is ascribed not only to impairments in leaf sucrose synthesis and 

subsequent provision of photosynthate to the rest of the plant, but also to exaggerated 

respiration. The stunted growth phenotype and high maltose content of the spsa1/spsc and 

spsa1/spsa2/spsc mutants (Fig. 1) is reminiscent of that observed in the mex1 and dpe2 

mutants whose phenotypes have been ascribed to impairment in the maltose to sucrose 

conversion process during the night [6-8]. Results presented in this work showing that (a) 

the levels of all metabolic intermediates in the nocturnal maltose to S6P conversion 

pathway in spsa1/spsc leaves are higher than in WT leaves when plants are cultured 

under CL conditions (Fig. 6), (b) maltose contents at the end of the light period in leaves 

of spsa1/spsc plants cultured under different photoregimes are similar to those of leaves 

of spsa1/spsc plants cultured under CL conditions (Fig. 7B), and (c) the levels of 

glycolytic, OPPP and TCA metabolic intermediates and enzymatic activities in 

spsa1/spsc leaves are higher than in WT leaves (Fig. 5) point to the occurrence in 

spsa1/spsc leaves of mechanism(s) involving simultaneous synthesis and mobilization of 

starch during the day similar to that previously reported for mutants impaired in TPT [16-
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18], and channeling of starch breakdown products towards the glycolytic, OPPP and TCA 

as schematically illustrated in Fig. S11. Previous studies have shown that enhancement of 

plastidic PGM stimulates photosynthetic carbon flow into starch [56]. It is thus 

conceivable that elevated plastidic PGM occurring in spsa1/spsc and spsa1/spsa2/spsc 

plants (Fig. 4 and Fig. S9) will favor the scavenging of starch breakdown products, thus 

making up a substrate (starch) cycle. Both activation of starch cycling and enhanced 

respiration can be considered as alleviation mechanisms that would contribute to 

compensate the detrimental effects caused by the blockage of sucrose biosynthesis in 

spsa1/spsc and spsa1/spsa2/spsc leaves.  
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FIGURE LEGENDS 

Fig. 1: Morphology and growth phenotype of sps mutants. (A) Morphology of WT 

plants and the indicated sps mutants at 24 days after germination (DAG). (B) Time-

course of rosette FW of WT plants and the indicated sps mutants. (C) Morphology of 

flowers and siliques of WT and the indicated sps mutants. Values represent the mean of 

determinations on five different rosettes. Plants were cultured on soil under 16 h light/8 h 

dark conditions. 

 

Fig. 2: Respiratory CO2 production in darkened source leaves of WT and different 

viable sps plants. Plants were cultured on soil under 16 h light/8 h dark conditions. 

Values represent the mean ± SE of determinations on four independent samples. 

 

Fig. 3: Metabolites content in leaves of WT plants and different viable sps mutants. 

Fully developed leaves of 30 DAG plants cultured on soil under 16 h light/8 h dark 

conditions were harvested after 16 h of illumination. Values represent the mean ± SE of 

determinations on five independent samples. Each sample included leaves from 3 

different rosettes. Asterisks indicate significant differences based on Student´s t-tests. 

(P<0.05, sps mutants vs. WT).  

 

Fig. 4: SPS and PGM activities in leaves of WT and different viable sps mutants. 

Fully developed leaves of 30 DAG plants cultured on soil under 16 h light/8 h dark 

conditions were harvested after 16 h of illumination. Values represent the mean ± SE of 

determinations on five independent samples. Each sample included leaves from 3 

different rosettes. Asterisks indicate significant differences based on Student´s t-tests. 

(P<0.05, sps mutants vs. WT).  

 

Fig. 5: Metabolic characterization of WT and spsa1/spsc leaves. (A) Levels of 

glycolytic, OPPP and TCA metabolic intermediates. (B) Activities of enzymes of the 

glycolytic, OPPP and TCA pathways. Fully developed leaves of 30 DAG plants cultured 

on soil under 16 h light/8 h dark conditions were harvested after 16 h of illumination. 

Levels of TCA intermediates were measured using leaves harvested at the end of the dark 
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period. Values represent the mean ± SE of determinations on five independent samples. 

Each sample included leaves from 3 different rosettes. 

 

Fig. 6: Characterization of WT and spsa1/spsc plants cultured on soil under CL 

conditions. (A) Morphology of WT and spsa1/spsc plants. (B) Metabolic 

characterization of leaves of 30 DAG WT and spsa1/spsc plants. In “B”, values represent 

the mean ± SE of determinations on five independent samples. Each sample included 

leaves from 3 different rosettes. 

