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This paper focuses on the unsupervised learning problem within membrane computing,
and proposes an innovative solution inspired by membrane computing techniques, the
fuzzy membrane clustering algorithm. An evolution–communication P system with nested
membrane structure is the core component of the algorithm. The feasible cluster centers
are represented by means of objects, and three types of membranes are considered: evolu-
tion, local store, and global store. Based on the designed membrane structure and the
inherent communication mechanism, a modified differential evolution mechanism is
developed to evolve the objects in the system. Under the control of the evolution–commu-
nication mechanism of the P system, the proposed fuzzy clustering algorithm achieves
good fuzzy partitioning for a data set. The proposed fuzzy clustering algorithm is compared
to three recently-developed and two classical clustering algorithms for five artificial and
five real-life data sets.
1. Introduction

The learning problem aims at finding hidden patterns in data or estimating the unknown model parameters from the 
given data. From the viewpoint of machine learning, learning methods can be categorized into three main variants: super-
vised learning, unsupervised learning and reinforcement learning. Unsupervised learning, also known as clustering, is the 
process of finding natural groupings from unlabeled data [8], that is, finding k clusters from a set of n data points according 
to some similarity measure such that patterns within the same cluster are more similar than those from different clusters. 
Over the past years, a large number of unsupervised learning methods have been introduced [13,47]. These methods can be 
fall into three categories: hierarchical, partitioned, and overlapping methods. Hierarchical methods can be either agglomer-
ative, which begin with each element as a separate cluster and merge them into larger clusters, or divisive, which begin with 
the whole set and successively divide it into smaller clusters. Partitioned methods attempt to directly decompose the data 
set into several disjoint clusters without the hierarchical structure, while overlapping methods search soft or fuzzy partition-
ing by relaxing the mutually disjoint constraint.

K-means is one of most popular unsupervised learning methods due to its simplicity and effectiveness, and has been used 
in a wide variety of areas such as pattern recognition, data mining, and bioinformatics. However, k-means has several draw-
backs: it is problematic to avoid local minima, it is sensitive to initial cluster centers, and it takes significant time to search 
the global optimal solution when the number of data points is large. To overcome these, evolutionary clustering algorithms 
have been considered in recent years based on genetic algorithms (GA), particle swarm optimization (PSO), ant colony opti-
mization (ACO), differential evolution (DE), artificial bee colony (ABC), and black hole (BH) algorithm.
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GA-based clustering methods were first reported in the literature [5,17], and have two approaches to express the solution
of a clustering problem: point-based schemes [18,23] and center-based schemes [2]. Point-based schemes can suffer from
large search space and high computing cost when data points proliferate, so center-based schemes are used by most evolu-
tionary clustering methods developed in recent years. Kao et al. [14] proposed a clustering method that uses PSO to optimize
a set of cluster centers. Shelokar et al. [40] introduced an ACO-based method to find appropriate cluster centers. Das et al. [6]
used DE in image pixel clustering, while Karaboga et al. [15] presented an ABC-based clustering method. Hatamlou [11] pro-
posed a new optimization approach based on black hole for data clustering. In addition, several evolutionary clustering algo-
rithms with hybrid mechanisms have been developed in recent years [16,24,25]. Fuzzy c-means (FCM) is a well-known
overlapping clustering technique that uses the principles of fuzzy sets to evolve a partitioning matrix UðXÞ [3]. However,
FCM still has the limitation of finding suboptimal solutions. To overcome this, Maulik et al. [19] proposed a GA-based fuzzy
clustering technique, Fuzzy-VGA, which automatically evolves the appropriate fuzzy partitioning for a data set by optimizing
the well-known XB-index. Saha et al. [36] developed a fuzzy variable string length genetic point symmetry (Fuzzy-VGAPS)
based clustering technique, where membership values of points to different clusters are computed based on a point symme-
try-based distance rather than the Euclidean distance. Maulik et al. [20] presented a modified DE based fuzzy clustering
(MoDEFC) algorithm and applied it to deal with pixel classification of remote sensing imagery. Sanchez et al. [39] proposed
a fuzzy granular gravitational clustering algorithm for multivariate data. Saha et al. [37] developed a multiobjective modified
differential evolution based fuzzy clustering algorithm.

Membrane computing was initiated by Gh. Pa�un [28], as a new branch of natural computing, aiming to abstract comput-
ing models from the structure and functioning of living cells, as well as from the cooperation of cells in tissues, organs, and
cell populations [10,32]. Following this inspiration, classes of distributed parallel computing models have been defined, usu-
ally known as P systems or membrane systems. P systems have several interesting features: non-determinism, programma-
bility, extensibility, readability, they are easy to communicate, etc., and many variants have been proposed
[9,12,27,33,45,48,51]. Most P systems variants have proved to be powerful (in the sense of Turing completeness) and effec-
tive (since they have successfully solved a large number of NP-hard problems in a linear or polynomial time [31]). In recent
years, the potentiality and characteristics of membrane computing have attracted much attention in relation to real-life
applications, such as membrane algorithms for solving optimization problems [26,34,49,50,52], and fuzzy spiking neural
P systems for dealing with knowledge representation and fault diagnosis [35,42,44].

