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Abstract In this paper we introduce the Single Period Coverage Facility Location
Problem. It is a multi-period discrete location problem in which each customer is
serviced in exactly one period of the planning horizon. The locational decisions are
made independently for each period, so that the facilities that are open need not be
the same in different time periods. It is also assumed that at each period there is a
minimum number of customers that can be assigned to the facilities that are open.
The decisions to be made include not only the facilities to open at each time period
and the time period in which each customer will be served, but also the allocation of
customers to open facilities in their service period.

We propose two alternative formulations that use different sets of decision vari-
ables. We prove that in the first formulation the coefficient matrix of the allocation
subproblem that results when fixing the facilities to open at each time period is totally
unimodular. On the other hand, we also show that the pricing problem of the second
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model can be solved by inspection. We prove that a Lagrangean relaxation of the first
one yields the same lower bound as the LP relaxation of the second one. While the
Lagrangean dual can be solved with a classical subgradient optimization algorithm,
the LP relaxation requires the use of column generation, given the large number of
variables of the second model. We compare the computational burden for obtaining
this lower bound through both models.

Keywords Discrete facility location · Multi-period location · Lagrangean heuristic ·
Column generation

Mathematics Subject Classification (2000) 90B80 · 90C10

1 Introduction

Discrete location models have a wide range of applications that are well documented
in the literature (see, for instance, Mirchandani and Francis 1990, and references
therein). Quite often, the relevance of discrete location comes from the fact that lo-
cational decisions are crucial strategic decisions in the design and management of
various types of complex systems, due to their long-lasting effect. Therefore, devel-
oping efficient tools to guide the locational phase of the decision-making process is
crucial to improve the performance of such systems. One important issue that is often
present in real applications is the dynamic nature of the problem, which implies that
various elements such as costs, resources, requirements, etc. may change within dif-
ferent time periods throughout the time horizon. From the location point of view this
gives rise to different types of multi-period problems. Multi-period location problems
are investigated since the early papers by Warszawski (1973), van Roy and Erlenkot-
ter (1982), up to the more recent references by Daskin et al. (1992), Galvão and
Santibañez-González (1992), and Current et al. (1997), among others. Most of these
approaches have been used for the design of supply structures by deciding which ex-
isting facilities should be closed and where new facilities should be opened. In this
case, not only the transportation plan but also the time-staged establishment of the
facilities are decision variables (see, e.g., Chardaire et al. 1996; Drezner 1995; Hino-
josa et al. 2000, 2008; Albareda-Sambola et al. 2009; and Melo et al. 2006, 2009).
However, some modeling aspects still require further attention. In this work we shall
focus on one of them: how to address the single period coverage of customers within
a planning horizon. In the actual world, there are cases where customers require to
be serviced only once, and the decision on when to service each customer depends
on the current service network. However, we are not aware of any research in the
above-mentioned field. Instead, in most (all) known models it is required that either
the entire or a pre-specified fraction of the population be reached at each time period,
and that the demand of covered customers remains satisfied in the subsequent peri-
ods. It is clear that, although not considered before, the single period coverage fits
to actual applications. For instance, in vaccination campaigns it is required that the
population in different locations be serviced only once (of course before the current
infection season). The nature of this application requires that service to users is given
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only once. Nevertheless, operational and budget constraints avoid to achieve com-
plete coverage in one single period, and therefore, an optimal plan is needed to reach
the full service goal while ensuring total coverage at the end of the planning horizon.

In this paper we introduce the Single Period Coverage Facility Location Problem,
SPCFLP for short. The SPCFLP consists of minimizing the total costs throughout
a finite time planning horizon while ensuring that at each single period a minimum
number of plants are open, each of them having a capacity H , and that each cus-
tomer is serviced exactly once throughout the entire planning horizon. We accept that
plants are opened and closed in different time periods to conform an adequate ser-
vice network. The SPCFLP is quite general since it includes as particular cases some
interesting difficult problems, as, for instance, the well-known capacitated plant lo-
cation problem (CPLP) (Sridharan 1995), or the variable-size bin packing problem
(Correia et al. 2008). The problem belongs to the class NP-hard, since it reduces to
the above-mentioned CPLP, when the planning horizon shrinks to one single period.

Mainly we focus on modeling issues, and we propose two solution procedures
for the SPCFLP that resort to Lagrangean Relaxation, which has been widely used
to address different types of discrete location problems (see, for instance, Guignard
2003). We show that the allocation subproblem that results when the set of facilities
to be opened at each time period is known can be solved in polynomial time, since
its coefficient matrix is totally unimodular, and that the proposed Lagrangean relax-
ations can be solved by inspection. Based on these properties, we propose a solution
approach that provides both lower and upper bounds by combining subgradient opti-
mization to solve the Lagrangean dual with an ad hoc heuristic that uses information
from the Lagrangean subproblem to generate feasible solutions. We also propose an-
other resolution method based on a reformulation of the SPCFLP as a set-partitioning
problem, at the cost of introducing exponentially many columns (variables). Despite
of that, this formulation is specially suitable for column generation methods, since
the corresponding pricing problem can be solved easily by inspection. We prove that
the lower bound of the above Lagrangean dual coincides with the LP bound of the
set-partitioning reformulation. We have run a series of computational experiments,
in order to assess the efficiency of our algorithms and to compare the computational
burden required to obtain this lower bound with each model. Our experiments show
that the SPCFLP is difficult to solve. Indeed, already for some medium size instances,
CPLEX failed to obtain the optimal solution in four hours of cpu time. On the con-
trary, the numerical results indicate that the proposed approach is very effective and
provides very good quality feasible solutions with small duality gaps and small com-
putation times.

