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ABSTRACT 

This review gives an overview of the different techniques used to identify, characterize and 

quantify engineered nanoparticles (ENPs). The state-of-the-art of the field is summarized, the 

different characterization techniques have been grouped according to the information they can 

provide. In addition some selected applications are highlighted for each technique. The 

classification of the techniques has been carried out according to the main physical and 

chemical properties of the nanoparticles such as morphology, size, polydispersity 

characteristics, structural information and elemental composition. Microscopy techniques 

including optical, electron and X-ray microscopy and separation techniques with and without 

hyphenated detection systems are discussed. For each of these groups, a brief description of 

the techniques, the specific features and concepts, as well as several examples are described. 
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ACRONYMS AND ABBREVIATIONS 

AFM    Atomic force microscopy 
ADF   Annular dark-field 
AE   Auger electron 
AES   Auger electron spectroscopy 
AgNPs   Silver nanoparticles 
AUC   Analytical ultracentrifugation 
AuNPs    Gold nanoparticles 
BF   Bright field detector 
BP   Breakdown probability 
BSEs   Backscattered electrons 
CE   Capillary electrophoresis 
CEND   Coherent electron nanodiffraction 
CFF   Cross flow filtration 
CFM   Chemical force microscopy 
CFUF   Cross flow ultrafiltration 
CHA   Concentric hemispherical analyzer 
CLSM   Confocal laser scanning microscopy 
CMA   Cylindrical mirror analyzer 
CNT   Carbon nanotube 
CRM   Confocal Raman microscopy 
CuNPs   Copper nanoparticles 
CXDI   Coherent X-ray diffraction imaging 
DLS   Dynamic light scattering 
DF   Dark field detector 
DIMs   Diffraction imaging microscopes 
DMA   Differential mobility analysis 
EDAX/ EDS/ EDX Energy dispersive X-ray spectroscopy 
EDXRF   Energy dispersive x-ray 
EELS   Electron energy-loss spectroscopy 
EFTEM   Energy-filtered TEM 
EM   Electron microscopy 
EPR   Electron paramagnetic resonance 
ESEM   Environmental SEM 
ESI   Electrospray ionization 
ETEM   Environmental TEM 
EXAFS   Extended X-ray Absorption Fine Structure 
FCS   Fluorescence correlation spectroscopy 
FE   Field emission 
FFF   Field-flow fractionation 
FIB-SEM  Focused ion beam SEM 
FTIR   Fourier transform infrared spectroscopy 
GISAXS  Grazing incidence SAXS 
HAADF   High-angle ADF 
HDC   Hydrodynamic chromatography 
HPLC   High performance liquid chromatography 
HRTEM   High-resolution transmission electron microscopy 
ICP-MS   Inductively coupled plasma-mass spectrometry 
LDI   Laser desorption/ionization 
LIBD   Laser induced breakdown detection 
LIBS   Laser induced breakdown spectroscopy 
LIF   Laser-induced fluorescence 
LSPR   Localized surface plasmon resonance 
MALDI   Matrix assisted laser desorption/ionization 
MALS or MALLS Multi angle (laser) light scattering 
MEMS   Micro-electromechanical systems 
MoNPs   Molybdenum nanoparticles 
MWCNT  Multi-walled carbon nanotubes 
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NEXAFS  Near-edge X-ray absorption fine structure 
NMR   Nuclear magnetic resonance 
NPs   Nanoparticles 
NSOM   Near-field scanning optical microscopy 
PCS   Photon correlation spectroscopy 
PEELS   Parallel acquisition systems 
PIMs   Projection imaging microscopes 
POM   Polyoxometalates 
PtNPs   Platinum nanoparticles 
QDs   Quantum dots 
RPLC   Reversed-phase liquid chromatography 
SAED   Selected Area Electron Diffraction 
SAM   Scanning Auger microscopy 
SANS   Small-angle neutron scattering 
SAXS   Small angle X-ray scattering 
SEC   Size exclusion chromatography 
SEM   Scanning electron microscopy 
SERS   Surface-enhanced Raman scattering 
SEs   Secondary electrons 
SLS   Static light scattering 
SPM   Scanning probe microscopy 
SPR   Surface plasmon resonance 
STEM   Scanning TEM 
STM   Scanning tunnelling microscope 
STXMs   Scanning transmission X-ray microscopes 
SWCN   Single-walled carbon nanotubes 
SXM   Scanning X-ray microscopes 
TAD   Thin annular detector 
TADBF   Thin annular detector used with bright-field 
TADDF   Thin annular detector used with dark-field 
TEM    Transmission electron microscopy 
TPL   Two-photon luminescence 
TOF   Time of flight 
TSEM   SEM in transmission mode 
TXMs   Transmission X-ray microscopes 
WAXS   Wide angle X-ray scattering 
WDS   Wavelength dispersive X-ray spectrometry 
WDXRF   Wavelength dispersive Fluorescence X-ray spectrometry 
XANES   Near-edge x-ray absorption spectra 
XAS   X-ray absorption spectroscopy 
XFEL   X-rays from upcoming free-electron lasers 
XMCD   X-ray magnetic circular dichroism 
XPS   X-ray photoelectron spectroscopy 
XRD   X-ray diffraction 
XRF   X-ray fluorescence 
XRM   X-ray microscopy 
XRR   X-ray reflectometry 
Z   Atomic number 
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1. Introduction 

