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Neuroinflammation is a pathological feature of quite a number of Central Nervous
System diseases such as Alzheimer and Parkinson’s disease among others. The
hallmark of brain neuroinflammation is the activation of microglia, which are the
immune resident cells in the brain and represents the first line of defense when
injury or disease occur. Microglial activated cells can adopt different phenotypes to
carry out its diverse functions. Thus, the shift into pro-inflammatory/neurotoxic or anti-
inflammatory/neuroprotective phenotypes, depending of the brain environment, has
totally changed the understanding of microglia in neurodegenerative disease. For this
reason, novel therapeutic strategies which aim to modify the microglia polarization are
being developed. Additionally, the understanding of how nutrition may influence the
prevention and/or treatment of neurodegenerative diseases has grown greatly in recent
years. The protective role of Mediterranean diet (MD) in preventing neurodegenerative
diseases has been reported in a number of studies. The Mediterranean dietary pattern
includes as distinctive features the moderate intake of red wine and extra virgin olive
oil, both of them rich in polyphenolic compounds, such as resveratrol, oleuropein and
hydroxytyrosol and their derivatives, which have demonstrated anti-inflammatory effects
on microglia on in vitro studies. This review summarizes our understanding of the role of
dietary phenolic compounds characteristic of the MD in mitigating microglia-mediated
neuroinflammation, including explanation regarding their bioavailability, metabolism and
blood–brain barrier.
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INTRODUCTION

Among age-related diseases, neurodegenerative disorders are the
most prevalent. According to the World Health Organization
(WHO), worldwide, around 50 million people have dementia,
and every year, there are nearly 10 million new cases. Also the
proportion of the general population aged 60 and over with
dementia at a given time is between 5 to 8 per 100 people and
the total number of people with dementia is expected to increase
to 82 million in 2030 and 152 in 2050 (WHO, 2015, 2017).
Among them, Alzheimer’s disease (AD) and Parkinson’s disease
(PD), are most common and of great concern since they are
chronic and progressive and affect a significant portion of the
aged population. AD is the most common form of dementia,
accounting for around 60–70% of total cases (WHO, 2017).
At the same time their poor diagnosis and lack of effective
treatment worsens the problem (Figueira et al., 2017; Pennisi
et al., 2017). Since their prevalence remains growing, they
currently represent a challenge for society and healthcare systems
(Deak et al., 2015; Peña-Altamira et al., 2017). Although age is
the main risk factor for dementia, there are other recognized
risk factors, quite a number of them related with diet such
as mid-life hypertension, obesity or unbalanced diets (WHO,
2018). Hence, neurodegenerative disorders are recognized to
be complex, progressive and multifactorial. At the same time
genetic factors are associated since familial and sporadic forms
are described with lifestyle and environmental factors involved
(Nicolia et al., 2014; Peña-Altamira et al., 2017).

Pharmacological treatments for AD and PD currently
available have the potential to delay the progression or even
reduce the symptoms at a certain level (Pennisi et al., 2017). At
the same time, they have common pathological features such as
oxidative stress, abnormal protein aggregation, inflammation and
apoptosis of neurons (Angeloni et al., 2017). In this context and
due to the limited efficacy of pharmacological treatment and the
multifactorial nature of these disorders, a multifaceted approach
seems appropriate. Diet interventions are a promising approach
to prevent and delay the progression, with so far an important

Abbreviations: α-syn, α-synuclein; 6-OHDA, 6-hydroxydopamine; Aβ, amyloid-
β; AD, Alzheimer’s disease; ADH, alcohol dehydrogenase; ALR, aldehyde/aldose
reductase; AMPK, adenosine monophosphate-activated protein kinase; AP-1,
activator protein -1; BBB, blood-brain barrier; CNS, central nervous system;
COX-2, cyclooxygenase 2; DG, dentate gyrus; DOPAC, 3,4-dihydroxyphenylacetic
acid; DOPAL, 3,4-duhydroxyphenyl aldehyde; Drp1, dynamin-related protein
1; EFSA, European Food Safety Authority; ERK, extracellular signal-regulated
kinase; EVVO, extra virgin olive oil; GSK-3, glycogen synthase kinase-
3; HT, hydroxytyrosol; IL, interleukin; INF-γ, interferon-γ; iNOS, inducible
nitric oxide synthase; JAK, Janus kinase; JNK, c-Jun N-terminal kinase;
LPS, lipopolysaccharide; MAPKs, mitogen-activated protein kinases; MD,
Mediterranean diet; MPO, myeloperoxidase; MPTP, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine; mTOR, mammalian target of rapamycin; NAD, adenine
dinucleotide; NADPH, nicotinamide adenine dinucleotide phosphate hydrogen;
NF-κB, nuclear factor-Kappa B; NO, nitric oxide; Nrf2, nuclear factor–erythroid 2-
related factor; oAβ, oligomeric Aβ; OLE, oleuropein; PD, Parkinson’s disease; PGE-
2, prostaglandin E2; PI3K/Akt, phosphatidylinositol-3-kinase and protein kinase B;
ROS, reactive oxygen species; RV, resveratrol; SIRT, sirtuin; SN, substantia nigra;
SOCS, suppressor of cytokine signaling; STAT, signal transducer and activator
of transcription; STS, stilbene synthase; TGB-β, transforming growth factor
beta; TNF-α, tumor necrosis factor; UGTs, uridine 5′-diphosphoglucuronosyl
transferases; VOO, virgin olive oil; WHO, World Health Organization.

body of evidence and experimental support (Almeida et al., 2016;
Figueira et al., 2016; Angeloni et al., 2017; Pennisi et al., 2017;
Pistollato et al., 2018).

Although prevalence data of neurodegenerative diseases
within the EU-28 countries do not support lower prevalence
figures for Mediterranean countries (Alzheimer Europe, 2013),
MD is still widely recognized for its healthy pattern (Castro-
Quezada et al., 2014). According to the last data provided
by Eurostat (Eurostat, 2016), life expectancy at age 65 in
Mediterranean countries is significantly higher than the average
for EU-28 countries. Since neurodegenerative diseases are
strongly aged-related, it is not surprising that its overall
prevalence values in Mediterranean countries remain indistinct
than another EU-28 countries.

Mediterranean diet has been proposed as a healthy dietary
pattern with increasing evidence supporting its beneficial effects
toward quite a number of age-related pathologies, among them
neurodegenerative disorders and cognitive dysfunctions (Féart
et al., 2009, 2010, 2013; Tangney et al., 2011). A number of studies
have shown how adherence to the MD pattern is associated
with a reduction on cognitive decline and a reduced risk of
dementia, AD and PD (Scarmeas et al., 2006, 2009; Di Giovanni,
2009; Alcalay et al., 2012; Gardener et al., 2012; Singh et al.,
2014; Casamenti et al., 2015; Safouris et al., 2015; Anastasiou
et al., 2017). In addition, MD dietary patterns (a vegetable-based
diet and a moderate alcohol intake, especially wine) have been
also observed in the so-called “Blue Zones.” These zones are
population areas [Sardinia (Italy), Okinawa (Japan), Loma Linda
(California), Nicoya Peninsula (Costa Rica) and Icarian (Greece)]
which share apart of similar dietary patterns to MD, other special
particularities as a stress free and active life-style (regular physical
activity) and a familial, social and spirituality life (Buettner and
Skemp, 2016). “Blue Zones” have been object of investigation
due to the high and exceptional longevity (centenarians/non-
agenarians) of their population (Poulain et al., 2013). In fact, it
has been observed that older Blue Zone Sardinians present fewer
cognitive failures in comparison with the population of other
Italian zone (Lombardy). This observation has been related with
the presence of a superior working memory performance and
lower levels of depressive symptoms associated to the life style
pattern including the diet (Fastame et al., 2014a,b, 2015; Fastame
and Penna, 2014).

