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Originality-Significance Statement 19 

This work illustrates the capability of the heterocyst-forming cyanobacterium Anabaena 20 

for mixotrophic growth and identifies ABC glucoside uptake transporters essential for this 21 

physiological behavior. This emphasizes an aspect of cyanobacterial physiology –22 

mixotrophy– that should be considered for a full understanding of the wide distribution of 23 

cyanobacteria in nature. 24 
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Summary 26 

 27 

Cyanobacteria are generally capable of photoautotrophic growth and are widely 28 

distributed on Earth. The model filamentous, heterocyst-forming strain Anabaena sp. 29 

PCC 7120 has been long considered a strict photoautotroph but is now known to be able 30 

to assimilate fructose. We have previously described two components of ABC glucoside 31 

uptake transporters from Anabaena that are involved in uptake of the sucrose analog 32 

esculin: GlsC (a nucleotide-binding domain subunit [NBD]) and GlsP (a transmembrane 33 

component [TMD]). Here we created Anabaena mutants of genes encoding three further 34 

ABC transporter components needed for esculin uptake: GlsD (NBD), GlsQ (TMD) and 35 

GlsR (periplasmic substrate-binding protein). Phototrophic growth of Anabaena was 36 

significantly stimulated by sucrose, fructose and glucose. Whereas the glsC and glsD 37 

mutants were drastically hampered in sucrose-stimulated growth, the different gls 38 

mutants were generally impaired in sugar-dependent growth. Our results suggest the 39 

participation of Gls and other ABC transporters encoded in the Anabaena genome in 40 

sugar-stimulated growth. Additionally, Gls transporter components influence the function 41 

of septal junctions in the Anabaena filament. We suggest that mixotrophic growth is 42 

important in cyanobacterial physiology and may be relevant for the wide success of these 43 

organisms in diverse environments. 44 

  45 
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Introduction 46 

 47 

Cyanobacteria are an ecologically important group of organisms that significantly impact 48 

the carbon and nitrogen cycles in the biosphere (Whitton and Potts, 2000). They are 49 

characterized by their ability to perform oxygenic photosynthesis, and they are generally 50 

capable of photoautotrophic growth (Rippka et al., 1979). Although many cyanobacteria 51 

are strict photoautotrophs, some are capable of photoheterotrophic growth assimilating 52 

sugars (Rippka et al., 1979). Additionally, some heterocyst-forming cyanobacteria are 53 

capable of sugar-dependent chemoheterotrophic growth in the dark (Wolk and Shaffer, 54 

1976; Bottomley and van Baalen, 1978; Schmetterer and Flores, 1988). Consistently, 55 

some sugar transporters that mediate sugar uptake supporting some kind of 56 

heterotrophic growth have been identified in cyanobacteria. Well-known examples 57 

include a major facilitator superfamily (MFS) glucose transporter, GlcP, that has been 58 

characterized in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 59 

(Zhang et al., 1989; Schmetterer, 1990) and in the heterocyst-forming cyanobacterium 60 

Nostoc punctiforme (Ekman et al., 2013), and an ABC fructose transporter, Frt, that has 61 

been characterized in the heterocyst-forming cyanobacteria Anabaena variabilis 62 

(Ungerer et al., 2008) and N. punctiforme (Ekman et al., 2013). 63 

 Heterocyst-forming cyanobacteria are filamentous organisms that, in the absence 64 

of a source of combined nitrogen, contain two cell types: vegetative cells that fix CO2 65 

performing oxygenic photosynthesis and heterocysts that are specialized for the fixation 66 

of N2 (Flores and Herrero, 2010). In the diazotrophic filament, an exchange of nutrients 67 

takes place that results in the transfer of reduced carbon from vegetative cells to 68 

heterocysts and of fixed nitrogen from heterocysts to vegetative cells (Wolk, 1968; Wolk 69 

et al., 1974; Jüttner, 1983). Intercellular molecular exchange has been traced with 70 

fluorescent markers (including calcein and 5-carboxyfluorescein) and shown to take 71 

place by simple diffusion (Mullineaux et al., 2008; Nieves-Morión et al., 2017a). The 72 

cyanobacterial filament consists of individual cells surrounded by their cytoplasmic 73 

membrane and peptidoglycan layer(s) but sharing the outer membrane, which is 74 

continuous along the filament determining the presence of a continuous periplasmic 75 

space, and the cells in the filament are joined by proteinaceous structures termed septal 76 

junctions (Wilk et al., 2011; Flores et al., 2016; Herrero et al., 2016). Proteins SepJ (also 77 

known as FraG), FraC and FraD that are located at the intercellular septa have been 78 

identified as putative components of the septal junctions (reviewed in Flores et al., 2016; 79 

Herrero et al., 2016). 80 

In the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 81 

(hereafter Anabaena), sucrose appears to be a quantitatively important metabolite 82 
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transferred from vegetative cells to heterocysts (Curatti et al., 2002; Cumino et al., 2007), 83 

where it is hydrolyzed by invertase InvB producing fructose and glucose to support 84 

heterocyst metabolism (López-Igual et al., 2010; Vargas et al., 2011). A fluorescent 85 

analogue of sucrose, esculin (Gora et al., 2012), has also been used as a marker to trace 86 

intercellular molecular transfer, and it has additionally been used to test uptake from the 87 

outer medium into Anabaena cells (Nürnberg et al., 2015). Three glucoside transporters 88 

(or components of transporters) that are involved in uptake of esculin have been 89 

identified in Anabaena (Nieves-Morión et al., 2017b). HepP (Anabaena ORF product 90 

All1711) is a MFS transporter that was previously shown to be needed for deposition of 91 

the polysaccharide layer of the heterocyst envelope (López-Igual et al., 2012), GlsC 92 

(Alr4781) is a nucleotide-binding subunit of an ABC transporter, and GlsP (All0261) is a 93 

transmembrane (permease) subunit of an ABC transporter. In addition to mediating 94 

esculin uptake, these proteins were shown to influence the septal junctions. Whereas 95 

GlsC is needed for proper localization of SepJ at the intercellular septa, HepP and GlsP 96 

influence septal function in a process that may involve interactions with septal protein 97 

SepJ (Nieves-Morión et al., 2017b). 98 

Anabaena is an important model in studies of N2 fixation, heterocyst 99 

differentiation and bacterial multicellularity that has been considered for a long time to 100 

be a strict photoautotroph. Recent work has shown however that Anabaena can grow 101 

heterotrophically using fructose as long as this sugar is provided at relatively high 102 

concentrations (≥ 50 mM) (Stebegg et al., 2012). Incorporation of the genes encoding 103 

the Frt transporter from A. variabilis into the Anabaena genome permits growth of 104 

Anabaena dependent on lower concentrations of fructose (5 mM; Ungerer et al., 2008). 105 

Hence, Anabaena has the metabolic capability to use fructose as a carbon and energy 106 

source but lacks a high affinity transporter for this sugar. On the other hand, Anabaena 107 

has been recently reported to grow mixotrophically using a number of carbon sources, 108 

including some sugars (fructose, glucose, maltose, sucrose), amino acids (glutamate, 109 

glutamine, proline) and other simple organic compounds (glycerol, pyruvate) 110 

(Malatinszky et al., 2017). Whereas ABC transporters for amino acids (Pernil et al., 2015) 111 

and a TRAP transporter that can take up pyruvate (Pernil et al., 2010) are known to be 112 

expressed in Anabaena, transporters that mediate the uptake of sugars are less known. 113 

