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ABSTRACT. Electron transfer kinetics of the thermophilic protein Plastocyanin from 

Phormidium laminosum adsorbed on 1,ω-alkanedithiol self-assembled monolayers (SAMs) 

deposited on gold have been investigated. The standard electron transfer rate constant has been 

determined as a function of electrode-protein distance and solution viscosity over a broad 

temperature range (0 – 90 ºC). For either thin or thick SAMs, the electron transfer regime 

remains invariant with temperature; whereas for the 1,11-undecanethiol SAM of intermediate 

chain-length, a kinetic regime changeover from a gated or friction-controlled mechanism at low 

temperature (0 - 30º C) to a non-adiabatic mechanism above 40 ºC is observed. To the best of our 

knowledge, this is the first time a thermal-induced transition between these two kinetic regimes 

is reported for a metalloprotein. 
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Several strategies have been proposed to elucidate the factors that determine the rate of 

electron exchange between proteins and electrodes. Among them stand out the analysis of the 

effects of protein-electrode distance, temperature or solution viscosity on the electron transfer 

(ET) rate constant.1-5 These studies have revealed two distinct kinetic regimes, in which ET rates 

are either independent or exponentially dependent on the protein-electrode distance. This last 

regime is well described by a non-adiabatic electron transfer mechanism, where the ET rate is 

controlled by the electron tunneling frequency at the top of the activation barrier.5-15 However, 

the nature of the rate-limiting event is more ambiguous for the distance-independent kinetic 

regime, for which two alternatives have been purported in the literature. The first assumes that, 

as a consequence of the increased electronic coupling at short protein-electrode distances, the ET 

rate is controlled by a frictional mechanism that involves the protein and its surrounding medium 

and takes the reactant to the top of the activation barrier.16-31 The second introduces a preceding 

barrier-crossing event (gating step), which may involve a conformational fluctuation32 or a 

protein reorientation,33 to optimize the rate of electron transfer.32-39 Irrespective of the precise 

nature of the controlling event in the distance-independent kinetic regime, the transition between 

the two kinetic regimes has been demonstrated by varying systematically the strength of the 

electronic coupling between electrode and protein by using molecular spacers of variable 

composition and length. For redox proteins immobilized on thiol monolayers (HS-(CH2)n-X) the 

mechanism transition has often been reported to take place for protein-electrode distance 

corresponding to n ≈ 10.12, 15, 24, 25, 31, 33, 39-43 Moreover, each kinetic regime can be further 

characterized by a distinct dependence of the ET rate constant with temperature and solution 

viscosity,25-33, 44, 45 though temperature or viscosity driven mechanism transitions have not yet 
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been reported for metallo-proteins. To the best of our knowledge, the current work provides the 

first observation of a temperature-induced mechanism changeover for a redox metallo-protein.  

Thermal studies of typical redox proteins are significantly restrained, since proteins become 

often denatured at moderate temperatures. A general approach to overcome this limitation would 

involve the use of thermophilic proteins that are likely to keep their structure and functionality 

intact in a broad temperature range. Within this context, we have previously reported on how 

Plastocyanin from Phormidium laminosum (Pc-PhoWT) adsorbed onto a graphite electrode 

displays an unusual thermal resistance, retaining its redox activity at temperatures as high as 

90ºC.46 Pc-PhoWT is a blue copper protein with a Type I redox center. The metal atom is buried 

in a hydrophobic pocket and it is coordinated by two histidines (HisN and HisC), one methionine 

and one cysteine. The Cu binding site features a distorted trigonal pyramid and HisC is the only 

solvent-exposed copper-ligand, thus making this group the most probable physiological electron 

transfer port of the protein (see Supporting Information). Its thermostability has also been probed 

by spectroscopic techniques in a broad temperature range.47, 48 Based on these findings, this 

protein appears to be a good candidate to assess the influence of temperature on its ET kinetics. 

Herein, we report on the effect of a broad variation of temperature (0 -90 ºC) on the electron 

transfer kinetics of Pc-PhoWT immobilized on gold electrodes modified with 1,ω-alkanedithiol 

self-assembled monolayers (SAMs), under variable conditions of protein-electrode distance and 

solution viscosity. We provide clear experimental evidence of a changeover in the electron 

transfer regime along a thermal scan when Pc-PhoWT is immobilized on a 1,11-undecanedithiol 

monolayer. In this case, electron exchange proceeds through the distance-independent kinetic 

limit at low temperatures, and it switches reversibly into the non-adiabatic regime as the 

temperature is raised over 40 ºC. 
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The redox properties of Pc-PhoWT immobilized on distinct 1,ω-alkanedithiol SAMs differing 

in their hydrocarbon chain length were characterized by recording its voltammetric response as a 

function of scan rate. Figure S-2 illustrates some typical raw voltammograms. The formal 

potential ( 0E ) shifts from 0.421 V to 0.375 V vs. SHE upon increasing the dithiol chain length, 

remaining somewhat more positive than the reported values for Pc-PhoWT adsorbed onto 

graphite46 and in solution.48 A parallel variation of the reduction entropy (see Supporting 