This potential of MD in preventing neurodegenerative
disorders has been mainly related with its high content in plant
foods: fruits and vegetables and olive oil, sources of an array
of bioactive compounds (Morris et al., 2006; Scarmeas et al.,
2006, 2009; Féart et al., 2010, 2013; Kelsey et al., 2010; Nooyens
et al., 2011; Scapagnini et al., 2011; Tangney et al., 2011; Alcalay
et al., 2012; Davinelli et al., 2014; Angeloni et al., 2017; Figueira
et al., 2017). Bioactive compounds comprise an heterogeneous
group of thousands of molecules present mainly in plant foods
and also known as phytochemicals. They can be classified into
a number of groups, depending on authors, being carotenoids,
phytosterols, polyphenolic compounds and sulfur compounds
the most abundant.

Research on the protective effect of food polyphenols toward
the prevention of neurodegenerative disorders has been extensive
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in recent years (Singh et al., 2008; Joseph et al., 2009;
Dixon and Pasinetti, 2010; Spencer, 2010; Jones et al., 2012;
Vauzour et al., 2018). Virgin olive oil (VOO) and wine are two
characteristic polyphenol-rich food items of the MD. Among
polyphenols, stilbenes seem to be one of the most promising
groups of compounds due to its bioactivity, with red wine
being the main source of the most abundant dietary stilben:
resveratrol (RV). Most important polyphenols in VOO are
tyrosol derivates, showing hydroxytyrosol (HT) and oleuropein
(OLE) the most relevant neuroprotective effects (Daccache et al.,
2011; Barbaro et al., 2014; Casamenti et al., 2015; Rigacci and
Stefani, 2015). Additionally, HT has also been found in both red
and white wine in significant amounts (Fernández-Mar et al.,
2012). In fact, dietary supplementation with extra virgin olive oil
(EVOO) improves behavioral deficits in aging rats (Pitozzi et al.,
2010). Moreover the longitudinal “Three city study” found an
association between protective effects of the MD and cognition
in an elderly population (Berr et al., 2009). Several clinical
trials and population studies show olive phenolic compounds
as the main responsible for the protective effects against aging-
associated cognitive disorders and neurodegenerative diseases
such AD, with a simultaneous improvement of cognitive
performance (Scarmeas et al., 2006; Valls-Pedret et al., 2012,
2015; Rigacci and Stefani, 2015; Rodríguez-Morató et al., 2015;
Casamenti and Stefani, 2017; Loughrey et al., 2017). Despite
the evidence supporting the potential benefit of MD, the
epidemiological evidences are scarce and need further critical
discussion.

Polyphenols are an extensive group of molecules, whose
number is of several thousands, and encompass very
different structures, concentrations in food and beverages
and bioactivities. Usually, after ingestion only a minor part
is readily absorbed in the upper intestine, most frequently
they are hydrolyzed and metabolized prior to their absorption
(Bolca et al., 2013; Faria et al., 2014). The non-absorbed
portion reaches the colon where it is extensively utilized by
gut microbiota yielding low molecular weight compounds,
mainly low molecular weight fatty acids (Manach et al., 2004;
Crozier et al., 2009; Selma et al., 2009; Laparra and Sanz, 2010;
Williamson and Clifford, 2010; Rodriguez-Mateos et al., 2014).

One main issue is if these compounds are able to pass the
blood brain barrier (BBB), reaching significant concentrations
in brain. Different families of dietary polyphenols present
neuroprotective properties but they need a good permeability
across the BBB to be really effective (Bisht et al., 2010; Figueira
et al., 2017). At the same time low absorption rates and rapid
metabolism and excretion could limit their efficacy (Almeida
et al., 2016). Nevertheless, the question of the actual dose reaching
the target tissues remains uncertain (Vauzour, 2012).

The mechanisms by which polyphenols are able to prevent and
counteract neurodegenerative diseases include interfering with
amyloid aggregation, reducing oxidative stress and regulating
signaling pathways and cytokines expression, with a marked
effect on reducing inflammation (Ramassamy, 2006; Essa et al.,
2012; Martínez-Huélamo et al., 2017; Sarubbo et al., 2017). In
fact, inflammatory markers, many of them derived from activated
microglia, are widely present in neurodegenerative diseases and

polyphenols have been proposed as active agents having anti-
inflammatory effects on microglia (Sundaram and Gowtham,
2012; Peña-Altamira et al., 2017; Cayero-Otero et al., 2018).
Despite the broad evidence supported by both in vitro and
in vivo studies, it is worth highlighting that we should be cautious
when extrapolating the findings based on cell culture or animal
research to the human disease. Nevertheless, these approaches
are fundamental to underpin the effects observed in human
intervention studies.

Recently, Weber (2015) has analyzed the inherent benefits
and drawbacks of both in vitro and in vivo methodologies used
for assessing neuroprotection. In summary, in vitro approaches
make possible to conduct a rapid screen (and test different
concentrations) to assess the potential effects of bioactives and
represent a good model to glimpse the cellular effects and discern
the mechanism of action. Moreover, in vitro techniques can
be used to study protective activities over the course of a few
weeks, compared to in vivo, that may need several months.
However, the compounds are sometimes tested at concentrations
that are not achieved in nervous system tissue and without
taking account the different human physiological processes such
digestion, metabolism and the role of gut microbiota. In addition,
many cellular lines are genetically modified and consequently
it may not represent the real characteristics of cells in the
brain. Concerning in vivo methodology, it allows deepening to
determine more adequately the protective effects of bioactives or
even their metabolites in the different brain areas and enables
to determine the extent dietary compounds that can pass to
the brain (Weber, 2015). However, one of the most current
important challenge for neurodegenerative research is to develop
better animals models that properly reflect both disease etiology
and progression (Franco and Cedazo-Minguez, 2014), that can
replace the based massive overexpression protein animal models
that are not fitted for this goal.

In despite of all above mentioned, unfortunately, it has been
described that only a third of the preclinical animal research are
later translated at the level of human randomized trials (Hackam
and Redelmeier, 2006).

This review summarizes the evidence of the role of
certain dietary phenolic compounds characteristic of the MD
(stilbenes, HT and OLE) in mitigating microglia-mediated
neuroinflammation by inhibiting key signaling pathways.

SHIFT IN MICROGLIAL PHENOTYPES AS
A TARGET TO COMBAT
NEURODEGENERATIVE DISORDERS

As stated above, neuroinflammation is a common feature shared
by most neurodegenerative disease, such as AD and PD.

Alzheimer’s disease, the most common form of dementia in
the elderly, is characterized by the accumulation of amyloid-
β (Aβ) both in the brain parenchyma (amyloid plaques)
and blood vessels (cerebral amyloid angiopathy), and by the
presence of neurofibrillary tangles (Wuwongse et al., 2010).
AD is characterized by a progressive cognitive decline, memory
loss and atrophic changes in some brain areas in response
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to massive neuronal death and synaptic degeneration (Wenk,
2003; Wuwongse et al., 2010). There is strong evidence
demonstrating a close correlation between Aβ accumulation and
neuroinflammation, and the active role of the immune system in
the etiology of AD. Aβ is toxic to neurons by itself, which in turn
overactivates microglia (Yankner et al., 1990; Heneka et al., 2010)
with the subsequent deleterious effect to neurons (Block et al.,
2007).

PD is the second most prevalent neurodegenerative disease,
affecting approximately 1–3% of the population (Obeso et al.,
2000). This neurodegenerative disorder is characterized by a slow
and progressive degeneration of dopaminergic neurons in the SN
(Obeso et al., 2000). This loss of dopamine is responsible for
many of the symptoms that accompany the disease, including
motor dysfunction, mood alterations and cognitive impairment
(Olanow et al., 2003). Evidence of neuroinflammation as an
underlying process in PD has been accumulating since the
presence of activated microglia in the substantia nigra (SN) of
PD patients was first reported by McGeer et al. (1988). This
increase of activated microglia is accompanied by an increase in
the expression of pro-inflammatory cytokines (Tansey et al., 2007;
Hirsch and Hunot, 2009).