Nowadays, engineered nanoparticles (ENPs) can be synthesized out of a large variety of 

different materials and possess a wide range of properties including size, shape, physical or 

chemical characteristics and elemental composition. Furthermore, interactions with the 

surrounding media can determine the colloidal stability of the particles, hence influencing 

their final state. Therefore, unexpected properties and interactions which are not solely 

dependent on elemental composition and state of aggregation,1,2 but are more likely to be 

governed by surface area,3 surface chemistry,4 charge particle number,2 size and size 

distribution,5 aggregation,6 structure7 and shape5,8 can lead to complex nano-systems whose  

properties differ from simple model theories.  

This review deals with the use of different techniques, used either individually or in 

combination, to identify and characterize NPs depending on the desired property to be 

studied. Considering size distribution, degree of aggregation and morphology, imaging 

techniques based on different types of microscopies (optical, electronic, X-ray) and scattering 

(light, X-ray, neutron) techniques are described along with chromatography and related 

separation techniques. Elemental composition, structural information, and concentration are 

typically provided by spectroscopic techniques (e.g., UV-vis absorption, luminescence and X-

ray emission). Combining various characterization techniques (e.g., electronic microscopy 

coupled with X-ray detectors) can provide information that cannot be obtained from each of 

the techniques individually. These so called hyphenated techniques can lead to a more 

complete characterization of NPs. 

In the following sections a classification of different analytical techniques regarding the 

properties of the NPs, such as morphology, size, polydispersity characteristics, structural 

information and elemental composition is presented along with some related examples of 

application.  
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2. Morphology, size and polydispersity characteristics 

As mentioned above, NPs show different properties depending on their morphology and size. 

Nowadays, the knowledge on materials composed of nanometer-sized entities is largely 

related to electron microscopy (EM) and scattering phenomena determining size and shape 

characteristics. Furthermore NPs separation has long been a key step in characterizing 

complex polydisperse nano/micromaterials. Although several analytical techniques can be 

used for these characterization purposes,9 all available EM methods are limited by spatial 

resolution and/or the related detection limits.  

