
applied
sciences

Article

Business Process Configuration according to Data
Dependency Specification

Luisa Parody 1,*,† , María Teresa Gómez-López 2,†, Angel Jesús Varela-Vaca 2,†

and Rafael M. Gasca 2,†

1 Dto. Métodos Cuantitativos, Universidad Loyola Andalucía, 41014 Seville, Spain
2 Dto. Lenguajes y Sistemas Informáticos, Universidad de Sevilla, 41004 Sevilla, Spain;

maytegomez@us.es (M.T.G.-L.); ajvarela@us.es (A.J.V.-V.); gasca@us.es (R.M.G.)
* Correspondence: mlparody@uloyola.es; Tel.: +34-955-641-659
† These authors contributed equally to this work.

Received: 3 October 2018; Accepted: 17 October 2018; Published: 22 October 2018
����������
�������

Abstract: Configuration techniques have been used in several fields, such as the design of business
process models. Sometimes these models depend on the data dependencies, being easier to describe
what has to be done instead of how. Configuration models enable to use a declarative representation
of business processes, deciding the most appropriate work-flow in each case. Unfortunately,
data dependencies among the activities and how they can affect the correct execution of the process,
has been overlooked in the declarative specifications and configurable systems found in the literature.
In order to find the best process configuration for optimizing the execution time of processes according
to data dependencies, we propose the use of Constraint Programming paradigm with the aim of
obtaining an adaptable imperative model in function of the data dependencies of the activities
described declarative.

Keywords: business process modelling; declarative model; imperative model; model configuration;
constraint programming

1. Introduction

A business process, henceforth referred to as BP, consists of a set of activities that are executed
in coordination within an organizational and technical environment. These activities jointly attain
a business goal [1]. Several languages propose an imperative representation of business processes,
whose specification allows business experts to describe an explicit order of execution between activities,
and to transform the process into an executable model (for example, that activities A, B and C are
executed sequentially, or activities D and E are executed in parallel) [2–6]. Sometimes the order
of the activities is therefore derived from the data dependencies, since these dependencies allow
different configurations. In those cases, the imperative languages fail in the consideration of the data
dependencies between activities. Configurable work-flows permit to include a degree of freedom
about how the activities are related according to their data dependencies.

Configurable models tend to use a declarative representation of the configurable aspects.
Although the imperative process models are significantly more understandable than declarative
models [7,8], it is sometimes very difficult or even impossible to describe a problem in an imperative
way [9,10]. One of the cases in business processes, where this difficulty can be found, is when the
data relation can determine different activities order. The variation of the model is the reason several
authors have proposed languages for the definition of BPs as declarative models [11–14]. Unfortunately,
the data dependencies and its relation with declarative description has not been faced up.

Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6096-8564
https://orcid.org/0000-0001-9953-6005
http://dx.doi.org/10.3390/app8102008
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/10/2008?type=check_update&version=2

Appl. Sci. 2018, 8, 2008 2 of 26

This paper develops two ideas: (1) propose a declarative description of the activities that form a BP,
including the data dependencies between them; (2) based on this declarative model, the declarative BP
is automatically transformed into an imperative model where the work-flow is defined to minimize
the execution time of the instances when the process is executed, and keeping the data dependencies
relations. To obtain the imperative model, we propose the use of Constraint Programming, an Artificial
Intelligence technique.

The analysis of the data interchanged during the process execution can affect to two aspects
to optimize a BP: (i) attainment of a better business product, for example, by reducing the costs
or satisfying customers’ preferences; and, (ii) the reduction of the execution time of the instances.
The problem of determining the best product in terms of the input and output data of the activities
is presented in [15]. In these studies only the first type of aspect is solved, specifically, the way in
which the input data can influence the successful execution of a process is analyzed in order to find an
optimized product. On the other hand, in the proposal presented in this paper, these previous works
are extended to include the second aspect, the optimization of the execution of the instances regarding
the data dependencies. How to order the activities by considering these data dependencies in an
imperative representation is a hard and difficult task. It is a hard task because it requires an exhaustive
analysis of the data dependencies, and it is a difficult task because the graphical representation of the
process is not simple, being able to become a “spaghetti” process [16]. To support business experts in
the design task, we propose an automatic transformation from the declarative model into an optimal
imperative model where the execution time is minimized. The main reason of transforming declarative
model into an imperative model is that imperative models are easier to implement in commercial
Business Process Management Systems (BPMS).

Therefore, the aim of this article is to present a framework capable of obtaining the model
configuration of the imperative description from a declarative specification based on data dependencies
using Constraint Programming. This configurable system must also be able to detect errors and
omissions in the declarative model, and to reason and validate the models through the different stages
of the transformations. To the best of our knowledge, there are no proposals of declarative specification
focused on data management, that create optimal executable BP using techniques of configuration.

The rest of the paper is organized as follows: Section 2 presents the example used in the paper
to set out the proposal. Section 3 describes related work. Section 4 presents the Conf-BP Framework.
Each individual component of the framework is then described in detail. Section 4.1 formalizes
the declarative specification and applies it to the example. Section 4.2 proposes the automatic
transformation of the declarative configurable model into a imperative BP. Section 4.3 defines the
configurable system in charge of the transformation from declarative to imperative modelling using
Constraint Programming, and applies it to the example. Results are presented by applying the
automatic transformation to the example in Section 5. Finally, conclusions are drawn and future work
is proposed in Section 6.

2. Detailing an Example

One clear example, where the fundamental aspect is the successful execution of a BP, arises in
the form of the organization of a trip. Generally, the customer searches by hand on the Internet for
the cheapest combination of flight and hotel, for specific dates and cities. In addition, if the results
obtained remain unsatisfactory, then other dates are sought until a convenient combination is found.
Moreover, if necessary and also cheaper, a car can be rented in order to drive to another city to take
a flight from another airport, thereby expanding the range of cities of departure and arrival.

To obviate the search of several combinations by hand, it is possible to combine the activities that
represent the three providers (Hotel, Flight, and Car Rental Providers) into a single BP. The question
becomes how to configure the activities in a business process since the input and output are related
between them. Therefore, the model of the BP implies two difficulties:

Appl. Sci. 2018, 8, 2008 3 of 26

• To find the input of the activities that optimize the trip by means of minimizing the price:
The process has to provide customers with various possibilities of trips with flights, hotel and car
rental (if necessary), while taking into account the existing combinations between a set of possible
dates and airports. In addition, there is an objective function to optimize which selects only one
of all the possible combinations obtained by the process. An evaluation and a proposal of this
part of the problem is analyzed in [15].

• To obtain an imperative model that minimizes the execution time of the BP taking into account
the data dependencies: Although the activities to enjoy during the trip are: “take a car to go to
the airport”, “catch the flight” and “arrive to the hotel”, the process of booking each part of the trip
does not have to follow the same sequence. If the input data of each activity were known, all the
activities related to the provider could be executed in parallel. The problem arises when certain
activity inputs are related to other activity outputs, or when the activities are executed or not
depending on the information obtained from activities executed previously. The objective of this
paper is the use of Artificial Intelligence techniques based on Constraint Programming in order to
create an imperative model where the data dependencies are taken into account to minimize the
execution time of each instance. For example, it is possible for a flight to arrive at its destination
on a different day to when it takes off (overseas route), and therefore the check-in date in the
hotel cannot be determined until this information is known. The question is: how to configure
a business process formed by these activities to minimize the execution time of the instances?
This implies the analysis of every combination of activities and to select the control flow gates
that relate them.

3. Related Work

The configuration problems have been used in various industrial application fields, such as
computer networks, electrical engineering, telecommunication, data centers [17], financial services,
or surveillance [18]. Furthermore, configuration has long been part of the field of Artificial Intelligence.
Certain attempts to formalize configuration have been proposed in [19,20]. Many studies relate the
term “configuration” to the setting of parameters [21,22]. For instance, Czarnecki et al. in [23] describes
a configuration consisting of the features that are selected according to the group and the feature
cardinalities defined by a feature diagram. They include a translation from the feature model into
a context-free grammar. On the other hand, Gottschalk et al. in [24] include configurable elements
in order to enable the modification of the behaviour of the work-flow. The configurable elements
permit to activated, blocked, and hidden components of the work-flow with the aim of deriving
individual work-flow variant from a more general model. The configuration to determine the actions
that should be performed to obtain an individualized model is presented in [25]. In this case, a set
of questionnaire models are analyzed to detect circular dependencies and to ensure the consistency
of domain constraints. Moon et al. in [26] describes an approach for examining the variability of
a BP. The proposed tool enables to define an overall scheme and the concept of variability in a BP,
and transform it into a specific variation of the BP. Reijers et al. in [27] propose an extension of
event-driven process chains to describe in a single model a set of similar processes. Their proposal
includes a unique aggregated process model which consists of a common part with the commonalities
of the aggregated processes, and the non-common elements of the aggregated processes. Kumar and
Yao [28] configure flexible processes by associating business rules with a process template. They build
a process tree representation to facilitate the process configuration. Finally, Baran et al. in [29] establish
the configuration of various processes through the hierarchization. The aim is to reuse the similar
parts of the model by encapsulating it in different levels. However, we focus on the definition of
configuration which consists of finding sets of specific objects that satisfy the properties of a given
model, such as in [30–32].

In this paper, we propose the application of the configuration techniques based on Artificial
Intelligence to business process models. These techniques apply declarative knowledge representation

Appl. Sci. 2018, 8, 2008 4 of 26

and reasoning methods based on Constraint Satisfaction Problems [33]. Unfortunately, BPs are not
typical configuration problems oriented to execute simple tasks [34]. This lack of simplicity is due to
the fact that different control flow patterns must be combined in an unknown way taking into account
the possible instances that will be executed at runtime.