Neuroinflammation is mainly carried out by microglia cells,
the macrophages of the central nervous system (CNS). Although
very similar in terms of morphology and functions, peripheral
macrophages and microglia have distinctive characteristics
among which are their origin, functions and markers. Besides,
macrophages/microglia have diverse functions that range
from fighting bacterial infection to tissue regeneration and
wound healing. The diverse functions of microglial cells
in the CNS are mirrored by equally diverse phenotypes.
A classical model of pro-inflammatory/M1 versus an anti-
inflammatory/M2 microglia has been extensively used. However,
the complex and different functions of microglial cells can
only be explained by the existence of varied and plastic
microglial phenotypes mediated by distinct gene expression
programs and a network of molecular pathways that relay
environmental signals via signaling cascades (Amici et al.,
2017). Therefore, M1 and M2 are just the extremes of a broad
spectrum of phenotypes that cover the different functions
of microglia. These different phenotypes can be achieved
by stimulating microglial cells with different compounds.
Hence, when stimulated with lipopolysaccharide (LPS) (a
bacterial cell wall product of Gram-negative bacteria) and
interferon gamma (IFN-γ), macrophages/microglia has long
been known as classically activated or M1 (Martinez and Gordon,
2014), while when activated with IL-4 macrophages/microglia
show an alternative activated phenotype or M2. In order to
standardize the nomenclature and facilitate the communication
of macrophage/microglia data, a novel nomenclature has been
proposed in which the letter M is followed by a parenthesis
that includes the stimuli used for activation (Murray et al.,
2014). The knowledge of the molecular programs that control
the inflammatory phenotypes versus resolution provides a
unique opportunity to find new targets that allow modulating
these phenotypes and, therefore, controlling the excessively
inflammatory responses that accompany neurodegenerative

diseases. The knowledge of these molecular mechanisms is
greatly advancing in recent years.

Functionally, M1 microglia is responsible for fighting
infections, for which it adopts a clear pro-inflammatory
phenotype with microbicidal, antigen-presenting and immune-
enhancing functions. This type of microglia is characterized
by the production of NO by the iNOS, encoded by the Nos2
gene; (MacMicking et al., 1997; Arnold et al., 2014) and by the
expression of inflammatory chemokines and cytokines, such as
interleukin IL-6, IL-12, IL-1β, IL-23, and TNF-α that attract
new cells of the immune system to the site of infection (Mosser
and Edwards, 2008; Murray et al., 2014). In the context of
neurodegenerative disease this phenotype produces harmful
effects in the neuronal population.

When neutrophils undergo apoptosis and microglia switch
to a resolution/M2 phenotype, the initial acute inflammation
evolves to a resolution phase (Serhan et al., 2014). This
resolution/wound healing phase is mediated by lipid mediators,
such as classical eicosanoids, phospholipids and sphingolipids,
endocannabinoids and specialized proresolving mediators
(Chiurchiù and Maccarrone, 2016), that promote the switch
of microglia to the M2 phenotype (Bosurgi et al., 2017).
Resolution/M2 microglia suppresses IL-12 secretion and induces
the release of IL-10, TGB-β, IL-1R antagonist and decoy IL-R
II (Brancato and Albina, 2011). Besides, these microglial cells
induce the expression of arginase-1 instead of iNOS, switching
arginine metabolism from production of NO to ornithine, and
also increase polyamines production for extracellular matrix and
collagen synthesis (Gordon and Martinez, 2010). This phenotype
promotes the neuroregeneration and tissue repair.

Taking into account the importance of inflammation in
neurodegenerative diseases, the scientific community is searching
for new strategies that may induce a shift in microglial cells from
inflammatory and neurotoxic phenotype to an anti-inflammatory
and neuroprotective one. In this sense, several compounds have
shown immunomodulatory properties, making them possible
candidates for co-adjuvant therapies to treat neurodegenerative
diseases.

RV AND OTHER STILBENES:
BIOAVAILABILITY, PHARMACOKINETICS
AND BLOOD–BRAIN BARRIER
PERMEABILITY

Stilbenes such as RV (Figure 1) are found in many plant species
including Arachis hypogaea (peanut), Vitis vinifera (grape wine)
and many tree species such as Picea, Pinus, and Eucalyptus
(REF BD stilbenes). Stilbenes are synthetized in plants by the
condensation reaction of 4-coumaroyl CoA and 3 molecules of
malonyl CoA under the action of stilbene synthase (STS). STS is
the key specific enzyme of stilbene-producing plants (Soleas et al.,
1997). The distribution of STS and stilbenes is organ-specific
and tissue-specific (Wang et al., 2010). Stilbene production is
increased in response to abiotic and biotic stresses such as
UV-radiations, hydric stress or infectious diseases. Concerning
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FIGURE 1 | Chemical structure of RV and derivatives and OLE.

dietary sources, stilbenes have been identified in peanuts,
blueberries, and cranberries (Neveu et al., 2010). Nevertheless
grape skins and red wine constitute the main primary dietary
sources in the human diet (Weiskirchen and Weiskirchen, 2016).
The levels of RV, the most studied stilbene, range from non-
detectable levels to 29.2 mg/L in red wines (Stervbo et al., 2007).
In addition to RV, red wine contains several other stilbenes such
piceid (its glucoside), piceatannol and its glucoside astringin,
pterostilbene, or viniferins (Pezet et al., 1994; Vitrac et al.,
2005; Guebailia et al., 2006). These compounds are present as
constitutive compounds of the woody organs and as induced
substances in leaves and grape berries acting as phytoalexins
(Vrhovsek et al., 2012; Gabaston et al., 2017).

The possible beneficial effect on human health of stilbenes
depends heavily on their absorption, bioavailability, and
metabolism. First at all, due to its structure, RV is poorly soluble
in water (<0.05 mg/mL) which could affect its bioavailability.
Organic solvents such as alcohol increase its solubility. At least
70% of resveratrol ingested is absorbed, and readily metabolized
to form mainly glucuronide and sulfate derivatives (Fernández-
Mar et al., 2012). A rapid passive diffusion of RV and the
formation of complexes with membrane transporters have been
reported at the intestinal level (Delmas et al., 2011). Phase
II metabolism of both resveratrol and its metabolites takes
place at hepatic level (Kaldas et al., 2003; Li et al., 2003).
Furthermore, it is known that RV can induce its own metabolism
by increasing the activity of phase II detoxifying enzymes
(Lançon et al., 2004). In addition, it has been described that RV
can undergoes some returning cycles to the small intestine due
to the enterohepatic transport (Crozier et al., 2009). Therefore,
three different forms: glucuronide, sulfate or free RV are the
main forms found in the bloodstream. At the same time,
only trace amounts of unchanged RV have been detected in

plasma (Walle et al., 2004). The main metabolites excreted in
urine and feces (probably by enterohepatic cycle) have been
RV sulfate and RV glucuronide derivatives (Marier et al., 2002).
Besides, RV and its metabolites have been found distributed
among various organs, such as liver, kidney, lung, brain, small
intestinal mucosa, and colonic mucosa (Vitrac et al., 2003;
Wenzel and Somoza, 2005). Additionally, mention should also
be made of the significance of formation of RV metabolites by
gut microbiota. Dihydroresveratrol (Walle et al., 2004), 3,4′-
dihydroxy-trans-stilbene and 3,4-dihydroxybibenzyl (lunularin)
(apart from glucuronides and sulfates) have been identified as
RV metabolites after microbiota biotransformation with human
fecal material (Bode et al., 2013). Bioavailability of unchanged
RV is very low (almost zero) due to the rapid and extensive
biotransformation, despite that it shows several in vivo activities
(mouse and humans) (Walle et al., 2004; Gambini et al., 2015; de
Vries et al., 2018).