 

2.1. Microscopy techniques 

Since the nanoparticle is a nano-object with all three external dimensions in the nanoscale, the 

detection limit of optical microscopy does not often cover the NPs size since the visible 

wavelengths (λ) are comparable to the dimensions of the particles. To solve this limitation, a 

modified technique called near-field scanning optical microscopy (NSOM) can be used in its 

different configurations. NSOM is a scanning probe microscopy technique (SPM)10 with a 

typical resolution between 50 and 100 nm, reaching 20 nm and 2-5 nm of lateral and vertical 

spatial resolution, respectively,11 and even sub-20 nm for stripped gold pyramids.12 It can be 

used to image aggregates of nanoparticles with a theoretical spatial resolution limited to λ/2 

(see below). To detect fluorescent NPs, confocal laser scanning microscopy (CLSM) is 

applied with resolutions of the order of 200 nm13 and it enables the visualization of the 

different accumulation of polymeric NPs in time at (sub)-cellular resolution in tumours.14 

Fluorescence imaging is restricted to intrinsically fluorescent NPs or fluorescently labelled 

NPs. The latter technique can introduce potential problems such as: label instability 

(leaching), modification of physicochemical properties or photobleaching.15 Confocal Raman 

microscopy (CRM), which does not require labelling, allows, for example, the visualization of 
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toxicological effects of polymeric NPs in HepG2 cells and cellular NP uptake.16 Moreover, by 

using the surface plasmon resonance (SPR) of metallic NPs (e.g., gold nanorods) it is possible 

to image individual particle locations with optical microscopy by using Two-Photon 

Luminescence (TPL) and dark-field optical microscopes.17 The latter technique provides a 

means of characterizing the size of gold NPs (AuNPs) by colour, since different colours such 

as violet, blue, green, and red are correlated with a size of 30, 50, 70, and 90 nm, 

respectively.18 

Fluorescence correlation spectroscopy (FCS) uses confocal optics (a confocal microscope)19 

to evaluate diffusion coefficients of fluorescent NPs20 or NPs with fluorescent coatings whose 

fluorescence fluctuations depend on the NP shape.21 FCS allows to determinate size 

distributions in a very small laser illuminated volume (focal volume of approx. 10−15 µL) of 

very diluted solutions (10−8 to 10−15 mol·L-1).  

Electron microscopy (EM) techniques including transmission electron microscopy (TEM), 

and scanning electron microscopy (SEM); and scanning probe microscopies (atomic force 

microscopy (AFM)22) are particularly suitable for the characterization of NPs due to their 

intrinsic subnanometer scale resolution. These techniques are widely applied for NPs 

visualization.19,23-25 EM techniques require vacuum conditions (~10-4 Pa) to allow both the 

operation of the electron source and to minimize scattering other than from the samples. The 

wavelength of electron beams depends on the acceleration voltage and is much shorter than 

the wavelength of light, hence allowing much higher spatial resolution down to single atoms 

in some cases. Thus, for an optical microscope operating at wavelengths, λ from 400 to 800 

nm and numerical aperture (NA) of ~ 1, Abbe’s diffraction limit d = λ/2NA, gives a 

resolution of  approx. 200 nm26 up to 10 nm with some improvement,27 while for an EM 

working with an acceleration voltage from 100 to 1000 keV, the theoretical value of the 

wavelength will be from 0.0037 to 0.00087 nm28 (See Table 1). Nevertheless, in the current 
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state-of-the-art, the best TEM resolution, by using double aberration correction, is 0.047 nm29 

while SEM microscopes achieve resolutions in the range of 1 nm (high resolution) to 3 nm 

(conventional).28 In TEM, the electron beam (80-200 keV) passes through the sample and 

only NPs with a sufficient combination of electron density and size can be detected, being 

imprecise for cores smaller than 2 nm. At this point, high-resolution-TEM (HRTEM, 300 

keV) reaches a 0.047 nm spatial resolution (see above), can image the crystallographic 

structure,30 e.g., edge length distributions or image 3D structures by combining different 

angular views, (the electron diffraction patterns can also provide structure information (see 

section 3)) and contributes to clarify the different behaviour of NPs from the bulk and free 

molecular state.31 For biological materials, acceleration voltage is limited up to 100 keV, due 

to the damage caused in the sample by higher energy beams.  