The paper is organized as follows. Section 2 describes a mixed integer mathe-
matical programming (MIP) formulation of the SPCFLP. There we also analyze the
allocation subproblem that results when the set of facilities that are open in each time
period is known, and we introduce two Lagrangean relaxations of the SPCFLP. In
Sect. 3 we develop a column generation approach based on a reformulation of the
SPCFLP as a set-partitioning problem. Section 4 reports on the results obtained in
our computational experiments. In this regard, we have tested several batteries of
instances that show a good performance of our algorithms in terms of quality and
efficiency. The paper ends with some concluding remarks.
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2 A mathematical programming formulation of the SPCFLP

In this section we present the formal description of the SPCFLP, and we model it
by means of a mixed integer linear program. Recall that this model looks for the
locational and assignment decisions, over a given planning horizon, that lead to the
minimization of the total operation costs.

To simplify the mathematical formulation of our problem, we use the following
notation.

• I : the set of customers, indexed by i ∈ I .
• J : the set of possible locations for facilities, indexed by j ∈ J .
• T : the set of time periods, indexed by t ∈ T .
• H : a constant that denotes the maximum number of customers that can be assigned

to a plant if it is open.

For each period t ∈ T , define

• pt : minimum number of facilities to open at period t .

In addition, two types of costs are combined in this problem:

• ct
ij : assignment value of allocating customer i to facility j at time period t .

• f t
j : cost of opening facility j at period t .

We assume that a facility that is opened in one period can be closed in the next
one and that a closed facility can be reopened in subsequent time periods. We require
that each customer is serviced in exactly one period of the planning horizon.

The goal is to find the facilities to open at each period t ∈ T and the allocation of
customers to the open facilities that satisfy the above requirements at the minimum
total cost.

In order to build a mathematical programming formulation for the SPCFLP, we
define the following decision variables:

• xt
ij =

{
1 if customer i is assigned to facility j at time period t,

0 otherwise.

• yt
j =

{
1 if facility j is open at time period t,

0 otherwise.

Using these conventions, a formulation of the SPCFLP is

(M1) min
∑
t∈T

∑
j∈J

(
f t

j yt
j +

∑
i∈I

ct
ij x

t
ij

)
(1)

s.t.
∑
t∈T

∑
j∈J

xt
ij = 1 ∀i ∈ I, (2)

∑
i∈I

xt
ij � Hyt

j ∀j ∈ J, ∀t ∈ T , (3)

∑
j∈J

yt
j � pt ∀t ∈ T , (4)

xt
ij ∈ {0,1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ T , (5)

yt
j ∈ {0,1} ∀j ∈ J, ∀t ∈ T . (6)
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Constraints (2) ensure that each customer is serviced exactly one time throughout
the planning horizon. Constraints (3) guarantee that no more than H customers are
assigned to one plant if it is open. The following group of constraints (4) ensure that
at least pt plants are opened at time period t . Constraints (5) and (6) are the binary
conditions on the decision variables. As we will see, constraints (5) can be substituted
by continuous nonnegativity bounds on their value.

If constraints (4) were not included and constraints (3) were relaxed to xt
ij � yt

j ,
the problem would just be an Uncapacitated Facility Location Problem (Cornuejols
et al. 1990). Since constraints (3) are a particular case of capacity constraints, if we
just omitted constraints (4), the problem would be a particular case of the Single
Source Capacitated Plant Location Problem (Cortinhal and Captivo 2003). Moreover,
if constraints (4) were omitted and the planning horizon shrank to one period, the
problem would be a Variable-Size Bin Packing Problem (Correia et al. 2008).

2.1 The assignment subproblem

In this section we study the structure of the allocation subproblem that results when
the set of facilities that are open in each time period is fixed. As we will see, the
allocation subproblem can be solved in polynomial time, since its coefficient matrix
is totally unimodular. This property will be used later on in our solution approach
for M1.

Proposition 1 If the set of open facilities in period t , J t , is known for t ∈ T , then the
optimal allocation for the customers can be obtained by solving the following linear
program:

(TP) min
∑
t∈T

∑
j∈J t

∑
i∈I

ct
ij x

t
ij (7)

s.t.
∑
t∈T

∑
j∈J t

xt
ij = 1 ∀i ∈ I, (8)

∑
i∈I

xt
ij � H ∀t ∈ T , j ∈ J t , (9)

xt
ij � 0 ∀i ∈ I, ∀t ∈ T , ∀j ∈ J t , (10)

whose coefficient matrix is totally unimodular, since it can be transformed into a
transportation problem.