Information) towards less negative values suggests that the E0 shift results from a tighter 

hydrophobic interaction between protein and monolayer as the alkanedithiol chain-length 

increases. To determine the standard electron transfer rate constant ( o

ETk ), the effect of the scan 

rate on the peak potential separation was assessed at distinct temperatures and electrode-protein 

distances. Accordingly, upon increasing the scan rate, the two voltammetric peaks depart from 

each other, producing trumpet plots as those depicted in Figure S-2. Solid lines in these plots are 

theoretical fits computed in the high reorganization energy limit of the Marcus electron transfer 

theory (i.e. for λ > F |Ep – E0|, where λ is the reorganization energy, Ep the peak potential, and F 

the Faraday’s constant).9 Though significant protein loss (ca. 50 %) was evident after exposing 

the electrode to the hottest solutions, a full recovery of the initial kinetic and thermodynamic 

electron transfer parameters (see Supporting Information) was observed after subjecting the 

immobilized protein to broad changes of temperature and solvent viscosity. 

The effect of the electrode-protein distance on 0
ETk  at distinct temperatures is illustrated in 

Figure 1. At a given temperature (Figure 1a), it displays a biphasic behavior: the standard 

electron transfer rate constant barely depends on the chain length up to ca. 9 methylene units, but 

decays exponentially for the longer chain lengths (n ≥ 11). The exponential decay factor is 

β = 1.14 per methylene group, consistent with the use of saturated hydrocarbon spacers.49,50 
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Furthermore, Figure 1b shows that the temperature dependence of 0
ETk  is stronger at the plateau 

than within the exponential decay region. 

 

 
Figure 1. (a) Dependence of the logarithm of the standard electron transfer rate constant on the 

number of methylene groups per thiol molecule for Pc-PhoWT immobilized on 1,ω-alkanedithiol 

SAMs, obtained in a 0.1 M sodium phosphate buffer of pH 7 at the indicated temperatures. Solid 

lines have been computed from eqs 1-4 in the text. (b) Arrhenius plots in the 0 - 90 ºC 

temperature range. The green line in the n = 11 plot was computed from the corresponding red 

and blue lines according to eq 4, as indicated in the text. Symbols are experimental values, and 

error bars are standard deviations for at least three replicated measurements for each data point. 

 

In the non-adiabatic limit (distance-dependent regime), the standard rate constant 0
ETk  is 

limited by the electron tunneling probability and can be expressed as: 
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( )
1 22 3

0 ρ π λ 4
β

λ

/o

AB m
NA

| H | R /
k T exp n exp

RT

   = − −   
  h

   (1) 

where o

ABH  is the electronic coupling energy for n = 0 and ρm is the density of electronic states of 

the metal. Fit of eq 1 to experimental ln o

ETk  vs. 1−T data for n = 16 with β = 1.14 and 

ρm = 0.28 eV-1, 25 gives rise to λ = 61.7 kJ mol-1 (or 0.64 eV) and =o

ABH 7x10-3 eV. The obtained 

value for λ falls within the range of accepted values for blue copper proteins.46, 51-54 

On the other hand, the standard rate constant under the distance-independent regime can be 

expressed as: 

1 2 β
η0

3

λ 4 ∆1 λ 1

τ π

/ o n #

AB

AD o

eff

( / ) | H | e H
k exp

R RTT

− − + = −       
   (2) 

when the electron transfer kinetics are controlled by a frictional mechanism, or simply as: 

0 ∆ #

G
G G

H
k A exp

RT

 
= − 

 
    (3) 

when they are controlled by a gating step. τ o

eff
 is the high-temperature limit of the characteristic 

polarization relaxation time of the solvent/protein/SAM environment, #
η∆H  is the activation 

enthalpy associated with solvent/protein/SAM friction, and AG, #∆ GH  are the Arrhenius 

preexponential factor and height of the activation barrier of the gating step, respectively. 

Fit of eq 2 or 3 to the experimental ln o

ETk  vs. 1−T data for n ≤ 9 (Figure 1b) gives rise to 

τ =o

eff 7x10-9 s and #
η∆ =H 19.1 kJ mol-1 or AG = 1.2x108 s-1 and #∆ =GH 34.5 kJ mol-1, 

respectively. Bearing in mind that #exp( / )ητ τ= ∆o

eff eff H RT , τ eff  shows a tenfold decrease from 

∼ 32 µs at 0 ºC to ∼ 3.9 µs at 90 ºC. The magnitude of these relaxation times is much larger than 

those of typical liquids,55 and c.a. tenfold the characteristic relaxation time reported by 
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Khoshtariya et al.25 for the adiabatic electron transfer of cytochrome c adsorbed on thiol 

monolayers. On the other hand, this ∼ 10 µs time scale lies well within the 1 - 103 µs range that 

has been determined56 for the mobility of the β7 - β8 loop of the Plastocyanin from Anabaena 

variabilis. It should be noted that this loop contains three of the four copper ligands and, 

therefore, seems to be relevant for the electron transfer process. 