SEM produces images of the surface (or near surface) of a sample by scanning it with a 

focused beam of electrons (1 - 30 keV)  and detecting the various signals that are produced 

when the electron beam interacts with electrons in the sample. The different  signals that are 

detected (secondary electrons (SE), back-scattered electrons (BSE), characteristic X-rays, 

light (cathodeoluminescence (CL)), and transmitted electrons) provide complementary 

information concerning the near surface structure of the sample), though are rarely available 

all together. Accordingly, information of the surface topography is given by low energy 

secondary electrons (SEs), which are very sensitive to the sample charge and contamination. 

With high-energy backscattered electrons (BSEs), a mapping contrast based on differences in 

atomic number of elements as low as 0.128 is provided; consequently good contrast for heavy 

and light elements (e.g., AgNPs in cells) is obtained.32 Depending on the electron source used 

it is possible to change the spatial resolution, for instance, a low brightness tungsten electron 

source typically provides 50-100 nm resolution while brighter sources such as LaB6 filaments 

allow a resolution below 5-10 nm. Using field emission guns (sharply-pointed Müller-type 
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emitter), the electron beam is more coherent reaching more intense beam of high energy than 

in conventional thermionic emitters such as tungsten and LaB6 filaments. Table 1 shows the 

usual voltage range for SEM and TEM with the related relativistic and non-relativistic 

electron wavelength calculations. 

Table 1 

 

Conventional SEM can be operated in transmission mode (TSEM)33,34 at low voltage (10 

keV) for dimensional characterization of NPs with a minimum size of the order of 10 nm. 

Here, the detection of transmitted electrons can improve the signal-to-noise ratio, when 

comparing with detection modes that use only BSEs or SEs (the latter electron detection is 

less sensitive to the charge of the NPs.35 

In a focused ion beam SEM (FIB-SEM), an ion beam substitutes for the incident electron 

beam and either secondary electrons or secondary ions, or both, can be detected and used for 

imaging. The technique is destructive in that it sputters the surface. Resolution is not as good 

as SEM, but using the milling and analysis technique it is possible to obtain a depth image in 

principle, 3D.36 Focused charged particles (electrons, ions, and more recently clusters) can be 

used in scanning mode to reach sub-10 nm resolution allowing the observation of the milling 

process in situ. This technique is applied in a wide range of nanostructures for photonic 

purposes (e.g., semiconductor NPs, carbon nanotubes (CNT)).37   

Some common drawbacks are known when using TEM or SEM: 

(i) they may be destructive techniques either due to sample preparation or beam damage. 

(ii) Only allow the sample to be analyzed once (particularly in the case where the sample 

may be degraded by the beam, with the implication that it may be necessary to adjust 

beam energy (and hence resolution) to mitigate damage. 
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(iii) Since contrast is only good for materials with high electron density, biological 

samples are usually stained with osmium tetroxide in order to increase the contrast.  

(iv) Both techniques work under vacuum conditions, so wet samples or those involving 

hydration artifacts, are not suitable. 

(v) for conventional SEM imaging, samples must be electrically conductive, at least at the 

surface, or a conductive coating must be applied. Note that for FIB-SEM the sample 

surface can be neutralized with a separate electron beam hence obviating the need for 

a conductive surface. 

To overcome these drawbacks, mainly staining and dehydration, additional techniques such as 

scanning TEM (STEM), environmental SEM (ESEM), environmental TEM (ETEM), both 

wet TEM and wet SEM and cryo-TEM (see below) have been developed. 