Concerning other stilbenes, piceatannol (Figure 1) has been
identified in wine and tea (Neveu et al., 2010). Its absorption,
bioavailability and metabolism seem to be similar to that of
RV (Piotrowska et al., 2012). In vivo experiments indicated that
piceatannol is a metabolite of RV (Niles et al., 2006) an that
it seems to be absorbed from the intestine after oral ingestion
and rapidly metabolized to both glucuronidation and sulfation.
Recent studies have identified also piceatannol metabolites
such as O-methyl conjugates and isorhapontigenin (methylated
derivative of piceatannol) and its conjugates demonstrating that
piceatannol is not only a RV metabolite (Setoguchi et al., 2014). In
addition the same authors found that piceatannol was absorbed
twofold greater in the intact form than RV. All these data suggests
that piceatannol has a more complicated metabolic pathway
due in part to the presence of a catechol ring, which enables
methylation and increases the number of pathways available
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during its metabolism (Setoguchi et al., 2014). Nevertheless, more
studies are necessary to gain more knowledge on piceatannol
metabolism and to investigate its biological properties.

Pterostilbene (Figure 1) is a dimethyl ether analog of RV
(Wang and Sang, 2018). It has been observed in different
berries (Rimando et al., 2004) and red wine (Pezet et al.,
1994). It was reported that, due to its lipophilic structural
characteristic, pterostilbene exhibits better bioavailability
than RV (Kapetanovic et al., 2011). Pterostilbene metabolism
encompasses glucuronidation and sulfatation, being this last
predominant (Kapetanovic et al., 2011). Shao et al. (2010)
also identified other metabolites in mice urine such as mono-
hydroxylated and demethylated pterostilbene derivatives
(Shao et al., 2010). In addition, pinostilbene (a demethylated
pterostilbene) was recently identified as a mayor pterostilbene
colonic metabolite in mice (Sun et al., 2016). However, no
pharmacokinetic investigations of pterostilbene have been
performed in humans yet. Therefore, complementary studies are
also necessary for a better understanding of its metabolism and
properties.

Resveratrol has been the most widely stilbene studied and
a great number of activities have been endorsed, including
neuroprotective capacity (Fernández-Mar et al., 2012). Recently,
it has been proved that RV and its major metabolites crossed
the human BBB, showing CNS effects, with their measurable
amounts detected in plasma and cerebrospinal fluid (CSF)
(Turner et al., 2015). This fact highlights that this compound
could be taken in consideration as a neuroprotective molecule.

Nowadays, the study of the health effects of other stilbenes is
gaining importance due to the existing evidence proving more
potent activity for RV derivatives or related compounds than RV
(Zghonda et al., 2011, 2012).

RV AND OTHER STILBENES AND THE
MOLECULAR MECHANISMS
IMPLICATED IN THEIR
ANTI-INFLAMMATORY ACTIVITIES

Regarding the anti-inflammatory effects of stilbenes (RV and
derivatives), an interesting number of works have been published
being the in vitro studies more extensive than in vivo ones. In this
review, a total of 23 in vitro and 6 in vivo works have been selected
(Table 1).

Regardless of the different clinical and pathological features
between AD and PD, ultimately leading to neuronal cell death,
they share common molecular mechanisms such as protein
aggregation, oxidative stress, mitochondrial dysfunction and
neuroinflammation (Irvine et al., 2008; Yan et al., 2013).

With regard to stilbenes, it may be interesting to underline that
several properties have been described including neuroprotective
activities at different levels such as anti-amyloidogenic efficacy,
neuroprotection via modulation of neural mediators and
enzymes and interaction/modulation with different signaling
pathways (Basli et al., 2012). For example, it has been
demonstrated that they can act by reducing the intracellular

Aβ levels and by inhibiting Aβ fibril formation and toxicity
in vitro (Rivière et al., 2007, 2010; Temsamani et al., 2016).
Moreover, stilbenes have demonstrated to be effective free-
radical scavengers protecting against oxidative stress through the
activation of nuclear factor-erythroid-2-related factor-2 (Nrf2)
and sirtuin 1 (SIRT1) pathways (Pallàs et al., 2009; Reinisalo et al.,
2015).

Additionally, oxyresveratrol (the hydroxylated derivative of
RV) has shown neuroprotective effects against 6-OHDA, a
catecholaminergic neurotoxin formed in PD patients, acting via
the reduction of intracellular reactive oxygen species (ROS),
attenuation of phospho-c-Jun N-terminal kinase (JNK)-1 and
phospho-JNK-2 and increase in cytosolic SIRT1 levels (Chao
et al., 2008). Furthermore, Amurensin G (a RV dimer) enhances
cell viability in SH-SY5Y cells and inhibits rotenone-induced cell
cycle arrest by decreasing G2/M involving an autophagic activity
(Ryu et al., 2013). Similarly, amurensin G is reported to protect
against Aβ(25−35)-mediated neurotoxicity in rat cerebral cortical
neurons and in mice (Jeong et al., 2010).

In general, several mechanisms of RV and its derivatives
have been proposed on microglia-mediated neuroinflammation
including: Nuclear Factor-Kappa B (NF-κB), MAPKs, Janus
Kinase/Signal Transducer and Activator of Transcription
(JAT/STAT) and SIRT1 pathways.

NF-κB Pathway
NF-κB is an important transcription factor responsible of
the regulation and production of pro-inflammatory factors,
including NO, TNF-α, and IL1-β (Lawrence, 2009). NF-κB is
normally located in the cytoplasm by binding of its inhibitors
IκBs. IκBs are rapidly phosphorylated and degraded via IKK
complex when an inflammatory insult occurs, leading to the
liberation of NF-κB dimers (p50 and p65). Then, these dimers
are translocated to the nucleus regulating the expression of
numerous target genes (TNF-α, iNOS, IL-1β, and IL-6 among
others) (Tak and Firestein, 2001; Rahman and Fazal, 2011).

The effect of stilbenes to prevent the nuclear translocation
of NF-κB and the consequent liberation of pro-inflammatory
cytokines is one of the well-known and most studied pathways.
Multiple works have revealed that RV and it analogs and other
stilbenes such as piceatannol are able to prevent the liberation
of pro-inflammatory cytokines acting by inhibiting the NF-κB
transcription and expression.

Therefore, RV (0.04–43.8 µM) suppresses the degradation
of IκBα in LPS-stimulated N9 microglial cells and as result
of this, inhibits the iNOS expression (Bi et al., 2005). In
accordance with this paper, other authors showed that RV at low
concentrations (0.5–20 µM) markedly inhibited LPS-mediated
nuclear translocation of NF-κB protein and transcriptional
activation of NF-κB promoter in C6- microglial cells (Young
et al., 2007). Moreover, using microglial and astrocytes cell lines
it has been described that RV (5, 25, and 50 µM) can suppress the
NFκB activation in both types of cells and also inhibits the AP-
1 in microglia (Lu et al., 2010). AP-1 also acts by activating the
extracellular signal-regulated kinase (ERK) subgroup of MAPKs
(Fujioka et al., 2004) being this another interesting pathway to
combat neuroinflammation.
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TABLE 1 | Summary of RV and derivatives activities (in vivo and in vitro) in counteracting neuroinflammation.

Model Compounds Dose Microglia activated by Effect Reference

In vivo

Adult male C57/BL6
mice

RV 20 mg/kg (14
consecutive days)

LPS Reduction of microglia
activation (Iba-1 + cells)
Inhibition of the NF-κB in the
hippocampus Induction of
activation of SIRT1

Liu et al., 2016

Male Sprague–Dawley
rats

Pterostilbene 20 mg/kg (3 days) LPS Mitigation of microglial
activation in rat hippocampal
CA1 and dentate gyrus (DG)
Inhibition of IL-6 and TNF-α
mRNA expression in rat
hippocampus and rat serum

Hou et al., 2015

APP/PS1 transgenic
mice

RV ALD55:
(E)-2-fluoro-4
-methoxystilbene)

100 ppm (0.01%
weight) (1 year)

Aβ Reduction of microglia
activation (Iba-1 + cells)
Reduction of Aβ plaque density

Solberg et al., 2014

Male adult Wistar rats RV (Free and in lipid
core nanocapsule)

10 mg/kg/day (14
consecutive days)

Aβ1−42 Reduction of astrocyte and
microglial activation and block
JNK activation (RV in lipid core
nanocapsule) Increase in
phosphorylation/inactivation of
GSK-3β (RV and RV in lipid
core nanocapsule)