Corollary 1 In formulation M1 the binary conditions xt
ij ∈ {0,1}, ∀i ∈ I , ∀j ∈ J ,

∀t ∈ T , can be substituted by the nonnegativity conditions xt
ij ≥ 0, ∀i ∈ I , ∀j ∈ J ,

∀t ∈ T .

2.2 Lagrangean relaxations of the SPCFLP

We next present two Lagrangean relaxations of model M1. The first one incorporates
to the objective function capacity constraints (3), whereas the second one relaxes
assignment constraints (2).
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2.2.1 Lagrangean relaxation of capacity constraints

If we relax constraints (3), for a given set of multipliers ut
j � 0, the relaxed problem,

denoted by L1(u), is given by

L1(u) = min
∑
t∈T

∑
j∈J

(
f t

j yt
j +

∑
i∈I

ct
ij x

t
ij

)
+

∑
t∈T

∑
j∈J

ut
j

(∑
i∈I

xt
ij − Hyt

j

)
(11)

s.t.
∑
t∈T

∑
j∈J

xt
ij = 1 ∀i ∈ I, (12)

∑
j∈J

yt
j � pt ∀t ∈ T , (13)

xt
ij � 0, yt

j ∈ {0,1} ∀j ∈ J, ∀t ∈ T . (14)

After some algebra, the objective function (11) can be rearranged to

min
∑
t∈T

∑
j∈J

(
f t

j − Hut
j

)
yt
j +

∑
t∈T

∑
j∈J

∑
i∈I

(
ct
ij + ut

ij

)
xt
ij .

The objective function value of L1(u) can be obtained by decomposing problem
(11)–(14) in two independent problems: one in the y variables, and another one in the
x variables. Each of them can be solved by inspection.

The Lagrangean Dual associated with L1(u) is thus

(D1) d1 = max
u�0

L1(u).

Problem D1 can be solved with basic subgradient optimization (the implemen-
tation is similar to the one followed in Albareda-Sambola et al. 2009, where fur-
ther details on parameters can be found). For a given vector u � 0, let (y(u), x(u))

denote the optimal solution to L1(u). Then, a subgradient of L1(u) is given by
γ = (γ t

j )j∈J,t∈T , where γ t
j = ∑

i∈I x(u)tij − Hy(u)tj .

Proposition 2 The optimal value of the Lagrangean Dual D1, d1, coincides with the
value of the LP relaxation of program M1.

Proof The result follows since L1(u) has the integrality property (cf. Theorem 2 in
Geoffrion 1974). �

2.2.2 Lagrangean relaxation of assignment constraints

If we relax constraints (2), for a given set of multipliers vi ∈ R, the relaxed problem,
denoted by L2(v), is given by
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L2(v) = min
∑
t∈T

∑
j∈J

(
f t

j yt
j +

∑
i∈I

ct
ij x

t
ij

)
+

∑
i∈I

vi

(
1 −

∑
t∈T

∑
j∈J

xt
ij

)
(15)

s.t.
∑
i∈I

xt
ij � Hyt

j ∀j ∈ J,∀t ∈ T , (16)

∑
j∈J

yt
j � pt ∀t ∈ T , (17)

0 � xt
ij � 1, yt

j ∈ {0,1} ∀j ∈ J,∀t ∈ T . (18)

After some algebra the objective function (15) can be rearranged to

min
∑
i∈I

vi +
∑
t∈T

∑
j∈J

(
f t

j yt
j +

∑
i∈I

(
ct
ij − vi

)
xt
ij

)
.

A solution to L2(v) can be obtained as follows:

• For each j ∈ J and each t ∈ T , do the following:
– let {i1, i2, . . . , iH , . . . , i|I |} be the index set of customers ordered by increasing

values of ct
ij − vi .

– Let s∗
j t = min{H,max{r : ct

ir j
− vir < 0}}.

– Define wt
j = f t

j + ∑s∗
j t

r=1(c
t
ir j

− vir ).
• For each t ∈ T , do:

– let {j1, . . . , jpt , . . . , j|J |} be the index set of plants ordered by increasing values
of wt

j .
– Let j (t)∗ = max{pt , max{r : wt

jr
< 0}}.

– For each r ∈ {1, . . . , j (t)∗}, do yt
jr

= 1, and xt
isjr

= 1, for s = 1, . . . , s∗
jr t

.

Now, the Lagrangean Dual associated with L2(v) is

(D2) d2 = max
v∈R|I |

L2(v).