In STEM, detailed sample information is obtained when a TEM electron beam is scanned 

over the sample. This information depends on the different range of generated electrons such 

as transmitted, secondary, back scattered, diffracted and emitted X-rays.38 From all of them, 

higher signal levels and better spatial resolution are available when transmitted electrons are 

detected.39 A wide range of voltages can be applied in this technique, low and intermediate 

voltages allow rapid throughput (0.2 nm resolution at 200 keV accelerating voltage, ideal for 

1 nm and above). By applying high voltages (200–300 keV), better spatial resolution and 

analytical sensitivity are obtained. An image resolution better than 0.136 nm has been 

achieved with a nominal resolution of only 0.42 nm.40 The expected resolution based on the 

fundamental equations that can be achieved by TEM, SEM and STEM, is presented by de 

Jonge et al.. 41  

STEM techniques can have multiple detectors operating simultaneously to collect different 

but complementary information. STEMs advantage is that it provides, either simultaneously 

or in a serial way, imaging, diffraction pattern and spectroscopic information.38 Thus, STEM 
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can be coupled with a bright field detector (BF), showing the lattice images of NPs as in 

HRTEM. A dark field detector (DF) surrounds the transmitted beam to collect scattered 

electrons (diffracted beam) to create the image allowing to select different crystal structures to 

image. Similarly to dark-field imaging in HRTEM, it is possible to identify small particles in 

supported metal catalysts, defects in extended crystals and different phases in polycrystalline 

nanophase material.38 Using BF and DF detectors toxicological studies of nanomaterials such 

as iron oxide NPs, single-walled carbon nanotubes (SWCNT) and cadmium selenide quantum 

dots (Cd/Se QDs)42 have been undertaken. Electrons scattered outside the central beam in the 

diffraction pattern can be collected by an annular dark-field (ADF) detector placed in a circle 

around the electron beam (see figure 2). Increasing the inner collection angle of the ADF 

detector beyond the Bragg reflections in high-angle ADF (HAADF); in this case, only high-

angle scattered electrons contribute to the collected signal, enhancing the atomic number (Z) 

contrast. DF offers high contrast without staining (usually with osmium tetroxide) with a sub-

nm spatial resolution (<0.1 nm). Atomically resolved images have long been possible in 

STEM by using an ADF detector.43 STEM paired with HAADF, is useful for imaging heavy 

elements such as silver or gold, (e.g., AuNPs with 4 nm resolution44 or smaller approx. 0.14 

nm in a light-element matrix (e.g., organic tissue)38 or Au nano-rods (1:6 width:length)45 

(resolution of 0.2 nm for non-corrected and 0.1 nm for aberration corrected instruments) 

operated at 200 keV). Currently, due to the introduction of aberration-corrected electron 

lenses at 300 keV, a spatial resolution of sub-50 pm (below 0.05 nm) is reached, allowing to 

determine the 3D structure of 10 nm AuNPs at a resolution of 0.24 nm.46 Finally, a thin 

annular detector (TAD)47  can be used with bright-field (TADBF), dark-field (TADDF) and 

also HAADF for both heavy and light-elements with atomic-scale resolution.38 In case of 

analyzing NPs in bio-samples, a better resolution is achieved by STEM-BF than with ADF.48  
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With SE detection in STEM, subnanometer surface details of NPs can be revealed allowing to 

measure the work function of solid specimens and to study the charging effects of non-

conducting materials.38 

Auger electrons can be collected and analyzed by a cylindrical mirror analyzer (CMA) or a 

concentric hemispherical analyzer (CHA) electron spectrometer for surface compositional 

analysis (see section 2.2). Finally, further to the morphological characterization described in 

this section, it is possible to employ a spectroscopic analysis by the identification of single 

atoms analyzing their local electronic environment by coupling the EM with spectroscopic or 

nanodiffraction techniques (see section 3). Table 2 presents the EM techniques used for size 

distribution analysis and their related spatial resolution together with some examples of 

applicability, while Figure 2 shows a schematic representation of an EM, indicating the range 

of coupled analysis techniques that may be used. 