Frozza et al., 2013

APP/PS1 transgenic
mice

RV Diet supplementation
(0.35% of RV)
(15 weeks)

Aβ Reduction of microglial
activation (Iba-1 + cells)

Capiralla et al., 2012

BALB/c aged mice RV Diet supplementation
(0.4% of RV) (4 weeks)

LPS Reduction of IL-1β in plasma
and in hippocampus
Improvement the impaired
spatial working memory

Abraham and Johnson,
2009

In vitro

C8-B4 microglial cells RV 100 µM LPS and IFN-γ Reduction of NO, IL-1α,
IL-1β,IL-6, and TNF-α

Steiner et al., 2016

BV-2 microglial cells RV 0–30 µM Oligomeric Aβ (oAβ) Inhibition of ROS, NO, TNF-α,
and IL-1β

Inhibition of protein expression
levels of p47phox and gp91phox

(NADPH oxidase)

Yao et al., 2015

N13 microglial cells RV
1–20 µM

LPS
Reduction of IL-1β, TNF-α and
IL-6 mRNA expression
Increment of IL-10
Increase of JAK1phox and
STAT3phox and suppression of
SOCS3 (JAK–STAT signaling
pathway)

Cianciulli et al., 2015

Primary microglia RV 1 µM LPS Inhibition of microglial activation
Reduction of IL-1β, iNOS,
COX-2 and TNF-α
Blockage NF-κB stimulation

Wang et al., 2015

BV-2 microglial cells Pterostilbene 1–30 µM LPS Suppression of NO, iNOS, IL-6,
and TNF-α mRNA expression
Inhibition of the phosphorylation
of MAPKs

Hou et al., 2015

N13 microglial cells RV 10 µM LPS Modulation of SOCS-1
dependent PI3K/Akt signaling
cascade
Reduction of ROS, SOD, p38,
PI3K/Akt, NF-κB activation,
NO, and iNOS

Dragone et al., 2014

(Continued)
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TABLE 1 | Continued

Model Compounds Dose Microglia activated by Effect Reference

Primary microglia,
astrocytes, and mixed
glial cell cultures
BV-2 microglial cells

RV 5, 10, and 20 µM
Rotenone

Reduction of MPO, NO, IL-1β,
COX-2, TNF-α, and iNOS
Reduction of gp91phox (NADPH
oxidase)
Attenuation of cell death in
co-culture

Chang et al., 2013

Rat primary cortical
neuron-glia cultures

RV 15–60 µM LPS Inhibition of microglial activation
(decrease of Iba-1 + cells)
Inhibition of TNF-α, iNOS,
IL-1β, and NO

Zhang et al., 2013

BV-2 microglial cells RV 50 µM LPS
Aβ

Inhibition of NF-κB activation
(interfering with IKK and IκB
phosphorylation)
Reduction of IL-6, TNF-α,
M-CSF, MCP-1, MCP-5, CD54,
IL-1ra, IL-27, iNOS, and COX-2
Diminution of STAT1 and STAT3
Reduction of FLAG-tagged
TLR4

Capiralla et al., 2012

BV-2 microglial cells RV 25–100 µM LPS Attenuation of NO, PGE2,
iNOS, COX-2,TNF-α, IL-1β, and
NF-κB

Zhong et al., 2012

N9 microglial cells
Primary microglia
Primary astrocytes

RV 0–50 µM LPS Inhibition of TNF-α, IL-6,
MCP-1, IL-1β, and iNOS/NO
Inhibition on LPS-stimulated
phosphorylation of JNK in
(astrocytes)
Inhibition of NF-κB activation
(inhibition of AP-1 activation
only in microglia)

Lu et al., 2010

Primary rat midbrain
neuron-glia and
neuron-astroglia
cultures

RV 60 µM LPS Reduction of NADPH
oxidase-mediated generation of
ROS
Attenuation of translocation of
NADPH p47
Implication of MAPK and NFκB
signaling pathways

Zhang et al., 2010

Microglial BV-2 cells RV 0–50 µM LPS Inhibition of IL-1β production Abraham and Johnson,
2009

N9 microglial cell line
Cultured rat cortical
microglia

RV 0.3–30 µM LPS Suppression NO and ROS
production
Inhibition of iNOS
Attenuation of TNF-α
Blockage of IκBα

phosphorylation and
degradation

Meng et al., 2008c

Primary rat microglia
21 RV derivatives

0–30 µM LPS Reduction of iNOS
Inhibition of TNF-α by blocking
IκBα phosphorylation and
degradation

Meng et al., 2008b

N9 microglial cells
RV 0.1 µM LPS

Reduction IL-1α and TNF-α
Bureau et al., 2008

N9 microglial cells
Primary rat microglial
cells

RV
0–30 µM LPS

Inhibition of NO production and
iNOS expression

Meng et al., 2008a

Primary microglial cell
cultures

RV 1–50 µM LPS Reduction of PGE2 synthesis
and formation of 8-iso-PGF2α

and mPGES-1
Inhibition of COX-1

Candelario-Jalil et al.,
2007

(Continued)
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TABLE 1 | Continued

Model Compounds Dose Microglia activated by Effect Reference

C6-microglial cells RV 0.5–20 µM LPS Inhibition of NO, PGE2, iNOS,
and COX-2
Suppression of translocation
and activation of NF-κB

Kim et al., 2007

BV-2 microglial cells 75 trans-stilbenes LPS Inhibition the TNFα-induced
activation of NFκB
Diminution of COX-2 mRNA
expression

Heynekamp et al., 2006

BV-2 microglial cells Piceatannol 0–40 µM LPS Inhibition of the release of NO,
PGE2, IL-1β, IL-6, TNF-α, iNOS
and COX-2
Prevention of NF-κB p65
nuclear translocation

Jin et al., 2006

Cultured rat cortical
microglia and N9
microglial cells

RV 0.01, 0.1, 1, and
10 µg/mL

LPS Inhibition on the production of
TNF-α, NO, iNOS
Suppression of degradation of
IκBα

Reduction of phosphorylation of
p38 (MAPKs signaling pathway)

Bi et al., 2005

Additionally, it has been demonstrated that after stimulation
of microglia either using LPS or fibrillary Aβ, RV (50 µM)
inhibits the NF-κB activation upon LPS stimulation by interfering
with IKK and IκB phosphorylation. As a consequence of
this inhibition, they (Capiralla et al., 2012) also observed a
reduction of the gene expression of IL-6, M-CSF, MCP-1,
MCP-5, CD54, IL-1ra, IL-27. Furthermore, RV was able to
inhibit the fibrillar Aβ-triggered increase of STAT1, STAT3, and
IκBα phosphorylation and also the TNF-α and IL-6 secretion.
Moreover, they also demonstrated using a transgenic mice model
of AD (APP/PS1), that the supplementation of the diet with
0.35% of RV resulted in a reduction of microglial activation,
observing a decrease on the number of Iba-1 cells (Capiralla
et al., 2012). The blocking of NF-κB activation by RV (1 µM)
has been also recently observed with primary microglia cultures
after LPS-stimulation with the confirmation of the reduction of
IL-1β, iNOS, COX-2, and TNF-α levels and in consequence, the
protection of primary hippocampal neurons (Wang et al., 2015).

Piceatannol (20 and 40 µM) another widely known stilbene
compound present in wine, has demonstrated its capacity to
prevent the NF-κB p65 nuclear translocation as well as the
inhibition of the release of NO, PGE-2, the inhibition of the
transcription of IL-1β, IL-6 and TNF-α and the attenuation of the
expression of iNOS and COX-2 mRNA and protein levels in LPS
treated BV2 microglial cells (Jin et al., 2006).

Furthermore, MAPKs are a highly conserved family of
serine/threonine protein kinases involved in a great variety
of cellular processes such as proliferation, differentiation,
motility, stress response, apoptosis and survival (Mordret, 1993;
L’Allemain, 1994). Extracellular ERK1/2, JNK, and p38 are the
three principal components of MAPK (Cargnello and Roux,
2011; Arthur and Ley, 2013). When extracellular pathogenic
and noxious stimuli induce inflammation, MAPKs are activated
and translocate to the nucleus where the activation of the
transcription machinery of pro-inflammatory genes giving rise
to the increase of TNF-α and iNOS takes place. In addition,

MAPK participates in the regulation of NF-κB transcriptional
activity, thus JNK and p38 are implicated on the cytoplasmatic
and nuclear NF-κB activation (Schulze-Osthoff et al., 1997).

