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ABSTRACT

K-homology (KH) splicing regulator protein (KSRP)
is a multi-domain RNA-binding protein that regu-
lates different steps of mMRNA metabolism, from
mRNA splicing to mRNA decay, interacting with
a broad range of RNA sequences. To understand
how KSRP recognizes its different RNA targets it
is necessary to define the general rules of KSRP-
RNA interaction. We describe here a complete
scaffold-independent analysis of the RNA-binding
potential of the four KH domains of KSRP. The
analysis shows that KH3 binds to the RNA with a
significantly higher affinity than the other domains
and recognizes specifically a G-rich target. It also
demonstrates that the other KH domains of KSRP
display different sequence preferences explaining
the broad range of targets recognized by the pro-
tein. Further, KSRP shows a strong negative selec-
tivity for sequences containing several adjacent
Cytosines limiting the target choice of KSRP within
single-stranded RNA regions. The in-depth analysis
of the RNA-binding potential of the KH domains
of KSRP provides us with an understanding of the
role of low sequence specificity domains in RNA
recognition by multi-domain RNA-binding proteins.

INTRODUCTION

K-homology (KH) splicing regulator protein/fuse bind-
ing protein 2 (KSRP/FBP2) is a multi-functional RNA-
binding protein that is involved in different steps of
mRNA metabolism. The protein was originally identified
as an important factor in the alternative splicing of NI
neuronal RNA (1) and subsequently shown to be impor-
tant in the decay of a subset of mRNAs containing AU-rich
stretches within their 3’-untranslated regions (UTRs) [the
so-called adenosine—uridine-rich elements, or AREs (2)].
A later study has uncovered an interaction between the
rat orthologue of KSRP (Martal) and the dendritic

targeting element (DTE) in MAP2 mRNA 3-UTR
that is necessary to localize the mRNA at the dendritic
synapsis (3). RNA binding is central to the different func-
tions of KSRP and is mediated by four KH domains that
occupy the middle region of the protein (Figure 1) (4).

The role of KSRP in ARE-mediated mRNA decay
(AMD) has been studied in depth. KSRP targets a subset
of mRNAs that contain AREs within their 3-UTR,
recruiting the exosome and other de-adenylation factors.
Recruitment of these complexes results in polyA shorten-
ing followed by 3-5 exonucleolytic digestion of the
mRNAs (2,4). The comparison of the AREs targeted by
KSRP reveals that despite being AU-rich, these elements
have very different sequences (5). Further, although the
role of the protein in pre-mRNA splicing and mRNA local-
ization is still largely to be explored, it seems clear that,
in those contexts, protein—RNA binding does not involve
ARE-like sequences (1,3). No unifying element has been
identified so far amongst the RNA targets of KSRP.

Functional data suggest that KSRP binds to RNA using
multiple domains (4). Indeed the KH-fold can recognize a
core 4nt sequence within single-stranded nucleic acid
regions (6) and the long, single-stranded RNA (ssRNA)
can potentially fit several of these domains. This hypothesis
is also consistent with in vitro dissociation constants of
KH3, KH4 and KH3-KH4 in complex with the RNA
targets. The isolated KH domains bind to short AU-rich
sequences with Ky values in the high micromolar range but
when two (or more) domains are joined a sub-micromolar
affinity is reached (7) (I. Diaz-Moreno et al., submitted for
publication).

The broad range of sequences recognized by KSRP
indicates that if we are to understand the rules directing
KSRP-RNA recognition, we cannot limit ourselves to
analyse the details of the interaction with a single RNA
partner but we need to dissect the full capability of the
protein to discriminate between different RNA sequences.
Although KSRP has been shown to directly interact with
the AREs (4), we have only little information on the bind-
ing specificity and affinity of the isolated KH domains of
the protein for the RNA. The only equilibrium data avail-
able show that the relative positioning of A’s and U’s
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Figure 1. Domain organization of KSRP.

within the TNF-a0 ARE does not change significantly the
binding affinity of KH3 and KH4 (7). No equivalent data
are available on the binding of the domains of KSRP to
non-AU-rich sequences.