Learning capability is an important and useful characteristic of natural computing methods, such as neural computing
and evolutionary computing [21,22,38]. Unfortunately, existing P systems variants generally lack learning capability, due
to their orientation towards a formal language framework. Therefore, Gh. Pa�un has listed providing learning capability to
P systems as an interesting open problem [29,30].

The main motivation behind the work presented in this paper is to focus on the problem of unsupervised learning in
membrane computing, and to propose a novel clustering method in this framework to solve fuzzy clustering problems:
the fuzzy membrane clustering algorithm. An evolution–communication P system with a nested membrane structure is con-
sidered as the computing framework, and both its evolution–communication mechanism and the differential evolution
mechanism of DE are integrated into a new P system based learning mechanism. The scientific contribution of this paper
has two aspects: (i) this is the first attempt to use P systems for solving fuzzy clustering problems and (ii) a novel clustering
method for data mining and/or machine learning is developed.

Section 2 describes the fuzzy clustering problem and several clustering validity indexes. In Section 3, we briefly review
evolution–communication P systems and classical DE algorithms. Section 4 describes the proposed evolution–communication
P system, and details the proposed fuzzy membrane clustering algorithm. Experiments and results are provided in Section 5.
Finally, Section 6 draws the conclusions.

2. Problem statement

2.1. Fuzzy clustering problem

Data clustering can be seen as the task of distributing (partitioning) n data points into several groups according to some

similarity measure. Let us consider X ¼ fX1;X2; . . . ;Xng# Rn�d, a set of n unlabeled data points in a d-dimensional Euclidean
space, where Xi ¼ ðxi1; xi2; . . . ; xidÞ, that is, xij is the j-th real-value feature of the i-th data point. The goal of a fuzzy clustering
algorithm is to find a fuzzy partition of the data set, X, into k clusters, C1; C2; . . . ; CK , in such a way that the similarity of data
points in the same cluster is very high, and at the same time the similarity of data points in different clusters is very low. In
the context of fuzzy clustering, a data point may belong to each of the clusters with a certain fuzzy membership degree,
which can be captured by a fuzzy partitioning matrix, UK�n, where each uij is the fuzzy membership degree of Xj to Ci.
The elements of such matrix should satisfy the following properties:
0 <
Pn

j¼1 uij < n for i ¼ 1; 2; . . . ; KPK
i¼1 uij ¼ 1 for j ¼ 1; 2; . . . ; nPK
i¼1

Pn
j¼1 uij ¼ n
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Thus, for a given data set, solving a fuzzy clustering problem is equivalent to finding the optimum fuzzy partition. Since
center-based representation is used to express a clustering solution, fuzzy clustering can be considered as finding the opti-
mal cluster centers. Therefore, the fuzzy clustering problem can be posed as the following optimization problem:
arg min
z1 ;z2 ;...;zK

½Jðz1; z2; . . . ; zKÞ ¼ f ðz1; z2; . . . ; zKÞ�; ð2Þ
where z1; z2; . . . ; zK are K parameters to be optimized, which denote a candidate set of cluster centers; and f ðz1; z2; . . . ; zKÞ is
its objective function.

2.2. Clustering validity index

To evaluate the performance of clustering algorithm, it is necessary to use a well-defined statistical–mathematical
function, the cluster validity index, to measure the quality of the obtained solution. We use four well-known clustering
validity indices, described below, in our experiments.

2.2.1. Xie–Beni index
The Xie–Beni (XB) index is defined as a function of the ratio of total variation, r, to minimum separation, sep, of the

clusters [46],
rðU; Z; XÞ ¼
XK

i¼1

Xn

j¼1

u2
i;jkXj � zik2

;

and
sepðZÞ ¼min
i–j
kzi � zjk2

;

where k � k is the Euclidean norm, and
ui;j ¼
1

kXj�zik

� �
PK

i¼1
1

kXj�zik

� � :

Thus, the XB index is
XBðU; Z; XÞ ¼ rðU; Z; XÞ
n� sepðZÞ : ð3Þ
Note that when a partitioning is compact and good, r should be low while sep should be high, thereby yielding lower values
of XB index. In this work, the XB index is used as an objective function of the fuzzy clustering problem, and it is therefore
minimized to achieve a good partitioning.

2.2.2. PBMF index
The PBMF index is defined as
PBMFðKÞ ¼ 1
K
� E1

EK
� DK

� �2

; ð4Þ
where K is the number of clusters,
EK ¼
XK

i¼1

Xn

j¼1

ui;jkXj � zik;
and
DK ¼ max
i–j
kzi � zjk:
In Eq. (4), E1 usually appears as a constant for a given data set. Generally, larger PBMF implies a better clustering solution.