 

Fig. 7: spsa1/spsc leaves accumulate high levels of maltose and starch even under 

continuous light conditions. (A) Starch and (B) maltose contents at the end of the light 

and dark periods in leaves of WT and spsa1/spsc plants cultured under three different 

photoregimes (12 h light/12 h dark, 16 h light/8 h dark and 20 h light/4 h dark), and under 

CL conditions. Dark bars represent values of starch and maltose contents in leaves 

harvested at the end of the dark period. White bars represent values of starch and maltose 

contents in leaves harvested at the end of the light period. Values represent the mean ± 

SE of determinations on five independent samples. Each sample included leaves from 3 

different rosettes. Inset in “B” shows maltose content in WT leaves at the end of the dark 

and light periods. 
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SUPPLEMENTAL INFORMATION LEGENDS 

Table S1: sps mutants used in this work and their phenotypes. 

 

Table S2: Primers used for PCR screening of sps mutants. 

 

Table S3: Primers used in RT-PCR analyses 

 

Fig. S1: Metabolic schemes of sucrose biosynthesis in leaves (A) during the day, and 

(B) during the night. During the day, photosynthetically fixed carbon is either retained 

within the chloroplast to fuel the synthesis of transitory starch, or exported to the cytosol 

as triose phosphates by means of TPT to be subsequently converted into sucrose. During 

the night, starch is remobilized thereby providing maltose and glucose molecules that are 

metabolized to support sucrose synthesis and growth. The enzyme activities involved are 

numbered as follows: 1, 1´, fructose-1,6-bisphosphate aldolase; 2, 2´, fructose 1,6-

bisphosphatase; 3, PPi:fructose-6-phosphate phosphotransferase; 4, 4´, PGI; 5, 5´, PGM; 

6, UGP; 7, SPS; 8, SPP; 9, AGP; 10, SS; 11, β-amylase; 12, 12´, DPE; 13, glucan 

phosphorylase (PHS2); 14, HK. In “B”, starch to glucose conversion would involve the 

coordinated actions of amylases, isoamylase and plastidic DPE (DPE1). Maltose is 

transported from plastid to the cytosol via the maltose transporter MEX1. Glucose is 

transported from plastid to the cytosol via the pGlcT glucose translocator.  

 

Fig. S2: Schemes illustrating the structure of AtSPSA1, AtSPSA2, AtSPSB and 

AtSPSC and the T-DNA insertion sites in the spsa1 (SALK_119162), spsa2 

(SALK_064922), spsb (GABI_368F01) and spsc (SAIL_31_H05) alleles. The schemes 

also illustrate the positions of LP and RP SPSA1, SPSA2, SPSB and SPSC specific 

primers, and the T-DNA specific primers used for PCR confirmation of mutations (see 

Table S2). 

 

Fig. S3: PCR analyses of sps mutants. SPS LP and RP specific primers, and T-DNA 

specific primers used are listed in Table S2. Annealing positions of SPS LP and RP 

specific primers, and T-DNA specific primers are shown in Fig S2. 
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Fig. S4: RT-PCR analysis for the transcripts of SPS null mutants. 18S RNA was used as 

the positive control.  

 

Fig. S5: Time-course of FW of rosettes of WT and spsa1/spsc plants cultured in solid 

MS medium with and without 90 mM sucrose supplementation. Plants were cultured 

under 16 h light/8 h dark conditions. Values represent the mean ± SE of determinations 

on four independent samples. 

 

Fig. S6: Gas exchange analyses of WT and different viable sps mutants. The graphics 

represent the net CO2 uptake (An), the intercellular CO2 concentration (Ci) and the 

stomatal conductance (gs) in source leaves of WT and sps plants cultured on soil under 16 

h light/8 h dark conditions under photosynthetic photon flux densities of 90 and 350 µmol 

m-2 s-1. Values represent the mean ± SE of determinations on four independent samples.  

 

Fig. S7: Iodine staining of WT and spsa1/spsc plants. Upper panel: Iodine staining of 

whole plants. Lower panel: Iodine staining of cross sections of leaves. Plants were 

cultured on soil under 16 h light/8 h dark conditions and harvested 25 DAG. 

 

Fig. S8: Activities of enzymes closely connected to starch and sucrose metabolism in 

mature leaves of WT plants and sps mutants. Plants were cultured on soil under 16 h 

light/8 h dark conditions. Fully developed source leaves were harvested from 30 DAG 

plants after 16 h of illumination. Values represent the mean ± SE of determinations on 

five independent samples. Each sample included leaves from 3 different rosettes.  

 

Fig. S9: PGM zymogram of proteins extracted from WT and spsa1/spsc leaves. One 

hundred µg of proteins were loaded onto each lane. 

 

Fig. S10: Non-reducing western blot of APS1 in leaves of WT and spsa1/spsc plants. 

