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Abstract: In this paper, a generalization of the modified slash Birnbaum–Saunders (BS) distribution is
introduced. The model is defined by using the stochastic representation of the BS distribution, where
the standard normal distribution is replaced by a symmetric distribution proposed by Reyes et al. It is
proved that this new distribution is able to model more kurtosis than other extensions of BS previously
proposed in the literature. Closed expressions are given for the pdf (probability density functio),
along with their moments, skewness and kurtosis coefficients. Inference carried out is based on
modified moments method and maximum likelihood (ML). To obtain ML estimates, two approaches
are considered: Newton–Raphson and EM-algorithm. Applications reveal that it has potential for
doing well in real problems.

Keywords: Birnbaum–Saunders distribution; generalized modified slash distribution; kurtosis;
maximum likelihood; EM-algorithm

1. Introduction

The BS distribution was introduced by Birnbaum and Saunders [1,2]. The aim of this distribution
is to model the fatigue in lifetime of certain materials. Nowadays, its use has spread to other contexts
such as economic and environmental data. In these new applications, it is quite common to find real
datasets in which a BS model with heavier tails would be suitable. Slash models are a good option to
deal with this kind of situations, in which heavy tails are a serious problem for the data analyst. This is
the main reason slash distributions have received a great deal of attention during the last decades.
In this context, we face the problem of improving BS distribution by introducing a generalization able
to model more kurtosis than other slash extensions previously proposed in the literature. In these
extensions, the emphasis is on kurtosis because, as Moors [3] pointed out, the presence of heavy tails
produces high kurtosis. Next, we briefly describe the BS-model and the most relevant slash precedents
of our proposal.

1.1. Birnbaum–Saunders Distribution

If a random variable (rv) T > 0 follows a BS distribution with shape parameter α > 0 and scale
parameter β > 0, T ∼ BS(α, β), then T can be expressed as

T = β

(
α

2
Z +

√(α

2
Z
)2

+ 1

)2

(1)
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where Z ∼ N(0, 1). From Equation (1), T is a monotone transformation of Z, and its cumulative
distribution function (cdf) FT is

FT(t) = Φ(w(t)) (2)

with Φ(·) the cdf of a N(0, 1) distribution and

w(t) = wα,β(t) =
1
α

(√
t
β
−
√

β

t

)
=

2
α

sinh

(
ln

√
t
β

)
, t > 0. (3)

The probability density function (pdf) of T is

fT(t; α, β) =
t−

3
2 (t + β)

2αβ
1
2

φ(w(t)) (4)

where φ(·) is the pdf of a N(0, 1) distribution (Johnson et al. [4]).
As properties (see, for instance, Leiva [5]), we highlight that the BS distribution is continuous,

unimodal and positively skewed (asymmetry to right). β is the median of the distribution. α is a shape
parameter that modifies the skewness and kurtosis of the distribution. As α tends to zero, the BS
distribution tends to be symmetrical around β and its variability decreases. On the other hand, as α

increases, the BS distribution exhibits heavier tails.

1.2. Slash Methodology

To use the BS distribution for modeling data with outliers, Gómez et al. [6] and Reyes et al. [7]
proposed extensions of BS model based on the slash (S) and modified slash (MS) distribution. In this
way, they got extensions of BS distribution with a high kurtosis coefficient.

The canonic slash distribution was introduced by Rogers and Tukey [8]. This model is defined
as the ratio of a N(0, 1) and an independent uniform U(0, 1) distribution. It is proposed as a model
for bell-shaped data with heavier tails than the corresponding normal distribution. Their theoretical
properties can be seen, for instance, in Rogers and Tukey [8] or Johnson et al. [4]. The slash model,
denoted as S, in which a kurtosis parameter q is introduced, is defined as

S =
Z

U
1
q

(5)

with Z ∼ N(0, 1) independent of U ∼ U(0, 1) and q > 0. Based on the representation given in
Equation (5), Reyes et al. [7] proposed the modified slash (MS) distribution in which the variable
at the denominator of Equation (5) is replaced by an exponential distribution of parameter 2, that
is, U ∼ Exp(2). The MS model exhibits greater kurtosis than the S model. A new extension, called
generalized modified slash (GMS) distribution, was introduced recently by Reyes et al. [9]. These
authors proposed a new slash model where the denominator in Equation (5) is a Gamma distribution of
parameters (2q, q) with q > 0. The GMS model generalizes the MS model. As main features of the GMS
model, we highlight that is a bell-shaped distribution, symmetrical with respect to zero, and exhibits
a greater level of kurtosis than its predecessors, thus it can be of interest to study the distribution of the
BS extension obtained when Z ∼ N(0, 1) in Equation (1) is replaced by a GMS distribution with kurtosis
parameter q > 0. This proposal is a generalization of the papers by Gómez et al. [6] and Reyes et al. [7]
where slash versions of the BS distribution were considered based on the slash and modified slash
distribution, called slash Birnbaum–Saunders (SBS) and modified slash Birnbaum–Saunders (MSBS),
respectively.

This paper is outlined as follows. In Section 2, the stochastic representation of the generalized
modified slash Birnbaum–Saunders (GMSBS) distribution is introduced, and its probability density
function, properties, moments, skewness and kurtosis coefficients are obtained. Section 3 is devoted
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to estimation methods: modified moment and maximum likelihood estimation (an iterative method
and the EM-algorithm are proposed). Section 4 assesses the performance of the MLE using the EM
algorithm via a simulation study. Two practical applications are given in Section 5.

