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Resumen

El objetivo de esta tesis doctoral es desarrollar nuevos métodos para la clasi�cación

y regresión supervisada en el Análisis de Datos Funcionales. En particular, las herra-

mientas de Optimización Matemática analizadas en esta tesis explotan la naturaleza

funcional de los datos, dando lugar a nuevas técnicas que pueden mejorar los métodos

clásicos y que conectan las matemáticas con las aplicaciones.

El Capítulo 1 presenta las ideas generales, los retos y la notación usada a lo largo

de la tesis.

El Capítulo 2 trata el problema de seleccionar el conjunto �nito de instantes de

tiempo que mejor clasi�ca datos funcionales multivariados en dos clases prede�nidas.

El uso, no sólo de la información proporcionada por la propia función, sino también por

sus derivadas será decisivo para mejorar la predicción, como se pondrá de mani�esto pos-

teriormente. Para ello se formula un problema de optimización binivel continuo. Dicho

problema combina la aplicación de la conocida técnica SVM (Support Vector Machine)

con la maximización de la correlación entre la etiqueta de la clase y la denominada

función score, vinculada a dicha técnica.

El Capítulo 3 también se centra en la clasi�cación binaria de datos funcionales

usando SVM. Sin embargo, en lugar de buscar los instantes de tiempo más relevantes,

aquí se de�ne un ancho de banda funcional para la denominada función kernel. De esta

forma, se puede mejorar el rendimiento del clasi�cador, a la vez que se identi�can los

diferentes intervalos del dominio de la función, de acuerdo a su capacidad predictiva,

mejorando además la interpretabilidad del modelo resultante. La obtención de tales

intervalos se lleva a cabo mediante la resolución de un problema de optimización binivel

por medio de un algoritmo alternante.

El Capítulo 4 se centra en la clasi�cación de los llamados datos funcionales híbridos,

es decir, datos que están formados por variables funcionales y estáticas (constantes a lo

largo del tiempo). El objetivo es seleccionar las variables, funcionales o estáticas, que

mejor clasi�quen. Para ello, se de�ne un kernel no isotrópico que asocia un parámetro

ancho de banda escalar a cada una de las variables. De forma análoga a como se ha

hecho en los capítulos anteriores, se propone un algoritmo alternante para resolver el

problema de optimización binivel, que permite resolver los parámetros del kernel.
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El problema de selección de variables presentado en el Capítulo 2 se generaliza al

campo de la regresión en el Capítulo 5. El método de resolución combina la técnica

denominada SVR (Support Vector Regression) con la minimización de la suma de los

cuadrados de los residuos entre la verdadera variable respuesta y la prevista.

Todos los algoritmos propuestos a lo largo de esta tesis han sido aplicados a bases

de datos sintéticas y reales, quedando probada su efectividad.



Summary

The goal of this PhD dissertation is to develop new approaches for supervised classi-

�cation and regression in Functional Data Analysis. Particularly, the Mathematical

Optimization tools analyzed in this thesis exploit the functional nature of the data,

leading to novel strategies which may outperform the standard methodologies and link

mathematics with real-life applications.

Chapter 1 presents the main ideas, challenges and the notation used in this thesis.

Chapter 2 addresses the problem of selecting a �nite set of time instants which best

classify multivariate functional data into two prede�ned classes. Using, not only the

information provided by the function itself but also its high-order derivatives will be

crucial to improve the accuracy. To do this, a continuous bilevel optimization problem

is solved. Such problem combines the resolution of the well-known technique SVM

(Support Vector Machine) with the maximization of the correlation between the class

label and the score.

Chapter 3 also focuses on the binary classi�cation problem using SVM. However,

instead of �nding the most important time instants, here we de�ne a functional band-

width in the so-called kernel function. In this way, accuracy may be improved and the

most relevant intervals of the domain of the function, according to their classi�cation

ability, are identi�ed, enhancing the interpretability. A bilevel optimization problem is

formulated and solved by means of an alternating procedure.

Chapter 4 is focused on classifying the so-called hybrid functional data, i.e., data

which are formed by functional and static (constant over time) covariates. The goal is

to select the features, functional or static, which best classify. An anisotropic kernel

which associates a scalar bandwidth to each feature is de�ned. As in previous chapters,

an alternating approach is proposed to solve a bilevel optimization problem.

Chapter 5 generalizes the variable selection problem presented in Chapter 2 to re-

gression. The solution approach combines the SVR (Support Vector Regression) problem

with the minimization of sum of the squared residuals between the actual and predicted

responses. An alternating heuristic is developed to handle such model.

All the methodologies presented along this dissertation are tested in synthetic and

real data sets, showing their applicability.
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Functional Data Analysis (FDA), [Ferraty and Vieu, 2006; Ramsay and Silverman,

2002, 2005], is concerned with the analysis of in�nite-dimensional data, instead of the

usual �nite-dimensional vectors. A common example of functional data in a real-life

application is given by the growth curves. More precisely, Figure 1.1(a) depicts the

93 observations of the Berkeley growth study data set [Tuddenham and Snyder, 1954]

which consists of the height in centimeters of 39 boys (solid blue line) and 54 girls

(dashed red line) recorded along the time interval ranging from 1 to 18 years. Another

popular example is the tecator data set, [Borggaard and Thodberg, 1992], where the

absorbance spectra of a sample of 215 �nely chopped meat have been recorded in the

wavelength range 850− 1050 nanometers (Figure 1.1(b)).
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Figure 1.1: Two examples of functional data in real-life applications

Since the dimension of the functional data is in�nite, FDA can be rightfully situated

within the Big Data revolution area, [Al-Jarrah et al., 2015; Baesens, 2014; Chen et al.,

2014; Chen and Zhang, 2014; Sangalli, 2018; Singh and Reddy, 2014; Torrecilla and

Romo, 2018]. Indeed, several works in the literature link FDA and Big Data, e.g.,

[Chen et al., 2011, 2017; Giraldo et al., 2018; Vieu, 2018]. The proper treatment of such

data is crucial to extract meaningful information and enhance decision making.

Two main challenges in FDA are classi�cation and regression. The works of [Biau

et al., 2005; Cuevas et al., 2007; Preda et al., 2007; Rossi and Villa, 2006, 2008] should

be highlighted in the former case, whereas for references on the latter, the reader is

referred to [Ferraty and Vieu, 2004; Hernández et al., 2007; James et al., 2009; Kneip

et al., 2016]. Section 1.2 is devoted to present the main concepts of these two topics.

The aim of this thesis is to develop new strategies for classi�cation and regression

in Functional Data Analysis. The use of Mathematical Optimization strategies will

de�ne new algorithms which improve the benchmark methodologies, as our numerical

experience shows.



4 Chapter 1. Introduction

1.1 Functional Data Analysis

FDA studies in�nite-dimensional data. [Ramsay and Silverman, 2005] (�rst edition in

1997) coined the term functional data. Thanks to the technological advances witnessed

in recent years, functional data have increasingly arisen in many real-world applications,

e.g., speech recognition, [Rossi and Villa, 2008], spectrometry, [Martín-Barragán et al.,

2014], meteorology, [Besse et al., 2000], client segmentation, [Laukaitis and Ra£kauskas,

2005], temporal gene expression data, [Leng and Müller, 2006], physical, [Muñoz and

González, 2010; Tuddenham and Snyder, 1954], and chemical processes, [Blanquero et

al., 2016a,b].

Regarding the techniques used in FDA, it must be mentioned that, theoretically,

functional data are assumed to be in�nite-dimensional. However, in practice processes

cannot be monitored continuously and instead, measurements on a grid are given. In

other words, data are usually presented as high-dimensional (but �nite-dimensional)

data. Therefore, methodologies managing high-dimensional data can be applied, as

done for instance in [Hastie et al., 1995], where a penalized linear discriminant analysis

method is described to handle problems with many highly correlated predictors, such

as those obtained by discretizing a function. In general, the direct use of standard

multivariate analysis techniques for functional data may have dramatic consequences.

It yields ill-posed problems since the strong relationship between the measurements in

two consecutive time instants is not taken into account, and serious drawbacks, such

as the curse of dimensionality, may appear, see Section 2 of [Vieu, 2018]. The work of

[Horváth and Kokoszka, 2012] includes some examples in the literature, showing that

functional data problems need to be handled with di�erent tools from those used in

multivariate analysis, in order to take advantage of the functional nature of the data. For

instance, [Borggaard and Thodberg, 1992] claims that functional regression yields better

predictions than multivariate linear regression because of the high-dimensionality of the

data. The spectra analyzed in [Kirkpatrick and Heckman, 1989], as well as the growth

curves in [Griswold et al., 2008] are better represented within a functional framework.

The work of [Febrero et al., 2007] analyzes curves of nitrogen oxide pollutants. It is

observed that the critical pollution peaks are situated in the early morning hours as

well as in the evening, which coincides with the time points at which people usually

go to work and come back home. Hence, the shape of the functions plays here a very

important role. If such functional data were studied from a multivariate perspective,

it would be hard to obtain such a suitable interpretation. Finally, with respect to the

dimensionality reduction, benchmark methods such as Principal Component Analysis

(PCA) do not take into account some intrinsic characteristics of the functional data, e.g.,

continuity or smoothness. Multivariate PCA and the functional counterpart (FPCA)

are thus di�erent, [Ramsay and Silverman, 2005].



1.1. Functional Data Analysis 5

Although a full review of all the FDA techniques exceeds the aim of this dissertation,

some references on this topic are highlighted. The monograph [Ramsay and Silverman,

2005] outlines the �rst de�nitions and problems related to functional data. The appli-

cation of such ideas to real-world problems is treated in [Ramsay and Silverman, 2002].

From a non-parametric point of view, the books of [Ferraty and Vieu, 2006] and [Bosq

and Blanke, 2007] address classi�cation and forecasting problems, making emphasis on

both theoretical and practical aspects. The paper of [Cuevas, 2014] provides a partial

survey of the main concepts of the FDA theory from a statistical perspective. Recent

advances can be found on the Special Issue introduced in [Goia and Vieu, 2016]. For fur-

ther information on FDA, the reader is referred to the works of [Horváth and Kokoszka,

2012; Hsing and Eubank, 2015; González-Manteiga and Vieu, 2007; Müller, 2016; Wang

et al., 2016].

Computational aspects of FDA are extensively discussed in the literature; the work

of [Ramsay et al., 2009] presents a comprehensive study of the application of functional

data in R, [Core Team, 2017], and Matlab, [Matlab, 2018] languages. Some of the main

packages used in R are fda, [Ramsay et al., 2018], for classic functional data analysis,

fda.usc, [Febrero-Bande and Oviedo de la Fuente, 2012] for non-parametric functional

data strategies and advanced tools in the standard FDA, and rainbow, [Hyndman and

Shang, 2010], for functional data representation. An extensive list of the available R

packages can be found in [Scheipl, 2018]. The Matlab package PACE, [Yao et al., 2015]

provides several implementations of FDA for Functional Principal Component Analysis

(FPCA), and BFDA, [Yang and Ren, 2017], follows a Bayesian point of view.

Most of the above-mentioned FDA references focus on the univariate case, i.e., each

observation is represented by just one single function. Two examples of univariate func-

tional data are shown in Figure 1.1. Unfortunately, multivariate functional data have

received less attention in the literature. Some applications of multivariate functional

data in PCA and clustering can be found in [Berrendero et al., 2011; Chiou et al., 2014;

Happ and Greven, 2017] and [Jacques and Preda, 2014; Kayano et al., 2010; Tokushige

et al., 2007], respectively. Roughly speaking, a multivariate functional datum can be

de�ned as a �nite-dimensional vector where each component is a function. In other

words, each individual is represented by a �nite set of functions. More speci�cally,

given a sample s of individuals, a functional datum Xi ∈ X = Fp, i ∈ s is formed by a

set of p functional features, i.e.,

Xi(t) = (Xi1(t), . . . , Xip(t)), (1.1)

where Xiv : [0, T ] → R, v = 1, . . . , p are functions taking values on the time interval

[0, T ] and belonging to the functional space F , whose choice will depend on the problem

treated, and will be conveniently detailed along this thesis when needed. As an illus-
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trative example, Figure 1.2 shows a sample of a synthetic 3−variate functional data set
from Section 4.1 of [Wang and Yao, 2015]. The �gure collects three chemical variables

that have been recorded along a batch-type process.
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Figure 1.2: An example of multivariate functional data

The univariate functional data corresponds with the case, p = 1, whereas p > 1

yields multivariate functional data. It may occur that some of the p functions in Xi

take a constant value along the interval [0, T ]. For instance, in handwriting analysis, one

can collect pure functional information, such as the x and y trajectories recorded while

writing characters, or static values (i.e., constant over time), such as the force at which

the characters are written. More information about this data set can be found in the

Character Trajectories Dataset from the UCI Machine Learning repository [Dheeru and

Karra Taniskidou, 2017]. Figure 1.3 depicts samples of curves of the in�nite-dimensional

data and a boxplot of the static variable. Despite its obvious application in many real-

world contexts, this type of data has not been studied deeply in the literature. A few

references are [Febrero-Bande et al., 2017] where the most informative variables in terms

of prediction are selected, and Chapter 10 of [Ramsay and Silverman, 2005]. In these

situations, the p−dimensional vector (1.1) can be divided into two parts, where the �rst
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Figure 1.3: An example of hybrid functional data

p1 components are non-constant functions, and the remaining p2 covariates are static

values, with p = p1+p2 and X = Fp1×Rp2 . Such particular functional data are referred

along this dissertation as hybrid functional data, and can be represented as

Xi(t) = (Xi1(t), . . . , Xi p1(t), Xi p1+1, . . . , Xi p1+p2) (1.2)

1.2 Supervised Classi�cation and Regression

In this section we introduce two of the most challenging problems in Supervised Learn-

ing, namely supervised classi�cation and regression. Section 1.2.1 collects the main

de�nitions and concepts regarding these topics. Section 1.2.2 describes a benchmark

strategy for classi�cation and regression, namely Support Vector Machine (SVM), for

classi�cation and its extension to regression, Support Vector Regression (SVR), respec-

tively. Section 1.2.3 introduces the so-called kernel function used to map the data onto

a higher-dimensional space, yielding better predictions. Finally, Section 1.2.4 outlines
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the methods used in this dissertation to estimate accuracies.

1.2.1 Supervised Learning

Supervised Learning is grounded in statistical learning theory, [Vapnik, 1995, 1998] and

essentially, identi�es properties of learning machines in order to generalize well to the

forthcoming unobserved data. The set of observations used to learn is known as training

sample. A simple example of Supervised Learning can be found in the medical �eld.

Let us assume given an explanatory variable, X, e.g., medical results, and a response

variable, Y , e.g., ill/healthy, or hemoglobin levels in the blood. The goal is to learn the

main properties of the observed patients, in order to predict the response variable Y of

new individuals, just using the information provided by the X variable.

Although some surveys develop Supervised Learning from a general perspective,

[Schölkopf et al., 1999; Schölkopf and Smola, 2001], most of the recent monographs are

particularly devoted to classi�cation and regression problems. More details about the

study of both topics are given in the next paragraphs.

A plethora of examples of supervised classi�cation can be found in real-life appli-

cations, e.g., medicine, [Guyon et al., 2002; Furey et al., 2000], chemistry, [Ivanciuc,

2007] or fraud detection, [Fawcett and Provost, 1997], just to cite a few references. See

also [Carrizosa et al., 2011; Carrizosa and Romero Morales, 2013; García-Borroto et al.,

2014; Kotsiantis et al., 2007; Lemaire et al., 2014; Provost and Fawcett, 2013] for some

surveys and monographs.

Supervised classi�cation aims to �nd a classi�cation rule, which assigns a class

label Y belonging to a �nite set of classes, just using the information provided by the

covariate X in the training sample. In this dissertation, we will restrict ourselves to the

case of binary classi�cation, and thus the response variable Y will belong to the label

set {−1,+1}. The multiclass counterpart can be easily reduced to the binary case, for

instance, by comparing one class versus the rest. In order to get the classi�cation rule,

some classi�ers involve the use of a score function Ŷ (X), and the classi�cation is carried

out then by comparing its value with a threshold.

The simplest classi�ers are obtained when the score functions are linear, i.e., Ŷ (X)

is a linear combination of the variables X. The pioneering work of [Fisher, 1936] has

been generalized by the Linear Discriminant Analysis (LDA), [Friedman et al., 2001b].

The logistic regression [Friedman et al., 2001b] is another popular classi�er which builds

maximum likelihood estimates by solving nonlinear optimization problems. One of the

benchmark techniques in (linear) supervised classi�cation is Support Vector Machine

(SVM) [Carrizosa and Romero Morales, 2013; Cortes and Vapnik, 1995; Cristianini and

Shawe-Taylor, 2000; Vapnik, 1995, 1998], described in detail in Section 1.2.2.

Other supervised methods are quite popular and powerful. Nearest-neighbor is based

on a dissimilarity measure and the classi�cation rule groups together those elements
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which may share the same class label. The basic method is known as the k−nearest
neighbor, [Cover and Hart, 1967; Dasarathy, 1991] and associates to a given X, the label

which is most frequent among the closest k objects. The classi�cation trees, [Breiman

et al., 1984], are tree-based classi�ers based on if-then rules. They are very appealing

because of their easy interpretability. For other benchmark techniques in supervised

classi�cation, such as random forest or neural networks, the reader is referred to [Biau

and Scornet, 2016; Breiman, 2001; Genuer et al., 2017; Gurney, 2014; Schmidhuber,

2015].

Broadly speaking, these classi�cation methods can be applied to both multivariate

data and functional data classi�cation. Some di�erences should be, however, pointed

out. First, the covariance operator is non-invertible when in�nite-dimensional or highly

autocorrelated data appear. For this reason, any technique requiring such inversion,

e.g., LDA, cannot be directly applied in FDA. To overcome this issue di�erent strate-

gies which take into account the functional nature of the data, such as [James and

Hastie, 2001], have been applied. Regardless of the classi�cation rules, some di�erences

occur between the �nite and in�nite-dimensional �eld. Particularly, [Delaigle and Hall,

2012a] shows that the near perfect classi�cation phenomenon holds in the functional set-

ting. Indeed there exist non-trivial FDA problems where no error in the classi�cation is

obtained. This fact cannot happen in the �nite-dimensional �eld, except when degen-

erated problems are treated. A survey of di�erent classi�cation methods in functional

data can be found in [Baíllo et al., 2011].

The idea of the standard multivariate (supervised) regression is to predict, through

a score function Ŷ (X), a real-valued response variable, by making use of the explana-

tory variables in X. The linear regression, i.e., the case in which the score is a linear

combination of the covariates, is one of the most popular strategies in the literature,

enhanced with some approaches, such as Lasso, [Tibshirani, 1996], ridge regression,

[Drapper and Smith, 1998; Miller, 2002], Least Angle Regression, [Efron et al., 2004]

or Elastic Net, [Zou and Hastie, 2005]. Section 1.2.2 is devoted to a deep analysis of a

benchmark nonlinear method, namely, Support Vector Regression (SVR), [Smola and

Schölkopf, 2004].