2.2.3. FCM measure (Jm)
The FCM measure ðJmÞ, corresponds to the total variation of data points with respect to cluster centers, taking into con-

sideration the membership given by the fuzzy partitioning matrix, and is defined as the total mean square error (MSE),
JmðC1;C2; . . . ;CKÞ ¼
XK

i¼1

Xn

j¼1

u2
i;jkXj � zik2 ð5Þ



Generally, smaller Jm indicates a better clustering solution.

2.2.4. F-Measure
Let mij be the number of points that belong to both cluster i and cluster j; mi the total number of points in cluster i. The

F-Measure (Fði; jÞ) of cluster i with respect to cluster j is
Fði; jÞ ¼ ð2� precisionði; jÞ � recallði; jÞÞ
ðprecisionði; jÞ þ recallði; jÞÞ ; ð6Þ
where precisionði; jÞ ¼ pij ¼ mij=mi expresses the precision of cluster i with respect to cluster j, and recallði; jÞ ¼ mij=mj denotes
the recall of cluster i with respect to cluster j. Thus, the overall F-Measure of the whole partitioning is
F ¼
X

j

mj

m
max

i
Fði; jÞ ð7Þ
For F-Measure, the optimum score is 1, with higher scores implying a better clustering solution.

3. Methods

3.1. Evolution–communication P systems

Researchers have proposed a variety of P systems, drawing concepts from biology, mathematics, computer science, etc.
Cavaliere [4] proposed an evolution–communication P system, which contains two types of rules: evolution rules (classical
evolution rules without communication targets) and symport/antiport rules (for communication). The motivation of the var-
iant was to split the P system in two phases: the evolution of the objects (application of evolution rules) and the commu-
nication between the regions of the system (application of the symport/antiport rules). More details of this variant can be
found in [1,4].

An evolution–communication P system of degree q P 1 is defined as
P ¼ ðO;l;w1;w2; . . . ;wq;R1;R2; . . . ;Rq;R
0
1;R

0
2; . . . ;R0q; ioÞ;
where

(1) O is the alphabet of objects.
(2) l is a membrane structure with q nested membranes (and hence q regions), labeled by 1; 2; . . . ; q, respectively.
(3) w1; w2; . . . ; wq are initial multisets of objects over O placed in the regions 1;2; . . . ; q of l.
(4) R1; R2; . . . ; Rq are finite sets of evolution rules of the q regions respectively. An evolution rule is of the form u! v ,

where u;v 2 O�.
(5) R01; R02; . . . ; R0q are finite sets of communication rules of the q membranes. The communication rules are of two forms:

u! ½u�i, and ½u�i ! u, where u 2 O�.
(6) io 2 f0;1;2 . . . ; qg is the output region. If io ¼ 0, then the environment is the output region, otherwise the region of

membrane io is the output region.

Symport/antiport rules are commonly used in the tissue-like framework, and this evolution–communication P system is
the first case where symport rules are used in a cell-like variant (i.e., over a nested membrane structure). Each region has
several evolution rules, of the form u! v ;u;v 2 O�, and the application of such rule means that u is changed to v (multiset
u is ‘‘consumed’’ while multiset v is ‘‘generated’’ instead). Each membrane has also some communication rules, which are
used to exchange the objects between the inner region and the outer region of the membrane. Two types of symport rules
are considered: u1u2 � � �us ! ½u1u2 � � �us�i, and ½u1u2 � � �us�i ! u1u2 � � �us, where u1u2; . . . ; us 2 O�. Execution of first rule
means that objects u1; u2; . . . ; us are transmitted into the inner region from the outer region, while second rule indicates
that objects u1; u2; . . . ; us are exchanged from the inner region to the outer region.

As usual in membrane computing, each membrane operates as a parallel computing unit, with a universal clock consid-
ered for synchronization. A computation is a sequence of steps which start with the membranes 1; . . . ; q containing the mul-
tisets w1; . . . ;wq. In each step, one or more rules are applied to the current multisets of objects, in a maximally parallel
manner. A computation is successful if and only if it halts. When it halts, it produces a result in the output region.

3.2. Classical DE algorithm

DE is arguably one of the most powerful population-based stochastic optimization algorithms [41]. It searches a global
optimal solution using three evolution operations (mutation, crossover and selection) [7].

Let Zi be a chromosome/genome in the considered population. A donor vector Yi is created to change original vector Z.
There are five frequently used schemes that can be used to create this donor vector:



(1) DE/rand/1: Yi ¼ Zr1 þ F � ðZr2 � Zr3 Þ,
(2) DE/best/1: Yi ¼ Zbest þ F � ðZr1 � Zr2 Þ,
(3) DE/current-to-best/1’’: Yi ¼ Zi þ F � ðZbest � ZiÞ þ F � ðZr1 � Zr2 Þ,
(4) DE/best/2: Yi ¼ Zbest þ F � ðZr1 � Zr2 Þ þ F � ðZr3 � Zr4 Þ,
(5) DE/rand/2: Yi ¼ Zr1 þ F � ðZr2 � Zr3 Þ þ F � ðZr4 � Zr5 Þ.