2. GMSBS Distributions

In this section, the stochastic representation of a GMSBS distribution is introduced. A closed expression
for its pdf is obtained and its properties are studied in depth. Motivated by Equation (1), the stochastic
expression proposed for a GMSBS distribution is

T = β

(
α

2
X +

√(α

2
X
)2

+ 1

)2

, α > 0, β > 0, (6)

where X follows a Generalized Modified Slash distribution, X ∼ GMS(0, 1, q), q > 0. It is then said
that T follows a GMSBS distribution with parameters α, β, and q, T ∼ GMSBS(α, β, q). Similar to
the BS distribution, α is a shape parameter and β is a scale parameter. It is shown below that the
new parameter q allows us to control the kurtosis and skewness of this new model and to obtain
distributions with greater level of kurtosis than other slash Birnbaum–Saunders models. This fact
allows us to model real datasets in which a BS-model can be appropriate but we have heavy tails,
especially on the right.

2.1. Probability Density Function

Since T, introduced in Equation (6), is given as a function X with X ∼ GMS(0, 1, q), to obtain the
distribution of T, we need the pdf of X, which is given in next lemma.

Lemma 1. Let X ∼ GMS(0, 1, q) be defined as X = Z/V with Z ∼ N(0, 1) independent of V ∼ Ga(2q, q),
q > 0. Then, the pdf of X is

fX(x; q) =
(2q)q

Γ(q)

∫ ∞

0
vqe−2qvφ(xv)dv, x ∈ R (7)

where φ() denotes the pdf of a N(0, 1) distribution.

Proof. It can be seen in Reyes et al. [9].

Lemma 2. The following closed expression for Equation (7) can be given

fX(x; q) =


q√
8π

, if x = 0

q 2q/2
√

2π
1

|x|q+2 U
(

1 + q
2 , 3

2 , 2
x2

)
, if x 6= 0

(8)

where U(·) denotes the confluent hypergeometric function of the second kind (Abramowitz and Stegun [10],
p. 505).

Proof. It can be seen in Reyes et al. [9].

Proposition 1. Let T ∼ GMSBS(α, β, q). Then, the pdf of T is

fT(t; α, β, q) =
2q−1qqt−3/2(t + β)

αβ1/2Γ(q)

∫ ∞

0
vqe−2qvφ(w(t)v)dv, (9)

with w(t) = 1
α

(√
t
β −

√
β
t

)
and t > 0.
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Proof. From Equation (6)
FT(t) = FX(w(t)) (10)

where FT(·) and FX(·) denote the cdfs of T and X, respectively, and w(t) is given in Equation (3).
From Equation (10), the following relationship for the pdf’s of T and X follows

fT(t) = fX(w(t))w′(t), (11)

where fX(·) denotes the pdf of a X ∼ GMS(0, 1, q).
Finally, from Equation (11), Lemma 1 and Equation (3), the expression proposed in Equation (9)

is obtained.

Corollary 1. From Equation (11) and (8), we have the following closed expression for fT()

fT(t; α, β, q) =


1

αβ
√

8π
, if t = β

2q/2qq+2
√

8π

(β+t)
|t−β|q+2 αq+1β(q+1)/2t(q−1)/2 U

(
1 + q

2 , 3
2 , 2q2α2βt

(t−β)2

)
, if t 6= β

(12)

with t > 0, α > 0, β > 0 and q > 0.

The next corollary relates the new model, proposed in Equation (6), to other slash models
previously introduced in the literature.

Corollary 2. For q = 1, the pdf given in Equation (12) reduces to the pdf of a modified slash Birnbaum–Saunders
distributions, MSBS(α, β, 1) proposed in Reyes el al. [11].

Proof. This corollary follows from the fact that, for q = 1, a Ga(2, 1) distribution reduces to an exponential,
Exp(2), and the stochastic representation proposed in Equation (6).

Figure 1 illustrates the effect of the parameter q on the tails of our proposal. Plots given in this
figure compare the pdfs of several GMSBS models for different values of q. Specifically, the pdfs of
a GMSBS(0.3, 2, q) distribution for q = 8, 3, 1 are given. Note that a greater level of kurtosis is observed
for small values of q. These appreciations are formalized in Section 2.3 where moments are obtained.

2.2. Properties

In this subsection, some properties of GMSBS distributions are deduced.

Proposition 2. Let T ∼ GMSBS(α, β, q), with α > 0, β > 0, q > 0. Then,

1. Let tp be the pth quantile of T, 0 < p < 1.

tp = β

(
α

2
xp +

√(α

2
xp

)2
+ 1

)2

(13)

where xp denotes the pth quantile of X ∼ GMS(0, 1, q).
In particular, the median of T is β, t0.5 = β.

2. ∀b > 0, bT ∼ GMSBS(α, bβ, q).
3. T−1 ∼ GMSBS(α, β−1, q).

Proof. (1). Equation (13) follows from the fact that Equation (6) is a one-to-one transformation from R
to R+.
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On the other hand, t0.5 = β since X ∼ GMS(0, 1, q) is a symmetric distribution around zero,
and therefore x0.5 = 0.
(2) and (3) are immediate from Proposition 1 by properly using the change-of-variable technique.
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Figure 1. GMSMS(α = 0.3, β = 2, q) pdfs for different values of q.

Next, we show that if q→ ∞ then GMSBS(α, β, q) model approaches to a Birnbaum–Saunders
distribution. The subscript q is included in the notation to highlight this fact.