Some in vitro studies have proved that RV is a potent inhibitor
of the phosphorylation of p38, ERK1/2 and JNK induced by LPS
in microglial cells (Bi et al., 2005; Zhang et al., 2010; Dragone
et al., 2014) and in astrocytes (Lu et al., 2010). Additionally, using
lipid-core nanocapsules as a RV carrier, they observed that higher
intracerebral concentrations of RV were achieved in those rats
injected with Aβ1−42, this fact related with the neuroprotective
effect observed. This work also reported the blockage of JNK
as a mechanism associated with the protection of astrocyte and
microglial activation and Aβ triggering cell disruptions (Frozza
et al., 2013).

Furthermore, pterostilbene (1–30 µM) significantly
suppresses LPS-induced NO production and iNOS mRNA
expression, IL-6 and TNF-α production and mRNA expression
and phosphorylation of MAPKs (p38, JNK, and ERK) in BV-2
microglial cells, which also demonstrates that this pathway is
involved in the observed effect. In addition, in vivo data also
showed a significantly inhibition of LPS-induced IL-6 and TNF-α
mRNA expression in rat hippocampus and a reduction of their
amount in rat serum (Hou et al., 2015).

NADPH Oxidase Pathway
NADPH oxidase is recognized as the key ROS-producing enzyme
during inflammation together with iNOS, and is widely expressed
in various immune cells including macrophages and microglia
(Hernandes and Britto, 2012). This enzyme is required for the
production of ROS in activated microglia. Once NADPH oxidase
is activated, the cytosolic subunits (p40phox, p47phox, p67phox,
and Rac1) are translocated to the membrane-binding cytochrome
b558 which consists on the union of p22phox and gp91phox

forming the functional oxidase that catalyzes the reduction of
oxygen to superoxide free radical (Infanger et al., 2006). Several
studies have indicated that both pharmacological inhibition
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and/or the genetic deletion of NADPH oxidase protects
against LPS, rotenone, paraquat, and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced neurodegeneration (Gao
et al., 2011). Is for this reason that NADPH oxidase pathway
can represent a potential target for neuroinflammation-related
neurological disorders.

Various articles have been published regarding the role of RV
and other stilbenes on NADPH-oxidase pathway. An in vitro
study has shown that RV (3, 10, and 30 µM) protects against
oligomeric Aβ-induced microglial activation by inhibiting the
expression of NADPH oxidase, and that both gp91phox and
p47phox subunits were involved in this reaction (Yao et al., 2015).
These results are in accordance with another study in which
primary microglia was activated with rotenone, a pesticide that
causes a systemic defect in mitochondrial complex I and oxidative
stress, contributing to the pathogenesis of PD (Betarbet et al.,
2000). The authors found that RV (10 µM) reduced the gp91phox

levels. Moreover, RV (5, 10, and 20 µM) noticeably suppressed
the rotenone-induced expression of a pool of pro-inflammatory
mediators, including TNF-α, COX-2, and iNOS and reduced the
NO and myeloperoxidase (MPO) [oxidant-generating enzyme
that catalyzes the formation of the potent oxidant hypochlorous
acid (HOCl) and other chlorinating species derived from H2O2
levels] (Chang et al., 2013).

SIRT 1 and AMPK Pathway
Another pathway to take into consideration, due to its
implication in neuroinflammation, is SIRT1/AMPK that is
recognized as a longevity-regulating pathway. SIRT1 is an
enzyme of the sirtuin class of nicotinamide NAD+-dependent
histone deacetylases, which has been implicated in a wide range
of biological processes including cell survival, metabolism, DNA
repair and aging and that is deemed to be a nuclear sensor of
redox signaling (North and Verdin, 2004). In addition, SIRT1
acts by inactivating NF-κB by deacetylating the RelA/P65 subunit
at lysine 310 (Howitz et al., 2003; Yeung et al., 2004). For
this reason, this signaling pathway plays an important role
in inflammation and can serve as a potential target to treat
inflammation-related disorders (Salminen et al., 2013). A close
relation between SIRT1 and AMPK pathways has been described.
In fact, RV has demonstrated to increase the lifespan in a SIRT
dependent manner in vivo, leading to AMPK activation via
deacetylation and activation of the AMPK kinase LKB1 (Price
et al., 2012).

Only one study (in vivo) has reported that RV (20 mg/kg
intraperitoneal injection during 14 consecutive days) induced
the activation of SIRT1 reversing LPS-induced depression-like
behaviors by enhancing neurogenesis in C57/BL6 mice. In this
study authors observed a reduction of microglia activation (Iba-1
cells) and moreover, an inhibition of the LPS-induced increase of
NF-κB in mice hippocampus (Liu et al., 2016).

Suppressor of Cytokine Signaling (SOCS)
and JAK-STAT Pathway
Suppressor of cytokine signaling proteins are a family of
eight members expressed by immune cells and the CNS cells

that regulate immune processes, including microglia activation
(Campbell, 2005).

The expression of SOCS-1 is initially controlled by STAT1
and STAT3 activation, but their expression can be also arbitrated
by MAPK and NF-κB signaling cascades (Shuai and Liu, 2003;
Croker et al., 2008).

Moreover, the JAK–STAT signaling pathway is an important
signal transduction cascade and it is critical for the regulation of
almost 40 cytokine receptors signal (Murray, 2007). STAT3, when
is phosphorylated by the receptor-associated JAKs, translocate to
the nucleus where it binds with a high affinity to the promoters
of various genes. SOCS3 is one of these gens and operates
as a negative regulator of cytokine-induced responses and,
consequently suppressing pro-inflammatory cytokine activity
(Starr et al., 1997).

The link between this pathway and the anti-inflammatory
properties of RV has also been studied. Thus, RV pretreatment
at low concentrations (1–20 µM) has shown to be able to
significantly up-regulate the phosphorylated forms of JAK1 and
STAT3, as well as increase the cytokine signaling SOCS-3 protein
expression in LPS activated microglial cells, demonstrating the
capacity of RV to modulate the JAK–STAT signaling pathway
(Cianciulli et al., 2015). These results are also in accordance
with other work that also proved that RV (50 µM) acted
via a mechanism involving Akt/NF-κB/STAT signaling pathway
and least in part due to the RV capacity of inhibit the
Toll Like Receptor 4 (TLR4) oligomerization (Capiralla et al.,
2012).

Furthermore, Dragone et al. (2014) noted for the first time
that RV (10 µM) is able to induce SOCS-1 expression both
in un-stimulated and in LPS-stimulated murine N13 microglial
cells, suggesting that it may play an important neuroprotective
role, by reducing microglia activation. This conclusion was
also supported by the reduction of superoxide anion and NO
production, the reduction on levels of TNF-α, IL-1β, and
IL6 as well as the reduction of p38, PI3K/Akt and iNOS
expression.

Glycogen Synthase Kinase-3 (GSK-3)
Glycogen synthase kinase-3 is a multifunctional serine/threonine
kinase found in all eukaryotes and it is involved in multiple
cellular processes, including neurogenesis, motility and survival
(Doble and Woodgett, 2003). In addition, GSK-3 has been
reported as an important regulator of microglia promoting
migration and a promotor of the production of inflammatory
cytokines, and the inflammation-induced neurotoxicity. It has
been demonstrated that the inhibition of GSK-3 attenuates
by 70% LPS-induced IL-6 production and by 80% the NO
production (Yuskaitis and Jope, 2009). Furthermore, GSK-3
regulates selectively the expression of CD11b, a marker of
microglial activation. Thus, GSK-3 can directly lead to the
CD11b expression either by regulating transcription factors,
such as NF-κB or by inducing the production of inflammatory
mediators that can induce CD11b expression, such as IL-6,
TNF-α and NO (Roy et al., 2006). Additionally, regarding
AD, a selective GSK-3 inhibitor tested in transgenic mouse
model has been shown to have capacity to reduce Aβ levels
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by clearance and neuroinflammation (Licht-Murava et al.,
2016).