The indices, r1; r2; r3; r4, and r5, are mutually exclusive integers randomly chosen, and all of them different from the base
index, i. The scaling factor, F, is a positive control parameter for scaling the difference vectors. Zbest is the best individual vec-
tor with the best fitness in the population.

To increase the potential diversity of the population, a crossover operation is applied. The DE-family uses two crossover
schemes, exponential and binormal. We briefly describe the binormal crossover, which we employ in the improved DE
mechanism. Binormal crossover is performed on each of the D variables whenever a randomly generated number between
0 and 1 is less than or equal to the Cr value,
ri;j ¼
yi;j; if randi;j½0;1� 6 Cr or j ¼ jrand;

zi;j; otherwise;

�
ð8Þ
where randi;j½0;1� is a uniformly distributed random number, which is called anew for each j-th component of the i-th
parameter vector. jrand 2 f1; . . . ;Dg is a randomly chosen index, which ensures that Ri gets at least one component from Yi.

The selection operation is used to determine which of the target vector or trial vector will survive in the next generation.
If the trial vector yields a better value of the objective function, it will replace its target vector in the next generation; other-
wise the parent is retained in the population:
Z0i ¼
Ri; if f ðRiÞ 6 f ðZiÞ;
Zi; otherwise;

�
; ð9Þ
where f ð�Þ is the function to be minimized.

4. Proposed fuzzy membrane clustering algorithm

4.1. The evolution–communication P system

The proposed clustering algorithm is a fuzzy clustering algorithm inspired by membrane computing. An evolution–
communication P system with ð2qþ 1Þmembranes is considered as its computing core, which has a nested structure of three
layers: an outermost (skin) membrane contains q membranes and each of them has an elementary (innermost) membrane,
shown in Fig. 1. Membranes 1; . . . ; q are evolution membranes, since they are the only ones having evolution rules. Elemen-
tary membranes 10; 20; . . . ; q0 are local store membranes, as each will store the best object found in the corresponding
surrounding evolution membrane. The skin or global store membrane is considered to store the best object found in the
entire system (i.e., all evolution membranes). Evolution membranes have evolution rules, whereas skin and local store
membranes contain no evolution rules. Fig. 1 shows communication channels of the system that enable evolution
membranes to exchange and share their objects with local store membranes and the skin membrane, respectively.

4.1.1. Objects
The evolution–communication P system has been designed to optimize a set of cluster centers for a fuzzy clustering prob-

lem, so each of its objects will express a feasible solution (a set of cluster centers). Let X ¼ fX1;X2; . . . ;Xng � Rn�d be a data set

divided into K clusters, C1; C2; . . . ; CK . We denote the centers of these K clusters as z1; z2; . . . ; zK , where zi 2 Rd, for
i ¼ 1; . . . ; K . Fig. 2 shows the corresponding relationship between a solution (i.e., a set of cluster centers) and an object
in the membranes. Thus, each object is designed as a ðK � dÞ-dimensional vector:
O ¼ ðz11; z12; . . . ; z1d; . . . ; zi1; zi2; . . . ; zid; . . . ; zK1; zK2; . . . ; zKdÞ;
where ðzi1; zi2; . . . ; zidÞ corresponds to the i-th cluster center zi; i ¼ 1; . . . ; K .
Fig. 1. The membrane structure of the evolution–communication P system and its communication channels.



Fig. 2. The representation of objects in membranes.
Each evolution membrane contains a number of objects, each of which expresses a set of (feasible) cluster centers. For the
sake of simplicity, let us assume that each evolution membrane has m objects. Each local store membrane, i0, has only one

object, the local best object, Oi
lbest , while the global store membrane also contains a single object, the global best object Ogbest .

Before the computation begins, the P system generates m initial objects for each evolution membrane. For each of such
initial objects, (K � d) random real numbers are generated, which are required to satisfy the following constraints:
A1 6 zi1 6 B1; A2 6 zi2 6 B2; . . . ; Aj 6 zij 6 Bj; . . . ; Ad 6 zid 6 Bd;
where Aj and Bj are lower and upper bounds on the j-th component of data points in X, respectively.
4.1.2. Evolution rules
The evolution of objects in the system is achieved only within the q evolution membranes. In this work, the differential

evolution mechanism considered relies on evolution rules, which contain three evolution operators: mutation, crossover and
selection. A modified version has been developed, based on the membrane structure and communication mechanism of evo-
lution–communication P systems. The modification is inspired from the observation that each evolution membrane has two

best objects which will take part in the evolution of objects, being the local best object, Oi
lbest , communicated from the cor-

responding local store membrane, and the global best object, Ogbest , communicated from the skin membrane. This modifica-
tion is realized only on the mutation operator, while original crossover and selection operators are retained. Therefore, we
only describe the modified mutation operator, which can be regarded as an extended version of the DE/best/1 scheme.