Proposition 3. Let Tq ∼ GMSBS(α, β, q). Then, Tq converges in law to T ∼ BS(2α, β) as q→ ∞, that is

Tq
L−→ T, q→ ∞, where T ∼ BS(2α, β). (14)

Proof. See Appendix A, Proof of Proposition 3.

Proposition 3 means that, for large q, GMSBS(α, β, q) model can be approached by a Birnbaum–
Saunders distribution.

2.3. Moments

Formulae for the moments of order r, r ∈ Z+, in a GMSBS distribution are given next.

Proposition 4. Let T ∼ GMSBS(α, β, q). For r ∈ Z+, E[Tr] exists if and only if q > 2r and

E[Tr ] = βr
r

∑
y=0

(
2r
2y

) y

∑
s=0

(
y
s

)( α

2

)2(r+s−y) 2(r+s−y)q2(r+s−y)[2(r + s− y)]!Γ(q− 2(r + s− y))
(r + s− y)!Γ(q)

. (15)

Proof. See Appendix A, Proof of Proposition 4.

Remark 1. From Equation (15), note that E [Tr] is a polynomial in β of degree r, in α of degree 2r (only even
powers are obtained), and coefficients that involve rational functions of q (with numerator and denominator of
the same degree).

Next, some non-central moments for the GMSBS distribution are given. These expressions involve
the Pochhammer symbol or rising factorial, defined for a > 0 and k ∈ Z+ as

(a)k = a(a + 1)(a + 2) . . . (a + k− 1) =
Γ(a + k)

Γ(a)
. (16)
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Corollary 3. Let T ∼ GMSBS(α, β, q) and µr = E[Tr]. Then

µ1 = β
[
2α2 q2

(q−2)2
+ 1
]

, q > 2 (mean or expected value of T),

µ2 = β2
[
24α4 q4

(q−4)4
+ 8α2 q2

(q−2)2
+ 1
]

, q > 4,

µ3 = β3
[
480α6 q6

(q−6)6
+ 144α4 q4

(q−4)4
+ 18α2 q2

(q−2)2
+ 1
]

, q > 6,

µ4 = β4
[
13440α8 q8

(q−8)8
+ 3840α6 q6

(q−6)6
+ 480α4 q4

(q−4)4
+ 32α2 q2

(q−2)2
+ 1
]

, q > 8.

Proof. The proposed results follow from Proposition 4 and Equation (16). Aditional details can be
seen in Appendix A, Proof of Corollary 3.

From Corollary 3, it follows that the variance of T is

Var(T) = 4β2
[
α2c2(q) + α4c4(q)

]
, q > 4 (17)

where

c2(q) =
q2

(q− 2)2

c4(q) =
6q4

(q− 4)4
− q4

{(q− 2)2}2 .

The skewness coefficient,
√

β1, and the kurtosis coefficient, β2, can be computed by using the
previous expressions and the relationships

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3/2
.

β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
.

Next, the behavior of
√

β1 and β2 as functions of the kurtosis parameter q is studied.
Although the convergence in law, in general, does not imply the convergence in moments, in this

case, we have such convergence as q→ ∞. The notation β1(q) and β2(q) is used. The next corollary
states explicit results for

√
β1(q) and β2(q), if q → ∞, along with others that help us to understand

the behavior of these features. The explicit expressions of
√

β1(q) and β2(q), given in Appendix A,
Equation (A12), are used.

Corollary 4. (1) Limit behavior of skewness coefficient

lim
q→6

√
β1(q) = ∞

lim
q→∞

√
β1(q) =

48α + 352α4

{4(1 + 5α2)}3/2

that is, if q → ∞ then the skewness coefficient of a GMSBS(α, β, q) tends to the skewness coefficient of
a BS(2α, β) distribution.
(2) Limit behavior of kurtosis coefficient
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lim
q→8

β2(q) = ∞

lim
q→∞

β2(q) = 3 +
24α2 + (372α2 + 41)

(20α2 + 4)2 .

that is, if q → ∞ then the kurtosis coefficient of a GMSBS(α, β, q) tends to the kurtosis coefficient of
a BS(2α, β) distribution.

Proof. The proposed results follow from expressions for β1(q) and β2(q) given in Appendix A,
Equation (A12), and the moments µr, given in Equation (15).

Remark 2. Interpretation of parameters in a GMSBS(α, β, q) model.

(i) In the GMSBS model, as in the Birnbaum–Saunders distribution, β > 0 is a scale parameter, which is also
the median of the distribution (see Equation (6) and Proposition 2).
(ii) It can be seen in Leiva [5] that in the Birnbaum–Saunders distribution α > 0 is a shape parameter that
modifies the skewness and kurtosis of the distribution. As α tends to zero, the BS distribution tends to be more
symmetrical around its median β and its variability decreases. The expressions of the skewness coefficient

√
β1,

given in Equations (A12) and (17), suggest that α has a similar interpretation in the GMSBS model.
(iii) As for the parameter q > 0, it is proven through this paper that controls the kurtosis and skewness coefficient
in the GMSBS model, in such a way that allows us to obtain models with greater level of kurtosis than other
slash BS distributions, previously introduced in the literature.