Problem D2 can be solved with basic subgradient optimization (the implementa-
tion is similar to the one followed in Albareda-Sambola et al. 2009, where further
details on parameters can be found). For a given vector v, let (y(v), x(v)) denote
the optimal solution to L2(v). Then, a subgradient of L2(v) is given by ϕ = (ϕi)i∈I ,
where ϕi = 1 − ∑

t∈T

∑
j∈J xt

ij (v).

2.3 Upper bounds

Assume that, for a given multipliers vector of appropriate dimensions, the La-
grangean problem Li(·) for i = 1,2 is solved. Then, a feasible solution for program
M1 can be obtained by solving the allocation subproblem T P (ỹ) associated with the
set J t (ỹ) of open facilities at each period given by the optimal solutions ỹ to Li(·)
for i = 1,2, that is,

J t (ỹ) = {
j ∈ J : ỹt

j = 1
}
. (19)
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Hence, when the solution of T P (ỹ) is a feasible solution to M1 (i.e.,
∑

t |J t (ỹ)| �
|I |/H ) an upper bound to M1 can be obtained as val(TP(ỹ)) + ∑

t∈T

∑
j∈J t (ỹ) f

t
j ,

where val(P ) stands for the optimal value of problem P .
Note that if

∑
t |J t (ỹ)| < |I |/H , the relaxed problems can be reinforced by adding

the constraint
∑

j,t y
t
j � |I |/H . In this case, the solution of the relaxed problems is

completed by opening the cheapest plants until this constraint is satisfied.
In the next section we present another formulation for the SPCFLP that is suitable

for a column generation approach.

3 Set-Partitioning formulation of the SPCFLP

Feasible assignments to plants are associated with subsets of customers S ⊂ I such
that |S| ≤ H . Let K denote the index set of such subsets. For each triplet (Sk, j, t),
k ∈ K , j ∈ J , t ∈ T , let pt

kj denote the cost of opening facility j in period t and
assigning to it all the customers of Sk . That is, pt

kj = f t
j + ∑

i∈Sk
ct
ij .

For building another formulation for the SPCFLP, we define the following deci-
sion variables:

• zt
kj =

{
1 if the subset of customers Sk is assigned to facility j at time period t,

0 otherwise.

Then, a model formulation for the SPCFLP is

(M2) min
∑
t∈T

∑
j∈J

∑
k∈K

pt
kj z

t
kj (20)

s.t.
∑
t∈T

∑
j∈J

∑
k∈K

aikz
t
kj = 1 ∀i ∈ I, (21)

∑
k∈K

zt
kj � 1 ∀j ∈ J, ∀t ∈ T , (22)

∑
k∈K

∑
j∈J

zt
kj � pt ∀t ∈ T , (23)

zt
kj ∈ {0,1} ∀k ∈ K, ∀j ∈ J, ∀t ∈ T , (24)

where the coefficients of matrix A = (aik) are given by

• aik =
{

1 if customer i ∈ Sk,

0 otherwise.

Constraints (21) ensure that each customer is serviced in exactly one period. Con-
straints (22) guarantee that at each period at most one feasible assignment is selected
for each plant, whereas constraints (23) impose that at least pt assignments take place
at each period (and thus at least pt plants are open).

The large number of variables of formulation M2 makes it suitable for column
generation.
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Proposition 3 The optimal value of the Lagrangean dual D2, d2, coincides with the
value of the LP relaxation of program M2.

Proof Consider the following Lagrangean problem resulting from relaxing assign-
ment constraints (21) in M2 in an Lagrangean fashion:

LM2(π) = min
∑
t∈T

∑
j∈J

∑
k∈K

pt
kj z

t
kj +

∑
i∈I

πi

(
1 −

∑
t∈T

∑
j∈J

∑
k∈K

aikz
t
kj

)
(25)

s.t.
∑
k∈K

zt
kj � 1 ∀j ∈ J, ∀t ∈ T , (26)

∑
k∈K

∑
j∈J

zt
kj � pt ∀t ∈ T , (27)

zt
kj ∈ {0,1} ∀k ∈ K, ∀j ∈ J, ∀t ∈ T . (28)

In view of the unimodularity of the set of constraints (26)–(27), this Lagrangean
problem has the integrality property, and, thus (cf. Theorem 2 in Geoffrion 1974), the
bound obtained with its Lagrangean dual coincides with the value of the LP relaxation
of M2.

Note that, for each feasible solution ẑ to (26)–(28), for any fixed j ∈ J , t ∈ T ,
there is a one-to-one correspondence between ẑt

kj , k ∈ K , and a vector (ŷt
j , x̂

t
ij ), i ∈ I

that satisfies constraints (16)–(18). In particular, ẑt
kj = 0 for all k ∈ K if and only if