 

Table 2 

 

2.1.1 Hydrated, liquid or gas samples by electron microscopy 

Where relevant, the particle characteristics should be measured under conditions that mimic 

their real environment. The challenge is to develop analytical techniques to detect and 

characterize properly NPs in complex matrices, such as aquatic media, while maintaining 

sufficient sensitivity to measure low concentrations of NPs. Several modified EM techniques 

are suitable to avoid artifacts brought about by sample dehydration, which allow the imaging 

of samples in liquid or under vacuum, at good resolution.41 In almost all cases a dedicated 

sample holder, chip or chamber, made from silicon and hermetically sealed49,50 is introduced 

in the system allowing atomic resolution in some cases and hence providing detailed 

information of NP growth models (see below). For liquid TEM, Liu et al., developed a 
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microchip holder made out of Si and epoxy resin of 1.3 x 1.3 mm and a 9 nm-thick SiO2 

observation window (150 x 150 μm2). With a sample holder of path length of 2-5 µm 

allowing them to reach a resolution of 0.23 nm for imaging the (210) facet of tellurium NPs 

into living organisms in liquid samples.51  Another type of wet cell has been developed by 

holding the fluid in a 200 µm frame sealed by two 50 nm silicon nitride windows, for imaging 

aluminium oxide (Al2O3) NPs and multi-walled carbon nanotubes (MWCNT).52,53  Zheng et 

al., also developed liquid cells that allowed them to work in extreme conditions  (at 120 kPa 

and temperatures up to 500 ºC) with TEM to visualize, at sub-nanometer resolution, the 

crystal growth of single platinum NPs (PtNPs) by coalescence or by addition of monomers.54 

In HRTEM, usual catalytic conditions (14 bar and 660°C) can be attained with micro-

electromechanical (MEM) nanoreactors. Using such nanoreactors, structural changes in 

heated Pt dispersed on carbon black with a gas injection-specimen heating holder (300 °C in a 

vacuum of 5×10−4 Pa at 300 keV)55 have been visualized. Similarly the atomic lattice fringes 

in Au56 and CuNPs57 have been imaged, down to 0.15 nm in the former case. Using a similar 

chip technology, it is also possible to use a microfluidic system for STEM measurements 

(wet-STEM). The chip is formed out of two custom designed silicon microchips, each 

supporting an optimal 50 nm thick window of silicon nitride connected to the outside of the 

microscope via plastic tubing. Resolution better than 0.2 nm for AuNPs58 of 30 and 100 nm 

moving in liquid have been imaged with a 200 keV STEM. Similar approaches have been 

used to image NPs attached to the surface membrane of proteins of E.Coli and mammalian 

cells (COS7) in wet environments.59  Currently, in wet-STEM with corrected spherical 

aberration (the electron beam is introduced into the liquid in a more localized and controlled 

way than in conventional TEM) it is possible to reach a resolution of 0.21 nm (lattice fringes 

for the (220) plane), visualizing the lead sulphide (PbS) NPs growing.60 Note that bubble 

formation in the liquid cell can be avoided by optimizing the beam voltage by pulsed imaging. 
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Wet-STEM is suitable for imaging NPs (including NPs in gases above their saturated vapour 

pressure and liquid samples) under ADF imaging conditions. The technique can achieve  

resolutions of 5 nm (e.g., for AuNPs) when using a field emission (FE) source; an 

improvement over standard measurments using SE and BSE detectors.61 By decreasing the 

water layer thickness the wet STEM image contrast can be increased. Strong contrast is of 

special interest in polymeric NPs and biological samples, which otherwise give low contrasts 

because of their low atomic numbers.  