Several perspectives can be analyzed in configuration area [35]. There is quite a long history
of research dedicated to the development of configuration knowledge representation language [24].
Configuration in Business Processes [36] deals with the problem of managing families of business
processes, i.e., business processes that are similar to one another in many ways, yet differ in some
other ways from one organization, project or industry to another. This problem arises for example
in the context of multinational companies that need to localize their business processes to different
legislation, compliance regulations, quality requirements, etc. It also manifests itself in the context of
acquisition projects, where an organization needs to merge their own processes with the ones of the
acquired organization [37]. In the case of the data relation, implies the possibility to create business
process models only modifying the data input and output relation and keeping the rest of information.
On the other hand, Vanderfeesten et al. in [38,39] define a product-based workflow support to create
an optimized process based on a set of recommendations. They firstly analyze the data elements to
combine them into a product data model. Then, they select a strategy and configure a product-based
workflow system. However, the resulting product model does not make any choice about the ordering
of activities.

The transformation from declarative to imperative models with data dependencies has never been
studied as a configuration problem. However, some papers in the literature can be found about the
transformation between models in BPs. Kulza and Honkisz in [40] transform a Semantic of Business
Vocabulary and Rules (SBVR) [41] into a BPMN model. The work is oriented to the transformation of
business rules rather than to the dependencies between data. In [42], Natschläger et al. extend BPMN
with Deontic Logic. The extension aims to improve the readability and the overall structural complexity,
and avoid duplication. The extension proves that a transformation by applying graphs is trusted.
In [43], Wiśniewski et al. develop an approach by providing a method for business process modelling.
The proposal consists of collecting data coming from different participants and merging it into one
declarative specification of performed tasks. Based on this semi-formal description, authors generate
synthetic logs which are then used to obtain the BPMN model. Although their BPMN composition is
also based on graphs, the main difference with our proposal lies in that they do not take into account
data dependencies for the process modeling.

Regarding the definition of logical dependencies between different branches in a graph-based
structure, several studies are presented. Borrego et al. in [44] diagnose the correctness of semantic
workflow models based on graph-theory and Artificial Intelligence techniques. Vanhatalo et al.
in [45] present various techniques for automatic workflow graph refactoring and completion. Finally,
Hasanov in [46] analyses the OR gateways in the context of conformance checking.

Although a certain number of these papers are focused on defining the interaction between various
participants in order to achieve business goals, none of them deals with the type of problems presented
in this work: the creation of an imperative model to minimize the BP execution time according to
data dependencies.

4. Conf-BP Framework: A Configurable System to Create Imperative BP

To generate an imperative model, we propose a framework, called Conf-BP (Configuration of
Activities in Business Processes). Conf-BP creates automatically an imperative model from its data
declarative description. Therefore, the main objective of Conf-BP is to analyze the data dependencies
since a business expert knows what is required (since the specification of the problem is given), but not
the specific work-flow to know how to obtain it in an optimal way. The configurable model specifies the
activities involved and the data relation between them. The relation between the activities is provided
through the relationships and constraints of the data dependencies. Once all these features are specified,

Appl. Sci. 2018, 8, 2008 5 of 26

the framework is used to analyze the relationships between the activities, and to create the work-flow
for an imperative model. The standard Business Process Model and Notation (BPMN) is used to
represent the imperative model, since it can be enacted in any of the existing commercial BPMSs.

As shown in Figure 1, Conf-BP Declarative Specification (ConfD-BP) represents the highest level
of abstraction, where the experts specify the model. The second stage consists of a configuration system
in charge of the transformation from the declarative specification into a specific model for a particular
imperative language, BPMN in our case. This transformation is performed in two steps: (1) the
definition of a Constraint Optimization Problem which obtains the time interval relations between the
activities; and (2) the application of an algorithm that builds the work-flow model. This algorithm
creates the work-flow that minimizes the execution time of the process. Finally, Conf-BP Imperative
Modelling (ConfM-BP) completes the third stage, by deploying this configuration into a BPMS. A more
detailed description of the Conf-BP stages is presented below.

ConfD-BP
(declarative) Automatic Configuration ConfM-BP

(imperative)

Variables

Domains

Constraints

Obj. Function

COP Model Configuration
solver

Business Process
Model Configured

translate

Business
Expert

Execute
Sub-process

+

Supply Input
Data Values

Show
Results

Im
pe

ra
tiv

e
BP

More input
data to

analyse?

Ac
tiv

iti
es
 D
ep

en
de

nc
ie
s

Car Rental Search 1

Hotel
Search

t1 t2
t

Flight
Search

t3

Car Rental
Search 2

Flight
Search

Car Rental
Search 1

Hotel
Search

Car Rental
Search 2

Flight
Search

Car Rental
Search 1

Hotel
Search

Car Rental
Search 2

Figure 1. Conf-BP Architecture.

4.1. Conf-BP Declarative Specification (ConfD-BP). A Formalization of the Language

The first stage of the framework is the specification of the configurable model in a declarative
way. The declarative language and the grammar used in this step is DOOPT-DEC [15]. With the
aim of better understand the type of problems solved in this article, the parts of the configurable
declarative model are detailed in this section. The elements are shown in Figure 2, and they are
described following. As the configurable system can be combined with other elements in a more
complex work-flow, we provide the way to include the configurable description into a sub-process.

...
PDI1, …, PDIn

PDI

PDO1, …, PDOm

PDO

A

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

B

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

C1, …, Cn

ID

C1, …, Cn

ID

 f: v

ADI ADO

Figure 2. Parts of the Configurable Declarative Description [15].

Appl. Sci. 2018, 8, 2008 6 of 26

To introduce the formalization of the data provided and combined (see Figure 2), the different
descriptions to include are divided into: (i) Sub-process description, including the descriptions
of the components associated with the activities of the imperative part, detailed in Section 4.1.1;
and (ii) Sub-process relationships, which is the declarative description of the relationships between the
components through the data-flow (DF), addressed in Section 4.1.2.

4.1.1. Sub-Process Description

The sub-process description includes the components associated with the activities, gateways,
and control-flow which are known and can be represented in an imperative way. Taking A as the
finite set of activities {A1, . . ., Ai, . . ., An} contained in a determined BP, the following definitions
are introduced.

Definition 1. ACTIVITIES_DATA_INPUT(ADI) and ACTIVITIES_DATA_OUTPUT(ADO)

represent the sets containing, respectively, all the input data and output data involved in the execution of all
the activities.

Within the set ADI/ADO, containing all the input (output) variables, it is possible to identify the
input (output) variables of each activity, defined as follows.

Definition 2. DATA_INPUT (AI) and DATA_OUTPUT (AI) describe the set of input and output data of
an activity (AI) involved in the sub-process, respectively, so that

∀Ai, DATA_INPUT (Ai) ⊆ ADI, where ADI ⊂ DF and
∀Ai, DATA_OUTPUT (Ai) ⊆ ADO, where ADO ⊂ DF

Since various activities can share the same data input (or output), then it is also possible that:

DATA_INPUT (Ai) ∩ DATA_INPUT (Aj) 6= ∅, for i 6=j and
DATA_OUTPUT (Ai) ∩ DATA_OUTPUT (Aj) 6= ∅, for i 6=j

The union of all the DATA_INPUT sets and all the DATA_OUTPUT sets of all the activities,
constitute the sets ADI and ADO respectively, with non-repetitive elements.

ADI = {DATA_INPUT (A1) ∪ . . . ∪ DATA_INPUT(An)}
ADO = {DATA_OUTPUT(A1) ∪ . . . ∪ DATA_OUTPUT (An)}

Likewise, the specific variables that are inputs or outputs of the overall sub-process can be
distinguished. They represent the information that flows from the customer to the sub-process and
vice versa:

Definition 3. PROCESS_DATA_INPUT (PDI) is the set of input variables of the sub-process,
which determines the information provided and defined by the customer. PDI is composed of a subset of
variables of ADI.

PDI ⊂ ADI

Definition 4. PROCESS_DATA_OUTPUT (PDO) is the set of output variables of the sub-process. PDO is
composed of a subset of variables of ADO.

PDO ⊆ ADO

Appl. Sci. 2018, 8, 2008 7 of 26

4.1.2. Sub-Process Relationships

There exist different relationships between the data inputs and data outputs defined in the
sub-process description. Those relationships are expressed as constraints, both at activity and at process
level, giving rise to the sub-process relationships, with the following definitions:

Definition 5. PRE (Ai) is the set of constraints that limits the specific values of the DATA_INPUT (Ai)

that must be satisfied to execute activity Ai. Likewise, POST (Ai) is the set of constraints that limits the specific
values of the DATA_OUTPUT (Ai) that must be satisfied after the execution of activity Ai.

Definition 6. INPUT_CONSTRAINT (OUTPUT_CONSTRAINT) relates the values of variables of
PDI/PDO with variables of DATA_INPUT/DATA_OUTPUT can take according to the PDI/PDO values
in each instance, and the possible values between the input and output of the activities.

Definition 7. OBJECTIVE_FUNCTION (OBJ_FUNC) is an optimization function defined in terms of
the data output of the activities (ADO).

The objective of this optimization function is either to maximize or to minimize some of the
output data that represents the business product, which constitutes the outcome of the process.

OBJ_FUNC : f (v ⊆ ADO)→ value, where f is MAX or MIN

The result of this optimization problem is a set of input values that satisfies the objective function,
the pre and post-conditions of the activities, and also satisfies the input and output constraints.