Here we use scaffold-independent analysis (SIA) (8) to
dissect the capability of the four KH domains of KSRP
to recognize RNA. Our experiments clarify that the four
domains of KSRP have different sequence specificities,
although they share a negative selectivity for polyC
sequences. Based on these results, we probe the affinity
range of the different domains using NMR-monitored
equilibrium binding assays and we define the role of
KH3 as a high affinity RNA-binding domain. In KSRP,
the sequence preference of the single domains is conserved
in the multi-domain constructs (M. F. Garcia-Mayoral
et al., unpublished data and I. Diaz-Moreno et al., unpub-
lished data). The SIA data on a single domain are used to
discuss a general model for KSRP-RNA recognition that
has implications for other similar proteins.

MATERIALS AND METHODS

Cloning, expression and purification of the protein
constructs and preparation of the RNA oligonucleotides

KSRP KHI (130-218), KH2 (233-305), KH3 (323-418) and
KH4 (423-525) proteins were obtained as described (7).
Briefly, '"N-labeled proteins were expressed in Escherichia
coli BL21 (DE3) (Invitrogen Corp, Carlsbad, USA) as His—
GST fusion proteins and initially purified using nickel
affinity chromatography according to the manufacturer’s
instructions. The bulky His—GST fusion tags were then
cleaved with TEV protease and removed using a second
nickel affinity step. The constructs were then further pur-
ified and buffer exchanged by gel filtration (Superdex 75
16/60 column, Pharmacia, Pharmacia Corp, Peapack,
USA). Protein purity (always >95%) was assessed
using SDS-PAGE and Coomassie staining. Protein
quantification was achieved by a combination of spectro-
photometry using predicted extinction coefficients and
ninhydrin analysis of protein hydrolysates.

All RNA oligonucleotides were chemically synthesized
(Dharmacon).

NMR spectroscopy

All NMR spectra were recorded on a Varian Inova
(Varian Inc, Palo Alto, USA) spectrometer operating at
800 MHz 'H frequency. The spectra were processed with
the NMRPipe package (9) and analysed with Sparky (10).
Solutions of 25-50 uM "*N-labeled samples of KH1, KH?2,

KH3 and KH4 in 10mM Tris—HCI buffer, 50 mM NaCl,
I mM TCEP, pH 7.4, were titrated with the relevant RNA
oligonucleotides. '"N-HSQC spectra were recorded at
each point of the titration at 27°C. Amide chemical shift
changes as a function of RNA/protein ratio were fitted to
obtain the Ky values for the complexes using in-house
software as described in (11).

SIA

SIA experiments were carried out and analysed as prev-
iously described (8). In brief, the 16 RNA pools (1 umol
synthesis) that allowed the analysis of the sequence
preference in 4 nt positions were purchased as 5" biotiny-
lated-HPLC-purified oligos from Curevac, Germany and
reconstituted in RNAse-free 10 mM Tris—HCI pH 7.4.

Titrations of 25 uM KH1, KH2, KH3 and KH4 samples
with the different RNA pools (i.e. uUANNN, uCNNN,
uGNNN, etc.) were carried out at 27°C in 10mM
Tris—=HCI buffer, 50mM NaCl, 1mM TCEP, pH 7.4.
I>’N-"H HSQC spectra were recorded at each step of the
titration (RNA:protein ratios of 0:1, 1:1 and 3:1) and
averaged chemical shift differences were measured as
described above for a subset (8—12) of the peaks affected
by binding. Full assignments of backbone resonances of
free and bound KH domains were available from previous
work (7) (I. Diaz-Moreno et al., submitted for publication,
I. Diaz-Moreno et al., unpublished data). Analysis of the
perturbed resonances confirmed that the selected residues
are scattered across the protein—RNA interface.