ESEM and ETEM maintain a high vapour pressure around the sample, so working with fully 

hydrated or wet samples becomes possible (it is possible to dehydrate partially the samples by 

decreasing the vapour pressure in the chamber). In ESEM,  the chamber containing the 

sample holder remains under a few mbar of gas as well as being saturated with water 

vapour.28 Here, the vapour pressure can be decreased to achieve better NP imaging conditions 

(since only the surface of the water droplets are imaged at 100 % humidity, hiding the NPs 

that are inside them). The conductive coating over the sample in SEM is suppressed in ESEM, 

since the vapour gaseous layer around the NPs becomes ionized and neutralizes all charged 

regions (collisions of the electrons with the gas generate positive ions that prevent the build-

up of charges on insulating samples). Furthermore, a signal amplification is produced by the 

generation of daughter electrons (cascade effect).61 Thus, the resolution of ESEM can 

approach that of a standard SEM in vacuum, but as the liquid layer on the NP surface 

increases thickness the resolution drops dramatically.41 A comparison between SEM and 

ESEM was carried out by Doucet et al.,62 concluding that SEM provides sharper images and 

lower resolution limits (lower than 10 nm) but producing some dehydration artifacts (e.g., 

aggregation). On the contrary, ESEM avoids these artifacts but image interpretation is more 

complex and the resolution obtained is lower (30-50 nm). ESEM also has been applied to soft 

nano-materials (e.g., polymers) in the native state, overcoming the drawback of the 
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electrically insulating properties and radiation/vacuum-sensitive nature of such materials.63  

ESEM is also useful to visualize and to provide elemental analysis (see section 3) for cobalt 

(50–200 nm), nickel (50 nm), titanium (TiO2 20–160 nm), silica (SiO2 4–40 nm) and 

polyvinyl-chloride (PVC) (170 nm) NPs, in 10-μm thick tissue sections, placed over adhesive 

carbon discs inserted in the chamber).64 Similarly, ETEM has been satisfactorily applied to 

study the catalytic activity (under O2 or H2 atmospheres) of Au and Pd NPs with the 

resolution of the (111) crystalline lattice plane65 using an E-cell systems holder. Furthermore, 

ETEM permits visualization of NPs at high temperatures (1200 ºC or higher) and under 

gaseous atmospheric conditions (10 Pa or less) of the specimen chamber by using a 

temperature holder, hence enabling the analysis of the reaction processes in detail. For 

example PtNPs on Al2O3  have been imaged under conditions of 1 Pa O2 at 1123 K).66 The 

authors also made similar on graphite nanofiber (ribbon-type and platelet-type) with PtNPs 

under 10−3 Pa O2 at 573 K. TEM studies make also possible elemental analyses using EDAX 

or EELS (see section 3). 

An alternative to ESEM, is Wet-SEM 28. This technique, seals the sample, for instance, in a 

steel holder developed by QuantomiX,67 which uses a transparent electron membrane 

enabling the imaging of liquid samples (NPs in environmental matrices) by conventional 

SEM. Au (50 nm), TiO2 (5 nm), ZnO (71 nm) and Fe2O3 (29 nm) NPs in distilled water, lake 

water and a soil suspension have been imaged by this technique.6 The resolution obtained is 

between 10-100 nm.13 Wet-SEM is a useful tool for in situ investigation of NPs and their 

aggregates in natural matrices and can be combined with an energy dispersive X-ray 

spectrometer to conduct qualitative/quantitative analysis (see section 3.1). Although all these 

techniques are promising and have been extensively used, it is still a challenge to focus on 

NPs in liquids due to the Brownian motion.28  
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2.1.2 Cryo-electron microscopy 

To avoid dehydration artifact, NPs are kept frozen by cryo-TEM and cryo-SEM using a cryo-

stage in the microscope under high vacuum. Thus, the glutaraldehyde for sample 

immobilization or chemical treatment (both involving sample alteration) are not necessary 

because of the physical fixation by freezing.28 Cryo-TEM can reach a resolution of 0.2 nm 

imaging the gold plane (111).68  In AgNPs, the lattice fringes spacing (0.207 nm) is also 

visualized in ionic liquid media (due to its low vapour pressure).69 A resolution of 0.6-0.8 nm 

70 can be reached when imaging AuNPs-protein arrays in 3D. Replacement reactions can also 

be visualized, e.g., the electrostatic citrate shell is substituted by self-assembled 

polyoxometalates (POM) monolayers on the 5 nm AuNPs surface.71 Working with cryo-SEM 

technique72 (3-5 keV, -160 ºC, using SE and BSE imaging modes) it is possible to obtain a 

resolution from 1 to 3 nm28 imaging the cellular internalization of polymeric NPs (250-300 

nm). 