The set of input values that optimizes the output is found at runtime. The role of the constraints
is to determine the possible values that this input and output data can take. All the constraints
(INPUT_CONSTRAINT, OUTPUT_CONSTRAINT, PRE, and POST) are always defined at design
time by a business expert who is familiar with the problem, although they are solved for each instance
at runtime. Among every possible tuples of solutions that satisfy the constraints, the outcome of the
sub-process will be the one which optimizes the variable defined in the optimization function.

4.1.3. Grammar

The elements used in the declarative description, describe the data relationship by means of
numerical constraints. These constraints are defined by the following grammar, which is an extension
of the grammar included in [15], where Variable and Constant, which represent the constant value
for the variables, can be defined using Integer, Natural, Float, or String domains. On the other hand,
Set can be defined as a set of Constant values of a specific Variable. The IF-THEN constraints have
been included to DOOPT-DEC grammar [15], which are equivalent to the implication logic operator
(→). IF-THEN constraints are used to represent that the relation of values between some data is
conditioned to the value of others. The grammar of constraints is the following:

Constraint := ’IF’ General−Constraint
’THEN’ General−Constraint
| General−Constraint

General−Constraint := Atomic−Constraint BOOL−OP General−Constraint
| Atomic−Constraint
| ‘¬’ Constraint
| Variable SET−FUNCTION Set

BOOL−OP:= ‘∨’ | ‘∧’
SET−FUNCTION:= ‘∈’ | ‘/∈’
Atomic−Constraint:= function PREDICATE function
function:= Variable FUNCTION−SYMBOL function
| Variable

Appl. Sci. 2018, 8, 2008 8 of 26

| Constant
PREDICATE:= ‘=’ | ‘ 6=’ | ‘<’ | ‘≤’ | ‘>’ | ‘≥’
{For the String domain only ‘=’ and ‘ 6=’ are allowed }

FUNCTION−SYMBOL:= ‘+’ | ‘−’ | ‘∗’ | ‘/’
{These operators are only applicable to Numerical variables}

4.1.4. Specification Applied to the Trip Planner Example

In the trip planner example, the activities involved in the model share some data, being necessary
to create a work-flow aware data input and output. Figure 3 shows the trip example following the
formalization detailed in the previous section and the notation described in [15].

 departDate ≥ SystemDate,
 returnDate ≥ departDate

<<Pre>>

 carRentalInformation ≠null →
carRentalPrice > 0

<<Post>>

departingFrom,
goingTo,

departDate,
returnDate

DI

DO

flightPrice,
flightInformation,

DI

+

totalPrice
PDO

MIN
totalPrice

Flight
Search

departingFrom,
goingTo,

departDate,
returnDate,

airportDepartingFrom,
airportGoingTo.

PDI

location,
checkInDate,
checkOutDate

DI

DO

hotelPrice,
hotelInformation,

DI

hotelInformation ≠null →

hotelPrice > 0

<<Post>>

departingFrom,
goingTo,

departDate,
returnDate

DI

DO

carRentalPrice,
carRentalInformation,

DI

Car Rental
1 Search

DI

departingFrom,
goingTo,

departDate,
returnDate

Car Rental
2 Search

 departDate ≥ SystemDate,
 returnDate ≥ departDate

<<Pre>>

carRentalInformation ≠null →

carRentalPrice > 0

<<Post>>

departDate ≥ SystemDate,
 returnDate ≥ departDate,
departingFrom ≠ goingTo

<<Pre>>

flightInformation ≠null →

flightPrice > 0

<<Post>>

 checkInDate ≥ SystemDate,
checkInDate < checkOutDate

<<Pre>>

Hotel
Search

DO

carRentalPrice,
carRentalInformation,

DI

+

departDate = AF.departDate,
AF.departDate = returnDate,

...

ID

totalPrice = AF.flightPrice + AH.hotelPrice +
ACR1.carRentalPrice + ACR2.carRentalPrice

ID

Trip Planner Sub-Process

Figure 3. Example of Trip Planner Formalization using DOOPT-DEC [15].

Hence, there are eight PDI whose values are given by the customer:

• departingFrom: city from where the customer departs.
• goingTo: destination city.
• departDate: the day that the customer prefers to depart.
• returnDate: the day that the customer prefers to return.
• airportDepartingFrom: the departure airport to catch the flight.
• airportGoingTo: the arrival airport for the flight.

Four different activities are combined in order to perform the package trip offered to customers.
This package trip is composed of flights, hotel rooms and, if necessary, the renting of a car to drive
to an alternative departure airport, or from the arrival airport to the destination city. Each activity

Appl. Sci. 2018, 8, 2008 9 of 26

calculates the price as output of the activities for each data input. For the example, the activities (Ai)
and their ADI are:

• Flight Search Activity (AF) returns the price of flights for a tuple of values for the data input.

DATA_INPUT(AF) = {departingFrom, goingTo, departDate, returnDate}
DATA_OUTPUT(AF) = {flightPrice, flightInformation, DATA_INPUT(AF)} where flightInformation =

{outwardArrivalDate, returnArrivalDate, seat, number, ...}

The pre- and post-conditions of the activity AF are:

PRE(AF) = departDate ≥ SystemDate AND returnDate ≥ departDate AND departingFrom 6= goingTo
POST(AF) = f lightIn f ormation 6= null → priceFlight > 0

• Hotel Search Activity (AH) is employed to ascertain the cost of booking a hotel room.

DATA_INPUT(AH) = {location, checkInDate, checkOutDate}
DATA_OUTPUT(AH) = {hotelPrice, hotelInformation, DATA_INPUT(AH)}

The pre- and post-conditions of the activity AH are:

PRE(AH) = checkInDate ≥ SystemDate AND checkInDate < checkOutDate
POST(AH) = hotel In f ormation 6= null → hotelPrice > 0

• Car Rental Search Activities (ACR1 and ACR2) are employed to determine the price of renting a car. Two cars
can be rented during the trip, one at the source (ACR1) and another at the destination (ACR2). Nevertheless,
the price of renting both cars is represented by ACRx, where x = {1∨ 2}, depends on these entries:

DATA_INPUT(ACRx) = {departingFrom, goingTo, departDate, returnDate}
DATA_OUTPUT(ACRx, ACRx) = {carRentalPrice, carRentalInformation, DATA_INPUT(ACRx)}

The pre- and post-conditions of the activity ACRx are:

PRE(ACRx) = departDate ≥ SystemDate AND departDate < returnDate
POST(ACRx) = carRental In f ormation 6= null → carRentalPrice > 0

Therefore, the output of the process, PDO, are the outputs of the activities, which contain the
information about the various components of the trip, as well as the total price of the trip (totalPrice).

The customer only provides data to the sub-process: the eight PDI. Then, each search activity
only uses the necessary data, as detailed in its specification, for the searching. On the one hand,
the sub-process can have input data that is not used by some search activity: for example, the Flight
Search Activity takes the possible dates and cities given by the customer to the sub-process,
meanwhile, the Hotel Search Activity takes the possible dates, the destination city and the preferences.
The constraints between the input data of the sub-process and the activities are specified as the
set of INPUT_CONSTRAINT at design time. In the same way, the sub-process returns different
data with respect to those returned by the activities, and it is necessary to define, at design time,
how these data are calculated and related with the output data of the activities. Therefore, the set of
OUTPUT_CONSTRAINT define these relationships between the output data of the activities and the
data returned by the sub-process to the customer. Although in the experimental evaluation all the
constraints have been included, only the most representative constraints have been formulated in this
section. Regarding the relationships between the data input and output that belong to the sub-process
and the activities, the most representatives INPUT_CONSTRAINT and OUTPUT_CONSTRAINT
are detailed below:

There are several numerical constraints that relate data input and output belonging to the process
and the activities. Some of the constraints are defined below:

Appl. Sci. 2018, 8, 2008 10 of 26

• INPUT_CONSTRAINT:

– The constraints that establish the values of departure date (C1) and return date (C2) of the
flights have to coincide with the input data proposed by the customer.

(C1) AF.departDate = departDate
(C2) AF.returnDate = returnDate

– The constraints that describe the values of the departure airport (C3) and arrival airport (C4) of the
flight have to coincide with the input data proposed by the customer.

(C3) AF.departingFrom = airportDepartingFrom
(C4) AF.goingTo = airportGoingTo

– The date of check-in into the hotel should coincide with the arrival date of the outward flight (C5).

(C5) AH .checkInDate = AF.outwardArrivalDate

– If the flight does not depart from the departure location (C6), then the rental of a car (CR1) is necessary .

(C6) departingFrom 6= airportDepartingFrom→ ACR1.departingFrom = departingFrom ∧
ACR1.goingTo = AF.departingFrom ∧ ACR1.departDate = AF.departDate ∧
ACR1.returnDate = AF.returnArrivalDate

– If the flight arrives at the destination city (C7), then it is not necessary to rent a car at the destination city.

(C7) AF.goingTo = goingTo → AF.goingTo = AH .location

– If the flight does not depart from the departure location (C8), then the rental of a car (CR2) is necessary.

(C8) AF.goingTo 6= goingTo → ACR2.departingFrom = AF.goingTo ∧ ACR2.goingTo = AH .location
∧ACR2.departDate = AF.outwardArrivalDate ∧ ACR2.returnDate = AF.returnDate

• OUTPUT_CONSTRAINT:

– The total price is the sum of all the prices returned by the activities, as presented in
constraint (C9).

(C9) totalPrice = AF. f ightPrice + AH .hotelPrice + ACR1.carRentalPrice + ACR2.carRentalPrice

In this example, the optimization involves the minimization of the total price of the trip, which is
composed of the cost of buying flight tickets, staying in a hotel room, and renting cars for the departure
and arrival cities.