As graphical aid, to show the way in which α and q determine the asymmetry and kurtosis
of a GMSBS(α, β, q) model, see plots in Figure 2. Without loss of generality, the scale parameter is
taken equal to one, β = 1. They illustrate the way in which the asymmetry and kurtosis coefficients
depend on both parameters. Plots in Figure 2 suggest that, on the one hand, for increasing values
of α, the asymmetry and kurtosis increase. On the other hand, if α is fixed, asymmetry and kurtosis
coefficients are decreasing functions of q.
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Figure 2. Skewness and kurtosis coefficients for GMSBS(α, β = 1, q) model as function of q taking
α = 0.25, 1 and 5.

These considerations motivate that GMSBS distribution can be used for modeling more kurtosis
than other slash Birnbaum–Saunders distributions previously introduced in the literature such as
SBS and MSBS densities. Figure 3 displays the GMSBS pdf plot along with MSBS and SBS densities.
Note that the right tail of the GMSBS distribution is heavier than the tails of the other ones.
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Figure 3. Comparison of right tails of densities for GMSBS, MSBS and SBS models for the same value
for parameters α, β and q.

3. Estimation

Let T1, . . . , Tn be a simple random sample (srs) from T ∼ GMSBS(α, β, q), n > 3. In this section, we
face the problem of estimating (α, β, q). Next, we propose a couple of techniques to tackle this problem.

3.1. Modified Moment Estimation

Following Ng et al. [12], a modified method moment based on Property (3) given in Proposition 2
is next introduced. Thus, we propose to equal E[T], E[T2], and E[1/T] to their corresponding sample
moments, that is

E[T] = β

[
1 + 2α2 q2

(q− 2)2

]
= T̄ (18)

E[T2] = β2
[

1 + 8α2 q2

(q− 2)2
+ 24α2 q4

(q− 4)4

]
= m2 (19)

E
[

1
T

]
=

1
β

[
1 + 2α2 q2

(q− 2)2

]
= R (20)

where T̄ = ∑n
i=1 Ti

n , m2 =
∑n

i=1 T2
i

n , and R =
∑n

i=1
1
Ti

n .
Note that R = H−1 with H = n

∑n
i=1

1
Ti

the sample harmonic mean.

The solutions of previous equations for q > 4 and α > 0 are called the modified moment (MM)
estimators, denoted as α̂MM, β̂MM, and q̂MM.

3.2. Maximum Likelihood Estimation

Given a srs T1, T2, ..., Tn from a GMSBS(α, β, q) distribution and t1, t2, ..., tn their observations,
by applying Equation (9), the log-likelihood function is

l(α, β, q) =
n

∑
i=1

log fT(ti; α, β, q)

= n(q− 1)log2 + nq log q− 3
2

n

∑
i=1

log ti +
n

∑
i=1

log(ti + β)− n log Γ(q)− n log α− n
2

log β

+
n

∑
i=1

log G(wi) with G(wi) =
∫ ∞

0 vqe−2qvφ(wiv) dv and wi =
1
α

(√
ti
β −

√
β
ti

)
.
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To maximize l(α, β, q) in (α, β, q), consider the first derivatives of l(α, β, q) with respect to α,
β and q, denoted as l̇α, l̇β and l̇q, respectively. From l̇α = 0, l̇β = 0 and l̇q = 0, we obtain the
likelihood equations, whose expressions are given in Appendix B, and can be solved by using iterative
Newton–Raphson methods.

Let us denote by d(ti) =
∫ ∞

0 vq+2e−2qvφ(wiv) dv
G(wi)

. Then, the following iterative process can be proposed
for k ≥ 0

α̂(k+1) =
1
n

{
n

∑
i=1

(
ti

β̂(k)
+

β̂(k)

ti
− 2

)
d(k)(ti)

}1/2

(21)

β̂(k+1) =


1

2(α̂(k))2

n

∑
i=1

tid(k)(ti)

n
2β̂(k)

−
n

∑
i=1

1
ti + β̂(k)

+
1

2(α̂(k))2

n

∑
i=1

1
ti

d(k)(ti)


1/2

(22)

q̂(k+1) = exp

{
ψ(q(k))− 1− ln 2− 1

n

n

∑
i=1

n

∑
i=1

G(k)
3 (wi)

G(k)(wi)

}
(23)

which needs starting values α̂(0), β̂(0) and q̂(0) to start the recursion. As initial values, the modified
moment estimators, previously proposed, can be considered.

Remark 3. (1) In Equations (21)–(23), d(k)(·), G(k)(·) and G(k)
3 (·) denote these expressions evaluated at α̂(k),

β̂(k) and q̂(k). The expression of G3(·) can be seen in Appendix B.
(2) It can be seen in Leiva [5] p. 41 that in the Birnbaum–Saunders model, BS(α, β), the iterative equations for
the MLEs of α̂ and β̂ are

α̂(k+1) =
1
n

{
n

∑
i=1

(
ti

β̂(k)
+

β̂(k)

ti
− 2

)}1/2

(24)

β̂(k+1) =


1

2(α̂(k))2

n

∑
i=1

ti

n
2β̂(k)

−
n

∑
i=1

1
ti + β̂(k)

+
1

2(α̂(k))2

n

∑
i=1

1
ti


1/2

. (25)

The effect of introducing the generalized modified slash variable on the BS(α, β) model can be appreciated
by comparing Equations (21) and (22) to Equations (24) and (25).