In this work, we addressed the identification of further components of the ABC 114 

transporters that mediate esculin uptake and the possible role of those transporters in 115 

sugar assimilation as well as in other aspects of the physiology of Anabaena. 116 

 117 

 118 
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Results 119 

 120 

Identification and inactivation of further components of glucoside transporters 121 

 122 

ABC uptake transporters typically comprise one periplasmic solute-binding protein 123 

(SBP), two integral membrane proteins (transmembrane domains [TMD]) and two 124 

nucleotide-binding domains (NBD) that hydrolyze ATP in the cytoplasm (Cui and 125 

Davidson, 2011). We were interested in the identification of transporter partners of GlsC 126 

(NBD) and GlsP (TMD). The genome of Anabaena contains 12 ORFs that encode 127 

proteins that are most similar to components of ABC uptake transporters for sugars 128 

(Table S1). These genes are spread in the Anabaena genome precluding the possibility 129 

of predicting their association in specific ABC transport complexes. Orthologues of glsC 130 

have no neighbors encoding ABC transporter components in any of the cyanobacterial 131 

genomes whose sequence is available (https://img.jgi.doe.gov/cgi-bin/m/main.cgi). 132 

Orthologues of glsP are however frequently accompanied by another ABC TMD-133 

encoding gene in the genomes of heterocyst-forming cyanobacteria (Fig. S1). The 134 

Anabaena gene most similar to this gene is alr2532. In some heterocyst-forming and 135 

non-heterocyst-forming cyanobacteria, as well as in some other bacteria, a gene 136 

encoding a periplasmic SBP is clustered together with those two TMD-encoding genes 137 

(Fig. S1). The Anabaena gene most similar to this gene is all1916. We therefore 138 

constructed Anabaena mutants bearing inactivated versions of all1916 or alr2532. No 139 

gene encoding an ABC transporter NBD is however clustered together with these genes 140 

in any available cyanobacterial genomic sequence. Because in Anabaena there is only 141 

one gene other than glsC that encodes a predicted ABC sugar transporter NBD protein, 142 

all1823 (Table S1), we constructed an Anabaena mutant of this gene as well. 143 

 The genes were inactivated by insertion of pCSL145, a plasmid that cannot 144 

replicate in Anabaena and bears the npt gene encoding neomycin/kanamycin 145 

phosphotransferase. Internal fragments of each of the genes were inserted in pCSL145 146 

to serve as platforms for integration into the Anabaena chromosome by homologous 147 

recombination, the constructs were transferred to Anabaena by conjugation, and 148 

exconjugants were selected as neomycin-resistant clones (Fig. S2). Clones that were 149 

homozygous for chromosomes containing the inactivated construct were identified by 150 

PCR analysis and named CSMN17 (all1823::pCSL145), CSMN18 (all1916::pCSL145) 151 

and CSMN19 (alr2532::pCSL145). 152 

 To investigate the possible role of the inactivated proteins in glucoside transport, 153 

uptake of esculin was studied with filaments of wild-type Anabaena and the three 154 

mutants grown in BG11 medium (containing nitrate) or grown in BG11 medium and 155 
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incubated for 18 h in BG110 medium (lacking any source of combined nitrogen). Strain 156 

CSMN17 showed a low esculin uptake activity in either BG11 or BG110 medium, strain 157 

CSMN18 showed about half of the wild-type esculin uptake activity in either medium, 158 

and strain CSMN19 was affected in esculin uptake in BG110 medium but not significantly 159 

in BG11 medium (Table 1). Thus, the three genes encode components of transporters 160 

that participate in glucoside uptake. We name All1823 as GlsD (NBD), All1916 as GlsR 161 

(periplasmic SBP) and Alr2532 as GlsQ (TMD). 162 

 163 

Sugar-stimulated growth 164 

 165 

We then investigated whether the ABC esculin transporters identified in this work and 166 

those described previously (Nieves-Morión et al., 2017b) could mediate a growth 167 

response to sugars. Attempts of growth tests in the dark or in the light in the presence of 168 

10 µM DCMU with sugars gave inconsistent results, and growth tests in shaken cultures 169 

failed to show any positive effect of sucrose. However, 100 mM sucrose, fructose or 170 

glucose stimulated phototrophic growth of Anabaena on plates, specifically in BG110 171 

medium (Fig. 1). We then tested the effect of the three sugars, added at 50 mM, on 172 

growth in standing liquid cultures (in microtiter plates) in the light. Sucrose, fructose and 173 

glucose significantly increased the yield of Anabaena in both BG11 and BG110 media 174 

(Student’s t test p ≤ 0.011; see WT in Table S2A) suggesting mixotrophic growth. 175 

Fructose and glucose stimulated growth more than sucrose (Table S2 and Fig. 2). On 176 

the other hand, maltose had only a marginal positive effect on the growth of Anabaena 177 

(not shown). 178 

Sucrose-stimulated growth in BG11 and BG110 media was drastically hampered 179 

by inactivation of the NBD proteins GlsC and GlsD, and it was impaired by inactivation 180 

of the TMD proteins GlsP and GlsQ and of the SBP protein GlsR (Fig. 2; see whole set 181 

of data in Table S2). Fructose- and glucose-stimulated growth was also impaired in all 182 

the mutants, and the effect of the inactivation of glsC on glucose-stimulated growth was 183 

especially significant. These results show that the identified ABC uptake transporter 184 

components mediate a positive growth response of Anabaena to sucrose, fructose and 185 

glucose. 186 

Whereas direct uptake of radiolabeled sucrose (Nicolaisen et al., 2009b; López-187 

Igual et al., 2012) and fructose (Stebegg et al., 2012) has been previously shown for 188 

Anabaena, to the best of our knowledge uptake of glucose has not been reported. We 189 

therefore tested uptake of [14C]glucose in filaments grown in BG11 medium and filaments 190 

incubated for 18 h in BG110 medium. Anabaena filaments could take up glucose, at 191 
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higher levels after incubation in BG110 medium, but they did so significantly only at 192 

relatively high sugar concentrations indicating a very low affinity for the sugar (Fig. S3).  193 

 194 

Analysis of septal junction function 195 

 196 

Inactivation of glsC and glsP in Anabaena impairs diazotrophic growth likely because of 197 

effects on the septal junctions (Nieves-Morión et al., 2017b). We tested growth of the 198 

glsD, glsQ and glsR mutants in liquid and solid BG11 or BG110 medium. Growth was not 199 

significantly impaired in any of the mutants in the liquid media (Table S2, no sugar 200 

added). On the other hand, whereas none of the mutants showed a deficit in growth on 201 

solid BG11 medium, the glsR and glsQ mutants were found to be impaired in growth on 202 

solid BG110 medium (Fig. 3). 203 

Septal junctions mediate intercellular molecular transfer that can be studied by 204 

Fluorescence Recovery After Photobleaching (FRAP) analysis with fluorescent markers 205 

including calcein and 5-carboxyfluorescein (5-CF) (Mullineaux et al., 2008; Merino-206 

Puerto et al., 2011). Intercellular transfer of these markers, quantified as the recovery 207 

constant R, was tested in the glsD, glsQ and glsR mutants. Whereas the glsQ mutant 208 

showed R values that were consistently lower than the wild-type figures for both calcein 209 

and 5-CF, the glsD and glsR mutants were impaired in calcein transfer but not in 5-CF 210 

transfer (Table 2). Hence, the glsQ mutant appears to be the most affected in intercellular 211 

transfer of fluorescence markers. 212 

 213 

Localization of SepJ and protein-protein interactions 214 

 215 

Specific glucoside transporters have been found to influence septal junctions by either 216 

affecting localization of the septal protein SepJ or by possible protein-protein interactions 217 

with SepJ (Nieves-Morión et al., 2017b). We investigated the subcellular localization of 218 