ŷt
j = x̂t

ij = 0 for all i ∈ I , whereas there exists (a unique) k̂ ∈ K such that ẑt

k̂j
= 1

(associated with the subset of customers Sk) if and only if ŷt
j = 1 and x̂t

ij = 1 for
all i ∈ Sk . Therefore, by the definition of the variables zt

kj for j ∈ J, t ∈ T , (x̂t
ij )i∈I

represents a feasible assignment to facility j at time period t , i.e.,
∑

i∈I x̂t
ij ≤ Hŷt

j .
Also, constraints (27) are equivalent to

∑
j∈J ŷt

j ≥ pt .
On the other hand, the objective function of LM2(π) can be expressed as

∑
i∈I

πi + min

[∑
t∈T

∑
j∈J

∑
k∈K

pt
kj z

t
kj −

∑
t∈T

∑
j∈J

∑
k∈K

∑
i∈I

πiaikz
t
kj

]
. (29)

Observe that, by the definition of the cost coefficients and by constraints (26),
for a given j ∈ J , t ∈ T ,

∑
k∈K pt

kj ẑ
t
kj = f t

j ŷt
j + ∑

i∈I ct
ij x̂

t
ij . In addition, by the

definition of the coefficients aik ,
∑

k∈K πiaikẑ
t
kj = πix̂

t
ij . Taking into account the

above considerations, program LM2(π) can be rewritten as

∑
i∈I

πi + min
∑
t∈T

∑
j∈J

(
f t

j yt
j +

∑
i∈I

ct
ij x

t
ij

)
−

∑
i∈I

∑
t∈T

∑
j∈J

πix
t
ij (30)

s.t.
∑
i∈I

xt
ij � Hyt

j ∀j ∈ J, ∀t ∈ T ,

∑
j∈J

yt
j � pt ∀t ∈ T ,

xt
ij ∈ {0,1}, yt

j ∈ {0,1} ∀j ∈ J, ∀t ∈ T ,
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which is indeed the Lagrangean problem L2(π) resulting from relaxing assignment
constraints (2) in M1. �

3.1 The pricing subproblem

Let K̂ ⊆ K denote the index set of a known set of columns, and let us suppose that
we have solved LM2K̂ , the LP relaxation of M2 restricted to the columns indexed
in K̂ , with optimal value val(LM2K̂ ). Let π , λ, and μ denote the optimal values
of dual variables associated with constraints (21), (22), and (23), respectively. Then,
for finding, if it exists, a variable that will improve the current LP solution, we must
find the column of the coefficient matrix of M2 with the smallest reduced cost. For
variable zt

kj j ∈ J, k ∈ K, t ∈ T , its reduced cost is given by rt
kj = pt

kj −∑
i∈I πiaik −

λt
j − μt .

Thus, for finding the column that yields the smallest reduced cost, we must solve
the following pricing problem:

(PP) min
j∈J,k∈K,t∈T

rt
kj = pt

kj −
∑
i∈I

πiaik − λt
j − μt .

Since pt
kj = f t

j + ∑
i∈Sk

ct
ij , we have rt

kj = f t
j + ∑

i∈I (c
t
ij − πi)aik − λt

j − μt .
Note also that feasible columns ak are characterized by the condition

∑
i∈I aik ≤ H .

Thus, the solution to PP can be obtained by solving a series of independent problems,
one for each j ∈ J , t ∈ T . Since for given j ∈ J , t ∈ T , the value f t

j − λt
j − μt is

fixed, the corresponding problem reduces to

(
PPt

j

)
min

∑
i∈I

(
ct
ij − πi

)
ai (31)

s.t.
∑
i∈I

ai ≤ H, (32)

ai ∈ {0,1} ∀i ∈ I. (33)

Note that PPt
j can be solved by inspection as follows:

• Let {i1, i2, . . . , iH , . . . , i|I |} be the index set of customers ordered by increasing
values of ct

ij − πi .
• Set s∗ = min{H,max{r : ct

ir j
− πir < 0}}.

• The optimal solution to PPt
j is âir = 1, r = 1, . . . , s∗; âir = 0, otherwise, which

gives a column of A with reduced cost r̂ t
j = f t

j + ∑
i∈I (c

t
ij − πi)âi − λt

j − μt .

Proposition 4

1. If minj∈J,t∈T r̂ t
j ≥ 0, then the solution to LM2K̂ is optimal to the LP relaxation

of M2.
2. LB1 = val(LM2K̂ ) + ∑

j∈J

∑
t∈T min{r̂ t

j ,0} is a valid lower bound for the opti-
mal value of the SPCFLP.
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3.2 Initial set of columns

In order to obtain the initial subset of columns, two different GRASP heuristics (Feo
and Resende 1995) have been applied. In both heuristics columns are iteratively built
with some randomized greedy criterion. The basic difference between the two proce-
dures is that in the first one, in the iterative step the customer i to be assigned is fixed,
and the pair (j, t) to which i is assigned is selected, among the ones that fulfil some
additional conditions, relative to the greedy function, whereas in the second heuris-
tic the pair (j, t) is fixed, and the set of customers assigned to that pair is randomly
selected (among the unassigned ones). Thus, whereas in the first heuristic several
“partially built” columns can exist simultaneously, in the second heuristic each col-
umn is completely built before a new one is started. Like in formulation M2, in both
heuristics each column k is associated with a facility j and a time period t , and it is
defined by a subset of customers.