3.3. ML Estimation Using EM-Algorithm

Taking advantage of the stochastic representation of the GMSBS model, we can develop a more
attractive iterative method to find the MLEs based on the EM algorithm (Dempster et al. [13]). This is
a well-known tool when unobserved (missing) data or latent variables are present while modeling.
This algorithm enables the computationally efficient determination of the ML estimates when iterative
procedures are required. Looking at the stochastic representation of a generalized modified slash
distribution given in Equation (6), we note that the scale factor V depends on the parameter q, thus
we consider a re-parameterization to get the EM-algorithm in the GMSBS model. Then, the resulting
stochastic representation for T can be expressed as

T = β
(α

2
X +

√(α

2
X
)2

+ 1
)2

, (26)
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where X = U−1/2Z, with Z ∼ N(0, 1) independent of U ∼ GG
(
q, 2q, 2

)
, i.e., the generalized gamma

distribution whose pdf can be expressed as

h(u) = 2q−1qquq/2−1 exp{−2qu−1/2}/Γ(q), u > 0.

Under the new parameterization, we have the conditional distribution of T, given U = u, follows
the BS(α/

√
u, β) distribution. Consequently, the pdf of the T reduces to

fT(t) =
t−3/2(t + β)2q−1qq

αβ1/2Γ(q)

∫ ∞

0
uq/2−1 exp{−2qu−1/2}φ

(√
u at(α, β)

)
du, t > 0, (27)

where φ(·) is the pdf of N(0, 1) distribution.

Let T1, ..., Tn be a simple random sample of size n of T ∼ GMSBS(α, β, q). Here, the parameter
vector is θ = (α, β, q)>, with θ ∈ Θ ⊆ R3

+. Let `c(θ|tc) and Q(θ|θ̂) = E[`c(θ|tc)|t, θ̂] denote the
complete-data log-likelihood function and its expected value, respectively. Each iteration of the EM
algorithm involves two steps. Note that the above setup can be represented through a hierarchical
representation given by

Ti|(Ui = ui) ∼ BS
(
α/
√

ui, β
)
, (28)

Ui ∼ GG(q, 2q, 2), i = 1, . . . , n. (29)

Let t = [t1, . . . , tn]> and u = [u1, . . . , un]> be observed and unobserved data, respectively.
The complete data tc = [t>, u>]> corresponds to the original data t augmented with u. We now
detail the implementation of the ML estimation of parameters of GMSBS distributions by using the
EM-algorithm. In this section, the hierarchical representation given in Equations (28) and (29) is useful
to obtain the complete log-likelihood function associated with tc, which can be expressed as

`c(θ|tc) ∝ −n log(α)− n
2

log(β)− 1
2α2

n

∑
i=1

ui

[
ti
β
+

β

ti
− 2
]
+

n

∑
i=1

log (ti + β)

+ `c(q|tc), (30)

where `c(q|tc) = n [(q− 1) log(2) + q log q− log Γ(q)] + (q/2− 1)∑n
i=1 log(ui)− 2q ∑n

i=1 u−1/2
i .

Letting ûi = E[Ui|ti, θ = θ̂], it follows that the conditional expectation of the complete
log-likelihood function has the form

Q(θ|θ̂) ∝ −n log(α)− n
2

log(β)− 1
2α2

n

∑
i=1

ûi

[
ti
β
+

β

ti
− 2
]
+

n

∑
i=1

log (ti + β)

+ Q(q|θ̂), (31)

where Q(q|θ̂) = n [(q− 1) log(2) + q log q− log Γ(q)] + (q/2 − 1)S1n − 2qS2n, with S1n =

∑n
i=1 E[log(Ui)|ti] and S2n = ∑n

i=1 E[U
−1/2
i |ti]. As both quantities S1n and S2n have no explicit forms

in the context of our model, they have to be computed numerically. Thus, to compute Q(q|θ̂), we use
a similar approach to that by Lee and Xu (2004, Section 3.1) [14]. Specifically, let {ur; r = 1, ..., R} be
a sample randomly drawn from the conditional distribution U|(T = t, θ = θ̂), so the quantity Q(q|θ̂) can
be approximated as follows:

Q(q|θ̂) ≈ 1
R

R

∑
r=1

`c(q|ur).

We then have the EM-algorithm for the ML estimation of the parameters of the GMSBS distributions
as follows:
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E-step. Given θ = θ̂
(k)

= (α̂(k), β̂(k), q̂(k))>, compute ûi
(k), for i = 1, . . . , n.

CM-step I: Update α̂(k) by maximizing Q(θ|θ̂(k)) over α, which leads to the expression:

α̂2(k+1) =
S(k)

u

β̂(k)
+

β̂(k)

R(k)
u

− 2u(k),

CM-step II: Obtain β̂(k+1) as the solution of

β̂2(k+1) − β̂(k+1)
[
K(β̂(k+1)) + 2 u(k) R(k)

u

]
+ Ru

[
u(k) K(β̂(k+1)) + S(k)

u

]
= 0.

CM-step III: Fix α = α̂(k+1) and β = β̂(k+1), update q(k) by optimizing

q̂(k+1) = arg max qQ(α̂(k+1), β̂(k+1), q| θ̂(k)).

where

u(k) =
1
n

n

∑
i=1

û(k)
i , S(k)

u =
1
n

n

∑
i=1

û(k)
i ti, and R(k)

u =
1

1
n ∑n

i=1
( û(k)

i
ti

) ,

with K(x) =
{

1
n ∑n

i=1
( 1

x+ti

)}−1
. The iterations are repeated until a suitable convergence rule is

satisfied, say |`(θ̂(k+1)
) − `(θ̂

(k)
)| sufficiently small. Useful starting values required to implement

this algorithm are those obtained under the normality assumption or by using the modified moment
estimates α̂MM, β̂MM and q̂MM.