SepJ in the mutants generated in this work by immunofluorescence analysis performed 219 

with antibodies raised against the coiled-coil domain of SepJ (Ramos-León et al., 2015). 220 

SepJ was found localized at the intercellular septa of filaments of the glsD, glsQ and 221 

glsR mutants in a similar way as in the wild type (Fig. S4). 222 

To investigate possible interactions of GlsD and GlsQ with SepJ and to assess 223 

whether some of the identified components of ABC transporters could be partners in 224 

specific transporters, we performed Bacterial Adenylate Cyclase Two Hybrid analysis 225 

(BACTH). In this analysis, adenylate cyclase activity is reconstituted from two fragments, 226 

T25 and T18, of adenylate cyclase from Bordetella pertussis brought together by 227 

interacting proteins fused to each of those fragments (Karimova et al., 1998). 228 
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Reconstituted adenylate cyclase in E. coli produces cAMP that promotes induction of 229 

lacZ encoding -galactosidase. Because cAMP has to be produced in the cytoplasm, the 230 

periplasmic SBP GlsR could not be included in this analysis. T25 and T18 fusions to 231 

GlsC and GlsP have been described previously (Nieves-Morión et al., 2017b). We have 232 

now constructed N-terminal and C-terminal fusions of both T25 and T18 to each of the 233 

newly identified proteins GlsD and GlsQ. GlsD is a cytoplasmic protein and GlsQ is an 234 

integral membrane protein with its N- and C-termini predicted to be cytoplasmic. Of the 235 

tested combinations, GlsD interacting with itself produced high levels of -galactosidase 236 

activity indicating self-interaction (Fig. 4; see complete set of data in Table S3). Previous 237 

work showed self-interaction also for GlsC (Nieves-Morión et al., 2017b; included in Fig. 238 

4 for comparison). Interestingly, GlsD interacted also with GlsC. Additionally, GlsD was 239 

found to interact with GlsP, GlsC with GlsQ and GlsP with GlsQ. Although these latter 240 

interactions were relatively weak, it should be noted that they were statistically significant 241 

(see Table S3). Finally, GlsQ was found to interact with SepJ, resembling the GlsP-SepJ 242 

interaction described previously (Nieves-Morión et al., 2017b; included in Fig. 4 for 243 

comparison). This interaction may constitute the basis for the requirement of GlsQ for 244 

full intercellular molecular transfer and diazotrophic growth on plates. 245 

 246 

 247 

Discussion 248 

 249 

Results in this work indicate that GlsD (NBD) has a quantitatively important role in esculin 250 

uptake and in sucrose-stimulated growth in Anabaena, suggesting that GlsD is an 251 

essential component of transporters involved in the uptake of sucrose. Our results 252 

additionally show that GlsC (NBD) is also needed to assimilate sucrose, suggesting that 253 

GlsC and GlsD work together in the ABC glucoside uptake complexes of Anabaena. 254 

Consistently, GlsC and GlsD were observed to interact in BACTH analysis. Nonetheless, 255 

each of these proteins is also able to interact with itself suggesting that they can act as 256 

homodimers in some ABC transporter complexes. A transporter containing specifically 257 

GlsC appears to be especially relevant for glucose uptake. NBD proteins serving 258 

different TMD complexes in ABC transporters –the so-called multitask ABC ATPases– 259 

are well known, and classical examples are MalK and similar proteins that energize di- 260 

and oligo-saccharide uptake in several bacteria (Schlösser et al., 1997; Webb et al., 261 

2008; Ferreira and de Sá-Nogueira, 2010). 262 

The GlsP and GlsQ TMDs are also needed for full esculin uptake and sugar-263 

stimulated growth, they interact with each other in BACTH analysis, and the genes 264 

encoding their orthologues are clustered together in the genomes of many heterocyst-265 
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forming cyanobacteria. These observations together suggest that GlsP and GlsQ are 266 

partners in ABC transporter complexes. The periplasmic SBP GlsR is also needed for 267 

full esculin uptake and sugar-stimulated growth, and a gene encoding a GlsR orthologue 268 

is clustered together with genes encoding GlsP and GlsQ orthologues in the genomes 269 

of some cyanobacteria. Therefore, GlsR may be a partner of GlsP and GlsQ. On the 270 

other hand, because the glsP, glsQ and glsR mutants still show substantial activity of 271 

esculin uptake and sucrose, fructose- and glucose-stimulated growth, additional SBPs 272 

and TMDs should be involved in the uptake of these sugars. 273 

The 12 possible components of ABC sugar uptake transporters encoded in the 274 

Anabaena genome (Table S1) belong to the Transporter Classification Database (TCDB) 275 

family 3.A.1.1 (Saier, 2000; for the most recent discussion of the TCDB see Saier et al., 276 

2016), which transport disaccharides and other complex saccharides and for which the 277 

MalEFGK transporter of Escherichia coli (MalE, SBP; MalF and MalG, TMDs; MalK, 278 

NBD) is a well-known representative (Nikaido, 1994). The predicted Anabaena proteins 279 

are four periplasmic SBP, six TMDs (three most similar to MalF and three to MalG), and 280 

two NBDs (Table S1). This data together with our results discussed above suggest the 281 

presence in Anabaena of at least three ABC glucoside transporters, one of which may 282 

be constituted by GlsR (SBP), GlsP-GlsQ (TMDs) and GlsC-GlsD (NBDs). The 283 

membrane complex of this transporter may use additional SBP(s), which is common in 284 

ABC transporters (Davidson et al., 2008), and the NBD proteins appear to be shared by 285 

the three glucoside transporters as discussed above.  286 

The Gls proteins have a role not only in sucrose-stimulated growth but also in 287 

fructose- and glucose-stimulated growth. These results indicate that fructose and 288 

glucose can be incorporated into Anabaena at least in part by the ABC glucoside uptake 289 

transporters. Transport of fructose and glucose appears to take place, however, with low 290 

affinity. Thus, our results of direct uptake of [14C]glucose by Anabaena permit to estimate 291 

a relatively high Ks of at least 20 mM, and the analysis of uptake of [14C]fructose reported 292 

by Stebegg et al. (2012) also suggest low affinity. In contrast, the Ks of Anabaena for 293 

sucrose (determined in fragmented filaments) is 4.9 µM (Nicolaisen et al., 2009b) and 294 

for esculin 150 µM (in BG11 medium) or 119 µM (in BG110 medium) (Nieves-Morión et 295 

al., 2017b). Hence, Anabaena expresses high-affinity cytoplasmic membrane 296 

transporters for sucrose but not for fructose or glucose (see also Ungerer et al., 2008). 297 

Indeed, no ORF evidently encoding a fructose or glucose transporter is found in the 298 

Anabaena genome. Why, then, is growth stimulated more by fructose or glucose than by 299 

sucrose? We have previously reported that Anabaena appears to lack any sucrose porin 300 