Let Oi
j be j-th object in evolution membrane i. Then the mutation object can be generated by
Yi
j ¼

Ogbest þ a � ðOi
lbest � Oi

jÞ þ a � ðOi
r1
� Oi

r2
Þ; if randð0;1Þ < a

Oi
j þ F � ðOi

r3
� Oi

r4
Þ; otherwise

(
; ð10Þ
where Oi
lbest is the local best object; Ogbest is the global best object; and Oi

r1
; Oi

r2
; Oi

r3
, and Oi

r4
are four different objects chosen

randomly from the evolution membrane, i. The scaling factors are
a ¼ 1

1þ exp � 1
tmax

h i ;
F ¼ 0:5� ð1þ randð0;1ÞÞ;
where tmax is the maximum execution step number (maximum number of iterations).
4.1.3. Communication rules
As discussed above, communication of objects is realized by communication rules, which enable communication channels

connecting evolution membranes and local store membranes. Local store membranes have two types of communication
rules, which exchange objects to and from evolution membranes:

(i) Rule Oi
best ! ½O

i
best�i0 , where Oi

best is the best object in evolution membrane i, and i ¼ 1; . . . ; q.

The rule communicates the best object, Oi
best , in evolution membrane i into local store membrane i0 and updates its

local best object, Oi
lbest . The updating strategy is
Oi
lbest ¼

Oi
best; if f ðOi

bestÞ < f ðOi
lbestÞ

Oi
lbest; otherwise

(
; ð11Þ

where f ðOÞ denotes the fitness value of object O.



(ii) Rule ½Oi
lbest�i0 ! Oi

lbest , where Oi
lbest is the local best object in local store membrane i0, and i ¼ 1; . . . ; q.

The rule indicates that local best object in local store membrane i0 is transmitted into evolution membrane i. The trans-
mitted object will get engaged in the evolution of objects in the next computing step.

Evolution membranes also have two types of communication rules, which exchange objects to and from the skin
membrane.

(i) Rule ½Oi
best �i ! Oi

best , where Oi
best is the best object in evolution membrane i, for i ¼ 1; . . . ; q.

The rule transmits its best object, Oi
best , into the skin membrane and updates the global best object, Ogbest . The updating

strategy is
Ogbest ¼
Oi

best; if f ðOi
bestÞ < f ðOgbestÞ

Ogbest; otherwise

(
; ð12Þ

Rule Ogbest ! ½Ogbest�i, where Ogbest is the global best object in the skin membrane, and i ¼ 1; . . . ; q.
(ii)
The rule indicates that the global best object, Ogbest , in the skin membrane is communicated into evolution membrane i.
The communicated global best object will get engaged in the evolution of objects in the next computing step.

Note that the local best object and global best object participate in the evolution of objects during the computation, and
these objects come from different sources. This brings the benefit of enhancing the diversity of objects in the system and
avoiding the object’s degradation.

4.1.4. Halting and output
For simplicity, the designed evolution–communication P system uses the halt condition of maximum number of execu-

tion steps. Upon halting, the global best object stored in the skin membrane is regarded as the final computing result, i.e., the
best cluster centers found.

4.2. Fuzzy membrane clustering algorithm

The proposed evolution–communication P system is a core component of the proposed membrane clustering algorithm.
The evolution–communication P system can find the optimal cluster centers for a data set based on its evolution–commu-
nication mechanism.

Given an instance of a fuzzy clustering problem consisting of n data points to be divided into K clusters, the evolution–
communication P system uses objects to express sets of feasible cluster centers, and derives the optimal cluster centers by
the evolution and communication of objects. The membrane clustering algorithm first generates m initial objects for each
evolution membrane, and then executes the evolution–communication P system. Under the control of the modified differ-
ential evolution mechanism and communication mechanism, the evolution–communication P system evolves the objects in

the system, updating local best objects Oi
lbestði ¼ 1; . . . ; qÞ and the global best object Ogbest synchronously until the system

halts. When the system halts, the global best object in the skin membrane is the best approximation to optimal cluster cen-
ters. We re-compute the partition matrix UðXÞ according to the cluster centers found, and assign the n data points to the K
clusters based on the principle of maximum membership.

The proposed membrane clustering algorithm is summarized in Table 1, based on the evolution–communication P system
with a nested structure of three layers.

5. Experimental results

The proposed fuzzy membrane clustering algorithm (Fuzzy-MC) was compared with the improved differential evolution-
based (Improved-DE), original differential evolution-based (Original-DE), genetic algorithm-based fuzzy clustering (GA)
methods, classical fuzzy c-means (FCM) algorithm, and hierarchical average linkage (AL) clustering. Experimental results
were calculated for five artificial and five real-life data sets, described below.