The use of functional regression is growing more and more since the former mono-

graph (�rst edition in 1997) of [Ramsay and Silverman, 2002]. Some applications can be

found in [Müller and Stadtmüller, 2005], and the reader is referred to [Morris, 2015] for

a recent survey. Under the umbrella of functional regression, one �nds methods involv-

ing either functional predictors, functional responses or both functional predictors and

responses. Along this dissertation, we will just focus on functional predictor regression.

Some references to study the remaining cases are [Fan and Zhang, 2000; Faraway, 1997;

Lin and Ying, 2001; Reiss and Ogden, 2010; Staicu et al., 2010; Yao et al., 2005; Zhou

et al., 2010]. Functional predictor regression involves the regression of a scalar response
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Y by means of a set of functional predictor variables X. The linear version was �rst

introduced by [Ramsay and Dalzell, 1991], and [Ramsay and Silverman, 2005] discussed

the results obtained with this model where di�erent basis functions have been intro-

duced. The interpretability is addressed in some cases through Lasso approaches [Zhu

and Cox, 2009], or just allowing sparsity in the model, [James et al., 2009]. Nonlinear

models have also been studied in the literature. Particularly, [Yao and Müller, 2010]

proposed a quadratic model and a functional generalized additive model for noise-free

functions is considered in [McLean et al., 2012]. [Ferraty and Vieu, 2004, 2006] applied

nonparametric models and [Hernández et al., 2007; Hernández et al., 2009] adapted the

SVR method to the functional context.

1.2.2 Support Vector Machine (SVM) and Support Vector Regression

(SVR)

Support Vector Machine (SVM) and Support Vector Regression are powerful tools for

classi�cation and regression, respectively. The aim of this section is to describe both of

them.

With respect to classi�cation, assume given a sample s of individuals, where each

instance i ∈ s is associated to the pair (Xi, Yi). The datum Xi ∈ X is the predictor

variable, whilst Yi ∈ {−1,+1} denotes the class label. Moreover, the space X could be

either multivariate or functional, depending on the framework considered. When the

instances in the training sample are linearly separable, SVM [Cortes and Vapnik, 1995]

provides an optimal hyperplane 〈w, Xi〉+b, separating both classes, wherew ∈ X , b ∈ R
and 〈·, ·〉 denotes the inner product in the space X . Such hyperplane is obtained by

maximizing the so-called margin, i.e., the distance to the closest positive and negative

training data, [Vapnik, 1995, 1998]. The maximal margin is provided by the element w

with minimum norm such that Yi (〈w, Xi〉+ b) ≥ 1, ∀i ∈ s. The so-called hard-margin

problem is formulated as the following convex quadratic problem with linear constraints: min
w,b

〈w,w〉

s.t. Yi (〈w, Xi〉+ b) ≥ 1, i ∈ s
(1.3)

Since perfect classi�cation of the training sample is quite unusual, some classi�cation

errors are allowed via the arti�cial variables ξi introduced for all i ∈ s. In that case, the

optimal solution of the linear SVM is obtained by solving the following optimization

problem, called soft-margin:
min
w,b,ξ

〈w,w〉+ C
∑
i∈s

ξi

s.t. Yi (〈w, Xi〉+ b) ≥ 1− ξi, i ∈ s,
ξi ≥ 0, i ∈ s

(1.4)
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The parameter C is a regularization parameter to be tuned, that penalizes the existence

of misclassi�ed observations in the training sample [Hastie et al., 2004; Vapnik, 1998].

Larger values of C yield smaller-margin hyperplanes, whilst smaller values of C result

in larger-margin hyperplanes, even if they misclassify more data in the training sample.

The procedures above de�ne a linear classi�cation rule: given w, optimal solution

of (1.3) or (1.4), a score Ŷ (X) given in (1.5) is associated to each data X, and thus X

is classi�ed in class +1 if and only if Ŷ (X) > β, where β is a pre�xed threshold value.

Ŷ (X) = 〈w, X〉 (1.5)

The resolution of Problem (1.4) can be signi�cantly enhanced by solving its dual pro-

blem. Apart from other computational issues, using the dual formulation, we may avoid

in�nite-dimensional optimization, which would be the case of w if X were a functional

space. More speci�cally, building the Lagrangian function and imposing the Karush-

Kuhn-Tucker (KKT) optimality conditions, Problem (1.4) turns out to be equivalent

to the concave quadratic maximization problem with linear constraints in (1.6), easily

solved by standard local search routines or speci�c tools, as in [Ferris and Munson,

2004; Richtárik and Taká£, 2016]:
max
α

∑
i∈s

αi − 1
2

∑
i,j∈s

αiαjYiYj〈Xi, Xj〉

s.t.
∑
i∈s

αiYi = 0

αi ∈ [0, C], i ∈ s

(1.6)

In addition, the primal optimal solution w can be recovered from the dual optimal

solution, α, yielding the expression:

w =
∑
i∈s

αiYiXi (1.7)

and therefore, w is generated from a combination of the objects Xi. Those individuals

i ∈ s such that αi is strictly positive are called support vectors. The support vectors lie

exactly on the lines parallel to the hyperplane which are separated by a �xed distance

de�ned by the margin. For any X, the score Ŷ (X) is obtained as given by Ŷ (X) =

〈w, X〉 =
∑
i∈s

αiYi〈Xi, X〉.

The problem statement detailed in the previous lines for classi�cation can be gen-

eralized to regression. Indeed, for a given set of observations {(Xi, Yi)}i∈s, where Xi

belongs to the multivariate or functional space X and Yi ∈ R, for all i ∈ s. The main

goal is to �nd a rule able to predict the response Y ∈ R from the information of the

data X ∈ X . In its simplest version, SVR [Smola and Schölkopf, 2004] �nds a linear

score function Ŷ : X → R, in such a way that, for X ∈ X , Ŷ (X) di�ers at most ε from
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the obtained response Y ∈ R. The score function Ŷ can be expressed as

Ŷ (X) = 〈w, X〉+ b, (1.8)

where b ∈ R, and w ∈ X are the optimal solution of the hard-margin problem in (1.9):
min
w,b

〈w,w〉

s.t. Yi − 〈w, Xi〉 − b ≤ ε, i ∈ s,
〈w, Xi〉+ b− Yi ≤ ε, i ∈ s

(1.9)

Problem (1.9) implicitly assumes that all the pairs (Xi, Yi) are well predicted with ε

precision. This is not always the case, and some errors may be allowed. As done in

the classi�cation problem, we introduce arti�cial variables ξi, ξ∗i , yielding, for a �xed

regularization parameter C, the soft-margin problem in (1.10):
min

w,b,ξ,ξ∗
〈w,w〉+ C

∑
i∈s

(ξi + ξ∗i )

s.t. Yi − 〈w, Xi〉 − b ≤ ε+ ξi, i ∈ s,
〈w, Xi〉+ b− Yi ≤ ε+ ξ∗i , i ∈ s
ξi, ξ

∗
i ≥ 0

(1.10)

Problem (1.10) is usually more easily solved in its dual formulation. Thanks to the

Lagrangian function and the KKT conditions, Problem (1.10) can be rewritten as a

concave maximization problem with linear contraints:
max
α,α∗

−1
2

∑
i,j∈s

(αi − α∗i )(αj − α∗j )〈Xi, Xj〉 − ε
∑
i∈s

(αi + α∗i ) +
∑
i∈s

Yi(αi − α∗i )

s.t.
∑
i∈s

(αi − α∗i ) = 0

αi, α
∗
i ∈ [0, C], i ∈ s

(1.11)

and therefore the primal variables w can be written as a linear combination of the

training objects, Xi:

w =
∑
i∈s

(αi − α∗i )Xi (1.12)

Along this dissertation, we consider in (1.13) an equivalent SVR dual problem, by

making the change of variables νi = αi/C and ν∗i = α∗i /C, i ∈ s:
max
ν,ν∗

−1
2

∑
i,j∈s

(νi − ν∗i )(νj − ν∗j )C〈Xi, Xj〉 − ε
∑
i∈s

(νi + ν∗i ) +
∑
i∈s

Yi(νi − ν∗i )

s.t.
∑
i∈s

(νi − ν∗i ) = 0

νi, ν
∗
i ∈ [0, 1], i ∈ s

(1.13)
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1.2.3 Kernels De�nition

Section 1.2.2 was devoted to linear SVM and SVR problems. In this section, a nonlinear

extension obtained by means of the so-called kernel trick, is discussed.

Nonlinear Support Vector based problems are obtained by means of a feature map

φ : X → X which embeds the original data X in a higher-dimensional space X , con-
taining an inner-product. The aim of this nonlinear map φ is to translate the original

data Xi to a space in which data are linearly separable, and therefore all the procedures

explained in Section 1.2.2 can be applied. In this way, the inner product 〈Xi, Xj〉 that
appears in the objective functions of the optimization problems (1.6) and (1.13), and also

in their corresponding score functions (1.5) and (1.8), turns out to be 〈φ(Xi), φ(Xj)〉.
The explicit expressions of the higher-dimensional space X and φ are not needed, since

all the calculations are done through the inner product 〈φ(Xi), φ(Xj)〉. Hence, one can
just provide the so-called kernel function K : X×X → R, [Cristianini and Shawe-Taylor,
2000; Hofmann et al., 2008; Schölkopf and Smola, 2001], de�ned by:

K(Xi, Xj) = 〈φ(Xi), φ(Xj)〉 (1.14)

and therefore, the classi�cation problem (1.6) is reformulated as follows:
max
α

∑
i∈s

αi − 1
2

∑
i,j∈s

αiαjYiYjK(Xi, Xj)

s.t.
∑
i∈s

αiYi = 0

αi ∈ [0, C], i ∈ s,

(1.15)

yielding a nonlinear classi�cation rule: given α, optimal solution of (1.15), a score Ŷ (X)

in (1.16) is associated with each functional data X,

Ŷ (X) =
∑
i∈s

αiYiK(X,Xi), X ∈ X , (1.16)

and thus X is classi�ed in class +1 if and only Ŷ (X) > β.

In an analogous manner, the regression problem (1.13) is rewritten in the following

way:
max
ν,ν∗

−1
2

∑
i,j∈s

(νi − ν∗i )(νj − ν∗j )CK(Xi, Xj)− ε
∑
i∈s

(νi + ν∗i ) +
∑
i∈s

Yi(νi − ν∗i )

s.t.
∑
i∈s

(νi − ν∗i ) = 0

νi, ν
∗
i ∈ [0, 1], i ∈ s,

(1.17)
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transforming the score function in (1.8) into:

Ŷ (X) =
∑
i∈s

(αi − α∗i )K(Xi, X) + b, X ∈ X , (1.18)

A function must satisfy some conditions to be a kernel. More precisely, a kernel K is a

positive de�nite function with satis�es the conditions provided by the Mercer's theorem

[Mercer, 1909]. [Smola and Schölkopf, 2004] clari�es that such result just means that a

kernel function can always be written as an inner product in some feature space, and

consequently, some closure properties are derived. They include the integrals of kernels

and the positive linear combinations of kernels, applied for Multiple Kernel Learning

in [Carrizosa et al., 2014] and the references therein. Moreover, the product property

holds, i.e., if K1 and K2 are two kernels, then the function de�ned in (1.19)

K(Xi, Xj) = K1(Xi, Xj)K2(Xi, Xj) (1.19)

is also a kernel.

More closure properties and details of the proof of these results can be found in

[Shawe-Taylor et al., 2004; Smola and Schölkopf, 2004].

A wide variety of kernels, mostly in �nite-dimensional spaces, are proposed in the li-

terature. We can mention for instance the linear kernel, [Carrizosa and Romero Morales,

2013; Cristianini and Shawe-Taylor, 2000; Hofmann et al., 2008], in (1.20),

K(Xi, Xj) = 〈Xi, Xj〉 (1.20)

which will lead the simplest Support Vector problems (1.6) and (1.13).

As stated in [Vapnik, 1995], polynomial functions of type (1.21)

K(Xi, Xj) = (1 + 〈Xi, Xj〉)D (1.21)

are kernels too.

The Gaussian (RBF) kernel, de�ned with a bandwidth parameter ω in (1.22), is

the most popular kernel, mainly due to its excellent empirical behavior, [Carrizosa

et al., 2014; Cristianini and Shawe-Taylor, 2000; Keerthi and Lin, 2003]. Along this

dissertation, we will just focus on the RBF kernel, even though the applications proposed

in this thesis can be easily extended to other kernels.

K(Xi, Xj) = exp(−ω〈Xi −Xj , Xi −Xj〉) (1.22)

So far, the reasonings made through Sections 1.2.2 and 1.2.3 are valid either for �nite

or in�nite-dimensional spaces. By contrast, in the following lines, we restrict ourselves
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to the case in which the data are functional with the aim of clearly de�ne the di�erent

kernels which will be analyzed in the next chapters of the dissertation.

Formally speaking, let Xi, Xj : [0, T ]→ R belonging to the Hilbert functional space

X = F . The simplest way to deduce the functional version of the �nite-dimensional

Gaussian kernel, is just to de�ne the inner product as:

〈Xi, Xj〉 =

∫ T

0
Xi(t)Xj(t)dt, Xi, Xj ∈ F (1.23)

which combined with (1.22), for a given bandwidth ω, yields:

K(Xi, Xj , ω) = exp

(
−ω

∫ T

0
(Xi(t)−Xj(t))

2dt

)
, Xi, Xj ∈ F (1.24)

When data are multivariate, i.e., X = Fp, the product property de�ned in (1.19)

will be used. Particularly, the following Gaussian kernel with a �xed bandwidth

ω = (ω1, . . . , ωp), is produced:

K(Xi, Xj ,ω) = exp

(
−

p∑
v=1

ωv

∫ T

0
(Xiv(t)−Xjv(t))

2dt

)
, Xi, Xj ∈ Fp (1.25)

For hybrid functional data as in (1.2), the last p2 integral terms in (1.25) can be sub-

stituted by ordinary squared sums as follows:

K(Xi, Xj ,ω) = exp

− p1∑
v=1

ωv

∫ T

0
(Xiv(t)−Xjv(t))

2dt−
p2∑

v=p1+1

ωv(Xiv −Xjv)
2

 , Xi, Xj ∈ Fp1×Rp2

(1.26)

Finally, since in practice, functional data are only measured in a �nite grid of points,

let say t = (t1, . . . , tH), the integrals of Equation (1.25) can be approximated by sums,

in which the evaluation of the functional data in the vector t is performed, yielding:

K(Xi, Xj ,ω, t) = exp

(
−

p∑
v=1

H∑
h=1

ωv(Xiv(th)−Xjv(th))2dt

)
, Xi, Xj ∈ Fp (1.27)

The expressions of the kernels given by (1.24), (1.26) and (1.27) will be studied in detail

along this dissertation.

1.2.4 Performance Estimation

If the whole data set is used to train the supervised model, over�tting may appear.

See Chapter 7 of [Friedman et al., 2001b] for more details. The performance measures

may then be overoptimistic. To avoid this issue, the usual methodology is to divide the

whole data set into three independent parts, namely training, validation, and testing.
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Particularly, the training sample is used to build a model for a �xed combination of

parameters, the validation sample is utilized to tune such parameters, and �nally, the

e�ciency of the model is estimated in the testing sample. For instance, when building

a classi�er with the SVM problem (1.6), the optimization problem is run in the same

training sample for di�erent values of C. Then, the parameter C associated to the

largest classi�cation accuracy, measured on the validation sample, is kept. Finally, the

chosen classi�er is used to estimate the accuracy on the testing sample.

Since the results obtained with the above-mentioned tool may highly depend on the

division made, it is useful to apply the so-called k-fold cross-validation method, [Kohavi,

1995]. To be more precise, k-fold cross-validation splits the whole data set into k folds.

Then, the model is trained and validated on k−1 parts, and the remaining one is used to

test the assessment. In this way, a series of k accuracy measures on the testing samples

is given. As a �nal result, the averaged accuracy on the k testing samples is proposed

as an estimate of the goodness of �t.

The number of folds k frequently depends on the cardinality of the databases. If

insu�cient data are available, then the so-called leave-one-out is applied, i.e., k coincides

with the number of observations. Therefore, the model is run each time with all the

individuals except one, which will be used to test the results.

1.3 Feature Selection

The analysis of (high-dimensional) data entails some di�culties associated with the high

computational costs, and the introduction of redundancy and noise from measurement

errors, which are usually associated with lower performance measures. Hence, to avoid

these issues, it is useful to apply feature selection strategies.

Feature selection is a key preprocessing step in data mining due to several reasons.

First, interpretability may be enhanced and monitoring costs may be reduced if just

a few number of features capable of making good predictions is considered instead of

the original and usually large set of features. Second, to select the most important

features makes sense in real-world problems, since as shown in e.g., the gene expression

work [Golub et al., 1999], the relevant information may be summarized in just some

points. Last but not least, the redundant information introduced by the original data

can be surmounted by means of feature selection tools, yielding equivalent or even better

performance values.

A plethora of works have been published on feature selection. [Blum and Langley,

1997] was one of the �rst papers published on this topic. Here feature selection was per-

formed on data sets containing approximately 40 features. The survey of [Guyon and

Elissee�, 2003] goes further and introduces several feature selection approaches with

hundreds or even thousands of variables. The overview [Fan and Lv, 2010] summa-
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rizes the most important methods from a statistical point of view, and [Chandrashekar

and Sahin, 2014] makes a survey, focusing on the di�erences of the well-known �lter,

wrapper, and embedded methods.

In classi�cation and regression for multivariate data, we should emphasize the works

[Benítez-Peña et al., 2018; Bertolazzi et al., 2016; Carrizosa et al., 2011; Maldonado and

Weber, 2009; Maldonado et al., 2011; Rakotomamonjy, 2003] in the former case, and

[Andersen and Bro, 2010; Mehmood et al., 2012; Mitchell and Beauchamp, 1988; Smith

and Kohn, 1996; Yang and Ong, 2011; Zhang, 2009] in the latter.

For functional data, di�erent perspectives have been addressed to deal with the

feature selection problem. Dimensionality reduction, for instance, is based on the pro-

jection of the functional data on lower-dimensional spaces. These include, among others,

FPCA [Górecki and Krzy±ko, 2012; Hall et al., 2001; Li et al., 2013; Lin et al., 2015;

Locantore et al., 1999], Partial Least Squares (PLS) [Aguilera et al., 2016; Delaigle

and Hall, 2012b; Preda et al., 2007; Wang and Huang, 2016], and B-splines functions

[James and Hastie, 2002; Wang et al., 2007]. For other dimensionality reduction tech-

niques in functional data, see [Ferraty and Vieu, 2002; Hsing and Ren, 2009; Li and

Hsing, 2010; Zhang et al., 2013]. It is also very common to use sparsity techniques to

handle situations in which feature selection is involved. [James et al., 2009] seeks the

non-zero ranges of the coe�cient function for a functional linear regression model, by

using a regularized least-squared method. In a non-supervised classi�cation context,

papers such as [Chamroukhi, 2016; Chamroukhi and Nguyen, 2018; Hébrail et al., 2010;

Samé et al., 2011] work with functional data with regime changes, i.e., they assume that

the functions are formed by successive shifting domains, where some of them may be

zero-weighted. A di�erent feature selection methodology in FDA is known as variable

selection. Variable selection aims to �nd a subset of relevant time instants which rep-

resent well the function, and yield acceptable performance values, as well. Regarding

functional regression, some references such as [Kneip et al., 2016; McKeague and Sen,

2010] should be highlighted. In [Kneip et al., 2016] a method is proposed to detect the

most important points of impact among a prede�ned set of time instants in which the

functional data are measured, i.e., it is assumed that the impact points only belong to

the set of timestamps where the functions are monitored, which is not always the case.