OBJ_FUNC : MIN (totalPrice)

4.2. Conf-BP Imperative Modelling (ConfM-BP)

Once the declarative model is described, it can be possible to obtain an imperative model
that satisfies the data dependencies. Between the different options, we propose the most optimal,
according to the execution time of the instances of the process. To model the BP work-flow in an
imperative way, the standard BPMN [47] is chosen, since it is supported by several commercial BPMS.
The activities will be combined in a sub-process that starts and ends with the corresponding events.
The various order combination of the activities will be represented with a sequence or by means of the
control flows: parallel, exclusive or inclusive execution.

Figure 4 shows how the imperative configuration obtained from the declarative description is
included in a business process model. The activity “Supply Input Data Values” provides the input
data values used during the process execution. As was commented before, sometimes the most
appropriate input data to optimize the business product are unknown at design time, since it depends

Appl. Sci. 2018, 8, 2008 11 of 26

on each instance. The used example, the trip planner, has these characteristics, since the dates and
city airport must be found, as detailed in [15]. The sub-process “Execute sub-process” represents the
imperative model that should be created according to the data dependencies described and detailed in
the following sections. This sub-process is formed of the set of activities involved in the declarative
model by means of the BPMN connections and gateways as detailed in Section 4.3. Several possible
imperative models exist that satisfy the data dependencies, but our objective is to find the optimal
model with respect to execution time of any instantiation of the BP.

A1 A2

A1

A2

Supply Input
Data Values

Show
Results

O
rg
an

iz
at
io
n

A1

A2

A1

A2

Execute
 sub-process

+
More combinations
of data to analyse

Legend:
Start Event Sequence Flow

End Event Parallel Gateway

Act Activity Exclusive Gateway

+ Sub-process Inclusive Gateway

Sub-process with the model in
accordance with data dependencies

Bu
sin

es
s E

xp
er
t

Figure 4. Imperative Representation of the Declarative Model.

A simplification of the possibilities of the problem are shown in Figure 5, where only the activities
“Flight Search” and “Car Rental 1 Search” are considered for the modelling configuration. Analyzing the
five possibilities we can find out that: (a) and (b) describe a sequence relation between two activities
that can mean that one of the activities has priority order over the another activity, for the example
it will be used if ‘Car Rental 1’ cannot be executed until ‘Flight Search’ ends or vice versa, and;
(c), (d) and (e) represent the execution of one (XOR gateway), more than one (or gateway), or every
activities at the same time. For the example it will be used if there not exists an order dependency
between the activities. Therefore, which is the best model option to satisfy our trip problem?

(c) (d)

(a) (b)

(e)

Flight

Search

Car Rental 1

Search

Flight

Search

Car Rental 1

Search

Flight

Search

Car Rental 1

Search

Car Rental 1

Search

Flight

Search

Flight

Search

Car Rental 1

Search

Figure 5. “Flight Search” and “Car Rental 1 Search” Model Possibilities.

Appl. Sci. 2018, 8, 2008 12 of 26

This modelling combination and analysis increase considerably as soon as the number of
activities grows. Hitherto, this configuration has been made by human experts, we propose obtain
it automatically in the Conf-BP Framework. Therefore, in order to transform this declarative model
into an imperative model that supports any value of input variables of the process by considering the
data dependencies, we propose the use of the Constraint Programming paradigm, as explained in
Section 4.3.

4.3. Automatic Transformation from Declarative to Imperative Model

The transformation from the declarative description into an imperative model is a difficult and
hard task, since it implies the analysis of every possible configuration to obtain at design time the most
optimal model at runtime. The difficulty lies in establishing the order of the activities and the control
flow components that combine the activities, taking into account the data dependencies. To perform
the optimal transformation, we propose the three steps shown in Figure 6.

Variables

Domains

Constraints

Obj. Function

A3A4

A2

Model Configuration

solver

A1

A2

A4 A3

t1 t2 t3
t

Business Process Model

Configuration

translate
Activities

Temporal

Variables

And

Domains

Configuration

COP

Declarative

Definition

Input and output

Constraints

Temporal

Constraints

Minimize

Total Time
Objective Function

Result:

 - A1 = <t0,t1>

 - A2 = <t1,{t2,t3}>

 - A3 = <t2,t3>

 - A4 = <t1,t2> A1

t0

(1)

(2) (3)

Figure 6. Configuration problem Transformation.

1. Create a Constraint Optimization Problem using the declarative Model: As explained in
detail in Section 4.3.1, we used Constraint Satisfaction Problems (CSPs) [48] to solve the
configuration problem.

CSPs represent a reasoning methodology consisting of the representation of a problem by means
of a set of variables, domains and constraints. CSPs have also a declarative description, then very
similar to the Declarative Specification of ConfD-BP. CSPs are a widely used model-based
knowledge representation formalism. In a formal way, it is defined as a tuple 〈X, D, C〉,
where X = {x1, x2, . . ., xn} is a finite set of variables, D = {d(x1), d(x2), . . ., d(xn)} is a set
of domains of the values of the variables, and C = {C1, C2, . . ., Cm} is a set of constraints.
A constraint Ci = (Vi, Ri) specifies the possible values of the variables in V that simultaneously
satisfy R. Let Vk ={xk1 , xk2 , . . ., xkl

} be a subset of X, and an l-tuple (xk1 , xk2 , . . ., xkl
) from d(xk1),

d(xk2), . . ., d(xkl
) can therefore be called an instantiation of the variables in Vk. An instantiation

is a solution if and only if it satisfies the constraints C. If an objective function is included in
the CSP, it is called a Constraint Optimization Problem (COP). It is necessary to highlight that
CSP and COP specifications are very similar to the process models proposed here, since both
are declarative models which define the problem but do not solve it. A solver of CSPs or COPs
tries to find a possible tuple of values for the variables that satisfy the constraints defined in
the domain.

2. Solve the COP: To solve the COP created in the second step, it is necessary to analyze the possible
values of the variables to find the satisfied tuples. To avoid the analysis of every possibilities
of values of variables, the solvers use a combination of search and consistency techniques [49]
reducing drastically the complexity and time consuming. The consistency techniques remove
inconsistent values from the domains of the variables during or before the search. Several
local consistency and optimization techniques have been proposed as ways of improving the
efficiency of search algorithms. There are several commercial constraint problem solvers. The main

Appl. Sci. 2018, 8, 2008 13 of 26

difference between them is the programming language that they use, and the types of constraints
that can be included. For the proof of concept to validate the configuration problem, we have
used JsolverTM [50], although any of the existing CSP solvers could be used, since the constraints
that we need to include (explained in Section 4.3.1) are very common and supported by every
commercial solvers. The resolution of the COP will obtain a set of time intervals, each of them
associated with an activity, representing the moment when each activity can start and end.

3. Translate the COP solution into a BPMN Model: As explained in detail in Section 4.3.2, by using
the results obtained from the COP, the imperative model can be created. This result has to be
interpreted as gateways that relate the activities. For example, if the COP allows that two activities
A and B could start at the same instant of time, perhaps there is a constraint which states that only
one activity can be executed in each instance. In that case, there can be an exclusive or inclusive
gateway relating the two activities. The decision between the possible gateways between the
various activities is based on: (a) the study of the domains of the data related in the declarative
problem description, and; (b) the data obtained from the resolution of the COP as it is explained
in Section 4.3.2.

4.3.1. Configuration of a BP Model: Creating a COP from the Declarative Model

The relation between the input and output of the activities determines their relational order.
For the same declarative model, it is possible to find several configurations of activities that satisfy
the requirements and description. To find the best configuration, we propose the use of an intelligent
system to find the optimal BP model that maximizes the parallelism of the activities, with the aim of
minimizing the execution time. To determine this configuration, we suggest the transformation of the
declarative model into a COP, to analyze the possible instant when the activities can start and end their
executions, according to data dependency.

Firstly, and before to explain how to create the COP, it is necessary as a previous step to ascertain
the data relation, especially when they are included in the IF-THEN constraints of the description of the
problem. The definition of Tuple of Condition-Relation in order to introduce this relation is introduced.

Definition 8. A Tuple of Condition-Relation is a tuple formed of 〈Condition, Activity 1, Activity 2〉,
where Condition represents under which condition Activity 2 is executed after Activity 1. Therefore, the value
true in the Condition implies that Activity 2 is always executed after Activity 1, or, in the case when the
Condition contains an expression, Activity 2 is executed after Activity 1 if and only if the expression is met.

These tuples are built analyzing the data relations found in the set of INPUT_CONSTRAINT
and OUTPUT_CONSTRAINT that describe the declarative model. For each constraint where
the output of an activity Ai is related to the input of an activity Aj, a tuple is created. If the
input-output relation appears in an IF-THEN constraint with a c condition, the tuple will be 〈c, Ai, Aj〉,
and 〈true, Ai, Aj〉 otherwise.

With the list of intervals and the list of tuples of data relations, the following COP is created:

• Variables: The possible instants when each activity can be executed, are defined as the tuple of
variables 〈tAi

ini, tAi
end〉, where tAi

ini is the instant of time in which the activity Ai begins, and tAi
end is

the instant of time in which the activity Ai finishes. For each activity Ai, the COP will include
a couple of variables 〈tAi

ini, tAi
end〉. To represent the execution time of the whole process, the variable

T is included, that represents the tend of the last activity executed. If every activities is executed
in parallel, T will be the maximum value of tAi , but if every activities are executed sequentially,
the value of T will be the summation of every tAi .