The chemical shift changes observed upon addition
of the 16 pools for each of the residues selected were dis-
played in four histograms (Figure 2b). To rank the differ-
ences between pools in a simple format that allows an
immediate understanding of the binding preference, the
four shifts displayed in each histogram for each peak
were normalized to the highest value of the four. Then
the normalized value obtained for one peak in one titra-
tion was averaged over all the peaks for the same titration
that are reported in each histogram. Comparison of this
final score for the 4 nt in the same position reports on the
binding preference(s) of the protein(s) (Table 1).

RESULTS AND DISCUSSION

SIA is a recently established method that ranks the nucleo-
tide preference of an RNA-binding domain for each
position of the single-stranded target sequence (8). The
method is designed for domains that bind to RNA with
low-to-intermediate affinity and provides not just
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Figure 2. SIA assays for KSRP KH3. (a) Overlays of a downfield region from '*N-HSQC spectra recorded during four titrations of the KH3 domain
of KSRP with the uNNAN, uNNCN uNNGN, uNNUN pools. Each panel displays the superimposition of three spectra corresponding to the free
protein (red), 1:1 (green) and 1:3 (cyan) protein—RNA ratios. Within the ensemble of resonances that shift, we observe peaks in both fast and
intermediate exchange. This is true for all of the titrations/pools, although for the highest scoring pools we observe a larger number of resonances
in intermediate exchange (7-8 versus 2-3). In order to analyse the data comparatively, we choose only peaks that are in fast exchange in all
four titrations. As all the peaks shift because of the same protein—-RNA binding event, the exclusion of some peaks does not bias the results (8).
(b) Chemical shift changes of 15 selected residues in the eight protein—RNA titrations with the non-randomized pools in the second (left) and
third (right) positions. The weighted chemical shift changes (Ad,,) for the 1:3 protein:RNA ratio are plotted versus the residue numbers and
normalized to the highest value for those residues. For each residue the four values reported correspond to the uNANN, uNCNN, uNGNN,
uNUNN (left) and uNNAN, uNNCN, uNNGN, uNNUN titrations (right). KH3 prefers binding to a G both in position 2 and in position 3 of the
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Table 1. SIA scores for the four KH domains of KSRP

uXNNN uNXNN UNNXN uUNNNX
KHI

A 0.66 0.35 0.29 0.53
C 0.61 0.36 0.32 0.51
G 0.73 0.98 1 1

U 1 0.79 0.62 0.66
+ U G G G

- A/C A/C A/C A/C
KH2

A 0.57 0.76 0.86 0.93
C 0.45 0.33 0.38 0.63
G 0.76 0.64 0.94 0.98
U 0.97 0.98 0.79 0.69
+ U U A/G A/G
- C C C C/U
KH3

A 0.83 0.72 0.37 0.80
C 0.85 0.56 0.58 0.71
G 0.95 0.99 0.98 0.95
U 0.81 0.71 0.71 0.91
+ N G G G/U
- N C A A/C
KH4

A 0.98 0.67 0.21 0.79
C 0.74 0.64 0.28 0.39
G 0.89 0.96 0.95 0.88
U 0.68 0.65 0.57 0.91
+ A/G G G G/U
- C/u A/C/U A/C C

Depending on the size of the ensembles used for the scoring, small
variations in the SIA score (<0.1) may occur. The results of each
analysis have been summarized in the *+” and ‘-’ lines. * + is assigned
to nucleotides with SIA score within 0.1 from the top one. ‘=’ is
assigned to the ones with SIA score within 0.1 from the bottom one.
When overlap exists between “+’ and ‘—’ the position is assigned an ‘N’.

a preferred binding sequence, but a full analysis of the
domain sequence specificity. The information obtained
allows us to approach the problem of RNA target
choice from orthogonal perspectives; that is allows us to
identify not only the sequence(s) that a domain selects for
but also the ones that the same domain selects against. As
the mRNA is by and large coated by proteins, negative
selection against specific ‘naked’ targets could represent a
powerful regulatory tool. The SIA method has been vali-
dated on the well-characterized interaction between the
KH3 domain of Nova-1 protein and its RNA target (8).
We now apply this method to each of the four domains of
the KSRP protein.