Moreover, [Kneip et al., 2016] is a generalization of the model proposed in [McKeague

and Sen, 2010] where the identi�ability and estimation of just one time instant is sought.

The work of [Aneiros and Vieu, 2014] directly applies standard multivariate procedures

to discretized functional data. Thus, the functional nature of the data is disregarded

and not exploited. The optimal selection of the time instants in functional nonparame-

tric regression models has been studied too. For example, on the works of [Aneiros and

Vieu, 2016; Ferraty et al., 2010], the most in�uential design points are sought among

a given (large) set, usually hard to obtain, while the methodologies of [Berrendero et
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al., 2018; Ferraty et al., 2010] based on a greedy approach, in which the time instants

are sequentially located. On functional classi�cation, we should highlight for example,

[Lindquist and McKeague, 2009], where one single time instant is sought, and, as ad-

mitted in the paper, it is not possible to generalize their methodology to search for a

set of more time instants. We also emphasize the recent works of [Berrendero et al.,

2016a,b, 2017; Torrecilla and Suárez, 2016; Torrecilla Noguerales, 2015], where greedy

approaches, yielding local optima, are used. These papers follow a combinatorial ap-

proach: such time instants are assumed to belong to the �nite set of instants at which

actual measurements exist.

Unfortunately, the vast literature mentioned above is restricted on univariate func-

tional data. Feature selection methods on multivariate (hybrid) functional data have

been rarely studied. Indeed we can only make reference to some PCA-based approaches,

e.g., [Berrendero et al., 2011; Jacques and Preda, 2014] where the dimension is reduced.

1.4 Contributions of this Thesis

The goal of this thesis is to solve new Supervised Learning problems in Functional

Data by means of Mathematical Optimization tools. The functional nature of the

data is taking into account in all these models, which successfully improve the current

benchmark prediction results. This section brie�y describes the problems addressed, as

well as the challenges involved regarding the Supervised Learning �eld.

Chapter 2 is based on the work [Blanquero et al., 2017]. We address the problem of

selecting the most informative time instants in binary classi�cation with multivariate

functional data. Selecting a �nite set of time instants may lead to an improvement in the

predictive ability of the estimated model, in addition to reducing the model complexity.

Our proposal is not restricted to multivariate functional data. Indeed, our approach

allows one to classify univariate functional data in the very same way by using high-order

information of the data, e.g., monotonicity or convexity through the derivatives. The

aforementioned optimization problem is a Global Optimization problem in continuous

variables: the time instants are to be selected to maximize the correlation between the

class label and the SVM score used for classi�cation. A nested heuristic is de�ned to

enhance the algorithmic performance in which the suboptimal solution obtained in the

simplest cases is considered as the initial solution in the more di�cult models. The

e�ectiveness of the proposal is shown in univariate and multivariate data sets from the

literature.

Chapter 3 is based on the work [Blanquero et al., 2018a]. A new functional band-

width kernel is proposed to solve the SVM problem for functional data, which improves

the accuracy obtained with the usual scalar bandwidth parameter. Our approach is

able to optimally select di�erent ranges in the domain of the function according to
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their classi�cation ability. Both the kernel and the SVM parameters are tuned with

a surrogate of the accuracy, namely, the correlation between the actual class and the

SVM score. Such parameter tuning yields a continuous optimization problem, allowing

us to use gradient methods, known to be more e�cient than the optimization meth-

ods available for piecewise constant performance measures, such as the misclassi�cation

rate. Moreover, the proposed method is enhanced by de�ning a hierarchy of kernel

bandwidths models of increasing complexity, inspired by the nested model previously

proposed for Multiple Kernel Learning. By using this hierarchy will provide wide �e-

xibility since complex parameterizations of the functional bandwidth can be e�ciently

optimized from more simple ones. Our experiments with benchmark data sets show the

advantages of using functional parameters and the e�ectiveness of our approach.

Chapter 4 is based on the work [Jiménez-Cordero and Maldonado, 2018], where a

feature selection problem for hybrid functional data is treated. Our aim is to select the

most important covariates, either functional or static, in order to achieve good classi-

�cation predictions. In this chapter, an embedded feature selection approach for SVM

classi�cation is proposed, where the isotropic Gaussian kernel is modi�ed by associating

a bandwidth to each feature, which automatically weighs the importance of the di�erent

variables (functional or static). The bandwidths are jointly optimized with the SVM

parameters, yielding an alternating optimization approach. The drastic improvements

in the classi�cation rates, as well as the robustness of our methodology, were tested on

benchmark data sets.

The results provided in Chapter 2 can be extended to regression. In fact, Chapter 5,

based on [Blanquero et al., 2018b], outlines the problem of selecting a small set of time

instants able to capture the information needed to predict a scalar response variable

from multivariate functional data. More precisely, selecting from the full monitoring

interval a few time instants without damaging prediction accuracy would de�nitely lead

to a much better understanding of the data, enhancing quicker predictions and easing

decision making. Replacing the whole interval by a low-dimensional vector of time

instants can be seen as a variable selection procedure from an in�nite set of features.

The regression tool used in this chapter is SVR, and a continuous optimization algorithm

is proposed to �t the parameters and select the time instants as well. We illustrate the

usefulness of our proposal in some benchmark data sets.
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2.1 Introduction

Functional data classi�cation entails some di�culties associated with the high compu-

tational costs, and the introduction of redundancy and noise from measurement errors,

which may deteriorate the correct classi�cation performance. Since functional data

are intrinsically in�nite-dimensional data, it is thus useful to select the time instants

providing the most relevant information of the data, i.e., to perform variable selection.

In this chapter, we address the problem of classifying multivariate functional data

into two pre�xed classes by using the information provided by a training sample. More

precisely, our goal is to select the most informative time instants in order to obtain good

classi�cation rates. Classi�ers will be based on the benchmark supervised classi�cation

tool SVM, detailed in Section 1.2.2.

Variable selection for multivariate functional data has been scarcely analyzed in

the literature yet, as Section 1.3 outlines. Therefore, the main contribution of this

chapter is to provide a new strategy able to �nd the most informative time instants

to achieve good classi�cation rates in multivariate functional data. Contrary to the

usual trend in the literature, [Berrendero et al., 2016a,b, 2017; Torrecilla and Suárez,

2016; Torrecilla Noguerales, 2015], we consider the time as a continuous variable, and

we search for an optimal SVM-classi�er using a surrogate of the rate of misclassi�ed

data, namely the correlation between the SVM score and the actual class. Finding such

optimal time instants amounts to solving a continuous smooth optimization problem.

Moreover, our algorithmic strategy is improved thanks to the de�nition of nested models

of increasing complexity, following the idea in [Carrizosa et al., 2014].

Finally, our framework can accommodate from one to several functions, allowing

one to address in the very same way univariate and multivariate functional data. In

particular, one can easily include in the model higher-order information (monotonicity,

convexity, ...) by replacing each univariate functional datum by a multivariate one, cor-

responding to the functional datum itself and its derivatives. The information provided

by the derivatives has been utilized in the clustering context, [Ieva et al., 2013; Meng

et al., 2018], with outstanding results.

The remainder of this chapter is structured as follows. In Section 2.2 we present the

variable selection problem, including the management of the functional data derivatives.

In addition, the problem formulation, as well as the solving strategy are detailed. Section

2.3 is focused on the numerical experiments, and �nally Section 2.4 presents some

conclusions and extensions.
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2.2 A Global Optimization Approach to the Variable Se-

lection Problem

In this section, the mathematical formulation of the variable selection problem in SVM

classi�cation with functional data is outlined. Section 2.2.1 brie�y presents the variable

selection problem and details how the higher-order information can be included in the

multivariate data structure. Section 2.2.2 is devoted to the problem formulation and

the solving strategy, whereas a nested heuristic is proposed in Section 2.2.3, in which

we take advantage of the fact that the di�erent time instants t = (t1, . . . , tH) can be

easily embedded in a nested structure of models. Section 2.2.4 addresses the problem

of determining the number H of time instants.

2.2.1 Variable Selection with Functional SVM

We assume given a sample s of individuals, where each instance i ∈ s is associated

with the pair (Xi, Yi). The datum Xi ∈ X = Fp is composed by p functional features,

i.e., Xi = (Xi1(t), . . . , Xip(t)), as sketched in (1.1). The functional space F represents

the class of d−times continuously di�erentiable functions on the time interval [0, T ].

Furthermore, Yi ∈ {−1,+1} denotes the class label of the observation i ∈ s. Our aim

is to �nd a classi�cation rule which allows us to infer the class Y of a new functional

observation X ∈ X . To do this, an SVM-classi�er, obtained from the resolution of

Problem (1.15) will be used. Since our objective is to select the �nite set of H time

instants that provide the most relevant information for discriminating between two

groups, the functional kernel given in (1.27) was chosen. Hence, two types of parameters

need to be tuned: the vector of time instants, t = (t1, . . . , tH), such that

0 ≤ t1 ≤ . . . ≤ tH ≤ T (2.1)

and the parameters associated with the SVM problem (1.15), i.e., the regularization

parameter C and the bandwidth ω of the kernel (1.27). Extra constraints over the

parameters can be easily incorporated into the optimization problem, such as imposing

a �xed separation between the time instants. Details about the resulting optimization

problem and the solving strategy are given in Section 2.2.2.

It is worth mentioning that our methodology is not only restricted to pure multi-

variate functional data. Indeed, the approach here proposed can be directly applied to

univariate functional data, X(t) ∈ F . More speci�cally, apart from the straightforward

case in which one just considers p = 1, a preprocessing stage can be carried out in

order to transform the univariate data into multivariate ones by taking advantage of

the higher-order information throughout the usage of the derivatives of X. This process
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yields data of the form:

(X(t), X ′(t), . . . , Xd)(t)), (2.2)

where Xd)(t) denotes the d−th derivative of X(t). Moreover, the information provided

by the derivatives can also be added to the pure multivariate functional case, yielding

(X1(t), . . . , Xp(t), X
′
1(t), . . . , X ′p(t), . . . , X

d)
1 (t), . . . , Xd)

p (t)). (2.3)

The numerical experience in Section 2.3 shows that the higher-order information will

be crucial in the classi�er performance.

We also recall that, in practice, the original functional data Xi may be only available

throughout a grid of time instants. Therefore, interpolation techniques, such as cubic

splines, [De Boor, 1978; Friedman et al., 2001b], should be used as a preprocessing step

so that the functional data can be properly rebuilt. It is important to remark that the

interpolation step recovers the smoothness of the data with respect to t.

Furthermore, if we want to take advantage of the higher-order information of the

data, it is necessary to get, as preprocessing, the derivatives from the data X(t). One

possible choice would be to compute the derivatives of the smoothed data. Nevertheless,

in order to avoid the propagation of numerical errors from the interpolation, we suggest

using the �nite-increments as an approximation of the derivatives. For instance, the

�rst derivative of X(t) in a point th admits the following approximation:

X ′(th) =
X(th)−X(th−1)

th − th−1
(2.4)

Note that in (2.4), th, ∀h, indicate the time instants where the functional data are

discretized. The formula in (2.4) should be reproduced for all the time points of the

discretization, and extended to any derivative's order. After obtaining the discretized

derivatives, they should be smoothed with an interpolation technique, as explained

before.

2.2.2 The Bilevel Optimization Problem

As previously mentioned, two di�erent types of decision variables are involved in the

variable selection problem for classi�cation of functional data with SVM. First, the H

time instants t = (t1, . . . , tH) satisfying (2.1), and second, the parameters C and ω

involved in the SVM problem (1.15), and in the Gaussian kernel (1.27), respectively.

Di�erent strategies are proposed here to �nd the optimal values of C,ω and t. C is

obtained by using a standard grid search, while a bilevel optimization problem is de�ned

to tune the parameters ω and t. In such bilevel problem we propose to maximize the

Pearson correlation coe�cient between the class label Yi of the observation i ∈ s, and
the score Ŷ (Xi(t),ω, α) in (1.16). Other references in the literature, such as [Székely et
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al., 2007; Torrecilla Noguerales, 2015], have previously used similar performance mea-

sures, with excellent results. Despite the fact that, when using the Pearson correlation

coe�cient as a surrogate of accuracy, a linear relationship between the binary label,

Y ∈ {−1,+1}, and the real-valued score, Ŷ ∈ R, is implicitly assumed, such coe�cient

is very fast to compute and even more important, it yields a smooth optimization pro-

blem, in which gradient information can be used to speed up the convergence. This last

issue means a signi�cant advantage over the use of other performance measures, such as

those based on the confusion matrix, which usually lead to mixed-integer optimization

problems hard to solve for realistic data sizes.

In this chapter, the parameters and time instants sought, as well as the performance

estimates of the classi�er, are obtained as follows: the database is split into k folds, as

detailed in Section 1.2.4. Then, k − 1 folds are chosen to be again divided into three

parts, yielding the samples s1, s2 and s3. Finally, the remaining fold constitutes the

fourth independent sample s4. Samples s1 and s2 act as training samples, while s3 and

s4 are the validation and testing samples, respectively. This division process is repeated

one time per fold.

Regarding the role of each sample in the optimization strategy, sample s1 is used to

obtain the SVM dual variables, α, solving Problem (1.15) for �xed ω, t and C. Sample

s2 is employed to compute R((Yi, Ŷ (Xi(t,ω, α)))i∈s2), i.e., the correlation coe�cient

between the class labels and the scores de�ned in (1.16). Sample s3 is used to tune

the regularization parameter C, by evaluating the accuracy for all the values of C in a

grid, and keeping the one with the largest value. Finally, the accuracy obtained with

the optimal parameters is estimated on the independent sample s4.

To sum up, for a �xed C, the resulting bilevel optimization problem is given in (2.5)


max
α,ω, t

R((Yi, Ŷ (Xi(t),ω, α))i∈s2)

s.t. α solves (1.15) in s1,

ωv ≥ 0, v = 1, . . . , p

0 ≤ t1 ≤ . . . ≤ tH ≤ T

(2.5)

Note also that we have emphasized the dependence of the score Ŷ on the time

instants in t, on the bandwidth ω, and on the classi�cation coe�cients α in the notation.

When such values are clear, they will be omitted in the notation for the sake of simplicity.

Problem (2.5) is a nonlinear problem which can be solved with the techniques des-

cribed in e.g., [Colson et al., 2007]. For instance, we may mention branch-and-bound

schemes in which the problem is reformulated under some convexity assumptions using

the KKT conditions. Even with these reductions, the so-obtained problem is di�cult

to solve due to the nonconvexities in the complementary and Lagrangian constraints.

Penalty function methods can also be used to solve bilevel problems, but convergence
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is to stationary points.

Instead of the above-mentioned resolution methods, we propose to address the bilevel

problem (2.5) for each C by a procedure consisting in two alternating steps: the SVM

step, in which for ω and t �xed, we solve Problem (1.15) to obtain the optimal SVM

variables α; and the max-corr step, where for α �xed, one maximizes the Pearson

correlation coe�cient R in (2.6) to obtain the optimal bandwidth ω and the time

instants t. This correlation maximization problem can be expressed as:
max
ω,t

R((Yi, Ŷ (Xi(t),ω))i∈s2)

s.t. ωv ≥ 0, v = 1, . . . , p

0 ≤ t1 ≤ . . . ≤ tH ≤ T

(2.6)

Di�erent strategies are used to solve Problems (1.15) and (2.6). The standard local

search routines, speci�ed in Section 1.2.2, can be applied for the SVM Problem (1.15).

On the other hand, Problem (2.6) is a continuous optimization problem, where classic

local searches are combined with a multi-start approach to avoid getting stuck at local

optima. The initial values of ω and t in the �rst iteration of the alternating approach

are randomly selected in their corresponding domains of de�nition.

The alternating procedure is run until some stopping criteria, such as the number of

evaluations or the maximum time allowed is reached, yielding certain values of ω, t and

α, for a �xed C. The value of C is chosen by applying a grid search, i.e., for each value

of C in a grid, the accuracy obtained with the classi�cation rule obtained after solving

Problem (2.5), is measured in sample s3. The parameter C with the best accuracy will

be kept. Finally, we test our approach by measuring the accuracy in a fourth sample,

s4.

Calculating the gradient of the objective function in (2.6) will reduce the compu-

tational e�ort, since numerical di�erentiation is avoided. Just applying the chain rule

and taking into account (2.7), i.e., the derivative of the kernel function in (1.27) with

respect to the parameters in ω and t, we can easily obtain an explicit expression for

the gradient of the objective function in (2.6):

∂K(Xi, Xj ,ω, t)

∂ωv
= K(Xi, Xj ,ω, t)

− H∑
h=1

(Xiv(th)−Xjv(th))2

 v = 1, . . . , p

∂K(Xi, Xj ,ω, t)

∂th
= −2K(Xi, Xj ,ω, t)

p∑
v=1

(ωv(Xiv(th)−Xjv(th)))×

×
(
∂Xiv(t)

∂t

∣∣∣
t=th
− ∂Xjv(t)

∂t

∣∣∣
t=th

)
, h = 1, . . . ,H (2.7)

The pseudocode of our approach is outlined in Algorithm 1, and an extension of it
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based on a nested heuristic is detailed in Section 2.2.3.

Algorithm 1 Heuristic for variable selection

Input: H
• Randomly split the sample s into s1, s2, s3 and s4.
• Compute the derivatives of the functional data.
• Smooth the data with some interpolation technique.
for C in the grid do

Alternating Procedure
repeat

1. Fixed ω, t, calculate the parameters α of the SVM clasi�er by
solving Problem (1.15) using s1.

2. Fixed α, compute ω, t by solving Problem (2.6) over s2.
until stopping criteria
• Evaluate the accuracy using the sample s3 for the C �xed in the grid.

end for
• The optimal value of C is the one with best accuracy in s3, and the optimal values
of α, ω and t are the parameters associated to the optimal C.
Output: Optimal parameters ω, t, C, α, and the accuracy estimated from s4.

2.2.3 A Nested Heuristic

In this section we enhance the basic heuristic detailed in Algorithm 1. Adopting the idea

of [Carrizosa et al., 2014], we propose to de�ne a series of nested models of increasing

complexity, where the optimal solution of the elementary case is used as a starting

solution in the following more complex model.