5.1. Artificial data sets

� Data 1: A highly overlapping two-dimensional data set with five clusters, and 250 points (Fig. 3(a)). Each cluster is
circular.
� Data 2: A highly overlapping two-dimensional data set with nine clusters and 900 points (Fig. 3(b)). Each cluster is cir-

cular, and centers are on an approximate regular grid.
� Data 3: A two-dimensional data set with four clusters and 600 points (Fig. 3(c)). Each cluster is circular, with centers

approximately collinear and approximately evenly distributed.



Table 1
Fuzzy membrane clustering algorithm: a fuzzy clustering algorithm based on evolution–communication P system.

Input: Data set, X; the number of clusters, K; the number of evolution membranes, q; the number of objects in each evolution membrane, m;
maximum execution step number, tmax; and crossover probability, Cr .

Output: The optimal cluster centers, Ogbest , in the skin membrane.

Begin
Step1: /⁄Initialization⁄/
for i ¼ 1 to q

for j ¼ 1 to m

Generate j-th initial object for evolution membrane i; Oi
j;

Calculate partition matrix, Ui
j;

Calculate the XB index of object, Oi
j;

end for

Update local best object, Oi
lbest , in i-th local store membrane by communication rules;

end for
Update global best object, Ogbest , in global store membrane by communication rules;
Set computing step t ¼ 0;
Step2: /⁄Object evolution in evolution membranes⁄/
for each evolution membrane, i; ði ¼ 1; . . . ; qÞ in parallel do

for j ¼ 1 to m

Evolve objects, Oi
j , using the improved differential evolution rules;

Calculate partition matrix, Ui
j;

Calculate the XB index of object Oi
j;

end for
end for
Step3: /⁄Object communication⁄/
for each evolution membrane, i; ði ¼ 1; . . . ; qÞ, in parallel do

Transmit the best object in membrane i to update its local best object, Oi
lbest , using communication rules;

Transmit the best object in membrane i to update the global best object, Ogbest , using communication rules;
end for
step4: /⁄Halting condition judgment⁄/
if t 6 tmax is satisfied

t ¼ t þ 1;
goto Step2;

end if
Export the global best object, Ogbest;

Calculate partition matrix, Ui
j , according to the global best object, Ogbest;

Assign all data points into K clusters based on Ui
j .

End

Fig. 3. Five artificial data sets used in experiments: (a) Data 1; (b) Data 2; (c) Data 3; (d) Data 4; and (e) Data 5.



� Data 4: A two-dimensional data set with four clusters and 1000 points (Fig. 3(d)). Clusters are circular with centers
approximately on a square grid.
� Data 5: A two-dimensional data set with three clusters and 600 points (Fig. 3(e)). Two clusters are circular while the third

cluster is elliptical.

5.2. Real-life data sets

Five real-life data sets were obtained from the UCI Machine Learning Repository [43].

� Iris: 150 data points distributed over three clusters (Setosa, Versicolor, and Virginica), with four dimensions (sepal length,
sepal width, petal length, and petal width).
� Wine: 178 data points with 13 features from a chemical analysis of wines grown in the same region in Italy, from three

different cultivators. It is divided into three clusters.
� Glass: 214 data points divided into six clusters. Data dimensions are: id number[A5], Refractive index, Sodium, Magne-

sium, Aluminum, Silicon, Potassium, Calcium, Barium and Iron.
� BreastCancer: 683 points with nine features. There are two categories in the data: malignant and benign, which are

known to be linearly separable.
� Newthyroid: 215 data points with five attributes. The original database from where it has been collected is titled as thy-

roid gland data (normal, hypo and hyper functioning). There are three categories in the data: euthyroidism, hypothyroid-
ism and hyperthyroidism.

5.3. Input parameters

The parameters of the proposed evolution–communication P system were set to: q = 16, m = 20, tmax ¼ 100 and Cr ¼ 0:8.
The Improved-DE algorithm first algorithm uses the improved differential evolution mechanism, while the Original-DE

algorithm uses the original differential evolution mechanism. Parameters for both DE-based algorithms were: population
size PS = 50, the number of generations T = 100, Cr ¼ 0:8, and a and F used the same values as for the Fuzzy-CM method.

The GA algorithm was executed for 100 generations with population size 20, crossover probability 0.8, and mutation
probability 0.01. The FCM algorithm was executed until it converged to a final solution.
Table 2
The experimental results on five artificial data sets.

Data sets Methods XB PBMF Jm FM

Data 1 Fuzzy-MC 0.112 (±0.005) 2.85 (±1.004) 916.49 (±6.623) 0.921 (±0.023)
Improved-DE 0.235 (±0.009) 2.83 (±1.014) 919.32 (±6.685) 0.827 (±0.031)
Original-DE 0.793 (±0.023) 2.79 (±1.053) 928.11 (±6.735) 0.784 (±0.033)
GA 1.653 (±0.187) 2.27 (±1.316) 989.52 (±8.923) 0.753 (±0.041)
FCM 1.982 (±0.254) 2.23 (±1.523) 996.42 (±10.527) 0.669 (±0.043)
AL 2.899 1.85 1085.03 0.631