In this context, one work has reported that RV (free RV
and RV-loaded lipicore nanocapsules) (5 mg/kg/day, each 12 h)
produced a noticeable inactivation of GSK-3β in injected Aβ1−42
rats (Frozza et al., 2013).

IL-10
IL-10 is an immunoregulatory and anti-inflammatory cytokine
that is able to inhibit the production of pro-inflammatory
cytokines after LPS insult (Ledeboer et al., 2000; Molina-Holgado
et al., 2001). Additionally and in relation with the above
mentioned, IL-10 expression is well known to be dependent on
the JAK/STAT signaling pathway by activating STAT3, which
is mainly involved in the negative regulation of macrophage
activation (Moore et al., 2001).

Recently, RV (10 µM) has demonstrated to be effective
increasing in a dose dependent manner, both mRNA and protein
IL-10 levels and decreasing the pro-inflammatory cytokines IL-
1β, TNF-α, and IL-6 mRNA expression. In this study authors also
showed that RV pretreatment up-regulated the phosphorylated
forms of JAK1 and STAT3, as well as SOCS3 protein expression
in LPS activated cells (N13 microglial cells) (Cianciulli et al.,
2015).

OLE AND HT: BIOAVAILABILITY,
PHARMACOKINETICS AND
BLOOD–BRAIN BARRIER (BBB)
PERMEABILITY

Virgin olive oil is the main fat source in MD and within its
minor components polyphenols play a significant role. There are
more than 100 different biophenols reported in olive samples,
being the major, HT, tyrosol and their secoiridoid derivatives
(OLE, OLE aglycone and elenolic acid dialdehydes) (El Riachy
et al., 2011; Obied et al., 2012). OLE, HT and tyrosol are the
main polyphenols present in EVOO and extensive research has
been conducted regarding their bioactivity, mainly related with
cardiovascular protection. More recently, they are the focus
of studies in the field of neuroprotection (Rodríguez-Morató
et al., 2015; Martínez-Huélamo et al., 2017). HT is a product
of the hydrolysis of OLE, formed during the maturation and
storage of olive oil, and the preparation of table olives (Vissers
et al., 2002). OLE is an ester of HT and the elenolic acid
glucoside (Bendini et al., 2007). During olive fruit processing
glycosides are hydrolysed by endogenous β-glucosidases. HT
is the major component of the polyphenol fraction in olive
oil, its content ranging from 50 to 200 mg/kg oil for EVOO
(Visioli and Bernardini, 2011; Romero and Brenes, 2012).
Noteworthy the concentration of polyphenols in VOO is affected
by many different factors such as olive cultivar, geographical
area, age of the tree, agronomic and environmental factors,
degree of ripeness as well as by the extraction system and
storage conditions (Servili et al., 2004; Martín-Peláez et al.,
2013).

Hydroxytyrosol derived from its natural sources is bioavailable
for humans, being metabolized and excreted in urine as
glucuronide and sulfate derivatives (Visioli et al., 2000; EFSA
Panel on Dietetic Products et al., 2017). The degree of
absorption is outstanding being higher than 40% for HT (Visioli
et al., 2001; Tuck and Hayball, 2002; Vissers et al., 2002).
Being HT a polar compound, its absorption takes place by
passive transport in the small bowel and the colon (Manna
et al., 2000). HT is more assimilated when given as EVOO
compared to an aqueous solution due to the protection of
antioxidants (Tuck et al., 2001). Moreover, its absorption was
greater when the intake was as EVOO rather than added
in refined olive oil or into a yogurt (Visioli et al., 2003).
These results show how the antioxidants present in EVOO
protect HT from degradation in the gastrointestinal tract. HT
precursors, OLE and OLE aglycon, also known as secoiridoids
are less polar and they may be rapidly hydrolyzed yielding HT
(Vissers et al., 2004; Corona et al., 2006). Therefore, attention
on the biological effects is mainly focused on HT. On the
other hand, OLE, as a glycoside molecule, may reach the
colon unaltered generating more diverse microbial metabolites
(López de las Hazas et al., 2016). Nevertheless certain studies
refer that OLE can be readily absorbed across the intestine
(Edgecombe et al., 2000) by possible implication of glucose
transporter. Further research is required to substantiate the
mechanisms of absorption for these phenolics (Cicerale et al.,
2010).

Subsequently, extensive metabolism takes place first in
the gut and subsequently in the liver. Gut microflora acts
transforming part of HT into hydroxylated phenylacetic acids
(Mosele et al., 2014). The enzymes involved in HT phase-II
reactions in the liver are sulfotransferases and uridine 5′-
diphosphoglucuronosyl transferases (UGTs), resulting in the
correspondent HT metabolites detected in biological samples.
Also acyltransferases are able to form HT acetate (Rubió et al.,
2012). Moreover, D’Angelo et al. (2001) demonstrated also that
HT undergoes enzymatic oxidation and methylation processes
driven the formation of 3,4-di-hydroxyphenylacetaldehyde
and subsequently 3,4-dihydroxyphenylacetic acid (by the
alcohol and aldehyde dehydrogenases), and 4-hydroxy-3-
methoxyphenylethanol also called homovanillic acid (by the
catechol ortho methyl transferase). All these compounds are
transformed into sulfo conjugates by a sulfotransferase enzyme
(Robles-Almazán et al., 2018). HT sulfate is the main circulating
metabolite detected in rat plasma (D’Angelo et al., 2001; Serra
et al., 2012), whereas in humans, HT-sulfate together with HT
acetate sulfate are the main metabolites detected in plasma after
the consumption of HT or HT derivatives at normal dietary
doses (Mateos et al., 2011; Rubió et al., 2012). Additionally, free
HT, ortho-methyl products of HT (homovanillic alcohol and
acid), glucuronide derivatives and glutathionyl conjugates can be
also found in plasma (Rodríguez-Morató et al., 2016). HT and
their metabolites may be also redirected to the biliary excretion
route; hence the enterohepatic recycling would enable a longer
exposure of HT and metabolites (Serra et al., 2012). Therefore,
not only HT but also its metabolites should account for its
health benefits. Besides, it has been recently pointed that HT
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metabolism depend on the gender, being females more efficient
in the transformation and utilization of HT (Domínguez-Perles
et al., 2017).

Furthermore, HT is also present in wines and urinary
recoveries of HT were higher than expected after red wine
administration, probably due to the interaction between ethanol
and dopaminergic pathways (de la Torre et al., 2006). HT is a
known dopamine metabolite and hence (if the intake includes
ethanol), dopamine metabolism turns to produce HT instead of
DOPAC (3,4-dihydroxyphenylacetic acid) (Boileau et al., 2003;
Perez-Mana et al., 2015). HT is present in the brain since it is a
dopamine metabolite (de la Torre et al., 2006; Mosele et al., 2014).
Deamination of dopamine by monoaminoxidase yields DOPAL
(3,4-dihydroxyphenylaldehyde), that can be oxidized by aldehyde
dehydrogenase to DOPAC. In a lesser extent, DOPAL may be
reduced to HT by the ALR and HT can be converted to DOPAL
by means of ADH. At the same time DOPAC can be transformed
into HT by DOPAC reductase (Xu and Sim, 1995).

Hydroxytyrosol is closely related to cardiovascular protection
and blood lipid stabilization since once absorbed into the blood
stream, it will be joined to plasmatic low-density lipoproteins,
acting as an antioxidant (EFSA Panel on Dietetic Products,
Nutrition and Allergies [NDA], 2011; Fernández-Ávila et al.,
2015). Due to the fact of the rapid metabolism its plasma half-
life is estimated in 1–2 min (D’Angelo et al., 2001; Granados-
Principal et al., 2014). The metabolites reach different organs and
tissues and even the brain, so they comply with the requirement
of crossing the BBB to be used as a neuroprotective agents
(D’Angelo et al., 2001). The content of HT in rat brain has been
the subject of extensive research, reporting basal HT contents at
very low levels of several units ng/g (Wu et al., 2009; Serra et al.,
2012; Gallardo et al., 2014; Goldstein et al., 2016; Peng et al.,
2016).