The idea is that, in order to �nd the vector th+1 of h+1 time instants, one can use as

starting solution a perturbation of th, the solution obtained when only h time instants

are sought. Therefore, if we want to �nd the H time instants which best discriminate

between two groups, we apply successively the Alternating Procedure of Algorithm 1

for h = 1 to H, but considering the easy-to-tune structure of the simple models as

a simpli�cation of the complex cases, in such a way that the (suboptimal) solution

K(Xi, Xj ,ω
h, th) is used as an initial solution for kernel K(Xi, Xj ,ω

h+1, th+1). More

precisely, in order to build the initial solution for the h+1 time instants in th+1, we �rst

select a random value τ ∈ [0, T ], and then we include it in the appropriate position of

the optimal solution of the level h, thopt, in such a way that th+1 satis�es the conditions

in (2.1), i.e., th+1 := σ(τ, thopt), where σ is the function that sorts in increasing order

the time instants thopt and τ .

One of the advantages of our nested heuristic is that it allows us to obtain a trajec-

tory of the accuracy in terms of the number of time instants chosen. This is a crucial

issue, since, in practice, the numberH of time instants to consider may not be �xed, and

thus a list of classi�ers, with di�erent complexity (H) and accuracy, can be provided.



2.2. A Global Optimization Approach to the Variable Selection Problem 29

Note that the solution of the level h will be used just as a starting point of level h+1,

in order to speed up the algorithm, but still allows the algorithm to yield a solution

that is very di�erent from the level h solution. In this way, our proposal clearly di�ers

from [Torrecilla Noguerales, 2015], where greedy schemes are proposed.

The pseudocode of the nested heuristic is shown in Algorithm 2.

Algorithm 2 Nested heuristic for variable selection

Input: H, nested kernels K(Xi, Xj ,ω
1, t1) ≺ . . . ≺ KH(Xi, Xj ,ω

H , tH).
• Randomly split the sample s into s1, s2, s3 and s4.
• Compute the derivatives of the functional data.
• Smooth the data with some interpolation technique.
for C in the grid do

Initialization:
• h := 1.
• Randomly select an initial solution ω̃1 ∈ [0,+∞)p and t̃1 := t1 ∈ [0, T ].
• Set (ω, t) := (ω̃1, t̃1).
while h ≤ H do

1. Run the Alternating Procedure of Algorithm 1 for
K(Xi, Xj ,ω

h, th), starting from (ω, t) and yielding (ωhopt, t
h
opt) as

solution, using samples s1 and s2.
2. Randomly generate τ ∈ [0, T ].
3. Set ωh+1 := ωhopt, t

h+1 := σ(τ, thopt), (ω, t) := (ωh+1, th+1) and
h := h+ 1.

4. Evaluate the accuracy over the sample s3 with C �xed.
end while

end for
• For h �xed, the optimal value of C is the one with the best accuracy in s3. The
optimal values of α, ω and t are the parameters associated to the optimal C.
Output: Optimal parameters ωhopt, t

h
opt, ∀h, the associated coe�cients C,α, and the

accuracy estimated from s4.

2.2.4 Choice of the Number of Variables, H

The choice of the optimal number of time instants, H, is a critical issue. The larger is

H, the better is the classi�cation accuracy expected to be obtained, although the risk of

over�tting increases. However, the smaller the value of H, the easier the interpretation

of the results obtained.

In this chapter, we propose to follow the common strategy carried out in the litera-

ture, [Berrendero et al., 2016a,b, 2017; Torrecilla and Suárez, 2016; Torrecilla Noguerales,

2015], and choose the value of H by estimating the accuracy on the validation sample

s3 with k−fold cross-validation. The value of H with the largest accuracy will be kept.
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2.3 Numerical Experiments

This section details the computational results of our approach, in which we provide the

accuracy obtained when only some selected time instants, instead of the whole functional

interval [0, T ], are considered. Section 2.3.1 describes the settings of the computational

experience, and in Section 2.3.2 the description of the data sets is given. The results

obtained for the di�erent databases are presented in Section 2.3.3.

2.3.1 Description of the Experiments

Our proposal has been applied to both univariate and multivariate functional data. On

top of comparing the performance of the SVM based on the full time interval against

the SVM classi�er for data measured at just H time instants, we have also analyzed the

improvements in performance obtained when, instead of the functional data alone, up

to d derivatives of the functional data are also included in the input. For this reason,

we have also run Algorithm 2 for three di�erent values of d, namely d = 0, 1, 2, which

correspond respectively to the cases in which just the information of the functional data,

or also its monotonicity, or both monotonicity and convexity, are considered.

In order to obtain stable results, k−fold cross-validation is performed. The number

of folds, k, will be 10 in the databases with more than 100 individuals, or it will

coincide with the number of individuals of the database in the remaining data sets.

The cardinality of each database is shown in Table 2.1. Algorithm 2 is run k times,

one per fold. Each time, the data set is divided into four samples s1 − s4 as explained

in Section 2.2.2. To test our results we provide the average of the accuracy across the

folds, measured on s4. The number of iterations of the multi-start is �ve, the number

of iterations of the Alternating Procedure in Algorithm 1 is ten, and the (maximum)

number of time instants to be selected, i.e., the number of nested kernels, is H = 19.

Finally, the parameter C takes values in the set {2−10, . . . , 210} in logarithmic scale.

Apart from the experiments explained above, we have also tuned the optimal number

of time instants, H by performing cross-validation on sample s3, as explained in Section

2.2.4.

The whole computational experience is executed on a cluster with 2 terabytes of

RAM memory at 6.2 TFlops, running CentOS Linux 7.3, and it is coded in R, [Core

Team, 2017].

2.3.2 Description of the Data Sets

Three univariate (growth, phoneme_large and tecator) and three multivariate (batch,

batch_noise and trigonometric) functional databases have been considered to check the

performance of our approach. Samples of ten individuals of each data set are plotted

in Figure 2.1 (univariate data) and 2.2 (multivariate data). The records in class −1
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are depicted with a solid blue line, whereas the records in class +1 are plotted in red

dashed line.

Table 2.1 shows the number of records of each database, the number of time instants

in which the records are measured, the number of records of each class and the number

of components of the functional data vector. A detailed description of each database

follows.

#records #time instants #records label -1 #records label +1 #components

growth 93 31 54 39 1
phoneme_large 1717 256 1022 695 1

tecator 215 100 77 138 1
batch 100 101 50 50 3

batch_noise 100 101 50 50 3
trigonometric 400 1001 200 200 2

Table 2.1: Data description summary

Growth Data Set

This data set was �rst introduced in [Tuddenham and Snyder, 1954], and has been

studied in several works, e.g., [Cuevas et al., 2007; Muñoz and González, 2010; Tor-

recilla Noguerales, 2015]. It is available in the fda library of R. The data set contains

the height in centimeters of an amount of 93 individuals ranging from the age of 1 to 18

years measured on 31 non-equally spaced time instants. More speci�cally, the heights

of 39 boys and 54 girls are given. The aim is to determine if a new individual is a boy

or a girl, just with the information provided by the height curve.

Phoneme_large Data Set

This database was originally presented in [Hastie et al., 1995] and can be obtained from

[Friedman et al., 2001a]. The original data set contains 4509 functions with the log-

periodograms, monitored at 256 equally spaced points, of individuals pronouncing the

following �ve phonemes: �sh� as in �she�, �dcl� as in �dark�, �iy� as the vowel in �she�, �aa�

as the vowel in �dark�, and �ao� as the �rst vowel in �water�. The �ve-class classi�cation

problem has been adapted to our binary classi�cation framework as done in [Delaigle

and Hall, 2012a; Torrecilla Noguerales, 2015], yielding a total of 1717 observations, 1022

from the phoneme �ao� and 695 from �aa�. Therefore, the goal is to build a classi�cation

rule, which di�erentiates both phonemes. Apart from the papers just cited, this data

set has also been applied in [Berrendero et al., 2016c; Friedman et al., 2001b] among

others.
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Tecator Data Set

This data set deals with the near-infrared absorbance spectra of 215 samples of �nely

chopped pork, recorded at 100 equally spaced points from 850 to 1050 nanometers. It

has associated the values of the fat content, and according to [Ferraty and Vieu, 2006],

the database can be divided into two classes depending if the fat content is smaller or

larger than 20%. Moreover, the curves of tecator are usually smoothed, e.g.: [Ferraty

and Vieu, 2006; Porro et al., 2009; Torrecilla Noguerales, 2015], in order to work with

the second derivatives instead of the raw data. This reduction is also made in this

dissertation. The data can be obtained from the fda.usc library of R, and have been

analyzed in works such as [Martín-Barragán et al., 2014; Rossi and Villa, 2006].

Batch Data Set

This is a synthetic data set. The three covariates of this �rst multivariate data set,

batch, come from Section 4.1 of [Wang and Yao, 2015]. In this data set, each instance is

described by three functions Xv, v = 1, 2, 3 with very di�erent shapes: linear, quadratic

and sinusoidal, respectively. Although Wang and Yao consider that the upper bound for

the time interval in which the functions are measured follows an uniform distribution

on [0.9, 1.1], we assume, for the sake of simplicity, that Xv : [0, 1] → R, v = 1, 2, 3.

Formally:

Xi1(t) = ai · t+ γi(t)

Xi2(t) = ai · t2 + γi(t)

Xi3(t) = bi (4 sin(t) + 0.5 sin(ν0 · t)) (2.8)

for t ∈ [0, 1], where each (ai, bi) follows a bivariate Gaussian distribution with mean

vector (2.5, 2.5) and covariance matrix diag(2.5, 2.5).

For each t ∈ [0, 1], the measurements errors γi(t) are i.i.d. Gaussian noise with mean

0 and standard deviation 0.2. The individuals Xi with label Yi = +1 have ν0 = 10,

whereas those with Yi = −1 are associated with ν0 = 11.

Batch_noise Data Set

This multivariate synthetic data set comes from Section 4.2 of [Wang and Yao, 2015]

and the three covariates have the same structure as in (2.8). In this case, the coe�-

cients (ai, bi) still follows a bivariate Gaussian distribution with mean vector (2.5, 2.5)

and covariance matrix diag(2.5, 2.5). Nevertheless, the parameter ν0 = 10 for all the

individuals, and the standard deviation of the Gaussian noise γi(t) is equal to 0.2 in the

individuals with label Yi = +1, and equal to 0.3 in the observations with Yi = −1.
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Figure 2.1: Sample of functional data in the univariate data sets analyzed

Trigonometric Data Set

The trigonometric database is a synthetic data set formed by two functional features.

Functional components Xiv : [1, 21] −→ R, v = 1, 2 are based on the data generated in
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Section 5.2.2 of [Jacques and Preda, 2014] and have the form:

Xi1(t) = −21

2
+ t+ ν0U1 cos

(
ν0

t

10

)
+ ν0U1 sin

(
ν0 +

t

10

)
+ γi(t)

Xi2(t) = −21

2
+ t+ ν0U1 sin

(
ν0

t

10

)
+ ν0U2 cos

(
ν0 +

t

10

)
+ ν0U3

((
t

10

)2

+
t

10
+ 1

)
+ γi(t)

(2.9)

where t ∈ [1, 21], U1, U2, U3 ∼ N (1, 1) are independent Gaussian variables and γi(t)

is a white noise of unit variance. The value of ν0 is dependent on the class label.

More speci�cally, the individuals with label Yi = 1 have ν0 = 1, while the observations

corresponding to Yi = −1 have ν0 = 2.

Note that the trigonometric data set is used in [Jacques and Preda, 2014] for clus-

tering purposes with three and �ve groups. Nevertheless, in this chapter, since binary

classi�cation is studied, we only consider two groups.

2.3.3 Results

In this section, we detail the computational results obtained on the univariate and mul-

tivariate functional data described in Section 2.3.2. Moreover, we present the numerical

experience for the optimal choice of the number of time instants to be considered, H.

Results on Univariate Functional Data

Table 2.2 reports the average accuracy on the testing sample of the data sets growth,

phoneme_large and tecator provided by Algorithm 2 with the information given by the

raw data (d = 0), the �rst derivative (d = 1), and the �rst two derivatives (d = 2).

Leave-one-out is performed on the growth data set, whereas 10−fold cross-validation is

done in phoneme_large and tecator. Our results are compared with acc max and acc

min, respectively the best and worst accuracy results obtained with the state-of-the-art

methods, as reported in Tables 2 and 3 of [Berrendero et al., 2016c].

Information shown in Table 2.2 is also depicted in Figure 2.3. Particularly, the

solid red-circled, blue-triangled and green-crossed lines indicates the average accuracy

obtained with d = 0, 1, 2, respectively. The horizontal black solid line and pink dashed

lines give the values of acc max and acc min, respectively.

Two main conclusions are obtained from our analysis. First, our results are compet-

itive against the state-of-the-art. Moreover, the use of higher-order information deeply

a�ects the classi�cation performance. This fact is extremely noticeable in the tecator

data set. Furthermore, in such database we are very close to the value acc max with

just H = 2 time instants and d = 2. If we focus on the growth data set, we realize that

with H = 3, 5, 10, 13, 14, and d = 2 we achieve the same accuracy as the value acc max.
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Figure 2.2: Sample of functional data in the multivariate data sets analyzed
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Figure 2.2: Sample of functional data in the multivariate data sets analyzed (cont.)

This also happens with H = 6 or H = 10, and d = 1. Furthermore, our methodology

is capable of improving the value acc max if H = 6 or H = 11 time instants and d = 2

derivatives are considered.

Results on Multivariate Functional Data

In this section we collect the results obtained in the multivariate databases batch,

batch_noise and trigonometric. Since, there is no standard methodology in the lite-

rature which handles the variable selection problem in classi�cation with multivari-

ate functional data, in this section, we compare our results with the standard SVM-

classi�cation in which the whole time domain and just the information of the functional

data are considered, i.e., d = 0. More speci�cally, we run the SVM problem (1.15) for

the C values in {2−10, . . . , 210}, and ωv ∈ {2−5, . . . , 25}, for v = 1, . . . , p, to keep then

the best accuracy as reference value. Both standard SVM and Algorithm 2 have been

run using 10−fold cross-validation in all the data sets.

Table 2.3 and Figure 2.4 give the accuracy values of our method for d = 0, 1, 2,

plotted in solid red-circled, blue-triangled and green-crossed lines, respectively. Further-

more, the classi�cation accuracy with all the time instants is depicted using a horizontal

solid black line.

As in the analysis of univariate functional data, using derivatives turns out to be
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Figure 2.3: Average accuracy in the univariate data sets analyzed

crucial to enhance classi�cation rates. Moreover, classifying using the information of

the whole time interval yields worse accuracy than using only carefully selected time

instants. This can be seen, for instance, in the batch_noise data set, where for H = 7

and d = 0, accuracy is improved in around two points, or even better with H = 8, and

d = 2, where the di�erence is about ten points. Particularly, when d = 2 derivatives are

considered, the accuracy values here obtained are always much better than when the

whole time domain is taken into account. Focusing on the trigonometric data set, the

accuracy values are better when more than H = 2 time points are chosen than when
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the whole time interval is considered.
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Figure 2.4: Average accuracy in the multivariate data sets analyzed

Results on the optimal choice of the time instants, H

In order to obtain the best number of time instants, H, we performed cross-validation

on the validation sample s3, as detailed in Section 2.2.4. Table 2.4 shows the average

optimal number of time instants over all the folds in the univariate and multivariate

databases when H is varied. Moreover, in Figures 2.5 and 2.6 the resulting boxplots
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are depicted. In the x−axis, the maximum number of time instants considered when

running our heuristic is given, whereas the y−axis indicates the optimal number of time

instants obtained across the di�erent runs. Boxplots in red, blue and green show the

results when the information of the derivative d = 0, d = 1 or d = 2 is used, respectively.

We can observe that, although the experiments are run until H = 19, the optimal

number of time instants to be selected is lower in almost all databases. Indeed, most of

the data sets need between 1 and 8 time instants. It implies that data information is

summarized on a small �nite set of time points, which may improve the interpretability

of the results.

2.4 Conclusions and Extensions

We have proposed in this chapter a new approach to optimally select the most infor-

mative time instants in multivariate functional data classi�cation. Furthermore, our

methodology, by its nature, allows the easy usage of high-order information, e.g., mono-

tonicity, or convexity by means of the derivatives. The numerical experience reported

has shown that the information provided by the derivatives has valuable consequences in

the classi�cation performance, yielding competitive results when are compared against

the state-of-the-art in the literature. We have worked under the assumption that time

is a continuous parameter, and continuous optimization tools are then used to achieve

an optimal choice of the parameters.

The nested structure of the problem is exploited to enhance running times by using

the optimal solutions obtained in simpler models as starting solutions in more complex

models.

In our analysis, for the sake of simplicity, we have considered the Pearson cor-

relation coe�cient as the performance measure to be optimized. Nevertheless, other

measurements such as the Mutual Information Criterion [Cover and Thomas, 2006;

Gómez-Verdejo et al., 2009], the Fisher-Correlation Criteria, [Ding and Peng, 2005], the

distance covariance [Berrendero et al., 2016b; Székely et al., 2007; Torrecilla Noguerales,

2015], or the distance correlation in [Torrecilla Noguerales, 2015] can be used.

We have restricted ourselves to the pure multivariate functional data case. The pro-

blem of time instants selection in multivariate hybrid functional data [Jiménez-Cordero

and Maldonado, 2018] is also worth being analyzed. Here, we have just employed the

information provided by the �rst and second derivatives. Thanks to kernel de�nition, it

is very easy to extend our proposal, in order to include the derivatives of higher order.
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Figure 2.5: Boxplots of the optimal number of time instants in the univariate data sets
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Figure 2.6: Boxplots of the optimal number of time instants in the multivariate data
sets
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3.1. Introduction 47

3.1 Introduction

In this chapter, we address, as in Chapter 2, binary classi�cation using SVM for func-

tional data. While Chapter 2 was focused on �nding the most relevant time instants,

here we address the problem of using a functional bandwidth parameter. In this way,

accuracy may be improved and relevant time intervals are identi�ed.

To the best of our knowledge, no strategy has been presented in the literature in

which di�erent ranges in the domain of the functions are optimally selected by means

of a functional weight in the kernel used in an SVM algorithm. Therefore, the main

contribution of this chapter is to de�ne a new functional kernel, that optimally identi�es

time subintervals. Similar ideas have been used in references such as [Bugeau and Pérez,

2007; Chen et al., 2000; Duong et al., 2008; Sain, 2002] for kernel density estimation

purposes, and in [Cai et al., 2000; Wu et al., 1998] for functional regression.

Instead of using a performance measure based on the confusion matrix, as usual,

both the kernel and the SVM parameters are sought by optimizing a surrogate of the

classi�cation rate or the margin, namely, the correlation between the actual obser-

vation label and the SVM score. See [Berrendero et al., 2016c; Székely et al., 2007;

Torrecilla Noguerales, 2015] for more details on surrogate measures for the accuracy.

Tuning such parameters leads to solve an optimization problem, where continuous op-

timization techniques are applied.

The remainder of the chapter is structured as follows. In Section 3.2 we present

the SVM classi�cation model for functional data and motivate the use of a functional

bandwidth kernel. Section 3.3 describes the optimization method used to tune the

bandwidth parameters. Section 3.4 is devoted to present the numerical experiments,

showing that our approach outperforms benchmark methods in the literature. Finally,

some conclusions and extensions are described in Section 3.5.