(Nicolaisen et al., 2009b), but the Anabaena genome contains genes encoding homologs 301 

to porin OprB (Nicolaisen et al., 2009a). OprB porins mediate the movement through the 302 
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outer membrane of glucose and other monosaccharides (Wylie and Worobec, 1995; van 303 

den Berg, 2012), and an OprB-like porin in Nostoc punctiforme is involved in glucose 304 

and fructose uptake (Ekman et al., 2013). Facilitated movement through the outer 305 

membrane may be a key factor to permit assimilation of the sugars by Anabaena. Once 306 

in the periplasm, fructose and glucose can be transported into the cytoplasm, albeit with 307 

low affinity, by cytoplasmic membrane glucoside transporters. In contrast, sucrose hardly 308 

passes the outer membrane, but the sucrose molecules that reach the periplasm can be 309 

transported into the cytoplasm with high affinity. Sugar concentrations in freshwater and 310 

terrestrial environments are normally in the µM range, but there are reports of up to 4.5 311 

mM (Hobbie and Hobbie, 2013), implying that the Anabaena sugar transporters might 312 

be useful in such environments. 313 

The ABC transporter Gls appears to be needed also for normal function of septal 314 

junctions in the Anabaena filament. As mentioned earlier, GlsC (NBD) is required for 315 

normal subcellular localization of SepJ and septal maturation (Nieves-Morión et al., 316 

2017b). The NBD protein GlsD studied here is however not needed for SepJ localization 317 

indicating that this is a specific role of GlsC likely acting independently of GlsD. On the 318 

other hand, inactivation of GlsQ (TMD) has an effect similar to that of inactivation of GlsP 319 

(TMD) on the intercellular transfer of calcein and 5-CF (compare to data in Nieves-Morión 320 

et al., 2017b). The requirement of the ABC glucoside transporter Gls for the normal 321 

function of the septal junctions could be based on protein-protein interactions between 322 

the TMD subunits and SepJ (as shown by BACTH analysis), and it can account, at least 323 

partly, for the growth defect of the mutants. 324 

Our work has identified an ABC glucoside transporter (Gls) from Anabaena that 325 

can be probed with the fluorescent analog esculin and is involved in the uptake of 326 

sucrose, fructose and glucose. In addition to its influence on the septal junctions, a 327 

putative function of this transporter is to mediate sugar assimilation. It should be noted, 328 

however, that we have consistently observed sugar-stimulated growth of Anabaena 329 

mainly in standing liquid cultures. Different relationships of gases (O2, CO2) in different 330 

incubation conditions (growth on a surface or in shaken or standing liquid cultures) may 331 

affect the growth response to sugars. The presence in the Anabaena genome of 332 

numerous genes encoding organic substrate transporters is consistent with the idea that 333 

microorganisms are prepared to take up extensively substrates that become available 334 

(Hobbie and Hobbie, 2013). Whereas the wide distribution of cyanobacteria in our planet 335 

is likely based on their photoautotrophic lifestyle, the capability of mixotrophic growth 336 

could enhance fitness in many ecological niches. 337 

 338 

 339 
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Table 1. Esculin uptake in Anabaena and some mutant strains. 

 

Filaments grown in BG11 medium (in the presence of 5 µg neomycin sulfate [Nm] mL-1 

for the mutants) were washed and resuspended in BG11 or BG110 (BG11 medium 

lacking NaNO3) media without Nm and incubated for 18 h under culture conditions. 

Filaments were then resuspended in the same media supplemented with 10 mM 

HEPES-NaOH (pH 7) and used in assays of uptake of 100 µM esculin as described in 

Suppl. Experimental procedures. Data are mean and SEM of the results from the 

indicated number of assays performed with independent cultures. Significance of the 

difference between each mutant and the wild type was assessed by the Student’s t 

test; p is indicated in each case. NBD, nucleotide-binding domain; SBP, substrate-

binding protein; TMD, transmembrane domain. 

Strain Genotype 
Product of the 
mutated gene 

Esculin uptake (nmol [mg Chl]-1 min-1) 

BG11 BG110 

Mean ± SEM (n) 
% of WT 

(p) 
Mean ± SEM (n) 

% of WT 
(p) 

PCC 7120 Wild type (WT)  0.159 ± 0.010 (30)  0.282 ± 0.018 (24)  

CSMN17 all1823::pCSL145 NBD (GlsD) 0.037 ± 0.010 (5) 
23.3 % 

(<0.001) 
0.020 ± 0.007 (5) 

7.1 % 
(<0.001) 

 
CSMN18 
 

 
all1916::pCSL145 
 

 
SBP (GlsR) 
 

 
0.091 ± 0.010 (5) 

 

 
57.2 % 
(0.013) 

 

0.134 ± 0.012 (5) 
53.9 % 
(0.003) 

CSMN19 alr2532::pCSL145 
 
TMD (GlsQ) 
 

 
0.143 ± 0.023 (6) 

 

89.9 % 
(0.536) 

0.132 ± 0.016 (5) 
 

46.8 % 
(0.001) 

 



Table 2. Transfer of calcein and 5-CF between nitrate-grown vegetative cells in 

Anabaena and ABC glucoside transporter mutant strainsa. 

 

 

 

 

 

 

 

 

 

 

 

 

a Filaments of the wild type and the indicated mutants grown in BG11 medium (with Nm 

for the mutants) and incubated in BG11 medium without Nm for 18 to 24 h were used 

in FRAP analysis as described in Suppl. Experimental procedures. Data (R, recovery 

constant) are the mean and SEM of the results obtained with the indicated number of 

filaments (n) subjected to FRAP analysis. Filaments from eight cultures of the WT or 

three cultures from each mutant were used for calcein, and filaments from 12 cultures 

of the WT or two cultures from each mutant were used for 5-CF. Student’s t test 

(mutant vs. wild type) p is indicated in each case. 

 

 

 

 

 

 

 

 

Strain 
(mutated 
genes) 

Calcein transfer (R, s-1) 5-CF transfer (R, s-1) 

 Mean ± SEM (n) % of WT (p) Mean ± SEM (n) % of WT (p) 

PCC 7120 (WT) 0.068 ± 0.006 (64)  0.090 ± 0.004 (160)  

CSMN17 (glsD) 0.047 ± 0.007 (34) 69 % (0.029) 0.110 ± 0.005 (33) 122 % (0.015) 

CSMN18 (glsR) 0.040 ± 0.006 (32) 59 % (0.004) 
 

0.085 ± 0.011 (25) 94 % (0.651) 

CSMN19 (glsQ) 
 

0.029 ± 0.011 (22) 
 

43 % (0.002) 
 

0.064 ± 0.006 (44) 
 

71 % (0.001) 
 



BG11 BG110

BG11 + Sucrose BG110  + Sucrose

BG110  + FructoseBG11 + Fructose

BG11 + Glucose BG110  + Glucose

Fig. 1. Growth of Anabaena on solid BG11 or BG110 medium. Media were solidified
with 1 % Bacto agar and supplemented with 10 mM TES-NaOH (pH 7.5) buffer and,
when indicated, 100 mM sucrose, fructose or glucose. Filaments grown in BG11
medium were collected, washed with BG110 medium and spotted on plates as
shown (successively diluted spots contained 10, 5, 2.5, 1.25, 0.625 ng chlorophyll
a). The plates were incubated for 6 days (BG11 medium) or 10 days (BG110
medium) at 30 ºC in the light (ca. 25 µmol photons m-2 s-1) in an air atmosphere and
photographed.
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Fig. 2. Sugar-stimulated growth in Anabaena and some ABC glucoside uptake
transporter mutants. The increase in growth yield in standing liquid cultures in response
to the addition of 50 mM of the indicated sugar (i.e., OD750 nm with sugar less OD750 nm
without sugar) is presented as the mean and SEM. See Table S2 for the complete set of
data.
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Fig. 3. Growth of strains CSMN17 (glsD::pCSL145), CSMN18 (glsR::pCSL145)
and CSMN19 (glsQ::pCSL145) on solid BG11 or BG110 medium. Filaments
grown in BG11 medium (in the presence of Nm for the mutants) were collected,
washed with BG110 medium and spotted on plates as shown (successively
diluted spots contained 10, 5, 2.5, 1.25, 0.625 ng chlorophyll a). The plates were
incubated for 8 days (BG11 medium) or 14 days (BG110 medium) and
photographed. The growth medium in the left panels was not supplemented with
Nm to allow comparison with wild-type Anabaena (WT). Addition of Nm (right
panels) inhibited growth of the wild type as expected.