When the protein is adsorbed on a SAM with an intermediate alkyl chain length (n = 11), the 

ln o

ETk  vs. 1T − slope changes from that characteristic of the distance-independent regime, at low 

temperatures, to that of the non-adiabatic regime at high temperatures. This transition can be 

accounted for with the following series combination of o

NAk  and /
o

AD Gk  (green solid line in Figure 

1b): 

0 0 0
/

1 1 1

ET NA AD Gk k k
= +     (4) 

which is known to describe the transition from the non-adiabatic to the adiabatic kinetic 

regimes,25 but it can also account for the presence of a gating step32 (see Supporting 

Information). As the crossing point of the two individual o

NAk  and /
o

AD Gk  contributions to o

ETk  

shows (Figure 1b), the transition between the two limiting kinetic regimes takes place at ca. 

40 ºC for the n = 11 monolayer. It should be noted that this transition is predicted to be outside 

the available temperature range for n < 11 or n > 11 (Figure S-7 in Supporting Information). 

As a test of consistency, eq 4 was able to reproduce the experimental ln o

ETk  vs. n dependence 

in Figure 1a with the same parameter values that were determined from the analysis of Figure 1b. 

In order to corroborate the temperature-induced mechanistic changeover found for Pc-PhoWT 

adsorbed on the n = 11 SAM, use was made of the distinct sensitivity of the non-adiabatic and 

distance-independent kinetic regimes to changes in the solution viscosity η. Previous studies 
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have shown that o

NAk  is independent of η, while /
o

AD Gk  is proportional to γη−  where γ > 0.25, 33, 57 

Thus, according to eq 4, o

ETk is expected to be proportional to γη− ap , where the value of the γap 

exponent ( 0 γ γ< ≤ap ) depends on the relative contributions of o

NAk  and /
o

AD Gk  to o

ETk . 

 

 
 

Figure 2. (a) Double logarithmic plot of the overall standard electron transfer rate constant for 

Pc-PhoWT immobilized on 1,ω-alkanedithiol SAMs, obtained in a 0.1 M sodium phosphate 

buffer of pH 7, against solution viscosity for the indicated temperature and spacer’s number of 

methylene groups. (b) Slopes of the log o

ETk  vs. log η plots in Figure 2a as a function of 

temperature. (c) Difference between the reciprocals of the observed and calculated non-adiabatic 

standard electron transfer rate constants as a function of solution viscosity for n = 11 and the 

indicated temperatures. Solid lines are least squares linear fits passing through the origin. 
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Figure 2a illustrates the observed dependence of 0
ETk  on the viscosity of aqueous glucose 

solutions, under variable conditions of electrode-protein distance and temperature. It can be 

observed that the slope of the logarithmic plot (i.e. γap) decreases upon increasing the SAM 

thickness, from γap ≈ 1.1 for n = 8 to γap ≈ 0.0 for n = 16, in agreement with the change of kinetic 

regime discussed previously. More importantly, the slopes corresponding to the intermediate 

n = 11 SAM display a continuous variation with temperature from γap = 0.77 at 10 ºC to 

γap = 0.09 at 70 ºC (Figure 2b), as expected for a changeover of the electron transfer mechanism 

from the frictional/gating regime to the non-adiabatic one. In order to quantify the γ value, 

corresponding to the 0
AD / Gk  term, we have plotted in Figure 2c the difference between observed 

1/ 0
ETk  and calculated 1/ 0

NAk , as a function of solution viscosity, where the 0
NAk  values have been 

computed from eq 1 with the parameter values determined previously. According to eq 4, the 

ordinate values in these plots correspond to those of 01 AD / G/ k . The linearity of these plots 

strongly suggests that the frictional coupling to the medium is very strong, with a real γ value 

close to 1. 

Previous reports describing the transition between frictional/gating and non-adiabatic electron 

transfer mechanisms for immobilized cytochrome c25 and azurin31 took advantage of the high 

sensitivity of the non-adiabatic electron transfer rate to the electrode-protein distance. Herein, we 

have shown that the same transition can be achieved by exploiting the difference in the activation 

enthalpies of these two mechanisms. Once an adequate tunneling distance is selected, so that the 

values of the frictional/gating and non-adiabatic rate constants become similar at intermediate 

temperatures, the kinetic control can then be switched reversibly between the frictional/gating 

and non-adiabatic limits by just varying the temperature. In the case of the thermophilic 

Page 10 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

11

plastocyanin from Phormidium laminosum adsorbed on a 1,11-undecanedithiol SAM, the 

mechanistic changeover takes place at 40 ºC. This transition results from the interplay between 

different contributions to the observed ET rate, and our previous analysis helps to identify some 

physical prerequisites, such as the necessary difference in activation enthalpy between the two 

kinetic regimes or the importance of an adequate choice of the tunneling distance, to observe 

similar transitions for other redox proteins. 
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