3.2 Functional Bandwidth

We follow the notation of the preceding chapters. We have a sample s of observations;

each observation i ∈ s has associated a pair (Xi, Yi), where each Xi : [0, T ] → R
belongs to the set X = F of Riemann integrable functions in the time interval [0, T ],

and Yi ∈ {−1,+1} denotes the class label for the observation i, i ∈ s. The goal is to

build an SVM classi�cation rule which allows us to infer the class Y of a new functional

observation X ∈ X .
The usual choice for the kernel function in the functional SVM setup is the Gaussian

kernel in (1.24), as done, for instance, in [Kadri et al., 2010; Wang and Yao, 2015].

Nevertheless, in these papers, the associated bandwidth is considered to be a scalar

value. In our proposal we extend the �xed scalar bandwidth parameter ω in an RBF
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kernel to a functional bandwidth, ω(t), that varies along the range of the functional

data:

K(Xi, Xj) = exp

(
−
∫ T

0
(Xi(t)−Xj(t))

2ω(t)dt

)
(3.1)

Throughout this chapter, we assume that ω in (3.1) is a non-negative Riemann integrable

function in [0, T ], and thus K is well-de�ned.

Considering ω(t) as a constant function yields the traditional kernel. However, we

consider such bandwidth as a function which adapts to the structure and shape of the

data and may lead to better insight and classi�cation rates. More speci�cally, making

ω dependent on t allows us to identify those subintervals in [0, T ] which are critical for

classi�cation, namely, those for which ω(t) takes highest values.

Example 3.2.1. As an illustration, let us study the regions data set e.g., [Martín-

Barragán et al., 2014], in which the daily temperature has been measured along a year

in 35 Canadian weather stations. Two groups can be distinguished: Atlantic climate

(label -1), with 15 records, versus the rest of climates (label +1), with 20 records. Figure

3.1 depicts the 15 curves in the interval [1, 365] corresponding to the Atlantic climate,

in solid blue line, and the 20 curves corresponding to the rest of climates, in dashed red

line, with the data measured every single day. Using SVM with a constant ω(t) as in

(3.2)

ω(t) = ω, ∀t ∈ [0, T ] with T = 365, (3.2)

leads to a classi�er with the out-of-sample confusion matrix shown in Table 3.1.

Now, let us consider the very same RBF model with a functional bandwidth ω(t) of

the form

ω(t) =

{
ω1, if 0 ≤ t ≤ τ1

ω2, if τ1 < t ≤ 365,
(3.3)

where ω1, ω2, τ1 are parameters to be tuned using the techniques described in this chapter.

In other words, with the bandwidth in (3.3) we split into two pieces the interval [0, T ] into

two pieces, giving di�erent weights to each time interval. The SVM classi�er obtained

this way leads to the out-of-sample confusion matrix in Table 3.2. Comparing Tables

Label -1 Label 1

Label -1 51.42% 5.71%
Label 1 11.42% 31.42%

Table 3.1: Confusion matrix with ω
as in (3.2)

Label -1 Label 1

Label -1 54.28% 2.85%
Label 1 8.57% 34.28%

Table 3.2: Confusion matrix with ω
as in (3.3)

3.1 and 3.2 we can see that the traditional SVM yields an accuracy of 82.84%. On the
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Figure 3.1: regions data set

other hand, our SVM with the very same RBF kernel but using a functional parameter

of the form (3.3) yields an accuracy of 88.56% instead.

Regarding the interpretability of the results, Figures 3.2 and 3.3 show the boxplots

of the values of the bandwidth ω as in (3.2), and the values of ω1, ω2 and τ1, as in

(3.3). The single-bandwidth approach gives the same importance to all the months of

the year with the majority of the bandwidth values between 50 and 150. In contrast, our

functional bandwidth methodology with two di�erent pieces proposed to divide the whole

year into two parts, before and after summer (months of June and July), see Figure

3.3. Moreover, according to the values of ω1 and ω2, in order to get good classi�cation

predictions, we should focus on the second half-year and give more importance to the

second part, i.e., the autumn and �rst months of winter, which coincide to the time

instants when the temperature begins to decrease.

The previous illustrative example demonstrates that even a simple functional band-

width such as (3.3) may yield important improvements in accuracy. Such improvement

is a consequence of the adequate choice of the parameters τ1, ω1 and ω2 allowing us
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Figure 3.2: (a) and (b) show the bandwidth values for the regions data set when ω has
the form of (3.2) and (3.3), respectively
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Figure 3.3: Time instant results for the regions data set with ω as in (3.3)

to know which are the most suitable intervals for classi�cation. Using a functional

bandwidth parameter ω(t) gives more �exibility. For instance, it may be chosen in the

class of piecewise constant non-negative functions in [0, T ] with H pieces, i.e., one can
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naturally assume that ω(t) has the form (3.4)

ω(t) =


ω1, if 0 ≤ t ≤ τ1
ω2, if τ1 < t ≤ τ2
· · ·
ωh, if τh−1 < t ≤ τh
· · ·
ωH , if τH−1 < t ≤ T

(3.4)

where ω1, . . . , ωH ≥ 0 and 0 ≤ τ1 ≤ . . . ≤ τH−1 ≤ T are parameters to be tuned.

Instead of piecewise constant functions, one could consider ω(t) belonging to the class

of polynomials of degree H which are non-negative in [0, T ], the class of piecewise

polynomial functions non-negative in [0, T ], or the non-negative splines, [De Boor, 1978;

Friedman et al., 2001b].

The use of functional parameters in the kernel may lead to signi�cant improvements

in the accuracy, as demonstrated in our numerical experiments. The price to pay for

obtaining such gains in the accuracy is the fact that tuning the functional parameters

requires the use of using more sophisticated optimization procedures. In Section 3.3 we

detail how the underlying optimization problem for tuning ω(t) is solved.

3.3 Optimal Selection of the Functional Bandwidth

Parameter tuning in the classi�cation of functional data with SVM implies the optimal

choice of two very di�erent elements: the scalar regularization parameter C in (1.15),

and the kernel K in (3.1) through ω(t). The problem of �nding the best function ω(t)

in (3.1) is not tractable as a rule in its full generality. Hence, we restrict our attention

to certain classes of functions parameterized by a vector θ belonging to a certain set Θ,

i.e., ω is expressed as ω(t, θ), and the choice of the function ω is equivalent to choosing

the parameters θ.

Example 3.3.1. For the bandwidth given in (3.4), one would have that

θ = (ω1, . . . , ωH , τ1, . . . , τH−1), and Θ = {(ω1, . . . , ωH , τ1, . . . , τH−1) :

ωh ≥ 0, ∀h, τh ∈ [0, T ], h = 1, . . . ,H − 1, τ1 ≤ . . . ≤ τH−1}. For convenience, we

consider τ0 = 0 and τH = T .

In this chapter, parameter tuning is done following the approach proposed in Chapter

2. First, the data set is divided into k folds. Second, k − 1 folds are again split into

three samples named s1, s2, and s3, while the remaining fold is denoted by s4. Samples

s1 and s2 play the role of training samples, whereas s3 and s4 formed the validation

and testing sets, respectively.

The �rst independent sample s1 is employed for the resolution of Problem (1.15),

that is the classic SVM formulation, to obtain a classi�cation rule by means of α,

for �xed parameters θ and C. The second independent sample s2 is used to measure
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the quality of parameters θ, i.e., it is used to calculate R((Yi, Ŷ (Xi, θ, α))i∈s2), the

correlation between the class labels and the scores. To �nd the regularization parameter

C, we measure the accuracy in the sample s3 for all the di�erent possible values of C

in the grid, and we keep the C providing the largest accuracy. Finally, the accuracy is

measured in the independent sample s4 is reported.

After all these considerations, for �xed C, we formulate bilevel optimization problem,

that can be expressed as: 
max
θ,α

R((Yi, Ŷ (Xi, θ, α))i∈s2)

s.t. α solves (1.15) in s1

θ ∈ Θ

(3.5)

We next propose an alternating approach for which only a few iterations will be carried

out. Firstly, in the �rst step of our alternating approach, for �xed parameters θ and

C, a classi�cation rule is obtained solving Problem (1.15), that is, the classic SVM.

Problem (1.15) is a concave quadratic maximization problem, which can be solved by

standard local search optimizers, as speci�ed in Section 1.2.2. Secondly, in the second

step, for �xed α and C, θ is chosen by solving:

max
θ∈Θ

R((Yi, Ŷ (Xi, θ))i∈s2) (3.6)

Problem (3.6) is a continuous optimization problem which is solved by using standard

local search techniques with multi-start. The alternating procedure will alternate these

two steps until some stopping criterion is met. Suitable values for θ and α will be

obtained by this procedure for a speci�c value of the regularization parameter C.

The value of C will be chosen by a grid search, as commonly done in standard SVM.

This means that, for every value of C in a given grid, we measure the accuracy in s3

of the classi�cation rule obtained with the best θ and α found as solutions of Problem

(3.6). The C with the largest accuracy in s3 will be chosen. Finally, we estimate the

correct classi�cation rate using the fourth independent sample, s4.

The pseudocode of the heuristic that have just been presented is outlined in Algo-

rithm 3.

As in Chapter 2, the above-explained methodology is embedded in a nested heuristic.

More precisely, given a family of kernel functions, we construct a series of nested kernel

models with their associated parameters, or equivalently, a series of H nested functional

bandwidths ω(1)(t, θ(1)) ≺ . . . ≺ ω(H)(t, θ(H)). By ω(h)(t, θ(h)) ≺ ω(h+1)(t, θ(h+1)) we

denote that the bandwidth ω(h)(t, θ(h)) has parameters which are part of the parameters

of the bandwidth ω(h+1)(t, θ(h+1)). When solving Problem (3.5) for ω(H)(t, θ(H)) we

will use a sequential approach where the (suboptimal) solution obtained when using

ω(h)(t, θ(h)), will be used as an initial solution of Problem (3.5) with ω(h+1)(t, θ(h+1)).
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Algorithm 3 Heuristic for parameter tuning

Input: H
• Randomly split the sample s into s1, s2, s3 and s4.
for C in the grid do

Alternating Procedure
repeat

1. Fixed θ, compute the parameters α of the SVM classi�er by solving
Problem (1.15) in s1.

2. Fixed α, calculate θ by solving Problem (3.6) in s2.
until stopping criteria
• Evaluate the accuracy in the sample s3 with C �xed.

end for
• The optimal value of C is the one with the best accuracy in s3. The optimal values
of α and θ are the ones associated with the optimal parameter C.
Output: optimal parameters C and θ, optimal classi�cation coe�cients α, and the
corresponding accuracy estimated from s4.

Example 3.3.2. Consider in (3.4) the family of piecewise constant functions with 3

pieces. We have that ω(1)(t, θ(1)) = ω1, with θ(1) = ω1, ω(2)(t, θ(2)) = ω1I[0,τ1] +ω2I(τ1,T ],

with θ(2) = (ω1, ω2, τ1), and �nally ω(3)(t, θ(3)) = ω1I[0,τ1] + ω2I(τ1,τ2] + ω3I(τ2,T ], with

θ(3) = (ω1, ω2, ω3, τ1, τ2). Here I[r,r′] denotes the indicator function, i.e., the function

which is equal to 1 in the interval [r, r′] and 0 otherwise.

Once we have obtained the (suboptimal) solution of ω(h)(t, θ(h)) by

θopt(h) = (ωopt1 , . . . , ωopth , τ opt1 , . . . , τ opth−1), then, we randomly select an interval [τ`−1, τ`) and

split it into two pieces by its midpoint, assigning the same bandwidth value to such two

new pieces. In other words, the initial point of the parameters in the level h + 1 turns

out to be

θ(h+1) =

(
ωopt1 , . . . , ωopt`−1, ω

opt
` , ωopt` , ωopt`+1, . . . , ω

opt
h , τ opt1 , . . . , τ opt`−1,

τopt` +τopt`−1

2 , τ opt` , . . . , τ opth

)
.

The pseudocode of the nested algorithm is shown in Algorithm 4.

3.4 Numerical Experiments

This section details the experiments performed (Section 3.4.1) and the main characte-

ristics of the databases here considered (Section 3.4.2). Finally, Section 3.4.3 presents

the computational results obtained.

3.4.1 Description of the Experiments

In this section, a detailed description of the experiments carried out to test our metho-

dology is made. To obtain stable estimates, k−fold cross-validation has been used to

evaluate the performance of the algorithm on di�erent data sets, as detailed in Section



54 Chapter 3. Bandwidth Selection in SVM with Functional Data

Algorithm 4 Nested heuristic for parameter tuning
Input: H, nested functional bandwidths ω(1)(t, θ(1)) ≺ . . . ≺ ω(H)(t, θ(H)).
• Randomly split the sample s into s1, s2, s3 and s4.
for C in the grid do

Initialization:
• h := 1.
• Randomly select an initial solution θ(h) ∈ Θ(h).
• Set θ := θ(h)

while h ≤ H do
1. Using samples s1 and s2, run the Alternating Procedure of Algorithm 3

for ω(t, θ(h)), starting from θ and yielding

θopt(h) =
(
ωopt1 , . . . , ωopth , τ opt1 , . . . , τ opth−1

)
as solution.

2. Randomly select ` ∈ {1, 2, . . . , h}.
3. Set
θ :=

(
ωopt1 , . . . , ωopt`−1, ω

opt
` , ωopt` , ωopt`+1, . . . , ω

opt
h , τopt1 , . . . , τopt`−1,

τopt
` +τopt

`−1

2 , τopt` , . . . , τopth−1

)
and h := h+ 1.

4. Evaluate the accuracy in the sample s3 with C �xed.
end while

end for
• For h �xed, the optimal value of C is the one with the best accuracy in s3. The
optimal values of α and θ(h) are the ones associated to the optimal parameter C.
Output: optimal parameters C, θopt(h), ∀h, the associated classi�cation coe�cients α,
and the accuracy estimated from s4.

1.2.4. As in the previous chapter, the number k of folds varies depending on the size

of the database. For small databases, k is equal to the number of observations, i.e.,

we performed leave-one-out, whilst for large databases, we take k = 10. A database is

considered small here if and only if it has less than 100 observations. See Table 3.3 for

details.

Algorithm 4 is run k times, one per fold, as done in Chapter 2. Each time, the

division into four independent samples s1, s2, s3, and s4 is done as explained in Section

3.3. The number of runs of the multi-start local search optimization method is set

to �ve. The algorithm is run until the maximum number of iterations reaches ten,

or when the di�erence between the objective values in two consecutive iterations is

less than 10−5. The functional bandwidth ω(t, θ) is the piecewise constant function in

(3.4) with H = 8. The regularization parameter C varies in the set {2−10, . . . , 210}.
The parameters θ(h) are in the set Θ(h) = {(ω1, . . . , ωh, τ1, . . . , τh−1) : ω` ≥ 2−4, ` =

1, . . . , h, 0 ≤ τ1 ≤ . . . ≤ τh−1 ≤ T}, ∀h = 1, . . . , 8.

For comparison purposes, apart from the standard SVM, i.e., our approach with

H = 1, we have run three supervised classi�cation methods for functional data, available

at the fda.usc library of R, [Febrero-Bande and Oviedo de la Fuente, 2012], namely

classif.depth, classif.kernel, classif.knn with the default parameters. In order to obtain
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a fair comparison, the accuracy obtained is estimated on the very same testing sample

s4 used in our approach.

The algorithm presented in this chapter was coded in R and was executed on a

cluster with 2Tb of RAM memory at 6.2 TFlops, running CentOS Linux 7.3.

3.4.2 Description of the Data Sets

Our methodology has been tested in 12 benchmark data sets, widely used in the func-

tional data classi�cation literature, namely, ECG, growth, gun, MCO, phoneme,

phoneme_large, rain, regions, synthetic_magnitude, tecator, wine, and yoga. A sum-

mary of all the data sets here used can be seen in Table 3.3. Since the data sets growth,

phoneme_large, and tecator have been previously described in Section 2.3.2, we will

give only a complete description of the remaining ones. Moreover, a sample of ten in-

dividuals of growth, phoneme_large, and tecator is shown in Figure 2.1, whereas the

remaining sets are plotted in Figure 3.4. The solid blue and dashed red lines represent

the observations with class -1 and +1, respectively.

ECG Data Set

The ECG data set can be found in [Bagnall et al., 2016; Chen et al., 2015]. It contains

96 measurements of cardiac electrical activity (electrocardiogram). A label of normal or

abnormal has been associated to each individual. Particularly, this database is formed

by 133 observations identi�ed as normal (class + 1) and 67 abnormal observations (class

-1). This data set has also been used in [Olszewski, 2001; Xing et al., 2009]. The goal

is to detect if the cardiac activity of a new patient is normal or not.

Gun Data Set

Gun data set comes from [Bagnall et al., 2016; Chen et al., 2015]. It reproduces the

hand gestures of 200 actors measured on 96 time points, reproducing two di�erent

gun movements, namely draw and point. Each class is formed by 100 individuals.

An example of a paper where it has been used is [Xing et al., 2009]. Our goal is to

distinguish between the two motions.

MCO Data Set

The original experiment of the MCO database comes from [Ruiz-Meana et al., 2003],

and can be extracted from the R library, fda.usc. In this experiment, the mitochondrial

calcium overload (MCO) of two groups, namely control and treatment, of isolated mouse

cardiac cells have been measured every ten seconds ranging from second 0 to 3, 590. The

aim is to know if a new cardiac cell comes from a control or treatment mouse, based on



56 Chapter 3. Bandwidth Selection in SVM with Functional Data

the MCO levels.This data set has been used in [Baíllo et al., 2011; Cuevas et al., 2006]

and Online companion of [Carrizosa et al., 2014].

Phoneme Data Set

As the phoneme_large data set from Section 2.3.2, the phoneme database was �rst

used in [Hastie et al., 1995]. Here, in the phoneme data set, we use 200 functions, 100

of each class, corresponding to the phonemes �aa� and �ao� as appear in the R library

fda.usc, measured in 150 time points. The objective is to discriminate between the

two phonemes. Some references where this data set has been studied are [Ferraty and

Vieu, 2006; Muñoz and González, 2010; Rossi and Villa, 2006; Torrecilla Noguerales,

2015].

Rain Data Set

The rain data set can be found e.g., in [Martín-Barragán et al., 2014] and contains the

daily temperature measured along a year in 35 Canadian weather stations. Two classes

are distinguished, namely rainy and dry stations, depending if the yearly total amount

of precipitations are below or above 600. The aim is to know if a Canadian station is

dry or not.

Regions Data Set

The regions data set can also be found in e.g., [Martín-Barragán et al., 2014] and

has been already brie�y explained in Example 3.2.1. The objective is to discriminate

between the Atlantic and the rest of climates.