Data 2 Fuzzy-MC 0.143 (±0.018) 0.28 (±0.115) 822.04 (±4.762) 0.725 (±0.019)
Improved-DE 0.257 (±0.018) 0.28 (±0.118) 822.08 (±4.769) 0.649 (±0.032)
Original-DE 0.699 (±0.022) 0.26 (±0.122) 822.10 (±4.833) 0.623 (±0.031)
GA 1.832 (±0.201) 0.24 (±0.238) 823.44 (±5.215) 0.598 (±0.040)
FCM 2.113 (±0.239) 0.22 (±0.253) 824.21 (±5.739) 0.501 (±0.041)
AL 2.914 0.17 826.21 0.475

Data 3 Fuzzy-MC 0.100 (±0.000) 11.29 (±4.800) 2023.71 (±28.720) 0.962 (±0.021)
Improved-DE 0.183 (±0.006) 11.43 (±4.867) 2035.23 (±28.818) 0.946 (±0.033)
Original-DE 0.762 (±0.023) 11.87 (±4.924) 2041.52 (±29.226) 0.934 (±0.032)
GA 2.135 (±0.205) 12.21 (±5.844) 2055.18 (±31.004) 0.917 (±0.039)
FCM 2.512 (±0.268) 12.75 (±6.733) 2061.83 (±30.982) 0.885 (±0.044)
AL 3.443 15.32 2132.36 0.862

Data 4 Fuzzy-MC 0.100 (±0.000) 80.88 (±8.048) 12842.28 (±25.686) 0.832 (±0.022)
Improved-DE 0.112 (±0.006) 80.84 (±8.086) 12845.46 (±25.722) 0.751 (±0.029)
Original-DE 0.157 (±0.034) 79.18 (±8.224) 12876.05 (±26.136) 0.714 (±0.034)
GA 2.532 (±0.178) 78.67 (±9.336) 12932.11 (±28.322) 0.685 (±0.043)
FCM 2.483 (±0.245) 78.54 (±9.793) 12942.38 (±25.286) 0.634 (±0.042)
AL 3.387 75.27 13127.51 0.627

Data 5 Fuzzy-MC 0.1 (±0.0001) 138.93 (±10.558) 11143.86 (±25.210) 0.928 (±0.021)
Improved-DE 0.103 (±0.005) 138.69 (±10.632) 11145.21 (±25.432) 0.922 (±0.032)
Original-DE 0.127 (±0.023) 137.54 (±10.847) 11147.05 (±25.917) 0.882 (±0.032)
GA 0.997 (±0.894) 135.23 (±12.427) 11223.56 (±26.527) 0.857 (±0.042)
FCM 1.263 (±0.936) 134.72 (±12.369) 11318.46 (±26.982) 0.729 (±0.043)
AL 2.884 130.80 11452.38 0.715



5.4. Results

Note that except for AL, the clustering algorithms contain some stochastic and/or random factors. Thus, the five clustering
algorithms were executed 100 times on each data set and mean and standard variances were calculated for each algorithm
over the 100 runs for the XB index, PBMF index, Jm, and F-Measure. Tables 2 and 3 show the results of the clustering
algorithms for the artificial and real-life data sets, respectively. Fuzzy-MC and Improved-DE show significant advantages
compared with the other algorithms across all four indexes and all data sets. Generally, the clustering performance of
Fuzzy-MC is comparable or superior to Improved-DE for both artificial and real data sets, with both of these algorithms being
superior to the others. A more comprehensive statistical analysis of the ranking is given below.
5.5. Stability

Fuzzy-MC shows significantly smaller standard variance (see Tables 2 and 3) than the other algorithms for all metrics and
all data sets, demonstrating the superiority of the proposed Fuzzy-MS algorithm in terms of stability.
Table 3
The experimental results on five real-life data sets.

Data sets Methods XB PBMF Jm FM

Iris Fuzzy-MC 0.100 (±0.000) 10.79 (±3.722) 413.32 (±10.127) 0.792 (±0.021)
Improved-DE 0.523 (±0.021) 9.00 (±3.913) 433.95 (±15.332) 0.782 (±0.029)
Original-DE 0.832 (±0.082) 8.03 (±4.531) 456.12 (±19.223) 0.763 (±0.031)
GA 0.945 (±0.183) 6.92 (±4.454) 481.32 (±22.657) 0.747 (±0.038)
FCM 2.025 (±0.314) 5.25 (±4.992) 526.44 (±25.453) 0.713 (±0.042)
AL 3.253 2.51 568.36 0.694

Wine Fuzzy-MC 0.1 (±0.000) 25436.18 (±30.889) 3229788.94 (±39.521) 0.625 (±0.022)
Improved-DE 0.316 (±0.019) 25419.26 (±30.893) 3229803.23 (±39.529) 0.584 (±0.032)
Original-DE 0.435 (±0.085) 25401.87 (±30.936) 3229812.65 (±39.530) 0.526 (±0.035)
GA 0.843 (±0.248) 25392.33 (±32.335) 3229869.45 (±40.441) 0.498 (±0.037)
FCM 1.336 (±0.279) 25383.21 (±33.651) 3229953.36 (±45.223) 0.442 (±0.041)
AL 4.323 25379.51 3229854.39 0.425