Figure 4. Bacterial two-hybrid analysis of interactions between Gls proteins and
between Gls proteins and SepJ. Interactions of T25- and T18-fusion proteins
produced in E. coli were measured as b-galactosidase activity in liquid cultures.
The protein fused to the N- or the C-terminus of T18 or T25 is indicated in each
case (N-terminus, protein-T18 or protein-T25; C-terminus, T18-protein or T25-
protein). Data are mean and SEM of the activity with the indicated pair of fusion
proteins less the activity of the T25/T18 negative control. Only interactions that
were significant at p < 0.05 are shown. See Table S3 for the complete set of data.
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Supplementary experimental procedures 

 

Strains and growth conditions 

 

Anabaena sp. strain PCC 7120 (also known as Nostoc sp.) and derivative strains were grown in 

BG11 medium modified to contain ferric citrate instead of ferric ammonium citrate (Rippka et al., 

1979) or BG110 medium (BG11 further modified by omission of NaNO3) at 30 ºC in the light (ca. 

25 µmol photons m-2 s-1), in shaken (100 r.p.m.) liquid cultures or in plates in medium solidified 

with 1 % Bacto agar. When indicated, BG11 or BG110 liquid medium was supplemented with 50 

mM sucrose, fructose, glucose or maltose and 10 mM TES-NaOH buffer (pH 7.5), all sterilized 

by filtration, and production of biomass was determined as OD750nm after 7 days of incubation 

without shaking. When appropriate, neomycin sulfate (Nm) was added to the cyanobacterial 

cultures at the following concentrations: 5 g ml-1 (liquid cultures) or 30-40 g ml-1 (solid media). 

Chlorophyll a content of cultures was determined by the method of Mackinney (1941). 

Escherichia coli strains were grown in LB medium, supplemented when appropriate with 

antibiotics at standard concentrations (Ausubel et al., 2014). E. coli strain DH5 was used for 

plasmid constructions. This strain, bearing a conjugative plasmid, and strain HB101 bearing a 

methylase-encoding helper plasmid and one cargo plasmid were used for conjugation with 

Anabaena (Elhai et al., 1997). 

 

Construction of mutant strains 

 

For inactivation of all1823, all1916, and alr2532, internal fragments of 738 bp, 708 bp and 564 

bp, respectively, were amplified by PCR using primers all1823-1/all1823-2, all1916-1/all1916-2, 

alr2532-1/alr2532-2, respectively. All primers bore SacI sites in their 5’ ends and are described in 

Table S4. Genomic DNA from Anabaena was used as a template. The amplified fragments were 

cloned into vector pSpark I producing pCSMN36, pCSMN37 and pCSMN38, and were transferred 

as SacI-fragments to SacI-digested pCSL145 (mobilizable plasmid containing cassette C.K1 

[NmR]; Elhai and Wolk, 1988) producing pCSMN39, pCSMN40 and pCSMN41, which were 

verified by sequencing. These plasmids were transformed into E. coli HB101 [pRL623] and 

transferred to Anabaena by conjugation with selection for NmR. Clones that had incorporated 

pCSL145 by single recombination were selected for further study and named strain CSMN17, 

CSMN18 and CSMN19, respectively. The genetic structure of selected clones was studied by 

PCR to test recombination in the correct genomic location and test for segregation with the primer 

pairs indicated in Fig. S12. 

 

Physiological parameters 

 

To test uptake of esculin, Anabaena cultures grown in BG11 medium ―with antibiotics for the 

mutants― were harvested by centrifugation, washed with BG11 or BG110 medium without 

antibiotics and incubated for 18 h in the same medium under culture conditions. Cells were 

harvested, washed and resuspended in growth medium supplemented with 10 mM HEPES-

NaOH buffer (pH 7). Assays of uptake were started by addition of esculin hydrate (Sygma-Aldrich) 

at 100 M, and cell suspensions were withdrawn and filtered. Cells on the filters were washed 

with 10 mM HEPES-NaOH buffer (pH 7) were resuspended in 2 ml of the same buffer. 

Fluorescence of the resulting cell suspension was measured in a Varian Cary Eclipse 

Fluorescence Spectrophotometer (excitation 360 ± 10 nm; emission 462 ± 10 nm). Esculin 

solutions in the same buffer were used as standards. 

 For calcein and 5-CF transfer assays (FRAP analysis), calcein and 5-CF staining were 

performed as previously reported (Mullineaux et al., 2008; Merino-Puerto et al., 2011). Cell 

suspensions were spotted onto agar and placed in a temperature-controlled sample holder with 

a glass cover slip on top. All measurements were carried out at 30 °C. For both calcein and 5-



CF, cells were imaged with a Leica HCX Plan Apo 63X, 1.4-NA oil immersion objective attached 

to a Leica TCS SP5 confocal laser-scanning microscope with a 488-nm line argon laser as the 

excitation source. Fluorescent emission was monitored by collection across windows of 500 to 

520 nm and a 150-μm pinhole. After an initial image was recorded, the bleach was carried out by 

an automated FRAP routine as previously reported (Mullineaux et al., 2008). For FRAP data 

analysis, kinetics of transfer of the fluorescent tracer to a cell somewhere in the middle of a 

filament (i.e., with two cell junctions) was quantified. The recovery rate constant, R, was 

calculated from the formula CB = C0 + CR (1 - e-2Rt), where CB is fluorescence in the bleached cell, 

C0 is fluorescence immediately after the bleach and tending towards (C0 + CR) after fluorescence 

recovery, t is time and R is the recovery rate constant due to transfer of the tracer from one 

neighbor cell (Nieves-Morion et al., 2017). 

 For 14C-labeled glucose uptake assays, filaments were grown in BG11 and BG110 media, 

harvested at room temperature, washed three times with BG11 or BG110 media and resuspended 

in the same media supplemented with 10 mM HEPES-NaOH (pH 7), to give a cell density 

corresponding to 10 µg chlorophyll a ml-1. The assay was started by adding 0.2 ml of a sugar 

solution containing 10, 100 or 500 mM glucose and a small amount of [14C]glucose (300 Ci mol-1; 

American Radiolabeled Chemicals) to a 1.8-ml suspension. The filament suspensions were 

incubated at 30 ºC in the light (85 µmol m-2 s-1), and 0.6-ml samples (taken at 20, 40 and 60 min) 

were filtered using 0.45-mm pore size Millipore HA filters. After washing with 10 mM HEPES-

NaOH (pH 7) to remove excess labeled sugar, the filters were placed in a scintillation cocktail and 

their radioactivity was measured. Nonspecific retention of radioactivity was determined by using 

boiled cells. 