SIA is based on a comparative analysis of the NMR-
detected interactions between an array of short semi-
randomized RNA sequences and the target protein
(Figure 2). The SIA score reflects the preference for a
nucleotide in a specific position of the binding site on a
0-1 scale (8); comparison of this score for the four nucleo-
tides provides an evaluation of the binding preference(s)
of the protein. For example, to understand the nucleotide
preference of KSRP KH3 for the second position within
the target RNA, we compare the SIA scores for the
four quasi-randomized uNANN, uNGNN, uNCNN and
uNUNN pools (Table 1). The highest scorer is uNGNN
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(0.99), while the scores of the other three pools are signif-
icantly lower. This indicates that the preferred nucleotide
in the second position of the KH3-binding site is a G.

Analysis of the SIA scores in Table 1 indicates that the
four KH domains of KSRP have different sequence pre-
ferences and that different positions within the target
sequence are responsible for specificity. In KH3 and
KH4, the most specific positions within the RNA target
are the two central ones, but this does not apply to KH1
and KH2. The SIA scores for KH1, show that the domain
selects negatively for A and C in all positions. This may
explain why KH1 binds to AU-rich sequences with an
affinity significantly lower than that of the other domains.
KH3 and KH4 that do bind to AU-rich sequences with
measurable affinity (7), show a positive selectivity for
G-rich sequences, while KH2 is the only domain that
shows a preference for an AU-rich RNA. There is also a
clear negative selection for C in most positions for all the
domains. This is different from what we observed for
the Nova-1 KH3-RNA interaction: in this domain C is
the favoured nucleotide in two of the four positions, con-
sistently with SELEX and in vivo data (8). Further, the
KH domains of proteins from the PCBP family (including
aCP1-4 and hnRNPs K/J) are known to specifically tar-
get single-stranded C-rich sequences in the 3-UTR of sev-
eral mRNAs (12) with nanomolar affinity. And even the
chicken orthologue of KSRP, ZBP2, has been reported to
transiently interact with the C-rich Zipcode in B-actin
mRNA (13). Therefore, the negative selectivity for C
observed for the KH domains of KSRP does not reflect
a structural constraint imposed by the KH-fold but a very
specific feature of the KSRP protein.

To validate the rank ordering of our SIA data and to
relate them to actual affinities (8) we measured the disso-
ciation constants of the complexes formed between the
different domains and a representative set of the preferred
sequences indicated by SIA (Table 1). We also measured
the affinity of the domains for an RNA oligo of sequence
uCCCC that according to SIA is selected against by all
four KSRP domains. The results of these binding assays
(Figure 3) confirm the SIA data and provide a clear pic-
ture of the RNA-binding capability of the four domains.
We have previously reported that KH3 binds to AU-rich
RNA sequences with a K4 of ~100 uM, ~3-times stronger
than KH2 and KH4, while KHI binds to the same
sequences with very low affinity (7) (I. Diaz-Moreno
et al., submitted for publication). We now show that
KH3 binds to an SIA-defined sequence (uGGGU) ~100-
fold stronger than to canonical UAUUAU or UAUUUA
elements (Figure 3a). In contrast, KH2 shows a binding
affinity for the SIA sequence (WUWUAG) which is similar
(within the error) to the binding affinity for the AU-rich
elements described above. KH4 binding to the preferred
SIA sequence (WAGGG) is only marginally stronger
(~2-fold) than binding to the AU-rich elements. Finally,
KHI binds to the AU-rich elements very weakly but dis-
criminates effectively in favour of the SIA targets
(WUGGG) (Figure 3a). This is consistent with the SIA
data described above, which show that this domain does
not favour A in any of the positions of the target. Further,
it shows that KHI1 binds to the RNA target with low
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Figure 3. KSRP KH domains bind to their target sequences with very different affinities—(a) Ky values (uM) of the complexes between KSRP KH
domains and selected RNA oligos (nb: no significant binding observed). These oligos include one of the ‘best” sequences, an AU-rich sequence and
one of the worse sequences for each domain, as defined by the SIA scores of Table 1. Below, the sequence preferences of the domains are summarized