Remark 4. (1) Note that, if q tends to ∞, then the estimates of α and β in M-step reduce to those when the BS
distribution is used.
(2) Note that CM-Step II requires a one-dimensional search for the root of β, respectively, which can easily
be achieved by using the “uniroot" function built in R. On the other hand, CM-Step III can be very slow.
An alternative is to use the idea by Lin and Liu [15] (Section 3), and it can be defined as:
CML-step: Update q(k) by optimizing the following constrained actual log-likelihood function

q̂(k+1) = arg max q ` (α̂(k+1), β̂(k+1), q).

The corresponding standard errors (s.e.) are calculated from the observed information matrix.

4. Simulation

In this section, a simulation study is carried out to illustrate the behavior of EM algorithm to
obtain MLEs of the parameters. By using the representation given in Equation (6), it is possible to
generate random numbers for the GMSBS(α, β, q) distribution, which leads to the following algorithm.

1. Simulate Zi ∼ N(0, 1), i = 1, 2, ..., n.
2. Simulate Vi ∼ Ga(2q, q), i = 1, 2, ..., n, with q > 0.
3. Compute Xi =

Zi
Vi

. Then, Xi ∼ GMS(0, 1, q), i = 1, 2, ..., n.

4. Compute Ti = β

(
α
2 Xi +

√(
α
2 Xi
)2

+ 1
)2

, α > 0, β > 0. Ti ∼ GMSBS(α, β, q) for i = 1, 2, ..., n.

Table 1 shows results of simulation studies, which illustrate the behavior of the MLEs for
1000 samples of sizes n = 50, 100, and 200 generated from a population distributed as GMSBS(α, β, q)
for different values of α, β and q. For each generated sample, MLEs were computed numerically using
a EM-algorithm previously proposed. Bias, standard error (s.e) and

√
MSE of estimates are reported.
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Results in Table 1 show that, when the sample size increases, MLEs’ bias tends to zero, and their
standard errors and

√
MSE

′
s decrease. Therefore, they are consistent.

Table 1. Empirical bias, standard error and
√

MSE for the MLEs of α, β, and q using the EM-algorithm.

True Value n = 50 n = 100 n = 200

α β q θ̂ bias s.e.
√

MSE bias s.e.
√

MSE bias s.e.
√

MSE

1 2 2 α̂ 0.0578 0.2267 0.2327 0.0455 0.1596 0.1588 0.0373 0.1110 0.1113
β̂ 0.1191 0.6707 0.7412 0.0702 0.4794 0.4953 0.0367 0.3273 0.3352
q̂ 1.0222 1.8522 3.5878 0.3839 0.7437 1.2601 0.1959 0.4183 0.4789

2 α̂ 0.1373 0.4633 0.4914 0.1012 0.3235 0.3282 0.0753 0.2290 0.2279
β̂ 0.1871 0.9125 1.0495 0.0635 0.6299 0.6729 0.0489 0.4542 0.4677
q̂ 1.3715 2.2452 5.0045 0.3781 0.7066 0.9840 0.1812 0.4254 0.4560

3 α̂ 0.2858 0.7062 0.7504 0.1563 0.4872 0.4798 0.1264 0.3398 0.3385
β̂ 0.2776 0.9688 1.1139 0.1234 0.6537 0.7049 0.0535 0.4630 0.4451
q̂ 1.2999 2.0412 4.3190 0.3930 0.7107 0.9874 0.1928 0.4161 0.4836

1 1 1 α̂ 0.1946 0.3061 0.6894 0.1402 0.2041 0.2457 0.1535 0.1373 0.3721
β̂ 0.2621 0.4270 4.8105 0.0401 0.2711 0.2847 0.0333 0.1870 0.1996
q̂ 0.3416 0.4464 0.6948 0.2206 0.2528 0.3243 0.1723 0.1647 0.2305

2 α̂ 0.1741 0.3155 0.3550 0.1443 0.2088 0.2595 0.1461 0.1326 0.3455
β̂ 0.1844 0.8233 0.9462 0.0805 0.5533 0.5930 0.0465 0.3566 0.3866
q̂ 0.3206 0.4777 0.8124 0.2104 0.2537 0.3223 0.1745 0.1609 0.2323

3 α̂ 0.1689 0.3042 0.4005 0.1405 0.2041 0.3346 0.1351 0.1348 0.2716
β̂ 0.3346 1.2332 2.3262 0.1246 0.7904 0.8285 0.0445 0.5271 0.5435
q̂ 0.3351 0.4584 0.6384 0.2132 0.2594 0.3229 0.1701 0.1608 0.2274

0.5 1 1 α̂ 0.0734 0.1447 0.1658 0.0712 0.0987 0.1625 0.0667 0.0659 0.1430
β̂ 0.0314 0.1952 0.2170 0.0091 0.1306 0.1365 0.0064 0.0889 0.1240
q̂ 0.2724 0.4067 0.5825 0.2005 0.2432 0.3146 0.1656 0.1588 0.2270

2 α̂ 0.0196 0.1174 0.1117 0.0173 0.0783 0.0732 0.0183 0.0566 0.0570
β̂ 0.0193 0.1848 0.1798 0.0080 0.1237 0.1215 0.0041 0.0879 0.0836
q̂ 0.9310 1.7205 4.1727 0.2917 0.6519 0.7662 0.1691 0.4138 0.4612

3 α̂ 0.0138 0.0993 0.0995 0.0148 0.0695 0.0660 0.0110 0.0488 0.0482
β̂ 0.0118 0.1663 0.1742 0.0133 0.1207 0.1182 0.0009 0.0829 0.0832
q̂ 2.4498 4.3431 7.8277 0.7645 1.4680 3.0066 0.2994 0.7723 0.9407

5. Applications

Next, the model is illustrated with two datasets collected by the Department of Mines of the
University of Atacama, Chile, representing Neodymium and Nickel levels in samples of minerals.