Apart from the obvious condition that no column contains more than H customers,
for avoiding generating too many columns in the initial set of columns, in both heuris-
tics we exclude columns with very few customers by ensuring that each column has at
least max{	H

2 
, 	 |I |
|T ||J | 
} customers. In the first heuristic, this is achieved as follows.

Each time a new customer is assigned to a “partially built” column, the current size of
the column is checked. When this number r = h(j, t) is at least max{	H

2 
, 	 |I |
|T ||J | 
},

we “close” the column (do not allow more customers to be added to it) with proba-
bility πr = r−1

2	 H
2 
 if r < H or with probability πr = 1 if r = H . When a column is

“closed,” additional columns with the same pair (j, t) can be generated in subsequent
iterations.

Each iteration of the first heuristic consists of the following. First, an unassigned
customer i is randomly selected and assigned to a column associated with a facility
and time period (j, t) randomly selected from a Restricted Candidate List (RCL). The
RCL contains “good” facilities for customer i, among the ones of the “partially built”
columns. In particular, a facility j is considered “good” for customer i at time period
t if ct

i,j does not exceed a fraction of the maximum assignment cost of customer i.
The fraction is initially set to 0.5, but if the resulting RCL is empty, it is increased
(in steps of 0.1) until a suitable facility is found (now, possibly corresponding to an
empty column). The pseudocode of the first heuristic for generating the initial set of
columns is presented in Fig. 1.

The second heuristic consists of two nested loops, where each outer iteration
builds a different block of columns. Columns of each block are built at the inner
iterations in such a way that each customer belongs to exactly one column of the
block. For the current block, let Î denote the set of unassigned customers, and T̂

the set of time periods that have less than pt associated columns. Initially, each
block contains no columns, so that Î = I and T̂ = T . For building each column,
first a time period t is randomly selected. The time period t is randomly selected
from T̂ when T̂ �= ∅, whereas, otherwise, it is randomly generated from T . Once
the time period t is fixed, the facility jt is randomly selected from a Restricted Can-
didate List, RCL1, constructed as follows. For each pair (j, t), one temptative col-
umn is built. This column contains h(j, t) unassigned customers, where h(j, t) is
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for (iter = 1, . . . ,numiter) do
h(j, t) = 0 ∀j ∈ J , t ∈ T ,
Iassign := ∅,
while (Iassign �= I ) do

Select randomly i ∈ I \ Iassign,
cmax := max{ct

ij : j ∈ J }, frac := 0.5,
RCL:={(j, t) : h(j, t) ≥ 1 and ct

ij ≤ frac × cmax},
while (RCL=∅) do

frac := frac + 0.1,
RCL:={(j, t) : ct

ij ≤ frac × cmax},
endwhile
Randomly select (j, t) ∈ RCL,
Assign i to column (j, t),
h(j, t) := h(j, t) + 1,
if (h(j, t) ≥ max{	 H

2 
, 	 |I |
|T ||J | 
}) then close column (j, t) with probability πr , with r = h(j, t),

Iassign := Iassign ∪ {i},
endwhile

endfor

Fig. 1 GRASP Heuristic 1 for building the initial set of columns

randomly selected in the interval [	H
2 
,min{H, |Î |}]. The customers of the tempta-

tive column for the pair (j, t) are randomly selected from another Restricted Candi-
date list, RCL2, that contains the 2h(j, t) unassigned customers with smaller assign-
ment costs ct

ij . The value of this temptative column is vj = f t
j + ∑

i∈Ijt
ct
ij . Then,

RCL1 = {j ∈ J : vj � vmin + 0.5(vmax − vmin)}, where vmax and vmin respectively
denote the larger and smaller values among all generated temptative columns. The
pseudocode of the second heuristic for generating the initial set of columns is pre-
sented in Fig. 2.

It is worth noting that the initial subset of columns obtained in both heuristics may
not define a feasible solution to formulation M2 because it may not fulfil constraints
(23) regarding the minimum number of plants that need to be opened at each time
period (pt ). To avoid this inconvenience, the solution is completed by opening the
cheapest plants in each stage t until the constraint if satisfied. Finally, to improve
the quality of this solution, at each iteration a local search plus an interchange is
performed.

4 Computational study

The computational tests presented in this section have been designed in order to
evaluate and compare the performance of the two Lagrangean relaxations devel-
oped in Sect. 2.2 and the column generation proposed in Sect. 3.1. On this account,
all the solution procedures were implemented using Visual C++ 6.0, where ILOG
CPLEX 8.1 Callable Library routines have been used for the implementation of the
linear and integer programs. Default parameters have been used. All computational
tests have been performed on a PC with a Pentium IV processor with 3 GHz and 1 GB
of RAM.