Glass Fuzzy-MC 0.101 (±0.003) 18.65 (±7.116) 2157.39 (±20.194) 0.481 (±0.021)
Improved-DE 0.246 (±0.014) 17.97 (±7.120) 2158.91 (±20.832) 0.468 (±0.031)
Original-DE 0.381 (±0.069) 17.45 (±7.127) 2160.29 (±21.003) 0.451 (±0.033)
GA 0.752 (±0.313) 16.77 (±8.045) 2162.55 (±22.425) 0.429 (±0.039)
FCM 2.0738 (±0.298) 16.31 (±9.362) 2162.69 (±23.337) 0.414 (±0.043)
AL 3.324 15.99 2164.12 0.403

BreastCancer Fuzzy-MC 0.1 (±0.0001) 201.81 (±7.094) 111409.64 (±34.584) 0.915 (±0.023)
Improved-DE 0.215 (±0.015) 201.73 (±7.113) 111411.25 (±34.708) 0.861 (±0.028)
Original-DE 0.471 (±0.052) 200.38 (±7.547) 111436.85 (±35.212) 0.838 (±0.032)
GA 0.937 (±0.215) 199.43 (±8.454) 111487.38 (±35.834) 0.793 (±0.041)
FCM 1.997 (±0.553) 199.39 (±9.017) 111533.24 (±37.992) 0.736 (±0.043)
AL 2.743 197.81 111629.51 0.724

Newthyroid Fuzzy-MC 0.100 (±0.000) 1590.16 (±13.722) 123181.83 (±21.477) 0.827 (±0.022)
Improved-DE 0.235 (±0.008) 1589.58 (±13.723) 123183.41 (±21.732) 0.772 (±0.031)
Original-DE 0.406 (±0.025) 1588.73 (±13.825) 123228.93 (±22.223) 0.746 (±0.036)
GA 0.862 (±0.194) 1588.28 (±14.653) 123352.47 (±23.527) 0.729 (±0.043)
FCM 1.556 (±0.472) 1588.39 (±15.268) 123383.32 (±23.465) 0.662 (±0.045)
AL 2.912 1586.86 123519.07 0.648

Table 4
Significance test (Wilcoxon’s rank sum) for Fuzzy-MC against other methods.

Data sets Improved-DE Original-DE GA FCM AL

Data 1 0.0138 1.23e�3 3.37e�3 1.79e�4 2.36e�5
Data 2 0.0328 1.87e�3 4.56e�3 1.58e�4 2.28e�5
Data 3 0.0235 1.64e�3 4.47e�3 1.45e�4 2.53e�5
Data 4 0.0272 1.39e�3 4.24e�3 1.43e�4 2.19e�5
Data 5 0.0126 1.16e�3 3.27e�3 1.39e�4 2.35e�5
Iris 0.0482 2.48e�3 5.82e�3 1.83e�4 3.72e�5
Wine 0.0279 1.24e�3 3.99e�3 2.81e�4 2.33e�5
Glass 0.0434 3.19e�3 4.97e�3 1.53e�4 3.61e�5
BreastCancer 0.0318 1.45e�3 4.15e�3 2.36e�4 2.52e�5
Newthyroid 0.0231 1.39e�3 4.24e�3 1.64e�4 2.16e�5



5.6. Statistical significance

The Wilcoxon’s rank sum test is a nonparametric statistical significance test for independent samples, and was conducted
at the 5% significance level on the experimental outcomes. We created six groups for each data set, corresponding to the six
clustering methods. Each group consisted of the F-Measure values from the 100 consecutive runs of the corresponding meth-
ods for the data sets. Table 4 shows the p-values generated by Wilcoxon’s rank sum test comparing Fuzzy-MC and the other
method as indicated. The null hypothesis is that there is no significant difference between mean values of two groups, with
the appropriate alternative hypothesis. All p-values are less than 0.05, which establishes that the null hypothesis does not
hold for any comparison at the 95% level of confidence. Hence, we have established the statistically significant superiority
of the proposed Fuzzy-MC algorithm.
6. Conclusions

This paper proposed a fuzzy membrane clustering algorithm for fuzzy clustering, based on an evolution–communication
P system with a modified evolution mechanism corresponding to its special membrane structure and inherent communica-
tion mechanism. The proposed P system exploits the optimal cluster centers for a data set and determines good fuzzy par-
titioning. The proposed fuzzy membrane clustering algorithm was compared with two DE-based fuzzy clustering, GA-based
fuzzy clustering, and FCM and hierarchical average linkage clustering. Statistical significance was explicitly tested and estab-
lished the advantages of the proposed algorithm. Further research is required to apply membrane computing to solve auto-
matic and multiobjective clustering problems.
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