 

Immunolocalization of SepJ 

 

Cells from 1.5 ml of liquid cultures were collected by centrifugation, placed atop a poly-L-lysine-

precoated microscope slide, and covered with a 45-m-pore-size Millipore filter. The filter was 

removed and the slide was left to dry at room temperature, immersed in 70% ethanol at -20 oC 

for 30 min, and dried for 15 min at room temperature. The cells were washed twice (2 min each 

time, room temperature) by covering the slide with PBS-T (Phosphate Buffered Saline 

supplemented with 0.05% Tween 20). Subsequently, the slides were treated with a blocking buffer 

(5% milk powder in PBS-T) for 15 min. Cells on the slides were then incubated for 90 min with 

anti-SepJ-CC antibodies (Mariscal et al., 2011) diluted in blocking buffer (1:250), washed three 

times with PBS-T, incubated for 45 min in the dark with anti-rabbit antibody conjugated to FITC 

(1:500 dilution in PBS-T; Sigma), and washed three times with PBS-T. After dried, several drops 

of FluorSave (Calbiochem) were added atop, covered with a coverslip, and sealed with nail 

lacquer. Fluorescence was imaged using a Leica DM6000B fluorescence microscope and 

an ORCA-ER camera (Hamamatsu). Fluorescence was monitored using a FITC L5 filter 

(excitation, band-pass [BP] 480/40 filter; emission, BP 527/30 filter), and images were analyzed 

with ImageJ software (http://imagej.nih.gov/ij). 

 

BACTH strain construction and assays 

 

The possible interaction between different glucoside transporter components and between them 

and SepJ was tested using Bacterial Adenylate Cyclase Two Hybrid (BACTH) analysis. All tested 

genes were amplified using Anabaena DNA as template. The following primers were used: 

all1823-5 and all1823-6 to amplify glsD, and alr2532-4 and alr2532-5 to amplify glsQ. Other 

constructs were previously described (Ramos-León et al., 2015; Nieves-Morión et al., 2017). The 

PCR products were transferred as XbaI- and KpnI-digested fragments to pUT18, pUT18C, 

pKNT25, and pKT25 (Battesti et al., 2012), producing fusions to the 5’ and 3’ ends of the genes 

encoding the adenylate cyclase T18 and T25 fragments, respectively. The resulting plasmids 

(pCSMN59: all1823::pUT18; pCSMN60: all1823::pUT18C; pCSMN61: all1823::pKT25; 

pCSMN62: all1823::pKTN25; pCSMN63: alr2532::pUT18; pCSMN64: alr2532::pUT18C; 

http://imagej.nih.gov/ij)


pCSMN65: alr2532::pKT25; pCSMN66: alr2532::pKTN25) were transformed into E. coli XL1-Blue 

for amplification. Isolated plasmids were cotransformed into E. coli BTH101 (cya-99). 

Transformants were plated onto LB medium containing selective antibiotics and 1% glucose. 

Efficiencies of interactions between different hybrid proteins were quantified in cells from liquid 

cultures by measuring -galactosidase activity as previously described (Nieves-Morión et al., 

2017). The amount of o-nitrophenol produced from o-nitrophenol--galactoside (ONPG) was 

determined and referred to the amount of protein determined by a modified Lowry procedure 

(Bailey, 1967).  
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Figure S1. Genomic region of Anabaena (Nostoc) sp. strain PCC 7120 ORF all0261
(glsP) and some examples of genomic regions containing an all0261 orthologue.
Whereas all0261 is not accompanied by any ABC component-encoding gene, the
all0261 orthologues shown are accompanied by another TMD-encoding gene (colored
green) or by TMD- and SBP-encoding genes (SBP gene colored dark purple). Het,
heterocyst-forming cyanobacterium; Non-het, non-heterocyst-forming cyanobacterium.
This gene cluster is also present in some bacteria other than cyanobacteria, and it is
common in Geobacillus spp. (one strain shown [Geo]). Genomic regions retrieved from:
https://img.jgi.doe.gov/cgi-bin/m/main.cgi.

25/10/17 11:06IMG
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Figure S2. Construction and verification of mutants of genes glsD, glsR and glsQ in Anabaena.
Schematic of the insertional mutation of genes (A) all1823 (glsD), (B) all1916 (glsR) and (C)
alr2532 (glsQ), with indication of their genomic regions, the inserted plasmid, and primers used
in PCR analysis (black triangles, primers corresponding to the Anabaena genes; red triangle,
primer corresponding to cassette C.K1 present in the inserted plasmid). (D, E, F) Verification of
strains by colony PCR. L, 1-kb DNA ladder. Primer pairs are indicated on top. Templates: 1, wild-
type DNA; 2, DNA from mutant CSMN17 (glsD; panel D); 3, DNA from mutant CSMN18 (glsR;
panel E); 4, DNA from mutant CSMN19 (glsQ; panel F).
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Figure S3. Uptake rates of [14C]glucose in wild-type Anabaena. Filaments
grown in BG11 medium or grown in BG11 medium and incubated for 18 h in
BG110 medium were used in uptake assays with 1, 10 or 50 mM [14C]glucose
as described in Suppl. Experimental procedures.
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Figure S4. Immunofluorescence localization of SepJ in wild-type Anabaena (WT) and glsD
mutant CSMN17 (all1823::pCSL145), glsR mutant CSMN18 (all1916::pCSL145) and glsQ
mutant CSMN19 (alr2532::pCSL145). Filaments were grown in BG11 medium (with Nm for
the mutants) and subjected to immunofluorescence analysis with anti-SepJ coiled coil
antibodies. Antibody green fluorescence is shown. Brightness and contrast were adjusted
to improve visibility. Size bars, 10 µm.



Table S1. ORFs from the Anabaena genome predicted to encode components of ABC 
sugar uptake transporters. 
 

 

The type of subunit (transmembrane domain, TMD; periplasmic solute-binding protein, 
SBP; nucleotide-binding protein or ATPase domain, NBD) and TCDB family 
(http://www.tcdb.org) to which the Anabaena ORF products are most similar, along with 
the expect probability (p) in the BLAST analysis, are indicated. The substrates that have 
been described for those transporter families are also shown. Note that all these 
transport proteins belong to the 3.A.1.1 family (The Carbohydrate Uptake Transporter-1 
[CUT1] Family), for which a well-known representative is the malto-oligosaccharide 
MalEFGK transporter of Escherichia coli (MalE, SBP; MalF and MalG, TMDs; MalK, 
NBD). Among the indicated permeases encoded in the Anabaena genome, three are 
most similar to MalF and three to MalG (marked as superscripts). The right-hand column 
includes the names of the products of the genes that we have inactivated. Four additional 
ORFs in Anabaena, alr5361, alr5362, alr5367 and alr5368, may encode a periplasmic 
SBP, an NBD and two TMDs, respectively, of an ABC nucleoside transporter.  

ORF Type of 
subunit 

TCDB 
family 

p Substrate Protein 

all1027 SBP 3.A.1.1.40 10-64 Chitobiose  

all1916 SBP 3.A.1.1.20 10-25 Fructo-oligosaccharide GlsR 

alr2722 SBP 3.A.1.1.7 10-21 Trehalose/maltose  

alr4277 SBP 3.A.1.1.20 10-32 Fructo-oligosaccharide  

all0261 TMDG 3.A.1.1.34 10-59 Arabino-saccharide GlsP 

alr0738 TMDF 3.A.1.1.20 10-61 Fructo-oligosaccharide  

alr0789 TMDF 3.A.1.1.4 10-55 Lactose  

alr2532 TMDF 3.A.1.1.20 10-60 Fructo-oligosaccharide GlsQ 

all4824 TMDG 3.A.1.1.34 10-53 Arabino-saccharide  

all5282 TMDG 3.A.1.1.41 10-51 Trehalose/maltose/sucrose  

all1823 NBD 3.A.1.1.25 10-119 Trehalose/maltose/sucrose GlsD 

alr4781 NBD 3.A.1.1.25 10-111 Trehalose/maltose/sucrose GlsC 

http://www.tcdb.org)/


Table S2. Sugar-stimulated growth in Anabaena and some ABC glucoside uptake transporter mutant strains. 