in a Weblogo (http://berkeley.edu/logo.cgi) graphic format (a larger letter

and top position indicates a higher score). (b) Binding isotherms for

selected residues of KH1 (Ky, 318 £46; top left), KH2 (Ky, 540 & 85; top right), KH3 (Ky, 1.5+ 1; bottom left) and KH4 (Ky4, 170 & 30; bottom right)
exemplify the different binding affinities of the KH domains of KSRP. The absolute values of the amide >N chemical shift changes are represented as

a function of the increasing RNA:protein ratios.

affinity and yet discriminates effectively in favour of the
wanted sequence, a combination that may be useful in
exploring the binding space within a large RNA target.
Our binding data also confirm that the four individual
domains select strongly against C-rich sequences as no

measurable shift is observed during NMR titrations
(Figure 4a). To evaluate the effect of this negative selec-
tivity in the context of the four-domain protein, we tested
KSRP-RNA interactions using a construct comprising all
four domains (KH1234) and two RNAs: a polyC 25-mer
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Figure 4. KH3 binding to target and non-target sequences. (a) Overlays
of a downfield region from '"N-HSQC spectra recorded during the
titrations of the KH3 domain of KSRP with, respectively, the
UCCCC (top), UAUUAU (middle) and UGGGU (bottom) oligos.
Each panel displays the superimposition of three spectra correspond-
ing to the free protein (red) and to 1:1 (green), and 1:4 (purple)
protein-RNA ratios. (b) Binding isotherms of KH3 to its different
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and the TNF-oo ARE 25-mer. CD and EMSA show that,
while binding to the ARE sequence is very tight [Kj in the
low nanomolar range (7)] the interaction with the polyC
is weak (Kyq>>pM) (data not shown), confirming that
the KH domains of KSRP also select against multiple
adjacent Cs in the four-domain protein.

It is worth mentioning that the oligo-nucleotides used in
our binding assays are both 6-mer (TNF-o-derived) and
S5-mers (SIA-derived). In principle, it is possible that the
sixth nucleotide is involved in additional important con-
tacts with the protein. However, we do not see additional
chemical shift changes for a 6-mer with respect to a 5-mer
indicating that a similar range of contacts is likely to take
place. In fact, the largest number of shifts is observed
when titrating the uGGGU and uAGGG 5-mers into,
respectively, KH3 and KH4 and during titrations with
the AU-rich 6-mers. Further, the SIA-derived specific
5-mers bind the KH domains with higher affinity than
the TNF-o-derived 6-mers, so any possible difference
due to the sixth nucleotide would increase the gap between
specific and non-specific sequence reported here. The
negative specificity observed for the C-rich pentamers
instead has been validated using RNA 25-mers, as
described above.

We have previously shown that KH3 affinity for AU-
rich sequences is higher than that of KH2 or KH4 for the
same sequences. We show here that the domain is able to
recognize a G-rich sequence with micromolar Kgs. This
affinity is equivalent to that of the isolated Nova-1 KH3
for a short RNA 5-mer containing its target sequence (8)
and indicates that KSRP KH3 discriminates between
specific and non-specific RNA sequences with more than
100-fold efficiency. In summary, while KH1, KH2 and
KH4 bind to the favoured ssRNA sequences with Kgs
>100puM, the K4 of KH3 in complex with the specific
target is 1-2 uM. This suggests that, in targets containing
G-rich sequences, KH3 defines the frame of recognition of
the whole KSRP. This general model is validated by the
recent discovery that KH3 binding docks KSRP to the
GGG-containing apical loop of Let7a miRNA precur-
sor and stimulates pri (and pre)-miRNA processing
(M. Trabucchi et al., submitted for publication).