• Domain: The domain of the tAi
ini and tAi

end variables is related to the execution time of each activity.

If we suppose that each activity spends tAi
units of time, then the domain of each variable is:

– tAi
ini: 0..(∑1..j..N tAj

)− tAi

Appl. Sci. 2018, 8, 2008 14 of 26

– tAi
end: tAi

..(∑1..j..N tAj
)

– T: max(tAi
)..∑1..j..N tAj

• Constraints: The necessary constraint to model the COP are:

– It is mandatory that for every activity Ai, tAi
ini + tAi ≤ tAi

end

– T has to be the greatest value of tend, then T ≥ tAi
end for every Ai.

– For each element of the list of tuples building by using the data relations, a numerical
constraint is included in the COP. Each relation between data input and output in the way

〈c, Aj, Ai〉 is translated into the constraint tAi
ini ≥ t

Aj
end. For example, in the trip planner,

the constraint {AH .checkInDate = AF.outwardArrivalDate} is translated into tAH
ini ≥ tAF

end.
Therefore, all the activities could start at the same instant unless there exists a relationship
requiring one activity to start after another.

• Objective: The optimization function of the COP is the minimization of the total time, it implies
to minimize the value of T (minimization(T)).

Table 1 gives a summary of the equivalence of the elements of the formalization and the COP built.

Table 1. Declarative model and COP elements relationship.

Declarative COP

Activity 〈tini, tend〉
PDI, ADI, PDO, ADO Variables
Numerical Constraints (Input and Output Constraints) Temporal Constraints
Pre and Post Conditions Activity Definition
Objective Function Minimize Total Time

The solving of the COP will obtain a pair of start and end instants of time for each activity that
minimizes any instantiation time (T) for the model. As mentioned earlier, the minimum execution
time of an activity is modelled as a tAi

units of time. But it is possible to obtain the same value
of (T), where the execution time is minimized, with different tAi

ini and tAi

end for the same problem.
Suppose activities (A1, A2, A3 and A4) that last a unit of time, where the input data of A4 depends on
the output of A1, and the input data of A3 depends on the output of A4. Figure 7 depicts two possible
configurations (a) and (b) that minimize the theoretical execution time (t3). However, there exist more
variations, since A2 can be executed in a parallel way with any of the other activities.

Although both options (a) or (b) are optimal according time consuming, the model of Figure 7b is
better than the model of Figure 7a, since it supports an unexpected delay of A2 executing, not increasing
the total execution time (t3).

To make the imperative model more robust to unexpected delays, we propose to modify the
proposed COP to find the most paralleled process. To this end, the COP must find the greatest value of
tAi

end for each Ai. It is obtained including the tAi

ini variables as a goal in the COP, and leaving the domain
of tAi

end open during the search. Then, the tAi

ini variables will be instantiated during the propagation
phase, while all the possible values of the domains of tAi

end variables will be obtained as solutions of the
COP for each value of tAi

ini. The greatest value of the tAi

end domain is the most appropriate value to build
an imperative robust business process model.

Appl. Sci. 2018, 8, 2008 15 of 26

A1

A2

A4 A3

t1 t2 t3
t

A3A4
A2

A1

A2

A4 A3

t1 t2 t3
t

A1

A3A4

A2

A1

(a)

(b)

Figure 7. Flexibility of the BP in terms of the execution time of the Activities.

Algorithm 1 describes the creation of the COP from a declarative specification as explained before.

Algorithm 1 Creation of a COP from a Declarative Specification.

1: Create variable: int TStart = 0
2: Create variable: int TEnd = 0.. ∑n

i=1 tAi

3: for each Activity(Ai) do
4: Create a variable: int tAi

ini = 0.. ∑n
i=1 tAi

5: Create variable: int tAi

end = 0.. ∑n
i=1 tAi

6: end for
7: for each Activity(i) do
8: Create constraint: (tAi

ini + tAi
) ≤ tAi

end
9: Create constraint: TEnd ≥ (tAi

end + tAi
)

10: end for
11: for each ADOi = ADIj, where an output of Activity i is related to the input of Activity j do
12: Create constraint: (tAi

end + tAi
) = tAj

ini
13: end for
14: Define goal variables: { (tA1

end + tA1
), ..., (tAn

end + tAn
), TEnd }

15: Define objective function: Minimize (TEnd− TStart)

4.3.2. Transformation of the COP results into a BP Imperative Model

The list of time intervals, obtained from the COP, with the most appropriate values for tAi

ini and
tAi

end for each activity, has to be translated into an imperative BP model. For the example of Figure 7b,
the obtained list is: {A1[0, t1], A2[0, t3], A3[t2, t3], A4[t1, t2]}. There exist various imperative models in
business processes, but the most widely used standard language is BPMN [47]. Although the model in
the standard is represented by means of an XML file, to facilitate the understanding of the algorithm
that obtains the imperative model, we propose the use of a BPMN-Graph. As explained in [1], BPMN is
a graph-oriented language in which control and action nodes can be connected. Therefore, we propose
to model the BPMN using a directed graph as defined in [51].

The problem is solved in two steps: firstly, the BPMN-Graph is built not specifying the type of
gateways, only including which are splits and joins, and; secondly, the uncertain about the gateways
is solved analyzing the list of tuples created in function of the IF-THEN constraints of the model,
that related the activity execution on function of the value of other variables.

Appl. Sci. 2018, 8, 2008 16 of 26

Step 1: Building BPMN-Graph

The proposed BPMN-Graph is a direct graph composed of: (i) vertices, which represent the
activities and the gateways; and (ii) edges, which represent the sequence flows that join the various
vertices. Firstly, the idea of the algorithm is explained by means of a trace, after which the algorithm is
detailed. Analyzing the tAi

ini and tAi

end of each activity, it is possible to discover the activities that have
parallel or sequential relation between them. The main idea of the algorithm is to detect these relations
by building sub-graphs, that will be combined in a sequential or parallel way. An example of the trace
of the algorithm is shown in Figure 8. The initial Problem is formed by a set of activities A1, ..., A8,
associated with a time interval 〈tAi

ini, tAi

end〉, and a list of tuples that describe the condition about the
activities order dependencies. The algorithm divides the problem in function of the sequential points
and the parallel subsets. Both definitions are introduced:

Definition 9. Sequential point (List of Time Intervals): For a List of Time Intervals, a sequential point is
an instant, or set of instants of time at which no activity can be executed. It implies that in a sequential point,
only the execution of an activity can start or end, and therefore the problem can be broken into two smaller
problems that can be executed sequentially.

Definition 10. Parallel subsets (List of Time Intervals, List of Tuples of Relations): For a list of Time
Intervals associated with the activities A1 . . . An, the parallel subsets are a set of subset of activities ps1, . . .,
psm, where there does not exist any activity a ∈ psi and an activity b ∈ psj, where psi 6= psj, such that there
exists a tuple in the List of Tuples of Relations that 〈condition, a, b〉. A way to obtain the parallel subsets,
is creating a parallel subset for each activity (ps1, . . ., psn), if there exist an activity a ∈ psi and another activity
b ∈ psj, both subsets are merged. This process is repeated until no more sets can be merged.

With the aim of facilitating the understanding of the algorithm and our proposal in general,
we use the example of Figure 8, with the list of tuples:

• (R1) 〈A1.output ≤ 50, A1, A3〉
• (R2) 〈A1.output < 100, A1, A4〉
• (R3) 〈true, A3, A5〉
• (R4) 〈true, A4, A5〉
• (R5) 〈true, A5, A8〉
• (R6) 〈true, A2, A8〉
• (R7) 〈true, A6, A7〉

The trace follows the next steps:

1. Look for sequential points: Firstly, the set of activities should be separated by the sequential
points (arrow 1 in Figure 8). The separation is carried out by detecting those instants of time
where there is a sequential point. The intervals that are derived from these sequential points
delimit the subset of activities. In the example, the set of activities is separated into two subsets
of activities, since there is only one sequential point in t3. The first subset secp1 goes from t0 to t3

and includes all activities except activity A8. On the other hand, the second subset secp2 goes
from t3 to t4 and only includes activity A8.

2. Solving sequential sub-problems: Each subset of activities is solved as a sub-problem (arrows 2
and 3) and combined sequentially both BPMN-sub-graphs are solved.

3. Look for parallel subsets: The secp1 is separated in three parallel subsets: subg1, subg2 and
subg3. To obtain these subsets, the idea described in Definition 10 is applied:

(a) Create a subset of each activity: {ps1: {A1}, ps2: {A2}, ps3: {A3}, ps4: {A4}, ps5: {A5}, ps6:
{A6}, ps7: {A7}}.

Appl. Sci. 2018, 8, 2008 17 of 26

(b) Since A1 is related with A3 in R1, and with A4 in R2, both subsets are merged. Also, A6

and A7 are related in R7. The obtained parallel subsets are: {ps1: {A1, A3, A4}, ps2: {A2},
ps5: {A5}, ps6: {A6, A7}}.

(c) Since A5 is related with A3 in R3, and with A4 in R4, both subsets are merged. Therefore,
the parallel subsets: {ps1: {A1, A3, A4, A5}, ps2: {A2}, ps6: {A6, A7}} are also obtained.

(d) Tuple relations (R5) and (R6) are not used in the creation of subsets since A8 is not
involved in the parallel analysis.

4. Solving parallel sub-problems: The next step implies to solve each sub-problem (arrows 4, 5
and 6), followed by the search of sequential points.

5. Combining parallel sub-problems: To solve secp1 it is necessary to combine the sub-graphs
obtained by solving subg1, subg2 and subg3 (return of arrow 4, 5 and 6). These BPMN-sub-graphs
are combined as various branches joined by a split and join node (G2 in the example).