A  
 

 
 

 

OD750 nm 

Strain Genotype Prot. BG11 medium, sugar added: BG110 medium, sugar added: 

   None Sucrose Fructose Glucose None Sucrose Fructose Glucose 

WT Wild type (WT)  0.185 ± 0.020 (7) 
 

0.330  ± 0.046 (6) 
[0.011] 

0.471 ± 0.089 (5) 
[0.004] 

0.449 ± 0.080 (6) 
[0.005] 

0.173 ± 0.013 (7) 0.275 ± 0.012 (7) 
[<0.001] 

0.372 ± 0.027 (6) 
[<0.001] 

0.453 ± 0.069 (6) 
[0.001] 

DR3912a alr4781::C.S3 GlsC 0.123 ± 0.012 (5) 
 

0.141 ± 0.019 (5) 
[0.442] 

0.237 ± 0.048 (4) 
[0.036] 

0.151 ± 0.039 (4) 
[0.479] 

0.124 ± 0.012 (5) 
 

0.142 ± 0.022 (5) 
[0.494] 

0.197 ± 0.027 (4) 
[0.031] 

0.147 ± 0.022 (4) 
[0.365] 

CSMN17 all1823::pCSL145 GlsD  0.165 ± 0.029 (5) 
 

0.144 ± 0.018 (5) 
[0.564] 

0.297 ± 0.069 (4) 
[0.095] 

0.286 ± 0.086 (4) 
[0.211] 

0.159 ± 0.026 (5) 
 

0.141 ± 0.013 (5) 
[0.548] 

0.278 ± 0.039 (4) 
[0.033] 

0.298 ± 0.074 (4) 
[0.093] 

DR3915 all0261::C.S3 GlsP 0.198 ± 0.020 (5) 
 

0.296 ± 0.013 (5) 
[0.003] 

0.360 ± 0.035 (4) 
[0.127] 

0.340 ± 0.064 (4) 
[0.060] 

0.118 ± 0.010 (5) 
 

0.200 ± 0.026 (5) 
[0.020] 

0.264 ± 0.029 (4) 
[0.001] 

0.269 ± 0.026 (4) 
[0.001] 

CSMN19 alr2532::pCSL145 GlsQ 0.185 ± 0.020 (5) 
 

0.263 ± 0.011 (4) 
[0.017] 

0.318 ± 0.039 (3) 
[0.014] 

0.307 ± 0.066 (4) 
[0.092] 

0.150 ± 0.016 (5) 
 

0.234 ± 0.017 (5) 
[0.007] 

0.299 ± 0.012 (4) 
[<0.001] 

0.341 ± 0.058 (4) 
[0.010] 

CSMN18 all1916::pCSL145 GlsR 0.174 ± 0.021 (5) 
 

0.269 ± 0.029 (4) 
[0.031] 

0.315 ± 0.081 (3) 
[0.074] 

0.391 ± 0.131 (4) 
[0.107] 

0.158 ± 0.017 (5) 
 

0.239 ± 0.012 (5) 
[0.005] 

0.325 ± 0.043 (4) 
[0.006] 

0.402 ± 0.116 (4) 
[0.052] 

B   

 OD750nm (sugar-no sugar) 

Strain Genotype Prot. BG11 medium, sugar added: BG110 medium, sugar added: 

   Sucrose Fructose Glucose Sucrose Fructose Glucose 

WT Wild type (WT)  0.147 ± 0.023 (6)  0.284 ± 0.062 (5) 0.260 ± 0.060 (6) 0.102 ± 0.016 (7) 0.196 ± 0.024 (6) 0.277 ± 0.058 (6) 

DR3912a alr4781::C.S3 GlsC  0.018 ± 0.012 (5) 
[0.001] 

0.118 ± 0.038 (4) 
[0.072] 

0.032 ± 0.028 (4) 
[0.019] 

0.018 ± 0.016 (5) 
[0.005] 

0.077 ± 0.014 (4) 
[0.006] 

0.027 ± 0.009 (4) 
[0.009] 

CSMN17 all1823::pCSL145 GlsD  -0.020 ± 0.014 (5) 
[<0.001] 

0.128 ± 0.033 (4) 
[0.081] 

0.117 ± 0.051 (4) 
[0.131] 

-0.018 ± 0.017 (5) 
[<0.001] 

0.114 ± 0.013 (4) 
[0.034] 

0.134 ± 0.044 (4) 
[0.114] 

DR3915 all0261::C.S3 GlsP 0.098 ± 0.009 (5) 
[0.105] 

0.162 ± 0.011 (4) 
[0.130] 

0.141 ± 0.044 (4)  
[0.187] 

0.082 ± 0.017 (5) 
[0.425] 

0.141 ± 0.018 (4) 
[0.142] 

0.146 ± 0.031 (4) 
[0.127] 

CSMN19 alr2532::pCSL145 GlsQ  0.096 ± 0.006 (4) 
[0.121] 

0.152 ± 0.033 (3) 
[0.180] 

0.118 ± 0.047 (4) 
[0.127] 

0.084 ± 0.008 (5) 
[0.398] 

0.153 ± 0.009 (4) 
[0.201] 

0.195 ± 0.066 (4) 
[0.386] 

CSMN18 all1916::pCSL145 GlsR 0.108 ± 0.010 (4) 
[0.231] 

0.154 ± 0.052 (3) 
[0.204] 

0.213 ± 0.104 (4) 
[0.683] 

0.081 ± 0.011 (5) 
[0.352] 

0.164 ± 0.031 (4) 
[0.438] 

0.241 ± 0.100 (4) 
[0.743] 



 

Filaments grown in BG11 medium (in the presence of Nm for the mutants) were washed with BG110 medium without Nm and inoculated in 2 mL 

of BG11 or BG110 medium supplemented with 10 mM TES-NaOH (pH 7.5). The suspensions, in microtiter plates, were incubated under air in 

the light (25 µmol photons m-2 s-1) at 30 ºC for 1 week, and their OD750 nm was determined after careful homogenization. Axenicity of the cultures 

was corroborated by microscopic analysis and plating in LB medium and further incubation at 30 ºC. (A) Data are the mean and SEM of the 

results from the number of assays (performed with independent cultures) indicated in parenthesis. Significance of the difference of each strain 

with and without a sugar added was assessed by the Student’s t test; p indicated in each case in brackets; bold face, p < 0.05. (B) The increase 

in growth yield in response to addition of a sugar (i.e., OD750 nm with sugar less OD750 nm without sugar, data from part A of the table) is 

presented. The difference between each mutant and the wild type for each sugar was assessed by the Student’s t test; p indicated in each case 

in brackets; bold face, p < 0.05. 

 



Table S3. Bacterial two-hybrid analysis of protein-protein interactions. 