Plants were cultured under 16 h light/8 h dark conditions and leaves harvested from 30 

DAG plants after 16 h of illumination. 
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Fig. S11: Schematic model illustrating the metabolic diversion in spsa1/spsc leaves 

between starch, sucrose, OPPP, glycolysis and TCA metabolic pathways (A) during 

the day and (B) during the night. Numbering of enzyme activities 1-14 are the same as 

in Fig. S1.  15, phosphofructokinase; 16, fructose-1,6-bisphosphate aldolase. Enzymatic 

activities and pathways that are up-regulated in spsa1/spsc leaves are indicated with large 

arrows. 
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Table S1: sps mutants used in this work and their phenotypes 

Designation Description Source Rosette 
Growth 

Flower and silique 
growth, and seed 

production  
Nonstructural carbohydrate content 

spsa1/spsa2 spsa1 and spsa2 double mutant This work Like WT Like WT Like WT 
spsa1/spsb spsa1 and spsb double mutant This work Like WT Like WT Like WT 

spsa1/spsc spsa1 and spsc double mutant This work Reduced Reduced 

-High levels of UDPG, G1P, glucose and G6P, and 
very high levels of maltose and starch in plants 
cultured under different photoperiod conditions. 
-Low levels of sucrose and S6P. 
-High levels of OPPP, glycolytic and TCA 
intermediates and enzymatic activities. 

spsa2/spsb spsa2 and spsb double mutant This work Like WT Like WT Like WT 
spsa2/spsc  spsa2 and spsc double mutant This work Like WT Like WT Like WT 
spsb/spsc spsb and spsc double mutant This work Like WT Like WT Like WT 

spsa1/spsb/spsc spsa1, spsb and spsc triple mutant This work Aberrant Sterile _ 
spsa1/spsa2/spsb spsa1, spsa2 and spsb triple mutant This work Like WT Like WT Like WT 
spsa1/spsa2/spsc spsa1, spsa2 and spsc triple mutant This work Reduced Reduced Comparable to spsa1/spsc  
spsa2/spsb/spsc spsa2, spsb and spsc triple mutant This work Like WT Like WT Like WT 

spsa1/spsa2/spsb/spsc 
spsa1, spsa2, spsb and spsc quadruple 

mutant 
This work Aberrant Sterile _ 

 



Table S2. Primers used for PCR screening of sps mutants. For further details about annealing 
positions of RP, LP and T-DNA specific primers and PCR analyses of sps mutants, see Fig. S2 
and Fig. S3. 

 
Mutant Primer Sequence 

spsa1 (SALK_ 119162) RP (SPSA1) 5’-aggaaaaagaagcacagaggc-3’ 

 LP (SPSA1) 5’-accagcatcagcatagtgtcc-3’ 

 LBb1 (T-DNA) 5’-gcgtggaccgcttgctgcaact-3’ 
   
spsa2 (SALK_ 064922) RP (SPSA2) 5’-ccagctactctgaaccgtctg-3’ 

 LP (SPSA2) 5’-tgcaagacttacaaggttcgc-3’ 

 LBb1 (T-DNA) 5’-gcgtggaccgcttgctgcaact-3’ 
   
spsb (GABI_368F01) RP (SPSB) 5’-ttgctatgacaatgagggagc-3’ 

 LP (SPSB) 5’-ttaaccggtgaatcaaccttg-3’ 

 Gabi (T-DNA) 5’-cccatttggacgtgaatgtagacac-3’ 
   
spsc (SAIL_31_H05) RP (SPSC) 5’-ttttcaatatgctcgtgggac-3’ 

 LP (SPSC) 5’-gcgggaaaggacttataccac-3’ 

 LB3 (T-DNA) 5’-tagcatctgaatttcataaccaatctcgatacac-3’
 
 
 



Table S3. Primers used in RT-PCR analyses 
 

Gene Direction Sequence 

18S RNA Forward 5´-gggcattcgtatttcatagtcagag-3´ 

At3g41768 Reverse 5´-cggttcttgattaatgaaaacatcct-3´ 
 
SPSA1 Forward 5´-aggaaaaagaagcacagaggc-3´ 

At5g20280 Reverse 5´-accagcatcagcatagtgtcc-3´ 

 
SPSA2 Forward 5´-ccagctactctgaaccgtctg-3´ 

At5g11110 Reverse 5´-caatgtaaggttcgcaagctc-3´ 
 
SPSB Forward 5´-ttgctatgacaatgagggagc-3´ 

At1g04920 Reverse 5´-ttaaccggtgaatcaaccttg-3´ 

 
SPSC Forward 5´-gatgataaatcaagtcgaaacc -3´ 

At4g10120 Reverse 5´-cattcgtggcatgtatctacc-3´ 
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