6. Combining sequential sub-problems: The obtained results after a sequential analysis of
sub-graphs (returns of arrow 2 and 3) implies joining the results of secp1 and secp2. To this
end, the result (BPMN-Graph) of secp1 and secp2 are joined by an edge between the final vertex
of secp1 and the initial vertex of secp2, which are G2 and A8 respectively.

t1 t2 t3
t

t4

A1
A3

A4

A6
A7

A2

A5
A8

secp1
secp2

t1 t2 t3
t

t4

A1

A3

A4

A6

A7
A2

A5
A8

...
t3

t
t4

A8

A8

t1 t2 t3
t

A1
A3

A4

A6
A7

A2

A5

subg1

subg2

subg3

A2

t1 t2 t3
t

A1
A3

A4
A5

...

1

5

8...
t1 t2 t3

t

A2

t1 t2 t3
t

A6
A7

A6 A7

G1 G1
A3

A4

A5A1

A2

A6 A7

G2 G2

G1 G1
A3

A4

A5A1

... ... 10 11

A8

G1 G1
A3

A4

A5A1

A2

A6 A7

G2 G2

 step

Legend:
Call to the
recursive methods

Result from the
recursive callsProblem

Figure 8. Trace example of the Algorithm to create a BPMN-Graph using the COP results.

Appl. Sci. 2018, 8, 2008 18 of 26

Algorithm 2 Create a BP model from COP result.

1: procedure SEQUENTIALTREATMENT(Problem p): BPMN-Graph
2: sol: BPMN-Graph to return
3: lprob: list of Problems
4: lsol: list of BPMN-Graphs
5: if (p.listActivities.size() == 1) then
6: sol ← p
7: else
8: lprob← separate p by detecting sequential points
9: for each p ∈ lprob do

10: lsol.add(parallelTreatment(p))
11: end for
12: end if
13: sol ← link sequentially lsol
14: return sol
15: end procedure
16: procedure PARALLELTREATMENT(Problem p): BPMN-Graph
17: sol: BPMN-Graph to return
18: lprob: list of Problems
19: lsol: list of BPMN-Graphs
20: if (p.listActivities.size() == 1) then
21: sol ← p
22: else
23: lprob← separate p by detecting parallel groups
24: for each p ∈ lprob do
25: lsol.add(sequentialTreatment(p))
26: end for
27: end if
28: sol ← link lsol by gateways
29: return sol
30: end procedure

Algorithm 2 details the procedures for the sequential and parallel treatments explained above.
Algorithm 2 takes a Problem and transforms it into a BPMN-Graph. Initially, the Problem is treated
sequentially with the algorithm sequentialTreatment, which finds the sequential points following
Definition 9. Each of the subproblems found, has to be analyzed to identify the parallel subsets of
activities with the algorithm parallelTreatment (following Definition 10). The parallel treatment of
a Problem consists of gathering the activities that are related into subsets and creating new problems
from these subsets. The relationships among the activities are given by the tuples of Condition-Relation
of the Problem. Each subproblem is then solved recursively. To combine the parallel subsets, two
gateway vertices are inserted as split and join gateway respectively. Each BPMN-sub-graph will be
a branch related by means of the gateway. To combine two sequential BPMN-sub-graphs, only and
edge needs to be included between the last node of the first solution and the first node of the second
solution. The algorithm draws to a halt when reaching a base case, or when the problem contains
only one activity. In both treatments, the solution of a base case is a graph with a unique vertex that
represents this activity.

Appl. Sci. 2018, 8, 2008 19 of 26

Step 2: Defining The Gateways

Once the graph is created, the correct gateways that diverge the sequence flows have to be selected.
In the graph, the gateways are identified by means of studying the tuples of Condition-Relation
obtained from the constraints, defined in the declarative specification.

The different types of relations described by means of the tuples of Condition-Relation, and how
they affect to the type of gateway are explained below:

• Parallel: two activities are executed in a parallel way if there are no conditions that relate the tini
of both activities (see Figure 9).

A1
A2

A3

A2

t1 t2
t A3

A1
Constraints:
...
True, A1, A2
True, A1, A3
...

Figure 9. Parallel Relationship.

• Exclusive: two activities are executed in an exclusive way if the constraints that relate the tini of the
two activities and the domain of these constraints are complete and do not overlap. For example,
as shown in Figure 10, if the execution of A2 and A3 depends on a value of the output data
A1.output, but there are no overlaps (A2 is executed when A1.output is less than 50 and A3 is
executed when A1.output is greater than or equal to 50), then there is an exclusive relationship
between them. There is another possibility when only one condition is described, for example
only exists the condition (A2 is executed when A1.output is less than 50), in that case it means that
there are two branches for the XOR gateway, but one of them with no activities.

A1
A2

A3

A2

t1 t2
t A3

A1
Constraints:
...
A1.output < 50, A1, A2
A1.output ≥ 50, A1, A3
...

Figure 10. Exclusive Relationship.

• Inclusive: two activities are executed in an inclusive way if there are conditions that relate the tini
of both activities, and the domain of these conditions are complete and overlapped. For example,
as shown in Figure 11, if the execution of A2 and A3 depends on a value of the output data
A1.output, but there are overlaps between the domains that satisfy the constraints (A2 is executed
when A1.output is less than 75 and A3 is executed when A1.output is greater or equal to 25,
and hence both coincide when A1.output is greater than 25 and less than 75), then there is an
inclusive relationship.

A3

A2

t1 t2
t

A1
Constraints:
...
A1.output < 75, A1, A2
A1.output ≥ 25, A1, A3
...

A1
A2

A3

Figure 11. Inclusive Relationship.

Appl. Sci. 2018, 8, 2008 20 of 26

Table 2 gives a summary of the resulting gateways depending on the conditions established by
the constraints that relate the data of the activities.

Table 2. Type of gateway decision.

Gateway Constraints Conditions

Parallel No dependencies in domains
Exclusive Domains without overlaps
Inclusive Domains with overlaps

For the example explained in Figure 8, it is necessary to analyze G2 and G1 (see Figure 12).
Since there are no relations between activities A1, A2, and A6, then G2 is a parallel gateway. On the
other hand, the execution of activities A3 and A4 depends on the outputs of A1. The conditions
specified in relations R1 and R2 indicate that the domain of the constraints is complete and there are
no overlaps, therefore, G1 is an exclusive gateway.

G1 G1

A3

A4

A5A1

A2

A6 A7

G2 G2 A8

A5

A3

A4

A1

A2

A6 A7

A8

Figure 12. From graph to BPMN Model Example.

5. Results: Transformation Applied to the Trip Planner Example

To illustrate the use of the algorithms, the application of the algorithms to the Trip Planner
example is presented in this section.

The first step is to obtain the list of tuples of Condition-Relation according Definition 8. Analyzing
the constraints of the example, we can find: (i) Constraints C1, C2, C3, and C4 do not relate input
and output of the activities, then they are not involved in the list of tuples of Condition-Relation;
(ii) Constraint C5 is used to create the relation: 〈 true, AF, AH 〉; (iii) Constraint C6 is used to create the
tuple: 〈Condition of C6, Start−Event, ACR1 〉; (iv) Constraint C7 creates the same tuple than Constraint
C5: 〈 true, AF, AH 〉, and; (v) Constraint C8 is used to create the tuple: 〈Condition of C8, AF, ACR2〉}.

After that, the second step is to build the COP as detailed in Section 4.3.1, that for the example
will have the form.

• Variables: tAF

ini , tAF

end, tAH

ini , tAH

end , tACR1

ini , tACR1

end , tACR2

ini , tACR2

end , T.
• Domain: Supposing that the theoretical execution time of each activity is a unit of time,

the domains are:

– tAF

ini , tAH

ini , tACR1

ini , tACR2

ini : 0..3 //Since there are 4 different activities.

– tAF

end, tAH

end , tACR1

end , tACR2

end : 1..4
– T: 1..4

• Constraints:

– tAF

ini + 1 ≤ tAF

end

– tAH

ini + 1 ≤ tAH

end

– tACR1

ini + 1 ≤ tACR1

end

Appl. Sci. 2018, 8, 2008 21 of 26

– tACR2

ini + 1 ≤ tACR2

end

– T ≥ tAF

end ∧ T ≥ tAH

end ∧ T ≥ tACR1

end ∧ T ≥ tACR2

end
– For the list of tuples of Condition-Relation mentioned above, the constraints included in the

COP are:

∗ tAH

ini ≥ tAF

end

∗ tACR2

ini ≥ tAF

end

• Goal: tAF

ini , tAH

ini , tACR1

ini , tACR2

ini
• Objective: minimization(T).

The obtained values of the variables after the resolution of the COP are:

• TEnd: 2
• tAF

ini : 0 and tAF

end: 1

• tAH

ini : 1 and tAH

end : 2

• tACR1

ini : 0 and tACR1

end : [1..2], selecting the greatest value (2).

• tACR2

ini : 1 and tACR2

end : 2

The resulting BP Model is shown in Figure 13. According to the results, “Flight Search” and
“Car Rental 1 Search” activities start at instant 0. However, the “Car Rental 2 Search” activity depends
on the value of the output data of the “Flight Search” activity, so there is an exclusive gateway before
this activity. Since there is not a complete domain with the constraint that determines the execution
of the “Car Rental 2 Search” activity, then there is a branch by default which indicates that nothing
happens when the condition is not met. The same situation occurs with “Hotel Search” and “Car Rental
2 Search” activities.