Synthetic_magnitude Data Set

The synthetic_magnitude data set has been simulated from the information detailed

in the Model 3 of [López-Pintado and Romo, 2009]. Particularly, the data have been

recorded on 100 equally-spaced points on the interval [0, 1]. The individuals belonging

to the class +1 have the form:

Xi(t) = 4t+ γi(t), (3.7)

where γi(t) is a stochastic Gaussian process with zero mean and covariance function

c(s, t) = exp (−|t− s|). On the other hand, the observations with label −1 are de�ned

as follows:

Xi(t) =

{
4t+ aibiν, if t ≥ Ti
4t, if t < Ti

(3.8)
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where ai follows a Bernoulli distribution with probability 0.1, bi is a random variable

independent of ai taking values +1 and −1 with probability 1/2, ν is equal to 25, and Ti
follows a uniform distribution on [0, 1]. The goal is to distinguish between both classes,

−1 and +1.

Wine Data Set

The wine data set can be found in [Bagnall et al., 2016; Chen et al., 2015]. It contains

111 spectrograph curves measured in 234 time points. The goal is to classify between

two di�erent types of grapes.

Yoga Data Set

The yoga database can be found in [Wei, 2006], and has been applied in papers such

as [Wei and Keogh, 2006]. In this data set, the transitions between several yoga poses

have been captured in 150 men and 156 women. The images have been converted into

functional data, yielding curves measured in 426 time points. The goal is to know if the

yoga pose is performed by a man or a woman.

3.4.3 Results

We provide the boxplots of the accuracy measured on s4 from H = 1 to H = 8 for the

di�erent folds in the k−fold accuracy estimation procedure.

Boxplots are not very informative for small data sets, for which leave-one-out is

performed. Indeed, for each fold either one obtains an accuracy of 0% or 100%, since

either the testing observation is wrongly or correctly classi�ed. For this reason, only

the boxplots of the largest data sets, i.e., ECG, gun, phoneme, phoneme_large, syn-

hetic_magnitude, tecator, wine and yoga, are depicted in Figure 3.6. Moreover, the

exact values of the average accuracy in all the data sets, as well as the corresponding

values for the three fda.usc library methods considered in Section 3.4.1, are also pre-

sented in Table 3.4 for the sake of comparison. The �rst four columns correspond to the

four methods we are comparing with, denoted as depth, kernel, knn and classic SVM.

Finally, last column of Table 3.4 gives the best number of pieces chosen.

In general, our method for h = 2, . . . , 8 is better than the four comparative aproaches

in the data sets growth,MCO, phoneme, phoneme_large, and regions. This improvement

may be produced by the shape of the curves. The di�erent class labels seem to be easy

to identify depending on the time subinterval, and therefore our strategy makes easier

such separation. Observe for instance, the growth data set, in which the two classes have

a di�erent pattern around the time instant 15. Moreover, it is seen in Table 3.4 that

the improvement in the accuracy strongly depends on the data set considered. Indeed,

no improvement is seen for the databases gun, rain, and tecator when comparing our
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methodology with H = 1 and H ≥ 2. However, for some of the values H ≥ 2 the

accuracy obtained in gun is better than that provided by depth. The results of our

approach in the database rain are always better than the ones provided of the three

fda.usc methods. In contrast, such three methods should be applied if the tecator data

set is studied. In the databases ECG, growth, phoneme_large and yoga there is a minor

improvement (about a 0.5 points) when comparing the classic SVM with our approach

for H ≥ 2. Such improvement also holds in the ECG data set when comparing with

the depth method. The accuracy value obtained in phoneme_large with our approach

when H = 4 pieces are chosen is better than all the three fda.usc methods. Analogous

conclusions are obtained in the yoga data set. A considerably larger accuracy is obtained

in databases MCO, phoneme, regions, synthetic_magnitude, and wine when solving the

problem with H ≥ 2 than when solving with H = 1, i.e., the classic SVM. In some

cases such improvement yields around a ten percentage points of di�erence in accuracy.

Such a large accuracy also occurs when comparing our approach with the three fda.usc

methods in the databasesMCO, regions and wine. The improvement is not so evident in

the phoneme data set. In the data set synthetic_magnitude, our results are comparable

to those provided by depth and knn, but much better than the ones in kernel.

Apart from the improvements in the accuracy, our approach enables us to identify

subintervals of special interest. This fact would be impossible if the standard scalar

bandwidth, which treats equally all time instants, were considered. We highlight, for

instance, the case of the wine data set, whose curves are almost identical except around

the time instants at which peaks occur. Figure 3.5 shows the boxplots of the values of

ω1, ω2, ω3, τ1 and τ2 obtained when a functional bandwidth with H = 3 pieces is sought.

We observe that the time instants which distinguish one piece from another are around

50 and 125, which coincides with the points of some of the peaks. Furthermore, the

associated weight is greater in the third part, where the biggest peak is located.

Regarding the trajectory of the accuracy versus the number of pieces, we observe

that there is not a clear pattern. For instance, in the MCO data set, we have worse

results with H = 2 pieces than with the classic SVM (H = 1). However, a di�erence of

six points is obtained when comparing H = 6 with H = 1.

In contrast, in the regions data set, the accuracies with H ≥ 2 are signi�cantly

better than with H = 1, reaching the maximum value with H = 6. Similar conclusions

can be drawn in the remaining data sets.

This fact shows that a good choice of the value of H is necessary. Since the value of

the parameter H depends on the division of the data set, we show in the last column

of Table 3.4 the average value of the best H parameter estimated on sample s3.
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#records #points measurements #records label -1 #records label +1

ECG 200 96 67 133
growth 93 31 54 39
gun 200 96 100 100
MCO 89 360 44 45

phoneme 200 150 100 100
phoneme_large 1717 256 1022 695

rain 35 365 15 20
regions 35 365 20 15

synthetic_magnitude 150 100 75 75
tecator 215 100 77 138
wine 111 234 54 57
yoga 306 426 150 156

Table 3.3: Data description summary

3.5 Conclusions and Extensions

In this chapter, we have shown how SVM for functional data can be improved if a

functional bandwidth, to be tuned via a nested heuristic, is used. By using very simple

functional parameters, together with our tuning procedure, we obtained better accuracy

in the test sets than with the traditional scalar parameter model. The methodology here

proposed is able to identify the critical points in which a change in the behavior of the

functions is produced, yielding the most relevant intervals in terms of the classi�cation

rate.

The di�culties associated to the tuning of more complex structures are mitigated by

the use of a heuristic that exploits the nested structure of the functional parameter, by

using the (suboptimal) solution of one level as an initial solution for the next level. Our

tuning procedure takes advantage of the functional nature of the data by expressing the

tuning problem as a bilevel optimization problem in continuous variables. In contrast to

the usual approach, where the misclassi�cation rate is minimized, here the correlation

between labels and scores are optimized, allowing us to use gradient-based local search

algorithms.

In our approach, the number of pieces of the functional bandwidth, H, is �xed from

the beginning, and the trajectory of the classi�cation rates for the di�erent number of

pieces is shown. However, since the results depend on H, we also choose the value of

H yielding the best accuracy, estimated on the validation sample.

The analysis performed here, using piecewise constant functions as bandwidths, can

be easily extended to other expressions such as polynomials, or piecewise polynomials,

including splines [De Boor, 1978; Friedman et al., 2001b]. Apart from the Pearson

correlation coe�cient, di�erent types of association measures can be applied, [Székely

et al., 2007; Torrecilla Noguerales, 2015].
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The functional data here considered are univariate functions. The case of multi-

variate (hybrid) functional data, [Jiménez-Cordero and Maldonado, 2018] can also be

addressed with our proposal, after the convenient modi�cation of the kernel function.

The standard hinge loss function has been used in the SVM formulation of this

chapter. Our approach might also be adapted to other loss functions, such as the

so-called ramp loss, [Brooks, 2011], by replacing (1.15) with the corresponding SVM

problem. The same happens if the SVM in (1.15) is replaced by other related methods

such as the least-squares SVM, e.g., [Cruz-Cano et al., 2010].

Our approach is limited here to classi�cation problems. If instead, functional regres-

sion is pursued, [Sood et al., 2009], our methodology can be adapted to this context,

replacing SVM by Support Vector Regression (SVR).
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4.1 Introduction

In this chapter, we are interested in classifying hybrid functional data, i.e., data with

functional and static (constant over time) covariates, into two prede�ned classes, using

SVM. Feature selection plays a very important role in data mining. Hence, it is crucial

to design a methodology that selects the most important features yielding good classi-

�cation performance. Some references of feature selection and particularly, on feature

selection in univariate functional data are given in Section 1.3. Nevertheless, regard-

ing feature selection in multivariate functional data and, more speci�cally, in hybrid

functional data, the literature is very scarce.

In this chapter, we demonstrate that hybrid data sets cannot be learned properly

with the current methodologies for SVM classi�cation. We propose a modi�cation of the

standard SVM classi�cation to handle functional hybrid data sets, and as a byproduct,

to select the most informative features. The di�erent components of the data, functional

or static, are weighted by di�erent scaling factors of a modi�ed Gaussian kernel. The

idea of considering di�erent weights for di�erent types of features is not new. Indeed,

it has been applied in [Bugeau and Pérez, 2007; Chen et al., 2000; Duong et al., 2008;

Sain, 2002] for kernel density estimation purposes and in [Maldonado et al., 2015] for

clustering problems, among others.

The remainder of this chapter is structured as follows: in Section 4.2 we formally

introduce the concepts used in our methodology and detail our approach. Section

4.3 is devoted to the computational experience, including a sensitivity analysis of the

parameters involved in the model. Finally, some conclusions and possible future lines

of research are described in Section 4.4.

4.2 The Mathematical Model

This section details the problem formulation of feature selection in SVM classi�cation

with hybrid functional data, as well as the solving strategy.

Following the notation of previous chapters, let s be a sample of individuals with an

associated pair (Xi, Yi) for each individual i ∈ s. A hybrid functional datum Xi ∈ X ,
with X = Fp1 × Rp2 , is de�ned as a vector of p1 functional features and p2 static

features, as in Equation (1.2), for a Hilbert space F . Moreover, Yi ∈ {−1,+1} denotes
the class label of the observation i ∈ s.

In this chapter we design a model which obtains, via SVM, good classi�cation rates

in order to determine the class Y of a new observation X ∈ X , and at the same time it

yields the most informative set of features V ⊂ {1, . . . , p1 + p2}.
To do this, we use the kernel function given in (1.26) in which a scalar bandwidth is

associated to each feature, instead of the usual isotropic Gaussian kernel with a unique



70 Chapter 4. SVM-Classi�cation of Hybrid Functional Data

bandwidth. Whereas the bandwidth in the isotropic kernel is just one single value,

common to all the variables, the kernel in (1.26) has a bandwidth for each feature. This

allows more �exibility in our model, weighting each covariate di�erently according to

its contribution in the classi�cation model.

The feature selection problem implies the tuning of two parameters: the regulariza-

tion parameter C of the SVM problem (1.15), and the bandwidths ωv, v = 1, . . . , p1 +p2

associated with each feature of X ∈ X through the kernel (1.26).

In agreement with the methodologies of Chapters 2 and 3, we propose to combine

a grid search to get the optimal value of C with a bilevel optimization to optimize the

bandwidth ω. When k−fold cross-validation is performed, k−1 folds constitute samples

s1 and s2 (both training sets) and sample s3 (validation set), whilst the remaining fold,

denoted as s4, is the testing set. Sample s1 is utilized to solve the SVM problem (1.15),

for �xed C and ω, yielding the variables α. The independent sample s2 is used to mea-

sure the goodness of �t via the Pearson correlation coe�cient R((Yi, Ŷ (Xi,ω, α))i∈s2)

for α and C �xed. Sample s3 is employed to �nd the regularization parameter C, by

computing the accuracy on s3 for the values of C in the grid, and keeping the one with

the largest value. Finally, the output accuracy is estimated on sample s4.

Therefore, for a �xed C, the bilevel optimization problem is stated as follows:
max
ω,α

R((Yi, Ŷ (Xi,ω, α))i∈s2)

s.t. α solves (1.15) in s1

ωv ≥ 0, v = 1, . . . , p1 + p2,

(4.1)

In order to solve Problem (4.1), we propose using an alternating approach, consisting of

just few iterations of two steps. First, the optimal variables α are obtained by solving

Problem (1.15) for �xed ω in sample s1. Second, the optimal values of the parameter

ω are sought, for �xed α, once Problem (4.2) is solved in sample s2.{
max
ω

R((Yi, Ŷ (Xi,ω))i∈s2)

s.t. ωv ≥ 0, v = 1, . . . , p1 + p2,
(4.2)

Problems (1.15) and (4.2) have di�erent nature and, consequently, they should be solved

with di�erent strategies. Problem (1.15) is a quadratic maximization problem with

linear constraints in which the strategies of Section 1.2.2 can be applied to easily attain

the global optimum. In contrast, Problem (4.2) is a continuous optimization problem

whose optimal solution is obtained by embedding classic local searches in a multi-start.

The alternating procedure is run, for a �xed C, until some stopping criterion is

ful�lled. Since, apart from obtaining good classi�cation rates, our goal is to select

the most informative features, once the alternating approach is �nished, we eliminate

those covariates v whose associated bandwidths ωv are close enough to zero and repeat
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the alternating algorithm with the remaining features. In other words, we keep those

features satisfying ωv > δ, where δ > 0 is a threshold value. This process is repeated

until the selected features do not change in two consecutive iterations of the procedure

that has just been described.

Once the alternating approach has provided good values for α, ω, and therefore, the

set V of selected features, the value of C is chosen by computing the accuracy on s3 for

all C values in the grid, and the one that leads to the largest accuracy is kept.

Finally, the e�ectiveness of our methodology is tested on an independent sample s4,

in which the classi�cation accuracy is computed.

The pseudocode of our approach is given in Algorithm 5.

Algorithm 5 Heuristic for parameter tuning and feature selection

• Randomly split the sample s into s1, s2, s3 and s4.
for C in the grid do

Initialization: V = {1, . . . , p1 + p2}
repeat

Alternating Procedure
repeat

1. For ω �xed, obtain the variables α of the SVM classi�er by solving
Problem (1.15) in s1.

2. For a �xed α, calculate ω by solving Problem (4.2) in s2.
until stopping criteria
• Delete the features, v, such that ωv ≤ δ, i.e., V = {v : ωv > δ}

until no new features are deleted
• Evaluate the accuracy in the sample s3 with C �xed.

end for
• Keep the value of C with the maximum accuracy in s3, and the associated values
of α, ω, and the set V.
Output: optimal parameters C and ω, optimal classi�cation coe�cients α, the se-
lected features in V, and the corresponding accuracy estimated from s4.

4.3 Numerical Experiments

This section is devoted to the computational experience on the algorithm proposed in

this chapter for classi�cation and feature selection of hybrid functional data. Section

4.3.1 is devoted to the description of the experiments performed. In Section 4.3.2,

the di�erent databases are described. Section 4.3.3 presents several algorithms used to

compare our proposed methodology. Finally, Section 4.3.4 outlines the details of the

sensitivity analysis, and Section 4.3.5 gives the results of our proposal.
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4.3.1 Description of the Experiments

This section explains the details of the computational experiments carried out to show

the e�ciency of our approach. Algorithm 5 has been run on the databases described

in Section 4.3.2. Each data set is split into four parts, s1 − s4, as explained in Section

4.2. Since the features of the hybrid functional data may have di�erent scales, we have

normalized them before applying our approach, as explained in e.g., [Wang and Yao,

2015].

When selecting the most informative covariates, we remove those features with

ωv ≤ 10−5, i.e., δ = 10−5. The stopping criterion is ful�lled when the number of itera-

tions is equal to �ve. The parameter C ranges in the set {2−7, . . . , 27} on a logarithmic

scale.

In order to have stable results, Algorithm 5 was run �ve times, and the boxplot of

the accuracy computed on s4 is reported. To compare our methodology with others, we

consider the approaches detailed in Section 4.3.3.

Furthermore, we executed a sensitivity analysis of the parameters involved in the

algorithm. The details of this analysis are shown in Section 4.3.4.

All the experiments were coded in R, [Core Team, 2017], and carried out in a cluster

with 2 terabytes of RAM memory at 6.2 TFlops, running CentOS Linux 7.3.

4.3.2 Description of the Data Sets

Two simulated examples, namely batch and trigonometric, and two real databases, de-

noted here as pen and retail, were considered. A summarized description of the data

sets, including the number of individuals in the sample, the number of elements of each

class, and the number of static and functional covariates, is given in Table 4.1.

#individuals #functional #static #records #records
covariates covariates label -1 label +1

batch 1000 3 2 500 500
trigonometric 1000 2 2 500 500
pen 296 2 1 171 125
retail 3602 5 1 1776 1826

Table 4.1: Data description summary

The functional covariates of batch and trigonometric data sets have already been

explained in Section 2.3.2, more speci�cally on Equations (2.8) and (2.9), respectively.

Therefore, in this section we will only provide the details of their static covariates. By

contrast, a complete description of the databases pen and retail is given. Figures 4.1-4.4

show respectively a subset of ten functions of the four data sets. The functional features
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are depicted in a standard x−y plot, where the solid blue lines and the dashed red lines

indicate respectively the individuals with class −1 and +1. On the other hand, for the

sake of visualization, static covariates are shown in boxplots (or barplots in the case of

categorical features), with the individuals with classes −1 and +1 colored in blue and

red respectively.
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Figure 4.1: Sample of batch data set

Batch data set

The three functional covariates of the �rst data set, batch, are given in Equation (2.8).

Note that the class label Yi just depends on the value ν0 in the de�nition of X3. There-

fore, the third covariate is the only relevant feature for classi�cation, if just the functional

components of the hybrid functional data is taken into account.

To complete the data set, we added two real variables, X4 and X5, in agreement

with (4.3) and (4.4) for all i = 1, . . . , 1000:

Xi4 ∼


N (µ = 39, σ2 = 1), if Yi = +1

N (µ = 40, σ2 = 1), if Yi = −1

(4.3)
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Figure 4.2: Sample of trigonometric data set

Xi5 ∼


N (µ = 2, σ2 = 1), if Yi = +1

N (µ = 3, σ2 = 1), if Yi = −1

(4.4)

where N (µ, σ2) indicates a normal distribution of mean µ and variance σ2.

Trigonometric data set

The trigonometric database consists two functional features and two scalar covariates.

Functional components are shown in Equation (2.9).

The remaining static variables X3 and X4 have been created according to (4.5) and

(4.6)

Xi3 ∼


N (µ = 0, σ2 = 225), if Yi = +1

N (µ = 20, σ2 = 400), if Yi = −1

(4.5)

Xi4 ∼ N (µ = 0, σ2 = 1), ∀i (4.6)
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Figure 4.3: Sample of pen data set

Pen data set

The pen data set comes from the Character Trajectories Dataset of the UCI Machine

Learning repository [Dheeru and Karra Taniskidou, 2017] and have been used in papers

such as [Hubert et al., 2015, 2017]. It contains the x and y trajectories, and the force

applied to write multiple characters.

The aim here is to discriminate between two selected characters, m and z. The two

functional features here considered are the x and y trajectories, while the pen tip force

is the static covariate.