However, a three-G stretch is rare within the ARE
targets of KSRP: the AU-rich sequences bound by the
protein must be in a single-stranded conformation and
insertion of three consecutive Gs is likely to favour base
pairing with other 3’-UTR sequences. We therefore won-
dered if the recognition of G-rich sequences by KSRP was
relevant mostly to the interaction with its non-ARE
targets. SIA data report on nucleotide preference in one
position of the target and are largely uncoupled from the
sequence context. Therefore, we can expect that the inser-
tion of isolated Gs (or GG elements) within AU-rich
elements would stabilize a specific complex favouring
KH3 binding. Single Gs do not promote the formation

RNA targets exemplifies the increase of affinity as we build the
consensus sequence. The curves report on the titrations of KH3
with UAUUAU (grey fit, hollow circles), UAGUAU (red fit, hollow
circles), UAGGUA (red fit, filled circles) and UGGGU (grey fit,
filled circles).
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of stable secondary structure elements in an AU-rich con-
text and are indeed found in many of the ARE targets of
KSRP. We examined the binding affinity of KH3 for
single and double G motifs embedded within ARE
sequences. The KH3-UAGUAU and UAGGUU com-
plexes have Kgs of 26+5 and 642 uM, respectively
(Figure 4b). Insertion of an isolated G within the TNF-a
ARE-derived AU-rich sequence leads to a 5-fold increase
in KH3 affinity; insertion of a second G leads to a further
4-fold increase. This clearly shows that KH3 would recog-
nize single and double Gs in an AU-rich context, and that
this recognition is likely to be a general feature of the
RNA targets of KSRP.

KSRP recognizes its RNA targets with the combined
action of multiple domains (4,7) and the discriminatory
role of KHI1, KH2 and KH4 in RNA binding is subtle
but not necessarily less important than the one of KH3. A
combination of two or three of the KH domains of KSRP,
including KH3, is necessary to reach a Ky in the nanomo-
lar range, but the KH domains of KSRP show a strong
negative selectivity towards a range of sequences. Among
these sequences are the ones containing multiple Cs.
PolyC mRNA regions within the 3’-UTR are expected
to be single-stranded, as are AU rich ones, and are tar-
geted by multi-KH regulatory proteins such as hnRNP K
and other Poly-C-binding proteins. A negative selectivity
for Cs restricts binding of KSRP to a subset of the possi-
ble ssRNA targets and contributes to the specificity of
recognition. It is important to point out that KSRP can
bind sequences with interspersed Cs and it is only when
several sequential Cs are present that negative selectivity
applies. It is worth mentioning that the in vitro selected
RNA targets of HuR, an RRM-containing ARE-binding
protein that acts antagonistically to KSRP often contain
isolated Gs but very rarely Cs (14).

The role played by non-sequence-specific RNA-binding
domains is a long-standing issue in RNA recognition by
multi-domain proteins. It has been proposed that some
multi-domain RNA-binding proteins like hnRNP K use
a combination of sequence-specific and non-sequence-
specific domains to select their RNA targets (15,16). Our
data show that KSRP also uses a combination of high and
low specificity domains to recognize the target and that,
if a G-rich sequence is present KH3 would assume a lead-
ing role in defining the binding frame on the target RNA.
However, the functional binding of the RNA needs
further interactions and it is interesting to consider the
effect of a negative selectivity by the other domains in
discriminating between target and non-target RNAs. As
a more in-depth analysis of sequence preference in
ssRNA-binding proteins is undertaken, negative selectiv-
ity may be recognized as an effective answer to the pro-
blem of preventing unwanted protein—-RNA interactions.
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