Summarizing, exposure to HT results not only from the intake
of free HT, but to a significant degree also from ingested OLE

and its aglycone contained in olives and EVOO. HT derived
from its natural sources is bioavailable for humans, metabolized
and rapidly eliminated primarily in the urine as glucuronide and
sulfate derivatives.

OLE, AND HT AND THE MOLECULAR
MECHANISMS IMPLICATED IN THEIR
ANTI-INFLAMMATORY ACTIVITIES

A large body of evidence from clinical trials and population
studies indicates that olive phenolic compounds are key
responsible for the MD protective effects against aging-associated
cognitive impairment and neurodegenerative diseases such AD
and PD, as well as for the improvement of cognitive performance
(Di Giovanni, 2009; Scarmeas et al., 2009; Alcalay et al., 2012;
Gardener et al., 2012; Casamenti et al., 2015; Safouris et al., 2015;
Peyrol et al., 2017; Robles-Almazán et al., 2018).

Oleuropein and HT have shown neuroprotective activity
by acting against oxidation and inflammation and interfering
with amyloid Aβ and tau protein aggregation. Hence, HT,
OLE, and OLE aglycon may counteract ROS formation and
avoid the amyloid plaque generation and deposition (Daccache
et al., 2011; Rigacci et al., 2011; Barbaro et al., 2014; Rigacci
and Stefani, 2015), critical processes in the initiation of AD
pathology. In addition, oleocanthal (0.01–10 µM) reported its
ability to interact with Aβ aggregation, providing neuroprotective
benefits on primary hippocampal cultures (Pitt et al., 2009).
Moreover, OLE aglycone oral administration (12.5 mg/kg of diet)
also improved cognitive deficits and reduced Aβ42 plaque area
and number and induced autophagosome-lysosome system in
the cortex of a transgenic AD mouse model (Pantano et al.,
2017).

Transgenic Caenorhabditis elegans strains expressing Aβ42
has been used as a model of invertebrate AD (Link, 2005).

TABLE 2 | Summary of OLE activities (in vivo and in vitro) in counteracting neuroinflammation.

Model Compound Dose Microglia activated
by

Effect Reference

Male Wistar rats OLE 450 µM Aβ1−42 Attenuation of
astrocytes and
microglia reaction

Luccarini et al., 2014

Transgenic CRND8 mice OLE 50 mg/kg of diet
(8 weeks)

Aβ Diminution of astrocyte
reaction Increase of
microglia migration
(phagocytosis of
amyloid deposits)

Grossi et al., 2013

BV-2 microglial cells OLE 1, 5, and 10 µM LPS Suppression of NO (via
ERK/p38/NF-κB
activation) and ROS
generation Suppression
of mitochondrial fission
(regulates mitochondrial
ROS generation and
pro-inflammatory
response by
diminishing Drp1
dephosphorylation

Park et al., 2017
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OLE was added to the grown medium and it was able to
interfere with the Aβ aggregation avoiding the appearance
of toxic species (Diomede et al., 2013). In addition, Peng
et al. (2016) reported that HT reduces brain mitochondrial
oxidative stress and neuroinflammation in AD-prone transgenic
mice by induction of Nrf2-dependent gene expression. These
recent findings suggest that HT, thanks to its ability to restore
homeostasis and induce appropriate stress response pathways
(hormesis) could be considered a potential therapeutic target in
neurodegenerative diseases opening new prospective in the field
of neuroprotection.

Specifically in microglia, we have found three works (2
in vivo and 1 in vitro) related with the effects of OLE
at this level (Table 2). The oral administration of OLE
aglycone (450 µM) found in olive leaves, significantly attenuated
astrocyte and microglial activation in an Aβ42-induced AD
rat model by interfering with Aβ aggregation (Luccarini et al.,
2014). In addition, dietary supplementation of OLE aglycone
on young/middle-aged TgCRND8 mice (50 mg/kg; 8 weeks)
reduced Aβ levels and plaque deposits and produced the
microglia migration to the plaques. Moreover, OLE demonstrated
to strongly promotes a phagocytic response and lysosomal
activity (Grossi et al., 2013). Data obtained with cultured
cells (BV-2 microglial cells) showed the capacity of OLE
(1, 5, and 10 µM) to inhibit the production of pro-
inflammatory cytokines via regulation of ERK, P38 (MAPKs)
and NF-κB activation. This work has also demonstrated
that OLE can affects the LPS-induced mitochondria fission
acting by decreasing the number of fragmented and elongated
mitochondria via dephosphorylation of the Drp1 (Park et al.,
2017).

Concerning HT, some articles have been published in
macrophages cell lines. The first study reported by Maiuri
et al. (2005) proved that HT (at high concentration; 200 µM)
inhibits iNOS and COX-2 expression in LPS-stimulated J774
cells by preventing the activation of NF-κB, STAT-1α, and
IRF-1. Moreover, others authors reported that HT inhibited
the production of NO and PGE2 with an IC50 of 11.4 and
19.5 µM, respectively (much lower concentrations) in LPS-
stimulated RAW 264.7 cells. Additionally, they also notified a
diminution on the cytokines secretion (IL-1α, IL-1β, IL-6, IL-12,
and TNF-α) and chemokines (CXCL10/IP-10 and CCL2/MCP-
1) acting also via NF-κB pathway (Richard et al., 2011). Similar
results were obtained by Takeda et al. (2014). Other interesting
work using nutritional relevant concentrations of HT and OLE
(50 and 10 µM) demonstrated that HT (10 µM) inhibits the
production of NO and PGE2 and that is also able to induced de
Nrf2 nuclear translocation in LPS treated RAW 264.7 (Bigagli
et al., 2017). The Nrf2 is considered a master regulator of
redox homeostasis but its activation also inhibit proinflammatory
mediators including cytokines, COX-2 and iNOS (Ahmed et al.,
2017).

Although macrophages and microglia share similar features
regarding their morphology and functions, the polarization
pattern in microglial cells is much more complex than that
observed in macrophages. Therefore, the study of the anti-
neuroinflammatory activity of HT in microglial cells lines remain

nowadays unexplored, being an interesting line of research that
will be take in consideration for the scientific community.

CONCLUSION

Moderate intake of red wine and EVOO are distinctive
features of the MD. Both food items are rich source of
polyphenolic compounds, such as RV and HT and their
derivatives with demonstrated neuroprotective properties
including anti-inflammatory effects on microglia. This fact
makes them possible candidates for co-adjuvant therapies
to treat neurodegenerative diseases such as AD and PD
prevention.

New strategies that may induce a shift in microglial cells from
inflammatory and neurotoxic phenotype to an anti-inflammatory
and neuroprotective one is currently an objective of the scientific
community. In this sense, several mechanisms have been
proposed for the anti-inflammatory and neuroprotective effect
of stilbenes and HT and its derivatives. Thus, stilbenes acts:
(i) preventing the nuclear translocation of NF-κB, reducing the
production of pro-inflammatory factors IL-1β, iNOS, COX-2,
and TNF-α levels; (ii) inhibiting the expression of NADPH
oxidase, (iii) inducing the activation of SIRT1/AMPK which
reduce microglia activation; (iv) suppressing the cytokine
signaling SOCS and JAK-STAT pathway; and (v) increasing both
mRNA and protein levels of the anti-inflammatory cytokine IL-
10. On the other hand, OLE significantly attenuates microglial
activation acting via NF-κB activation. However, further research
on anti-neuroinflammatory effect of HT in microglial is
needed.

Nowadays, the study of the neuroprotective effects of other
stilbenes as well as HT derivates present on the MD are gaining
importance and represents an important new via of research since
derivatives or related compounds might display more potent
activity than the pair one.
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