Retail data set

The data set retail is extracted from the Online Retail Data Set of the UCI Machine

Learning Repository [Dheeru and Karra Taniskidou, 2017], and has been studied in

e.g., [Chen et al., 2012]. It contains the monthly transactions of the customers of a

UK-registered non-store, online retail during the �rst 10 months out of the 13 months

available. The aim is to predict whether customer will buy products in the last three

months. Customers that only purchased items in the last three months were removed

from the data set since no purchase history is available for constructing covariates,
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Figure 4.4: Sample of retail data set

yielding an amount of 3,602 individuals instead of the original number of 3,630. The

�rst functional feature is the amount of money spent by the customers. The second

functional variable denotes the quantity of products bought. The last three functional

covariates are the variables Recency, Frequency, and Monetary, described in [Chen et

al., 2012]. Finally, the scalar variable is a binary feature which indicates whether the

customers come from the UK, or not.

4.3.3 Comparative Algorithms

Since, to the best of our knowledge, no methodology has been reported in the literature

of classi�cation to deal with feature selection in hybrid functional data, we suggest some

techniques with which to compare our proposal, described in what follows.

Functional SVM (FSVM)

The �rst alternative method corresponds to the SVM algorithm for functional data. In

this case, the di�erent types of features, i.e., functional or static, are not taken into

account, and no variable selection is made.

A grid search is performed to obtain the scalar parameters C and ω based on the
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following set of values: {2−7, . . . , 27} on a logarithmic scale. The SVM problem (1.15)

is solved with an isotropic Gaussian kernel in (4.7):

K(Xi, Xj , ω) = exp

−ω
 p1∑
v=1

∫ T

0
(Xiv(t)−Xjv(t))

2 dt+

p2∑
v=p1+1

(Xiv −Xjv)
2


(4.7)

for Xi, Xj ∈ X . The scalar parameters C and ω yielding the best accuracy in the

validation sample are kept. Finally, the accuracy for the selected parameters C and ω

is computed as a measure of performance.

Static SVM (SSVM)

The second alternative corresponds to the SVM problem when the functions of the

hybrid functional data are summarized in scalar values.

We solved the SVM problem (1.15) on the training set, for each of the values of C

and ω belonging to the set {2−7, . . . , 27} in logarithmic scale. The best values of C and

ω are chosen by measuring the accuracy on the validation sample, and then, the �nal

results are estimated with the optimal values for C and ω on the testing sample.

In this case, the kernel function used in Problem (1.15) is the isotropic kernel in

(1.22) for multivariate data, K(Zi, Zj), in which a transformation of Xi, namely Zi,

is used. Two di�erent transformations Zi are here suggested. In the �rst one, each

functional component Xiv(t), v = 1, . . . , p1 is summarized in a 4−dimensional vector

which includes the mean value, the standard deviation, the minimum and the maximum

values. Moreover, we add the values of the static covariates Xiv, v = p1 +1, . . . , p1 +p2.

Such transformation Zi is given in (4.8):

Zi =
(
mean(Xi1(t)), sd(Xi1(t)), min(Xi1(t)), max(Xi1(t)), . . . ,

mean(Xip(t)), sd(Xip(t)), min(Xip(t)), max(Xip(t)),

Xi p1+1, . . . , Xi p1+p2

)
(4.8)

The second transformation proposed consists of substituting each functional covariate

by its value at the H discretization points, t1, . . . , tH , where it has been recorded. We

also add the values of the static covariates. In other words, the transformation Zi turns

out to be as in (4.9):

Zi =
(
Xi1(t1), . . . , Xi1(tH), . . . , Xip1(t1), . . . , Xip1(tH), Xi p1+1, . . . , Xi p1+p2

)
(4.9)

LiblineaR

The last comparative algorithm comes from the R library LiblineaR. Such library com-

bines di�erent types of loss functions and regularization schemes, yielding eight versions
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for the classi�cation problem, including the well-known Lasso-SVM approach. Here, we

have compared our proposal with the eight possibilities by previously transforming the

hybrid functional data into �nite-dimensional vectors as in (4.9).

As in the previous algorithms, the scalar parameter C is sought in the set {2−7, . . . , 27}
in logarithmic scale, and the value yielding the best accuracy on the validation sample

is saved. Finally, the accuracy for the best value of C is given as result.

In all the above-explained algorithms the data set is divided into three parts, namely,

training, validation, and testing. For the sake of comparison with our proposed ap-

proach, the division is made in such a way that the testing sample coincides exactly

with the so-called sample s4 described in Section 4.2. Furthermore, all the comparative

algorithms were run �ve times for each data set, as stated in Section 4.3.1. The accuracy

over all the runs, measured on the testing sample, is used as a performance metric and

is depicted in boxplots.

4.3.4 Sensitivity Analysis

In order to study the robustness of our proposed algorithm with respect to the param-

eters involved, a sensitivity analysis has been performed. We tested how sensitive our

methodology is to the regularization parameter C, the threshold at which the features

are removed δ, the maximum number of iterations of the alternating approach, and the

bandwidths ωv, v = 1, . . . , p1 + p2.

First, we ran �ve times the alternating approach of Algorithm 5 to test the sensitivity

of the algorithm with respect to the parameter C, computing the average accuracy over

the k folds, measured on s3.

Second, the sensitivity analysis for the elimination threshold δ is performed by run-

ning Algorithm 5 �ve times for the values given in the set {10−10, . . . , 10−5} in loga-

rithmic scale. The average accuracy is estimated on s3.

Third, Algorithm 5 was run �ve times with the maximum number of iterations in the

set {5, . . . , 10}. The average accuracy measured on the sample s3 was then computed.

Finally, we studied the convergence of the bandwidths. Note that, in this case,

convergence does not mean that the bandwidths tend to the same value in all the runs,

but that they are greater or smaller than δ, and thus they yield the same features in

most of the cases. For each of the �ve times that Algorithm 5 was run, the optimal

values of the bandwidths were obtained. The goal is to assess the importance of the

variables visually.

In all the sensitivity analyses carried out, the remaining parameters not considered

in the study took the values given in Section 4.3.1. For instance, when the sensitivity

with respect to C was analyzed, the elimination threshold was equal to 10−5, and the

maximum number of iterations of the alternating approach was set to �ve.
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Figure 4.5: Results of the sensitivity analysis for the batch data set

4.3.5 Results

Algorithm 5 and all the comparative methods of Section 4.3.3 have been run �ve times.

Boxplots of the accuracy on the testing sample are given to test the e�ciency of our

proposal. Particularly, in the boxplots, our approach is denoted by alt, and the FSVM

strategy of Section 4.3.3 is marked as f, the SSVMmethod for the �nite-dimensional data

in (4.8) and (4.9) are denoted by st and disc, respectively, �nally, the accuracy results

of the eight classi�cation methodologies of LiblineaR in Section 4.3.3 are indicated by

r0, r1, . . . , r7, since the parameter in the R function that states which out of the eight

methods is used, goes from 0 to 7.

Plots of the results of sensitivity analysis explained in Section 4.3.4, are also depicted
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Figure 4.6: Convergence of the bandwidths for the batch data set
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Figure 4.7: Results of the sensitivity analysis for the trigonometric data set

in Figures 4.5 - 4.12.

More details about the classi�cation performance on the tested data sets are given

in the following lines.

Batch data set

Figure 4.13 shows the boxplots of the accuracy when comparing our proposal and the

remaining methods. It is quite apparent that the proposed methodology yields better

accuracy and we are able to identify the most informative features as a byproduct. In

fact, the third variable was selected to be important by our algorithm in all the �ve

runs. Remember that this feature is the only functional covariate which is correlated

with the target variable. In the third run, for instance, we obtain the following optimal
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Figure 4.8: Convergence of the bandwidths for the trigonometric data set
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Figure 4.9: Results of the sensitivity analysis for the pen data set

bandwidth: ω = (0, 0, 165.9076, 0.0703, 0), i.e., the third and the fourth variables are

identi�ed as relevant. Notice that our methodology is not in�uenced by the static or

functional nature of the covariates. In fact, in this example, one variable of each type

is selected. Regarding the sensitivity analysis of the parameters, we observe that the

value of C should be carefully chosen since, as can be seen in Figure 4.5(a), the resulting

accuracy depends on the value of C. By contrast, our proposal is robust with respect

to the elimination threshold δ and the number of iterations of the alternating approach,

as shown by the stable behavior in Figures 4.5(b) and 4.5(c), respectively.

Finally, in Figure 4.6 we can see how the optimal values of the bandwidths evolve

in the �ve runs. We observe that, independently of the initial bandwidths selected, the

bandwidth associated with the third variable tends toward a value greater than zero.
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Figure 4.10: Convergence of the bandwidths for the pen data set
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Figure 4.11: Results of the sensitivity analysis for the retail data set

Trigonometric data set

Figure 4.14 shows that our proposal improves the performance of the comparative al-

gorithms.

With respect to the feature selection output, features one and three are selected

in the �ve runs, and variable two in three out of �ve. Indeed, the fourth run gives

ω = (0.3758, 0.1281, 0.0929, 0) as optimal solution.

Focusing on the sensitivity analysis with respect to δ and the number of iterations,

stability in the results is obtained. Nevertheless, the value of C has an important role

in the accuracy values, as seen in Figure 4.7.

The evolution of the values of the bandwidths in all the �ve runs is depicted in
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Figure 4.12: Convergence of the bandwidths for the retail data set
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Figure 4.13: Accuracy of batch data set in all the algorithms performed

Figure 4.8.

Pen data set

We conclude from Figure 4.15 that our methodology is comparable with the remaining

strategies. Moreover, we select just one variable out of three in two of the �ve runs.

The evolution of the bandwidths values can be seen in Figure 4.10.

In this example, the value of C is critical, as can be observed in Figure 4.9(a), since

the di�erence between the best and the worst case is around 40 points. However, our

method is robust with respect to δ and the number of iterations, as shown in Figures

4.9(b) and 4.9(c).

Retail data set

Figure 4.16 presents the accuracy boxplots of all the algorithms tested. We observe that

our proposal yields comparable results with the remaining methodologies. Moreover,
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Figure 4.14: Accuracy of trigonometric data set in all the algorithms performed

the selected variables are the third and sixth in four of �ve runs. As an illustration, the

optimal bandwidth in one of these runs is ω = (0, 0, 1.5887, 0, 0, 45.5919). Feature 3 and

Feature 6 correspond to Recency (number of months since the last purchase) computed

for each of the 10 months, and UK Customer (a binary variable that indicates whether

the customer comes from the UK). Since our objective is to predict whether a customer

will buy products or not in the last three months, it seems that it is important to know

the elapsed number of months since the last purchase. In addition, we observe that the

customer origin plays an important role; customers in the UK tend to buy less than

foreign customers.

Similar conclusions to the ones shown in the rest of the examples can be stated with

respect to the sensitivity analysis.

In this example, it is even more clear that the choice of the parameter C is a crucial

issue for obtaining good accuracy, as seen in Figure 4.11(a).

Figures 4.11(b) and 4.11(c) show again that the elimination threshold δ and the

number of iterations do not a�ect the e�ectiveness of our approach.
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Figure 4.15: Accuracy of pen data set in all the algorithms performed

In Figure 4.12 we can observe the evolution of the values of the di�erent bandwidths,

converging in a small number of iterations.

4.4 Conclusions and Extensions

In this chapter, we have shown how a feature selection strategy can be embedded in the

well-known SVM technique to get the most informative covariates of hybrid functional

data.

To do this, we have modi�ed the standard Gaussian kernel by associating a band-

width to each variable. Such bandwidths and the rest of the SVM parameters are

sought via a bilevel optimization problem solved with an alternating approach. Instead

of minimizing the misclassi�cation rate, we propose to maximize the Pearson correlation

coe�cient between the class label and the score. Other measures such as the correlation

in [Torrecilla Noguerales, 2015] can also be applied.

A sensitivity analysis of the setting parameters involved in our approach was made
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Figure 4.16: Accuracy of retail data set in all the algorithms performed

to show its robustness. We observe that the choice of the parameter C is critical to

yield good classi�cation rates. Some standard cross-validation methods may be used to

get a good value of C. In contrast, the elimination threshold and the maximum number

of iterations allowed in the alternating approach do not a�ect the accuracy obtained.

Moreover, the values of the bandwidths associated with the features converge in few

iterations to their �nal value.

In our proposal, we use standard optimization techniques to solve Problems (1.15)

and (4.2). As a future research line, we could develop more e�cient optimization strate-

gies compatible with the world of Big Data, e.g., methodologies applied to Problem

(1.15) which do not need the computation of the whole kernel matrix, or the use of

stochastic gradients to iterate in the bandwidth parameters of Problem (4.2).

We have restricted ourselves to binary classi�cation. The extension to related �elds,

such as multiclass classi�cation or regression, deserves further study.
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5.1 Introduction

In contrast to what is analyzed in previous chapters, in this chapter we focus on func-

tional regression, [Ferraty et al., 2010; Hernández et al., 2007; James et al., 2009; Kneip

et al., 2016; Müller and Stadtmüller, 2005], one of the most challenging problems in

FDA. Particularly, we are interested in the prediction of a scalar response, based on the

information provided by multivariate functional data.

Predictor-response relationships are harder to be found and interpret as the di-

mension of the data becomes larger, or even in�nite, as in our case. Selecting from

the whole time interval a �nite and small set of time instants can be understood as

a variable selection strategy from an in�nite set of features, which may lead to better

predictions.

Several works in the literature have addressed the problem of variable selection in

univariate functional data, as is outlined in Section 1.3. However, with respect to the

variable selection in multivariate regression with functional data, scarce methodologies

has been reported in the literature. We can just highlight the work in [Blanquero et al.,

2017] for classi�cation problems, based on Chapter 2 of this dissertation.

Hence, the problem of optimal selection of time instants in (multivariate) functional

regression, as addressed in this chapter, is new in the literature. More precisely, we focus

on SVR, a renowned methodology for regression problems, that allows us to capture

nonlinearities. We stress the importance of developing a methodology able to handle

multivariate functional data; �rst of all, on top of making the approach applicable to

many more contexts, one can always associate with each functional data the function

itself, as well as the functional data of its derivatives, allowing to use information on the

data values as well as information related to monotonicity or convexity, for instance, as

done in Chapter 2. Taking advantage of the functional behavior of the data, the selected

features act as continuous decision variables in the optimization model. Therefore, the

so-obtained optimization problem may be solved by means of continuous optimization

techniques. If instead, the data were treated as multivariate �nite-dimensional data,

combinatorial problems, very hard to solve due to the exponential number of candidate

solutions, would have been obtained. Furthermore, following the scheme of Chapter 2,

our proposal handles in the very same way univariate and multivariate functions.

The remainder of this chapter is structured as follows. In Section 5.2, we detail the

formulation and the solution approach, as well as the way to choose the best number

of time points. Section 5.3 describes the numerical results obtained with our approach

and we �nish in Section 5.4 with some conclusions.



94 Chapter 5. SVR with Functional Data

5.2 The Variable Selection Problem

Section 5.2.1 is devoted to introduce the main concepts and notation used in the time

instant selection problem. In Section 5.2.2 the problem of variable selection in SVR

with functional data is formulated, and a resolution strategy is proposed.

5.2.1 Preliminaries

As denoted along this dissertation, let s be a sample of individuals {(Xi, Yi)}i∈s, where
Yi ∈ R and Xi ∈ X = Fp is formed by p functional components, as in Equation (1.1)

with Xiv : [0, T ] → R belonging to the class F of d-times continuously di�erentiable

functions on the time interval [0, T ]. The goal is to �nd a rule able to predict the

response Y ∈ R from the information provided by the multivariate functional data

X ∈ X .
Our proposal can be applied to pure multivariate functional data, but also on uni-

variate functional data, X(t) ∈ F . The simplest way to do that would be just to

consider p = 1. However, a more sophisticated form is applied, in which univariate data

can be converted to multivariate by means of their derivatives, as done in Equation

(2.2). Using the very same strategy, the high-order information provided by the deriva-

tives can be also included in the pure multivariate functional data, X(t) ∈ Fp, yielding
data of the form (2.3).

In many real-life applications, the original functional data Xi are only known in

some time instants. Hence, smoothing techniques, e.g., [De Boor, 1978; Friedman et al.,

2001b], should be applied as a preprocessing step in those cases, so that an approxima-

tion to the original function Xi can be obtained from the observed time instants.

Moreover, if the higher-order information is taken into account, one can �rst compute

the �nite increments, and then smooth the sequence of increments. An example of the

�rst derivative of X(t) in the discretization point th is given in (2.4). This process

should be repeated for all the instants th in the discretized function and for any higher-

order derivative. Such discretized derivatives will be then smoothed with some of the

previously mentioned interpolation techniques.

5.2.2 Problem Formulation

The aim of this chapter is to �nd time instants t1, . . . , tH in such a way that the

relationship between the functional predictor X and the scalar response Y , obtained

via the SVR problem in (1.17), is as good as possible, in some sense to be speci�ed.

Two very di�erent types of parameters can be found in the variable selection pro-

blem. First, the H time instants t = (t1, . . . , tH) satisfying that 0 ≤ t1 ≤ . . . ≤ tH ≤ T ,
and second, the parameters ε, C, ω involved in the SVR problem (1.17), and in the

Gaussian kernel (1.27), respectively.
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Following the strategy of Chapters 2, 3 and 4, we propose to �nd the optimal param-

eters ε, C, ω, t, by combining a grid search for the parameter ε, and the resolution of

a bilevel optimization problem for the remaining parameters. This bilevel optimization

problem aims at minimizing the performance measure given by the sum of the squared

residuals (SSR) between the real response value Yi and the score Ŷ (Xi(t), C,ω, ν, ν
∗)

in (1.18).

In order to obtain more stable results and avoid over�tting, we proceed as in previous

chapters, and we divide the sample s into four independent samples, s1, s2, s3 and s4 as

follows. We �rst divide the sample into k folds. Then, k−1 folds are randomly selected

and divided into three parts, yielding samples s1, s2 and s3. The remaining fold forms

sample s4. Samples s1 and s2 play the role of training samples, whilst s3 and s4 are

the validation and testing samples, respectively. Particularly, the independent sample

s1 is used to obtain the optimal values of ν and ν∗ by solving Problem (1.17) for �xed

C, ω, t and ε. Sample s2 is employed to compute the residuals between the response

Yi and the score Ŷ (Xi(t), C,ω, ν, ν
∗). Sample s3 is utilized to tune the parameter ε by

evaluating the performance measure SSR for all the values in the grid, and keeping the

parameter yielding the smallest residual. Finally, sample s4 is used to estimate the SSR

and test the �nal results.