5.1. Neodymium Dataset

The descriptive summaries are given in Table 2 where t denotes the sample mean, St the sample
standard deviation, g1 the sample skewness coefficient, and g2 the sample kurtosis coefficient. GMSBS,
MSBS and SBS distributions are fitted to this dataset, the parameters are estimated via maximum
likelihood (EM-algorithm), abd their corresponding standard errors are given in parentheses in Table 3.
As goodness of fit criteria, the Akaike Information Criterion (AIC) and QQ-plots are considered.
Recall that AIC = −2 ln(likelihood) + 2p where p is the number of parameters to be estimated [16].
The AIC values we obtained are given in Table 3. They suggest that GMSBS model provides the best
fit to these data since this model exhibits less AIC.

Figure 4 depicts the histogram for the data with the fitted density and the empirical cdf along
with the cdf estimated by GMSBS model, as well QQ-plots given in Figure 5; these also show the good
agreement of the GMSBS model for the Neodymium data.
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Table 2. Summary of Neodymium dataset.

n t St g1 g2

86 35.02 35.2307 3.648 18.216

Table 3. MLEs for Neodymium dataset, their standard errors (in parenthesis) and AIC values.

Parameter SBS MSBS GMSBS

α 0.289 (0.064) 0.290 (0.105) 0.2087 (0.0366)
β 27.247 (1.592) 27.683 (5.983) 28.1102 (1.4994)
q 1.578 (0.426) 2.009 (0.570) 2.5661 (0.9489)

AIC 743.9906 741.3566 739.9394
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Figure 4. (left) Histogram of the Neodymium data with estimated pdf of GMSBS distribution; and
(right) empirical cdf (dotted lines) with estimated cdf of GMSBS model.
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Figure 5. Q-Q plots in Neodymium dataset for: SBS model (left); MSBS model (middle); and GMSBS
model (right)

5.2. Nickel Dataset

The descriptive summaries are given in Table 4. GMSBS, MSBS and SBS distributions are
fitted to this dataset, the parameters are estimated via maximum likelihood (EM-algorithm), and
their corresponding standard errors are given in parentheses in Table 5. The AIC values we obtained
are given in Table 5. They suggest that GMSBS model provides the best fit to these data since this
model exhibits less AIC.

Figure 6 depicts the histogram for the data with the fitted density and the empirical cdf along
with the cdf estimated by GMSBS model. QQ-plots are given in Figure 7. All of them show the good
agreement of the GMSBS model for the Nickel data.
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Table 4. Summary of Nickel dataset.

n t St g1 g2

85 21.59 16.5732 2.3922 11.325

Table 5. MLEs for Nickel dataset, their standard errors (in parenthesis) and AIC values.

Parameter SBS MSBS GMSBS

α 0.3877 (0.0918) 0.3266 (0.0852) 0.2490 (0.0330)
β 17.7982 (1.2464) 17.6017 (1.1027) 17.4961 (1.0622)
q 2.0118 (0.6967) 2.0932 (0.6284) 3.1927 (1.2341)

AIC 670.742 668.251 666.571

Nickel

d
e
n
s
it
y
 f
u
n
c
ti
o
n

0 20 40 60 80 100 120

0.00

0.01

0.02

0.03

0.04

0.05

GMSBS

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Nickel

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

GMSBS

Figure 6. (left) Histogram of the Nickel data with estimated pdf of GMSBS distribution; and (right)
empirical cdf (dotted lines) with estimated cdf of GMSBS model.
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Figure 7. Q-Q plots in Nickel dataset for: SBS model (left); MSBS model (middle); and GMSBS
model (right)
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Appendix A. Some Proofs of Results Given in Section 2

In this appendix, details about results dealing with the convergence in law of a GMSBS(α, β, q)
model to a BS distribution (q → ∞), moments, skewness and kurtosis coefficients for the
GMSBS(α, β, q) are given.

Proof of Proposition 3. To obtain the result proposed in Proposition 3, we must prove that
limq→∞ FTq(t) = FT(t), with FT() the cdf of a BS(2α, β) model (see, for instance, Rohatgi and Ehsanes
Saleh, [17]).

Since Tq ∼ GMSBS(α, β, q), then we can write Tq = h(Xq) where Xq ∼ GMS(0, 1, q) and h(·) was
given in Equation (6). Recall that we have the following relationship for the cdf of Tq

FTq(t) = FXq(w(t)) with w(t) =
1
α

(√
t
β
−
√

β

t

)
. (A1)

It can be seen in Reyes et al. [9] Proposition 3 that, given Xq ∼ GMS(0, 1, q), then Xq
L−→ X as

q→ ∞ where X ∼ N(0, 2), that is,

lim
q→∞

FXq(w) = Φ
(w

2

)
, with Φ() : cdf of a N(0, 1).

So, taking the limit in Equation (A1), we have

lim
q→∞

FTq(t) = lim
q→∞

FXq(w(t)) = Φ
(

w(t)
2

)
= Φ

(
1

2α

(√
t
β
−
√

β

t

))
(A2)

that corresponds to the cdf of a BS(2α, β) distribution. Thus, we obtain the proposed result.