Flight

Search

Car Rental

1 Search

Hotel

Search

Car Rental

2 Search

ACR1

AH

t1 t2
t

AF

t3

ACR2

Figure 13. Trip Planner Model Result.

The solution parallelizes the activities according to the data input and output relations,
being possible execute it in two units of times.

Empirical Evaluation

Since the generated imperative only depends on the declarative model, it is created only once
at design time. The transformation performed involves a COP and two own-developed algorithms.
Therefore, the critical points of our proposal lies in the resolution of the COP and these algorithms.

Regarding the resolution of a COP, we use one of the existing commercial tools to evaluate the
COP, since the COP resolution has remained a known problem studied by researchers in the area
over several decades, and is supported by an important set of tools used in real problems. In general,
the time to find the solution of a COP depends on: (1) the type of constraints (lineal, polynomial);
(2) the number of constraints; and (3) the number and type of the variables. It is possible to find an
analysis in [52] on the complexity of the NP-complete constraint problem resolution according to these

Appl. Sci. 2018, 8, 2008 22 of 26

characteristics. The complexity of resolution of CSPs depends on the number of possible solutions
of the problem, and on whether it is neither under constraint nor unsolvable. The most complex
of these problems are those that are neither under constraint nor unsolvable. For these reasons,
no affirmation can be given concerning the efficiency in a generic way of our proposal, since our
declarative specification enables any type and any number of constraints; therefore the evaluation
time depends on the specific problem. Depending on the number of constraints associated with a COP,
and the number of variables, the COP evaluation time remains variable.

On the one hand, in relation to Algorithms 1 and 2, the computational order is linear since it only
depends on the number of activities. On the other hand, Algorithm 2 defines two recursive functions
which are related between each other. The main idea of this algorithm is to apply a Divide-and-Conquer
Method by means of reducing the problem in sub-problems, being the smallest problem, in our case,
a single activity. Therefore, in both the best and the worst cases, the computational order is linear since
it depends on the number of activities either they have a parallel or sequential relationships.

With the aim of performing the evaluation, both algorithms are executed over a set of 50 generated
test cases (see Table 3). Each test case establishes a different number of activities with a set of PDI and
constraints that relate them. On the one hand, as explained before, the number of activities determines
the complexity of solving the problem. On the other hand, the number of PDI and the constraints
determine the structure of the final imperative business process.

Table 3. Summary of the test cases used for evaluation.

Test Num. of Activities Num. of PDI Num. of Constraints

Test 1–10 10 [5–15] [10–30]
Test 11–20 100 [5–15] [10–30]
Test 21–30 1000 [10–25] [20–50]
Test 31–40 5000 [10–25] [20–50]
Test 41–50 10,000 [10–25] [20–50]

Figure 14 shows the computing time needed to solve both algorithms. The test cases are measured
using a PC with an Intel Core i7-2675QM CPU with a 2.2 GHz processor and a 8 GB of RAM.

Figure 14. Execution Time of Algorithm 1 and Algorithm 2.

6. Conclusions and Future Work

Declarative languages have been focused on the order of activities, and not on how the data
values and dependencies can affect the optimal execution of a process. In this paper, we apply
configuration problems ideas to the construction of an imperative model according to the declarative
description of the data relation. Our proposal shields the business experts from unnecessary details,

Appl. Sci. 2018, 8, 2008 23 of 26

and to provide assistance when experts know what they want (the BP requirements by means of data
dependencies) but do not know how to attain what they want (establish the order of the activities),
Conf-BP Framework is proposed. Conf-BP establishes a methodology to transform a declarative
model into an imperative representation using BPMN. Business experts only have to specify the BP
requirements, leaving the configuration of the activities in the imperative model to the intelligent
system, which uses the Constraint Programming paradigm and a set of proposed definitions and
algorithms. This automatic methodology obtains an imperative model described by BPMN where
the optimal model related to execution time is obtained. In addition, the framework is applied to an
example: the process of organising a trip. Future work into this area involves increasing the capabilities
of Conf-BP by including loops within the model, where there exists a cyclic relation between the data.

Author Contributions: Conceptualization and Methodology, L.P. and M.T.G.-L.; Development, L.P.; Validation,
M.T.G.-L. and A.J.V.-V.; Writing-Original Draft, L.P.; Writing—Review & Editing, M.T.G.-L., A.J.V.-V., and R.M.G.

Funding: This work has been partially funded by the Ministry of Science and Technology of Spain
(TIN2015-63502-C3-2-R) and the European Regional Development Fund (ERDF/FEDER).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ADI Activities Data Input
ADO Activities Data Output
BP Business Process
BPEL Business Process Executation Language
BPM Business Process Management
BPMN Business Process Model and Notation
BPMS Business Process Management System
Conf-BP Configuration of Activities in Business Processes
ConfD-BP Conf-BP Declarative Specification
ConfM-BP Conf-BP Imperative Modelling Specification
COP Constraint Optimization Problem
CSP Constraint Satisfaction Problem
OBJ_FUNC Objective Function
PDI Process Data Input
PDO Process Data Output

References

1. Weske, M. Business Process Management: Concepts, Languages, Architectures; Springer: Berlin, Germany, 2007.
2. Aguilar-Saven, R.S. Business process modelling: Review and framework. Int. J. Prod. Econ. 2004, 90, 129–149.

[CrossRef]
3. Tsai, A.; Wang, J.; Tepfenhart, W.; Rosea, D. EPC Workflow Model to WIFA Model Conversion.

In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, SMC ’06, Taipei,
Taiwan, 8–11 October 2006; Volume 4766/2007, pp. 2758–2763.

4. Sinogas, P.; Vasconcelos, A.; Caetano, A.; Neves, J.; Mendes, R.; Tribolet, J.M. Business Processes Extensions
to UML Profile for Business Modeling. ICEIS 2001, 2, 673–678.

5. List, B.; Korherr, B. A UML 2 Profile for Business Process Modelling. In Proceedings of the ER (Workshops),
Klagenfurt, Austria, 24–28 October 2005; pp. 85–96.

6. Bosilj-Vuksic, V.; Hlupic, V. Petri Nets and IDEF diagrams: Applicability and efficacy for business process
modelling. Int. J. Comput. Inform. 2001, 25, 123–133.

7. Pichler, P.; Weber, B.; Zugal, S.; Pinggera, J.; Mendling, J.; Reijers, H.A. Imperative versus Declarative Process
Modeling Languages: An Empirical Investigation. In Business Process Management Workshops; Lecture Notes
in Business Information Processing; Springer: Berlin, Germany, 2011; Volume 99, pp. 383–394.

http://dx.doi.org/10.1016/S0925-5273(03)00102-6

Appl. Sci. 2018, 8, 2008 24 of 26

8. Zugal, S.; Soffer, P.; Haisjackl, C.; Pinggera, J.; Reichert, M.; Weber, B. Investigating expressiveness and
understandability of hierarchy in declarative business process models. Softw. Syst. Model. 2015, 14, 1081–1103.
[CrossRef]

9. Fahland, D.; Lubke, D.; Mendling, J.; Reijers, H.; Weber, B.; Weidlich, M.; Zugal, S. Declarative versus
Imperative Process Modeling Languages: The Issue of Understandability. In Enterprise, Business-Process and
Information Systems Modeling; Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg,
Germany, 2009; Volume 29, pp. 353–366.

10. Fahland, D.; Mendling, J.; Reijers, H.; Weber, B.; Weidlich, M.; Zugal, S. Declarative versus Imperative
Process Modeling Languages: The Issue of Maintainability. In Business Process Management Workshops;
Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg, Germany, 2010; Volume 43,
pp. 477–488.

11. Sadiq, S.W.; Orlowska, M.E.; Sadiq, W. Specification and validation of process constraints for flexible
workflows. Inf. Syst. 2005, 30, 349–378. [CrossRef]

12. Rychkova, I.; Regev, G.; Wegmann, A. High-level design and analysis of business processes: The advantages
of declarative specifications. In Proceedings of the Second International Conference on Research Challenges in
Information Science, RCIS 2008, Marrakech, Morocco, 3–6 June 2008; Pastor, O., Flory, A., Cavarero, J.L., Eds.;
pp. 99–110.

13. Pesic, M.; van der Aalst, W.M.P. A Declarative Approach for Flexible Business Processes Management.
In Business Process Management Workshops; Lecture Notes in Computer Science; Eder, J., Dustdar, S., Eds.;
Springer: Berlin, Germany, 2006; Volume 4103, pp. 169–180.

14. Rychkova, I.; Regev, G.; Wegmann, A. Using Declarative Specifications in Business Process Design. IJCSA
2008, 5, 45–68.

15. Parody, L.; Gómez-López, M.T.; Gasca, R.M. Hybrid business process modeling for the optimization of
outcome data. Inf. Softw. Technol. 2016, 70, 140–154. [CrossRef]

16. van der Aalst, W.M.P. Process Mining: Data Science in Action, 1st ed.; Springer: Berlin/Heidelberg,
Germany, 2016.

17. Fernández-Cerero, D.; Fernández-Montes, A.; Jakóbik, A.; Kołodziej, J.; Toro, M. SCORE: Simulator for cloud
optimization of resources and energy consumption. Simul. Model. Pract. Theory 2018, 82, 160–173. [CrossRef]

18. Teppan, E.C.; Friedrich, G. The Partner Units Configuration Problem. arXiv 2013, arXiv:1308.6206.
19. GröNer, G.; BošKović, M.; Silva Parreiras, F.; GašEvić, D. Modeling and Validation of Business Process

Families. Inf. Syst. 2013, 38, 709–726. [CrossRef]
20. Petrie, C.J. Automated Configuration Problem Solving; Springer Publishing Company: New York, NY, USA, 2012.
21. Gillmann, M.; Mindermann, R.; Weikum, G. Benchmarking and Configuration of Workflow Management

Systems. In Cooperative Information Systems; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1901,
pp. 186–197.