Hence, for a given ε, the bilevel optimization problem is stated as follows:

min
C,ω,t,ν,ν∗

∑
i∈s2

(Yi − Ŷ (Xi(t), C,ω, ν, ν
∗))2

s.t. ν, ν∗ solves (1.17) in s1,

C ≥ 0,

ωv ≥ 0, v = 1, . . . , p

0 ≤ t1 ≤ . . . ≤ tH ≤ T

(5.1)

Problem (5.1) can be handled with an alternating algorithm, as also done in Chapters

2, 3 and 4. In the �rst step of our alternating procedure, Problem (1.17) is solved in

sample s1 for given C,ω and t, obtaining the optimal SVR variables ν and ν∗. Problem

(1.17) is a quadratic concave maximization problem with linear constraints. Hence,

classic local search routines may be applied to �nd the global optimum. In the second

step, for ν and ν∗ �xed, we get the optimal C,ω and t solving Problem (5.2) in sample

s2. Problem (5.2) is a continuous optimization problem which is solved by combining

standard local searches with a multi-start strategy to avoid getting stuck at bad local

optima.
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min
C,ω,t

∑
i∈s2

(Yi − Ŷ (Xi(t), C,ω))2

s.t. C ≥ 0,

ωv ≥ 0, v = 1, . . . , p

0 ≤ t1 ≤ . . . ≤ tH ≤ T

(5.2)

The alternating approach is run, for a �xed ε, until some stopping criteria is met,

yielding good values of C,ω, t, ν and ν∗. The value of ε is obtained with a grid search,

i.e., computing, for each ε in the grid, the performance measure SSR on the sample s3,

and keeping the one with the smallest value.

Finally, to test the e�ciency of our approach, we calculate the SSR in a fourth

independent sample s4.

The pseudocode of our proposal can be seen in Algorithm 6.

Algorithm 6 Heuristic for variable selection

Input: H.
• Randomly split the sample s into s1, s2, s3 and s4.
• Compute the derivatives of the functional data.
• Smooth the data with some interpolation technique.
for ε in the grid do

Alternating Procedure
repeat

1. For C,ω, t �xed, calculate the parameters ν, ν∗ of the SVR problem (1.17)
using the sample s1.

2. Fixed ν and ν∗ �xed, compute C,ω, t by solving Problem (5.2)
sample s2.

until stopping criteria
• Evaluate the performance measure SSR using the sample s3 for the ε �xed in
the grid.

end for
• The optimal value of ε is the one with minimum performance measure SSR in s3,
and the optimal values of ν, ν∗, C, ω and t are the parameters associated to the
optimal ε.
Output: Optimal parameters ε, C,ω, t, ν, ν∗, and the performance measure SSR
estimated on s4.

In order to enhance the performance of the heuristic, we propose to de�ne, as in

Chapters 2 and 3, a series of nested models of increasing complexity, in which the

optimal solution of a simple model is employed as initial solution in a more complex

case. In other words, when seeking the h + 1 time instants in th+1, one considers as

initial solution a perturbation of th, i.e., the optimal solution obtained when only h

time instants are sought. Therefore, if we want to �nd the H time instants that best

predict, we consider the easy-to-tune structure of the simple cases as a simpli�cation

of the complex models, in such a way that the (suboptimal) solution K(Xi, Xj ,ω
h, th)
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is used as initial solution for kernel K(Xi, Xj ,ω
h+1, th+1). More speci�cally, the initial

solution of the parameters C and ω in the level h + 1 are set as the optimal values

of such parameters in the level h, ωhopt and C
h
opt, respectively. Moreover, the choice of

the initial solution of the h + 1 time instants in th+1 is made by selecting a random

value τ ∈ [0, T ], and including it in the appropriate position of the optimal solution of

the level h, thopt. In other words, th+1
opt = σ(τ, thopt), where σ is a function that sorts in

increasing order the time instants thopt and τ .

The pseudocode of the nested heuristic is outlined in Algorithm 7.

Observe that our proposed heuristic di�ers from a greedy approach [Berrendero et

al., 2018; Ferraty et al., 2010], since our proposal utilizes the optimal solution of level

h just as starting solution of the level h+ 1, allowing a very di�erent solution for level

h+ 1 than the one obtained in the previous level, h. Consequently, our approach gives

more �exibility to the model.

Moreover, when the exact number of selected time instants, H, is unknown, our

algorithm has the advantage of allowing us to build a trajectory of the performance

measure SSR in terms of the number of time instants. It may be very useful when a

list of models with di�erent complexity is needed.

5.3 Numerical Experiments

This section is devoted to the computational experience on the proposed models. In

Section 5.3.1 we describe the experiments performed. Section 5.3.2 details the data sets

used to test our methodology, and Section 5.3.3 analyses the numerical results.

5.3.1 Description of the Experiments

Algorithm 7 is run to show the usefulness of our approach, i.e., to test whether the

predictions obtained when H time instants are carefully chosen are comparable, or even

better, to the residuals achieved when the full time interval is considered.

To get stable results, k−fold cross-validation is accomplished. The number k of

folds is dependent on the data set. More precisely, if a database is big, then k = 10 is

chosen. By contrast, in the small data sets leave-one-out is performed, i.e., k coincides

with the number of observations. Here, we consider that a database is big if it has more

than 100 observations. More details about the cardinality of the databases can be seen

in Table 5.1. Algorithm 7 is run k times, one per fold. In each run, the data set is split

into four parts, s1−s4, as described in Section 5.2.2. As the output of our methodology,

we provide the average SSR estimated on the test sample s4 over all the folds.

The number of runs in the multi-start is �ve. The Alternating Procedure is stopped

either when ten iterations are executed or when the di�erence between the objec-

tive values of two consecutive iterations is lower than 10−5. The maximum num-
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Algorithm 7 Nested heuristic for variable selection

Input: H, nested kernels K(Xi, Xj ,ω
1, t1) ≺ . . . ≺ K(Xi, Xj ,ω

H , tH).
• Randomly split the sample s into s1, s2, s3 and s4.
• Compute the derivatives of the functional data.
• Smooth the data with some interpolation technique.
for ε in the grid do

Initialization:
• h := 1.
• Randomly select an initial solution C̃1 ∈ [0,+∞), ω̃1 ∈ [0,+∞)p and
t̃1 := t1 ∈ [0, T ].
• Set (C,ω, t) := (C̃1, ω̃1, t̃1).
while h ≤ H do

1. Run the Alternating Procedure of Algorithm 6 for K(Xi, Xj ,ω
h, th),

starting from (C,ω, t) and yielding (Chopt,ω
h
opt, t

h
opt) as solution, using

samples s1 and s2.
2. Randomly generate τ ∈ [0, T ].
3. Set Ch+1 := Chopt, ω

h+1 := ωhopt, t
h+1 := σ(τ, thopt),

(C,ω, t) := (Ch+1,ωh+1, th+1) and h := h+ 1.
4. Evaluate the performance measure SSR over the sample s3 with ε �xed.

end while
end for
• For each h, the optimal value of ε is the one with the minimum performance measure
SSR in s3. The optimal values of ν, ν∗, C, ω and t are the parameters associated to
the optimal ε.
Output: Optimal parameters Chopt, ω

h
opt, t

h
opt, ∀h, the associated coe�cients ε, ν, ν∗,

and the performance measure SSR estimated from s4.

ber of time instants to be sought is H = 20, and the parameter ε moves in the set

{10−4, 10−3, 10−2, 10−1}.
All the experiments were carried out on a cluster with 2 Tb of RAM memory at 6.2

TFlops, running CentOS Linux 7.3, and it is coded in R, [Core Team, 2017].

5.3.2 Description of the Data Sets

We have tested our proposal on six univariate and two multivariate databases, widely

used in the literature on functional regression. The univariate databases are denoted

as canadian, [Goldsmith and Scheipl, 2014; James et al., 2009], cookie, [Goldsmith and

Scheipl, 2014], DTI, [Goldsmith and Scheipl, 2014], simulated, [Ferraty et al., 2010],

sugar, [Aneiros and Vieu, 2014], and tecator, [Ferraty et al., 2010; Goldsmith and

Scheipl, 2014; Picheny et al., 2018]. Multivariate databases are named as synthetic_1

and synthetic_2 and come from [Matsui and Konishi, 2011]; both of them have the

same independent variables and only di�er in the response variable. A sample of ten

individuals of all the univariate databases is given in Figure 5.1. A sample of the obser-

vations of the dataset synthetic_1 (and synthetic_2 ) is depicted in Figure 5.2. Table
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5.1 gives a summarized description of the data sets, including the number of records,

the number of time instants where data are discretized, and the number of covariates.

#records #time instants #components
canadian 35 365 1
cookie 72 700 1
DTI 334 93 1

simulated 1500 100 1
sugar 268 571 1

synthetic_1 300 101 3
synthetic_2 300 101 3

tecator 215 100 1

Table 5.1: Data description summary

Details about each data set are presented in the following lines.

Canadian Data Set

The canadian data set have been studied in e.g., [Goldsmith and Scheipl, 2014; James

et al., 2009]. The explanatory variables are formed by the daily temperature along one

year measured on 35 Canadian weather stations, as in the rain and regions data set of

Section 2.3.2. However, in this chapter the goal is to predict the logarithm of the total

annual rainfall.

Cookie Data Set

This database can be found in [Goldsmith and Scheipl, 2014] and measures the 72

spectra of cookie dough samples every two nanometers (nm) from 1,100 to 2,498 nm

with the aim of predict the percentage of sucrose content.

DTI Data Set

The DTI data set, [Goldsmith and Scheipl, 2014], consists of 334 observations that

measure in 93 points the white matter in the corpus callosum to predict the cognitive

performance in order to study multiple sclerosis lesions.

Simulated Data Set

According to the example of Section 3.2 of [Ferraty et al., 2010] we have generated

1,500 curves discretized in 100 equispaced points in the interval [0, 2π] following this
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structure:

Xi(t) =

3∑
`=1

Ui` cos{(3 + `)t}+

3∑
`=1

Vi` sin{(4 + `)t}+Wi(t− π)2, i = 1, . . . , 1, 500

where Ui`, Vi`, Wi, ` = 1, 2, ∀i are uniformly distributed in [0, 1], whereas Ui3 and

Vi3 follow a normal distribution N (0, 0.25), where the second parameter denotes its

variance.

For i = 1, . . . , 1, 500, the values of the response variable are obtained from the model

Yi = r(Xi) + γi, based on the time instants t ∈
{

48π
99 ,

58π
99 ,

128π
99

}
with

r(Xi) = Xi

(
48π

99

)
+ 2Xi

(
58π

99

)
Xi

(
128π

99

)
, (5.3)

and γi independent and identically distributed as N (0, σ2
γ), with σ2

γ = 5% var{r(Xi)}.

Sugar Data Set

The goal of this data set from [Aneiros and Vieu, 2014] is to predict the percentage of

ash content from the �uorescence spectra, measured on 571 points of 268 samples of

sugar.

Tecator Data Set

This data set deals with the near-infrared absorbance spectra of 215 samples of �nely

chopped pork, measured at 100 equally spaced points from 850 to 1,050 nanometers. It

has been previously used in Sections 2.3.2 and 3.4.2. Nevertheless, in this chapter, the

response variable represents the fat content. More details can be found in [Ferraty et

al., 2010; Goldsmith and Scheipl, 2014; Picheny et al., 2018].

Synthetic_1 and Synthetic_2 Data Sets

In this section we have dealt with 300 observations of two data sets, namely synthetic_1

and synthetic_2, generated as in [Matsui and Konishi, 2011]. The three predictor

variables are built as follows, for t ∈ [−1, 1]:

Xv(t) = Uv(t) + γv, v = 1, 2, 3, (5.4)
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where γv ∼ N (0, 0.025 · (rv)2) and rv = max
t

(Uv(t))−min
t

(Uv(t)). Furthermore,

U1(t) = cos(2π(t− a1)) + a2t; a1 ∼ N (−5, 32); a2 ∼ N (7, 1)

U2(t) = b1 sin(2t) + b2; b1 ∼ U(3, 7); b2 ∼ N (0, 1)

U3(t) = c1t
3 + c2t

2 + c3t+ c4; c1 ∼ N (−3, 1.22); c2 ∼ N (2, 0.52); c3 ∼ N (−2, 1); c4 ∼ N (2, 1.52)

The response variable Y is given by:

Y = g(U) + ν0 (5.5)

with

g(U) =

3∑
v=1

∫ 1
−1 Uv(t)ϕv(t)dt; ν0 ∼ N (0, (c · s)2); s = max(g(U))−min(g(U))

ϕ1(t) = sin(2πt); ϕ2(t) = sin(πt); ϕ3(t) = 0

(5.6)

The value c of the parameter ν0 in (5.6) depends on the multivariate data set. More

precisely, c = 0.05 in the database synthetic_1 and c = 0.1 in synthetic_2.

5.3.3 Results

Figure 5.3 shows the trajectory of the SSR obtained when H time instants are sought,

ranging from H = 1 to H = 20. We depict in dotted-red, triangled-blue and crossed-

green solid lines the results when d = 0, 1, 2 derivatives are considered, respectively.

To test the performance of our methodology, we use the maximum and minimum

SSR values from a set of benchmark procedures in the literature. We indicate the

reference SSR values in the cases where they are available, i.e., in data sets simulated,

sugar and tecator by depicting them in solid black line (maximum residual), and dashed

pink line (minimum residual). More precisely, the benchmark values come from [Ferraty

et al., 2010] in simulated and tecator ; and from [Aneiros and Vieu, 2014] in sugar.

Moreover, in the cases where such reference values are not available, we compare our

proposal with the SSR obtained when the full time domain is taking into account.

Indeed, we have run Algorithm 7 with the same settings of Section 5.3.1, i.e., number

of iterations, stopping criterion, and values of the parameter ε, to get the variables

ν, ν∗, C and ω of Problem (5.1) together with the average of performance measure SSR

across folds on exactly the same testing sample s4, where variable selection is performed.

The results of Algorithm 7 when no variable selection is performed, i.e., the full (time)

domain is taken into account, are plotted on dotted red, blue or green line depending

if the degree of the derivatives is d = 0, 1 or 2, respectively. In addition, some parts of

the output �gures of the databases simulated, synthetic_1 and tecator are zoomed in

order to improve the visualization.
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On top of that, we will show that high-order information is crucial to achieving good

residual values. Hence, Algorithm 7 is run for three di�erent values of the derivatives

d = 0, 1, 2, which include, respectively, the situations where just the information of the

raw functional data, or their monotonicity, or both their monotonicity and convexity

are considered. The exact values of all the SSR are given in Tables 5.2 and 5.3 for

comparison purposes.

In addition to the variable selection experiments, we also provide the best number

H of time instants, applying the same strategy as in Chapters 2 and 3.

As a general conclusion, looking at Figure 5.3 and Tables 5.2 and 5.3, we state

that the high-order information provided by the derivatives is crucial to get good pre-

dictions since most of the SSR obtained when monotonicity or both monotonicity and

convexity are taken into account are better than the values obtained just using the in-

formation of the functional data alone. Moreover, when we compare our approach with

the benchmarks in the literature, we conclude that SSR are improved with our method.

With respect to the best number of time instants, H, Figure 5.4 shows the boxplots

of the best time instants chosen when the number of time instants to be selected ranges

from H = 1 to H = 20.

On top of the overall conclusions given so far, more precise information on each data

set is given in the following lines.

Canadian Data Set

Figure 5.3(a) and Table 5.2 show the results obtained forn this data set applying our

methodology. Although there is not a clear pattern, possibly due to the small size of

the data set, we observe that, the larger the number of time instants used, the lower

the SSR, yielding in some cases better values when choosing appropriate time points

than when using the full domain information, e.g., d = 1 and H = 5.

Regarding the interpretability of the results, [James et al., 2009] a�rms that the

temperatures in the spring and fall months do have a noticeable e�ect when predicting

the annual rainfall. More speci�cally, Figure 4 of [James et al., 2009] shows that such

an e�ect is produced around the months of April and November. Figure 5.5 shows the

density histogram of the time instant values when H = 7 time points are sought using

our methodology. We clearly observe that the majority of values are located around

the months of April and November independently of the value given to the parameter

d ∈ {0, 1, 2} exactly as is stated in [James et al., 2009]. Similar results are obtained

when H 6= 7, and therefore no more histogram �gures are plotted.
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Cookie Data Set

It is clear from Figure 5.3(b) and Table 5.2 that the derivative information plays a very

important role when seeking the most informative time instants, since the highest SSR

are obtained when only the raw data, and not the derivatives are used, i.e., when d = 0.

Furthermore, using only a few time instants yields better residuals than using the full

time interval, as can be seen, for instance for d = 1 and H = 4.

DTI Data Set

If we observe Figure 5.3(c) and Table 5.2, similar results were achieved with d = 0 and

H = 6 than when comparing with the full time domain and d = 0.

Simulated Data Set

Since the median of the SSR values is given as reference in [Ferraty et al., 2010], in this

example we give as output the median values instead of the mean, as the y−axis label
of Figure 5.3(d) indicates. Table 5.2 also shows the median values for this database.

On top of that, the response variable is constructed using the evaluation of the

predictor variable in three �xed time instants, namely 48π
99 ,

58π
99 and 128π

99 , as expressed

in (5.3). Because of this, we have also run Algorithm 7 with the settings given in

Section 5.3.1, and �xing such three time instants. The results are depicted in red, blue

and green dashed-dotted line for the d = 0, 1, 2 degrees derivatives, respectively.

In the zoomed plot of Figure 5.3(d), it is observed that similar results are obtained

with our methodology than with the minimum reference residual (pink dashed line) or

even better if the values with d = 0 are inspected.

Sugar Data Set

Figure 5.3(e) and Table 5.2 show that noticeable improvements in terms of SSR are

obtained with our approach, either compared with the SSR values reported in the

literature or with the model in which the full time interval is considered and no feature

selection is made. See the example of d = 2 and H = 3, for instance.

Tecator Data Set

Figure 5.3(h) and Table 5.2 show that our approach is able to improve the literature

reference values in [Ferraty et al., 2010], and is comparable to the results given when

the full interval is used and no feature selection is performed, especially if we compare

with d = 2.
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Synthetic_1 and Synthetic_2 Data Sets

We see in Figure 5.3(f), 5.3(g), and Table 5.3 that similar results in terms of prediction

ability have been obtained with and without feature selection. An example of this fact

is observed in the set synthetic_2 when d = 2, and H = 2.

5.4 Conclusions and Extensions

In this chapter, we have proposed an approach based on continuous optimization to

select time instants in regression problems with (multivariate) functional data.

The heuristic here proposed is enhanced with the de�nition of a nested structure

which takes advantage of the optimal solutions in the simple models to reach better pre-

dictions. Furthermore, our proposal allows, in the very same manner, to take advantage

of higher-order information provided by the derivatives of the (multivariate) functional

data. Such information is crucial, as has been shown in the numerical experience.

Some extensions of the present work are possible. Here we have just considered

pure (multivariate) functional data. Our proposal can be easily extended to the hybrid

multivariate case with a simple modi�cation of the kernel function, as in Chapter 4.

In this chapter, we have restricted ourselves to the time instant selection problem.

A possible extension would be to optimally select H time intervals, instead of H time

instants. Figure 5.6 shows the histograms of the extreme points when H = 2 time

intervals are sought in the canadian data set. We observe again that the most important

domains are around the months of April and November.

Another challenging extension of our approach consists of working with spatio-

temporal data, in which one seeks the most relevant time instants and locations, or

to extend our proposal to other Data Science problems, such as clustering.
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Figure 5.1: Sample of functional data in the univariate data sets analyzed
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Figure 5.2: Sample of functional data in the univariate data sets analyzed
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