Proof of Proposition 4. By using the stochastic representation given in Equation (6), we have

E [Tr] = βrE

(α

2
X +

√(α

2
X
)2

+ 1

)2r
 ,

with X ∼ GMS(0, 1, q).

By using the binomial formula

E [Tr] = βr
2r

∑
k=0

(
2r
k

)
E

[((α

2
X
)2

+ 1
)(k/2) (α

2
X
)2r−k

]
, (A3)

and therefore E [Tr] exists iff E
[
X2r] exists, that is, iff 2r < q (Reyes et al. [9], Proposition 4). Next we

also show that Equation (A3) allows us to obtain the explicit expression of E [Tr] given in Equation (15).
Note that for odd s

E

[((α

2
X
)2

+ 1
)t (α

2
X
)s
]
= 0,

and therefore for y = k
2 we can write

E [Tr] = βr
r

∑
y=0

(
2r
2y

)
E
[((α

2
X
)2

+ 1
)y (α

2
X
)2(r−y)

]

= βr
r

∑
y=0

(
2r
2y

) y

∑
s=0

(
y
s

)(α

2

)2(r+s−y)
E
[

X2(r+s−y)
]
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where X ∼ GMS(0, 1, q) is such that E[X2j] = 2jq2j(2j)!Γ(q−2j)
Γ(q) for q > 2j, as can be seen in Reyes et al. [9].

Taking j = r + s− y, the result proposed in Equation (15) is obtained.

Proof of Corollary 3. From Proposition 4, it is straightforward that µ1 = β
[
2α2 q2Γ(q−2)

Γ(q) + 1
]

, q > 2

µ2 = β2
[
24α4 q4Γ(q−4)

Γ(q) + 8α2 q2Γ(q−2)
Γ(q) + 1

]
, q > 4

µ3 = β3
[
480α6 q6Γ(q−6)

Γ(q) + 144α4 q4Γ(q−4)
Γ(q) + 18α2 q2Γ(q−2)

Γ(q) + 1
]

, q > 6

µ4 = β4
[
13440α8 q8Γ(q−8)

Γ(q) + 3840α6 q6Γ(q−6)
Γ(q) + 480α4 q4Γ(q−4)

Γ(q) + 32α2 + q2Γ(q−2)
Γ(q) + 1

]
, q > 8,

and, thus, the proposed results follow by using the notation introduced in Equation (16).

Corollary A1 (Central moments). Let T ∼ GMSBS(α, β, q). Then,
(1) The variance of T, Var(T), was given in Equation (17).
(2) The central moment of order 3 is

E[(T − µ1)
3] = β3

[
α4d4(q) + α6d6(q)

]
, q > 6, (A4)

where

d4(q) = 72
q4

(q− 4)4
− 24

q4

{(q− 2)2}2 (A5)

d6(q) = 480
q6

(q− 6)6
− 144

q6

(q− 4)4 (q− 2)2
+ 16

q6

{(q− 2)2}3 . (A6)

(3) The central moment of order 4 is

E[(T − µ1)
4] = β8

[
α4 f4(q) + α6 f6(q) + α8 f8(q)

]
, q > 8, (A7)

where

f4(q) = 48
q4

(q− 4)4
(A8)

f6(q) = 1920
q6

(q− 6)6
− 576

q6

(q− 4)4 (q− 2)2
+ 96

q6

{(q− 2)2}3 (A9)

f8(q) = 13440
q8

(q− 8)8
− 3840

q8

(q− 6)6 (q− 2)2
+ 576

q8

(q− 4)4 {(q− 2)2}2 (A10)

− 48
q8

{(q− 2)2}4 . (A11)

Proof. They are obtained by considering the results given in Corollary 3 and the following relationships

Var(T) = µ2 − µ2
1

E[(T − µ1)
3] = µ3 − 3µ1µ2 + 2µ3

1

E[(T − µ1)
4] = µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

Proposition A1 (Skewness and kurtosis coefficient). For T ∼ GMSBS(α, β, q) distribution the skewness,√
β1, and kurtosis, β2, coefficients can be calculated as
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√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3/2

β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2

From previous expressions, we have that

√
β1 =

α

8
d4(q) + α2d6(q)

{c2(q) + α2c4(q)}3/2 (A12)

β2 =
1

16
f4(q) + α2 f6(q) + α4 f8(q)
{c2(q) + α2c4(q)}2 (A13)

Appendix B. Likelihood Equations

The likelihood equations are

n

∑
i=1

G1(wi)

G(wi)
=

n
α

(A14)

n

∑
i=1

G2(wi)

G(wi)
=

n
2β
−

n

∑
i=1

1
ti + β

(A15)

n

∑
i=1

G3(wi)

G(wi)
= −n(1 + log 2 + log q) + nψ(q) (A16)

where

G1(wi) =
∂G(wi)

∂α
=

1
α3

(
ti
β
+

β

ti
− 2
) ∫ ∞

0
vq+2e−2qvφ(wiv) dv

G2(wi) =
∂G(wi)

∂β
=

1
2α2β2

1
ti
(t2

i − β2)
∫ ∞

0
vq+2e−2qvφ(wiv) dv

G3(wi) =
∂G(wi)

∂q
=

∫ ∞

0
(ln v− 2v)vqe−2qvφ(wiv) dv

and ψ(q) = Γ′(q)/Γ(q) is the digamma function.
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