Interactions of T25- and T18-fusion proteins produced in E. coli were measured as -galactosidase activity in liquid cultures. Activity corresponds to 
nmol o-nitrophenol produced (mg protein)-1 min-1. The protein fused to the N- or the C-terminus of T18 or T25 is indicated in each case (N-
terminus, protein-T18 or protein-T25; C-terminus, T18-protein or T25-protein). The mean and SEM of the results obtained with the indicated 
number of independent transformants (n) is presented. The difference between each fusion protein combination and the T18/T25 pair was 
assessed by the Student’s t test; bold type denotes significant differences (* p ≤ 0.05; ** p ≤ 0.01). All other combinations gave activities not 
significantly different from the T25/T18 control. Nd, not determined. Italics, data from Nieves-Morión et al. (2017). 

  

T18 

 

SepJ-T18 

 

GlsC-T18 

 

T18-GlsC 

 

GlsP-T18 

 

T18-GlsP 

 

GlsD-T18 

 

T18-GlsD 

 

GlsQ-T18 

 

T18-GlsQ 

T25 12.49 ± 0.53 
(21) 

10.88 ± 0.43 
(6) 

13.01 ± 1.74 
(4) 

12.34 ± 0.40 
(4) 

12.11 ± 2.05 
(4) 

10.95 ± 1.68 
(4) 

 13.14 ± 1.41 
(3) 

10.91 ± 1.11 
(3) 

10.08 ± 1.58 
(2) 

6.20 (1) 

SepJ-T25 11.22 ± 2.04 
(2) 

80.12 ± 12.34 
(9) [<0.001] 

13.25 ± 1.30 
(5) [0.951] 

15.75 ± 6.53 
(3) [0.494] 

11.74 ± 1.65 
(5) [0.394] 
 

14.66 ± 1.06 
(4) [0.298] 

11.21 ± 1.47 
(3) [0.404] 

 11.23 ± 1.77 
(3) [0.423]  

12.03 ± 1.84 
(3) [0.778] 

 14.58 ± 3.43 
(4) [0.266] 

GlsC-T25 Nd 11.66 ± 0.81 
(6) [0.221] 

12.52 ± 1.66 
(4) [0.695] 

20.52 ± 2.45 
(4) [0.003] 

12.36 ± 0.55 
(3) [0.587] 

13.00 ± 3.30 
(3) [0.944] 
 

 13.51 ± 1.13 
(3) [0.498] 

 11.80 ± 1.33 
(3) [0.647] 

 11.68 ± 1.79 
(3) [0.604] 

 14.27 ± 1.83 
(3) [0.263] 

T25-GlsC Nd 13.09 ± 1.25 
(6) [0.963] 

25.98 ± 2.73 
(4) [<0.001] 

15.93 ± 2.59 
(6) [0.247] 

12,72 ± 1.55 
(4) [0.783] 

12.79 ± 2.15 
(3) [0.842] 

11.74 ± 2.25 
(3) [0.646] 

12.32 ± 0.87 
(3) [0.908] 

12.03 ± 1.84 
(3) [0.770] 

9.20 ± 0.20 
(2) [0.075] 

GlsP-T25 Nd 14.34 ± 0.84 
(7) [0.324] 

12.32 ± 1.39 
(5) [0.579] 

14.19 ± 3.72 
(4) [0.702] 

12.16 ± 1.06 
(4) [0.484] 

11.64 ± 2.35 
(3) [0.431] 

11.84 ± 2.11 
(3) [0.687] 

10.96 ± 0.70 
(3) [0.302] 

9.30 ± 0.50  
(2) [0.084] 
 

9.21 ± 0.09  
(2) [0.076] 

T25-GlsP Nd 29.12 ± 3.54 
(7) [<0.001] 

11.80 ± 1.02 
(5) [0.314] 

15.48 ± 4.14 
(4) [0.435] 

11.85 ± 0.32 
(3) [0.376] 

12.04 ± 3.52 
(3) [0.638] 

11.33 ± 2.31 
(3) [0.480] 

12.24 ± 1.74 
(3) [0.872] 

10.76 ± 0.47 
(3) [0.241] 

16.59 ± 1.36 
(4) [0.006] 

GlsD-T25 13.1 (1) 14.4 ± 1.51  
(6) [0.136] 

16.9 ± 2.99  
(4) [0.017] 

14.6 ± 1.29  
(6) [0.090] 

 13.8 ± 1.22  
(5) [0.309] 

 11.9 ± 0.68  
(3) [0.710] 

12.42 ± 1.20 
(3) [0.961] 

26.90 ± 2.85 
(3) [2.23 10-8] 

11.37 ± 3.17 
(3) [0.528] 

14.86 ± 1.84 
(6) [0.097] 

T25-GlsD  14.5 (1) 13.1 ± 0.87  
(4) [0.639] 

11.6 ± 0.50 
 (4) [0.472] 

16 ± 1.41  
(4) [0.018] 

15.9 ± 1.12  
(5) [0.009] 

14 ± 0.58  
(6) [0.171] 

49.69 ± 11.04 
(3) [2.08 10-9] 

11.23 ± 1.17 
(3) [0.4041]  

10.60 ± 1.79 
(3) [0.233] 

10.80 ± 1.50 
(2) [0.355]  

GlsQ-T25 15.2 (1) 17.4 ± 1.09  
(4) [0.001] 

13.1 ± 0.87  
(3) [0.687] 

14.7 ± 1.94  
(4) [0.141] 

13.3 ± 1.28  
(5) [0.514] 

11.5 ± 0.17  
(3) [0.516] 

10.50 ± 1.17 
(3) [0.191] 

10.54 ± 1.72 
(3) [0.217] 

9.40 ± 1.40  
(3) [0.051] 

14.42 ± 1.07 
(6) [0.104] 

T25-GlsQ 8.8 (1) 12.5 ± 0.58  
(4) [0.966] 

11.9 ± 2.51  
(3) [0.732] 

15.8 ± 0.92  
(5) [0.009] 

15.9 ± 2.48  
(6) [0.042] 

14.1 ± 1.72  
(3) [0.300] 

10.98 ± 0.65 
(3) [0.307] 

11.32 ± 2.01 
(3) [0.464] 

10.10 ± 1.71 
(3) [0.133] 

14.78 ± 0.99 
(4) [0.091] 



 
Table S4. Oligodeoxynucleotide primers used in this work. Introduced restriction sites 
are underlined. 
 
 
Primer name Sequence (5´ to 3´) 

  

all1823-1 AGAGAGCTCGATGTGGCGATGGTGTTC 
all1823-2 TACGAGCTCATCGGGTAAACTCACACG 
all1823-3 TGGTAAATAACATCCCCGCAAGAG 
all1823-4 GATGTAGACGCACGTTTCCACT 
all1823-5 TCTCTAGAAAAAGTTCGTTTAGAAGATATAAA 
all1823-6 ACTGGTACCTCCTGGGGTGATATTTTA 
all1916-1 TCTGAGCTCTATATGGATGTGATCAAAACC 
all1916-2 TTCGAGCTCATGCTGTGATTGCTTACTCAT 
all1916-3 ATCGCGATCGCCATTGTTG 
all1916-4 GCATTCCGGCTTTACCTGTGA 
all2532-1 ATCGAGCTCAGCTTGTTCGGATATGTATTCATG 
alr2532-2 CTGGAGCTCTGCACCATCTAATTCTGC 
alr2532-3 ACCATTTGATAAATCAGCAGCA 
alr2532-4 GACTAAACTCTAGAGTTGCGAATCAGAAGGT 
alr2532-5 ATAGGTACCTCACCAGCAAAAACTCG 
C.K1-2 GGGATCTCATGCTGGAGT 
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