For generating the instances, we identify three relevant factors in the design of
our experiment, namely the number of candidate facilities sites, the planning hori-
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for (iter = 1, . . . ,numiter) do
Î := I , T̂ = T ,
p̂t = 0 ∀t ∈ T ,
while (Î �= ∅) do

if (T̂ �= ∅) then
Randomly select t ∈ T̂ ,

otherwise
Randomly select t ∈ T ,

vmin = ∞, vmax = 0,
for (j ∈ J ) do

Randomly generate h(j, t) ∈ [H/2,min{H, |Î |}],
Define RCL2 as the set of the min{2h(j, t), |Î |}

customers in Î with smaller assignment costs ct
ij ,

Randomly select a set Ijt ⊆ Î of h(j, t) indices from RCL2,
Evaluate vj = f t

j + ∑
i∈Ijt

ct
ij ,

if (vj > vmax) then vmax = vj ,
if (vj < vmin) then vmin = vj ,

endfor
Randomly select a plant jt ∈ RCL1 = {j ∈ J : vj ≤ vmin + 0.5(vmax − vmin},
Î := Î \ Ijt t ,
p̂t := p̂t + 1,
if (p̂t = pt ) then T̂ := T̂ \ {t},

endwhile
endfor

Fig. 2 GRASP Heuristic 2 for building the initial set of columns

zon, and the total number of customers. For each of these factors, we consider dif-
ferent levels that define our battery of test instances: |J | varies in {10,15,30} and
|T | in {4,8,12}. Finally, different values of |I | have been considered for each value
of |T |. For |T | = 4, |I | varies in {100,150,200,500}; for |T | = 8, |I | varies in
{150,200,500}; for |T | = 12, |I | varies in {200,500}.

In addition, for each combination of |T | and |I |, we have considered two different
values for the maximum capacity of the facilities, H , a small capacity, and a large
capacity (see Tables 1 and 2). For each combination of factors, levels, and capacities,
we have generated 10 instances. In total we have generated 540 instances using the
following structure:

• Opening costs in the first period drawn from a uniform distribution in [75,125]
and opening costs in period t > 1, f t

j , are given by f t
j = f t−1

j + U [−7,7].
• Assignment costs in the first period drawn from a uniform distribution in [10,50]

and assignment costs in period t > 1, ct
ij , are given by ct

ij = ct−1
ij + U [−5,5].

• For each instance, the value pt , t ∈ T , was generated as the minimum between the
closest integer to |I |

|T |H U [0.9,1.3] and |J |.
For a better evaluation of our results, we have used CPLEX to get the values of

the optimal solutions to the instances and the cpu time required to obtain the optimal
solution using model M1. For these experiments, a maximum of four hours (14000
seconds) of cpu time was fixed. Tables 1 and 2 depict information on the above de-
scribed instances and on the average results obtained in each of their meaningful
aspects. In particular, Table 1 depicts the average percent deviations of the obtained
lower and upper bounds with respect to the optimal/best solution found by CPLEX,
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whereas Table 2 gives information about the average cpu times in seconds. In both
tables, the rows are grouped into blocks, each of them corresponding to a fixed num-
ber of periods |T |. The rows within each block correspond to instances with a fixed
number of customers |I | and a fixed value for the maximum capacity of the plants H .
The columns are grouped into three blocks, each of them corresponding to a fixed
number of facilities |J |. Thus, each entry in the tables corresponds to the average
value over 10 instances of a fixed dimension.

The columns within each column block of Table 1 are, in turn, grouped into two
blocks. The first one (labeled as o− lb) gives the average percent gaps between the op-
timal/best solution found with CPLEX and the two obtained lower bounds: 1) the en-
tries labeled as LR1/LP correspond to the Lagrangean bound associated with L1(u)

(which coincides with the LP bound of program M1); and 2) the entries labeled as
LR2/GC correspond to the Lagrangean bound associated with L2(v) (which coin-
cides with the LP bound of program M2). The second block (labeled as ub − o) gives
the average percent gaps between the optimal/best solution found with CPLEX and
the two obtained upper bounds: 1) the upper bound obtained with the initial set of
columns used for the column generation approach to M2 (entries labeled GC); and
2) the best solution found with the heuristic applied to the solutions of L2(v) (entries
labeled LR2). Entries with an asterisk mean that either CPLEX could not find any
feasible solution for any of the 10 instances of the corresponding dimension within
the allowed cpu time or that a memory overflow occurred.

As can be seen, the obtained gaps of the LP relaxation of program M1 are
very large, especially for instances with large facility capacities, where this gap
exceeded 50% in several instance sets. This motivated the study of a different
Lagrangean relaxation and another reformulation based on set partitioning. Since
these two approaches have dramatically outperformed in all cases the first La-
grangean relaxation, in the following we just report on the results of these latter
approaches.