22. van der Aalst, W.M.P.; van Hee, K. Workflow Management: Models, Methods, and Systems; MIT Press:
Cambridge, MA, USA, 2004.

23. Czarnecki, K.; Helsen, S.; Eisenecker, U. Formalizing cardinality-based feature models and their
specialization. Softw. Process Improv. Pract. 2005, 10, 7–29. [CrossRef]

24. Gottschalk, F.; van der Aalst, W.M.P.; Jansen-Vullers, M.H.; Rosa, M.L. Configurable Workflow Models. Int. J.
Coop. Inf. Syst. 2008, 17, 177–221. [CrossRef]

25. La Rosa, M.; van der Aalst, W.M.P.; Dumas, M.; ter Hofstede, A.H.M. Questionnaire-based variability
modeling for system configuration. Softw. Syst. Model. 2009, 8, 251–274. [CrossRef]

26. Moon, M.; Hong, M.; Yeom, K. Two-Level Variability Analysis for Business Process with Reusability
and Extensibility. In Proceedings of the 2008 32nd Annual IEEE International Computer Software and
Applications Conference, Turku, Finland, 28 July–1 August 2008; pp. 263–270.

27. Reijers, H.; Mans, R.; van der Toorn, R. Improved model management with aggregated business process
models. Data Knowl. Eng. 2009, 68, 221–243. [CrossRef]

28. Kumar, A.; Yao, W. Design and management of flexible process variants using templates and rules.
Managing Large Collections of Business Process Models. Comput. Ind. 2012, 63, 112–130. [CrossRef]

29. Baran, M.; Kluza, K.; Nalepa, G.J.; Ligęza, A. A hierarchical approach for configuring business processes.
In Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, Krakow,
Poland, 8–11 September 2013; pp. 915–921.

http://dx.doi.org/10.1007/s10270-013-0356-2
http://dx.doi.org/10.1016/j.is.2004.05.002
http://dx.doi.org/10.1016/j.infsof.2015.10.007
http://dx.doi.org/10.1016/j.simpat.2018.01.004
http://dx.doi.org/10.1016/j.is.2012.11.010
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1142/S0218843008001798
http://dx.doi.org/10.1007/s10270-008-0090-3
http://dx.doi.org/10.1016/j.datak.2008.09.004
http://dx.doi.org/10.1016/j.compind.2011.12.002

Appl. Sci. 2018, 8, 2008 25 of 26

30. Albert, P.; Henocque, L.; Kleiner, M. An End-to-End Configuration-Based Framework for Automatic SWS
Composition. In Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence,
Dayton, OH, USA, 3–5 November 2008; Volume 1, pp. 351–358.

31. Bertoli, P.; Pistore, M.; Traverso, P. Automated composition of Web services via planning in asynchronous
domains. Artif. Intell. 2010, 174, 316–361. [CrossRef]

32. Mesmoudi, A.; Mrissa, M.; Hacid, M.S. Combining configuration and query rewriting for Web service
composition. In Proceedings of the IEEE International Conference on Web Services (ICWS), Washington,
DC, USA, 4–9 July 2011; pp. 113–120.

33. Drescher, C. The Partner Units Problem a Constraint Programming Case Study. In Proceedings of
the IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece,
7–9 November 2012; pp. 170–177.

34. Mittal, S.; Frayman, F. Towards a Generic Model of Configuraton Tasks. In Proceedings of the 11th
International Joint Conference on Artificial Intelligence, San Francisco, CA, USA, 20–26 August 1989;
Volume 2, pp. 1395–1401.

35. Rosa, M.L.; Dumas, M.; ter Hofstede, A.H.M.; Mendling, J. Configurable multi-perspective business process
models. Inf. Syst. 2011, 36, 313–340. [CrossRef]

36. van der Aalst, W.M.P.; Dumas, M.; Gottschalk, F.; ter Hofstede, A.H.M.; Rosa, M.L.; Mendling, J.
Correctness-Preserving Configuration of Business Process Models. In Proceedings of the 11th International
Conference on Fundamental Approaches to Software Engineering, FASE 2008, Budapest, Hungary,
29 March–6 April 2008; Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008; Lecture Notes in Computer Science; Fiadeiro, J.L., Inverardi, P., Eds.; Springer: Berlin, Germany,
2008; Volume 4961, pp. 46–61.

37. Rosemann, M.; van der Aalst, W.M.P. A configurable reference modelling language. Inf. Syst. 2007, 32, 1–23.
[CrossRef]

38. Vanderfeesten, I.; Reijers, H.A.; van der Aalst, W.M. Product-based workflow support. Inf. Syst. 2011,
36, 517–535. [CrossRef]

39. Vanderfeesten, I.T.P.; Reijers, H.A.; van der Aalst, W.M.P. Product Based Workflow Support:
Dynamic Workflow Execution. Lecture Notes in Computer Science. In Proceedings of the 20th International
Conference on Advanced Information Systems Engineering, CAiSE 2008, Montpellier, France, 16–20 June 2008;
Bellahsene, Z., Léonard, M., Eds.; Springer: Berlin, Germany, 2008; Volume 5074, pp. 571–574.

40. Kluza, K.; Honkisz, K. From SBVR to BPMN and DMN Models. Proposal of Translation from Rules to
Process and Decision Models. In Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer International Publishing: New York,
NY, USA, 2016; pp. 453–462.

41. Object Management Group (OMG). Semantics of Business Vocabulary and Business Rules (SBVR); Version 1.4:
Formal Specification; OMG: Needham, MA, USA, 2017.

42. Natschläger, C.; Kossak, F.; Schewe, K.D. Deontic BPMN: A powerful extension of BPMN with a trusted
model transformation. Softw. Syst. Model. 2015, 14, 765–793. [CrossRef]

43. Wiśniewski, P.; Kluza, K.; Ligęza, A. An Approach to Participatory Business Process Modeling: BPMN Model
Generation Using Constraint Programming and Graph Composition. Appl. Sci. 2018, 8, 1428. [CrossRef]

44. Borrego, D.; Eshuis, R.; López, M.T.G.; Gasca, R.M. Diagnosing correctness of semantic workflow models.
Data Knowl. Eng. 2013, 87, 167–184. [CrossRef]

45. Vanhatalo, J.; Völzer, H.; Leymann, F.; Moser, S. Automatic Workflow Graph Refactoring and Completion.
In Proceedings of the Service-Oriented Computing–ICSOC 2008, Sydney, Australia, 1–5 December 2008;
Bouguettaya, A., Krueger, I., Margaria, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 100–115.

46. Hasanov, E. Enhancing BPMN Conformance Checking with OR Gateways and Data Objects. Ph.D. Thesis,
University of Tartu, Tartu, Estonia, 2017.

47. Object Management Group (OMG). Business Process Model and Notation (BPMN) Version 2.0;
Object Management Group Standard; OMG: Needham, MA, USA, 2011.

48. Rossi, F.; van Beek, P.; Walsh, T. Handbook of Constraint Programming (Foundations of Artificial Intelligence);
Elsevier Science Inc.: New York, NY, USA, 2006.

49. Dechter, R. Constraint Processing; Elsevier Morgan Kaufmann: Burlington, MA, USA, 2003. Available online:
https://www.ibm.com/es-es/marketplace/ibm-ilog-cplex (accessed on 20 October 2018).

http://dx.doi.org/10.1016/j.artint.2009.12.002
http://dx.doi.org/10.1016/j.is.2010.07.001
http://dx.doi.org/10.1016/j.is.2005.05.003
http://dx.doi.org/10.1016/j.is.2010.09.008
http://dx.doi.org/10.1007/s10270-013-0329-5
http://dx.doi.org/10.3390/app8091428
http://dx.doi.org/10.1016/j.datak.2013.04.008
https://www.ibm.com/es-es/marketplace/ibm-ilog-cplex

Appl. Sci. 2018, 8, 2008 26 of 26

50. Manual, R. JSolver 2.1. Available online: https://www.ibm.com/es-es/marketplace/ibm-ilog-cplex
(accessed on 24 February 2014).

51. Gómez López, M.T.; Gasca, R.M.; Pérez-Álvarez, J.M. Decision-Making Support for the Correctness of Input
Data at Runtime in Business Processes. Int. J. Coop. Inf. Syst. 2014, 23, 1450003. [CrossRef]

52. Cheeseman, P.; Kanefsky, B.; Taylor, W.M. Where the Really Hard Problems Are; IJCAI; Mylopoulos, J., Reiter, R.,
Eds.; Morgan Kaufmann: Burlington, MA, USA, 1991; pp. 331–340.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.ibm.com/es-es/marketplace/ibm-ilog-cplex
http://dx.doi.org/10.1142/S0218843014500038
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Detailing an Example
	Related Work
	Conf-BP Framework: A Configurable System to Create Imperative BP
	Conf-BP Declarative Specification (ConfD-BP). A Formalization of the Language
	Sub-Process Description
	Sub-Process Relationships
	Grammar
	Specification Applied to the Trip Planner Example

	Conf-BP Imperative Modelling (ConfM-BP)
	Automatic Transformation from Declarative to Imperative Model
	Configuration of a BP Model: Creating a COP from the Declarative Model
	Transformation of the COP results into a BP Imperative Model

	Results: Transformation Applied to the Trip Planner Example
	Conclusions and Future Work
	References