The columns within each column block of Table 2 give: 1) the cpu time required
to solve the Lagrangean Dual D1 (entries labeled LR1); 2) the cpu time required
by CPLEX to obtain the optimal solution with an upper limit of four hours (entries
labeled opt); 3) the number of instances out of the 10 instances of the same dimension
for which CPLEX could not prove optimality of the best solution found after the limit
of four hours of cpu time (entries labeled No); 4) the cpu time required to solve the
LP relaxation of program M2 using column generation (entries labeled gc); and
5) the cpu time required to solve the Lagrangean Dual D2 (entries labeled LR2).
These experiments have shown the difficulty of large size problems, since CPLEX
fails to prove the optimality of the best solution found in the four hours of cpu time
in most of the large size instances (|I | = 500 or |J | = 30 and |I | ≥ 200).

The results obtained when solving the LP relaxation of program M2 using col-
umn generation and the Lagrangean Dual D2 are good, both in terms of the obtained
bounds and of the required computation times. It is worth noting that the obtained
average percent gaps between the optimal/best solution found with CPLEX and the
lower bounds obtained with these two approaches are very small; indeed, they are un-
der 1% in all but two cases, where they do not exceed 2.20%. On the other hand, the
average percent gaps between the upper bounds and the optimal/best solution found
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with CPLEX depend on the heuristic used. For the heuristic that builds the initial set
of columns of program M2, these gaps range between 0.82% and 10.32%, whereas
for the heuristic used to obtain feasible solutions when solving the Lagrangean Dual
D2, the final gaps range between 0% and 3.54%. Actually, the best feasible solution
found with this relaxation is optimal for 178 out of the 540 instances, and, in general,
this last solution method is able to find feasible solutions which can be proven to be
within a small gap from the optimum. From this observation we conclude that the
latter method seems to be the most appropriate to solve this problem. This assertion
is also supported by the observed cpu times with both methods. Nevertheless, one
may observe that the column generation approach requires, in some occasions, less
cpu time than the Lagrangean one on some instances of small to medium sizes. In
spite of that, the Lagrangean method shows less variability in terms of the time so
that we considered this one as the best method. For this reason, computational results
on larger instances are only given for this approach.

Table 3 shows the average percent gaps between the upper and the lower bounds
obtained when solving the Lagrangean Dual D2 and the cpu times required for solv-
ing instances with 700 and 1000 customers. The entries in Table 3 indicate that the
computational burden required to obtain these upper and lower bounds is small, tak-
ing into account the size of the instances. The largest cpu time, which is around 6.5
minutes, corresponds to instances with |J | = 30, |I | = 1000, and |T | = 12. Note
that, for these instances, formulation M1 has more than 360000 variables. Our exper-
iments show that CPLEX was not able to find the optimal solutions of these problems
except for small size instances (within the allowed cpu time limit). This indicates that
solving these instances exactly is extremely time consuming and that our approach is
an appropriate alternative.

Table 3 Average gaps and CPU time for LR2

|T | |I | H |J | = 10 |J | = 15 |J | = 30

gap ub-lb CPU gap ub-lb CPU gap ub-lb CPU

4 700 20 0.02 30.90 0.42 52.80 2.26 97.30

35 1.71 37.10 3.33 49.40 5.64 88.80

1000 30 0.03 47.40 1.04 73.00 3.62 137.50

50 1.13 49.80 2.74 65.10 5.53 124.40

8 700 15 0.30 66.30 1.40 98.10 3.16 176.10

30 4.41 60.50 6.70 90.50 9.14 166.50

1000 20 0.25 99.10 2.01 140.80 4.03 262.40

35 4.68 94.70 6.80 131.80 9.68 244.50

12 700 8 0.02 107.10 0.16 158.00 0.27 273.60

15 1.26 96.10 2.75 133.40 3.61 251.40

1000 15 0.47 147.20 1.25 206.10 2.33 387.10

30 5.68 131.60 7.81 189.40 9.51 375.10
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5 Conclusions

In this work we have presented the Single Period Coverage Facility Location Prob-
lem. It is a dynamic facility location problem where service to each customer needs
to be provided in exactly one time period within the planning horizon. To provide
these services, a minimum number of capacitated plants are opened at each time pe-
riod (among the entire set of candidate sites) so that their locations can be chosen in
different sites at different time periods.

For this problem, two different formulations have been studied, and different
bounding procedures based on these formulations are presented. In particular, for the
first model, we have studied two Lagrangean relaxations, and for the second model,
we have proposed a column generation approach to obtain its LP bound, given that
its number of variables increases exponentially with the number of customers. Addi-
tionally, we have proved that its LP bound coincides with the lower bound associated
with one of the previous Lagrangean duals.

Extensive computational experiments have been carried out to evaluate the pro-
posed methods. Our results indicate that the Single Period Coverage Facility Loca-
tion Problem is very difficult to solve using standard optimization software, which
gives an extra motivation to develop heuristics and lower bounds. The results show
that the proposed procedures allow one to identify efficiently good quality feasible
solutions and that the lower bound given by the second Lagrangean relaxation (and,
thus, the LP bound of the second formulation) is very tight. However, our results indi-
cate that it is more efficient to find this common lower bound through the Lagrangean
relaxation of the first model.
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