 

2.1.3 Cryo-electron tomography 

Cryo-electron tomography (cryo-ET) is an emerging structural technique which uses a 

combination of both cryo-TEM and tomographic methods. Here, the NPs are imaged by 

sections in three dimensions (3D) to an approximate 5 nm resolution.73 This technique 

preserves samples at liquid-nitrogen temperatures, so the cells freeze without needing 

chemical fixing or additional staining.74 Taveau et al., have used Cryo-ET to observe the 

nucleation and growth of polystyrene (PS) nodules on 170 nm silica seeds 75 being useful to 

visualize the growth of AgNPs by cathodic sputtering in ionic liquid.69 Cryo-ET provides high 

resolution regarding information of pleiomorphic structures76 or silica and AuNPs uptake by 

liposomes.77 To observe the NPs in biological samples (frequently 80 keV or less), higher-

than-normal microscope voltages (200–400 keV) are typically used to obtain higher specimen 
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penetration without losses in electron detection. The thickness for a 300 keV electron in 

organic materials is approximately 0.35 µm.73 Several examples of NPs measured with 

different devices are shown in Figure 1. 

 

FIGURE 1 

 

2.1.4 Scanning probe microscopy: AFM 

Atomic force microscopy (AFM), is a technique that belongs to the broader family of 

scanning probe microscopies (SPM).78 In a cantilever (a very sharp probe tip) scans the 

sample and allows imaging of NPs (surface structure) in their natural environment with 

atomic resolution (approx. 0.5 nm for DNA height).13 It is also possible to apply AFM to non-

conductive samples in a wide range of media, including nanomaterials in liquid conditions 

(environments), hence overcoming the limitation of scanning tunneling microscopy (STM) in 

which only conducting samples can be imaged.79 AFM resolution is limited by the size and 

geometry of the tip, which can be larger than the nanomaterial being studied and hence 

leading to an overestimation of the lateral dimension of the NP. There are several modes of 

AFM, (i) contact, (ii) non-contact80 and (iii) tapping scanning or intermittent mode.81 Contact 

mode (frequently used in static mode: without frequency modulation) is the most 

conventional imaging mode where the cantilever is deflected as it moves over the surface. The 

tip is constantly adjusted to maintain a constant deflection to "read" the sample topography. 

Due to the dragging motion of the tip, biomolecules or objects that are weakly attached to the 

substrate surface can be damaged or removed82 and may eventually stick to the cantilever, 

hence leading to possibility of imaging artifacts. In an attempt to minimize those undesirable 

effects, (ii-iii) non-contact and tapping mode (typically with frequency modulation), where 

the tip only touches the surface momentarily, hence minimizing the physical contact, were 
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developed. In AFM different substrates are used such as mica, clean silicon (Si) and 

chemically treated silicon to deposit NPs. AFM allows the analysis of particles in their own 

environment23 e.g., natural aquatic colloids83 in different types of water such as watershed 

(tapping mode),84,85 drinking water,24 or to image a size fractionation of natural aquatic NPs.86 

AFM is also successfully applied to the characterization of TiO2, ZrO2 and Al2O3 NPs,87 

semiconductor NPs such as CdSe/ZnS with 5–8 nm diameters and colloidal AuNPs with 15 

nm diameter.88 Furthermore, AFM has been used to study the effects of functionalized  NiNPs 

on cancer cells89 and the influence in the morphology of the cross-linker agent in 

thermoresponsive Au@NIPAM NPs.90 AFM can also give chemical information about the 

sample (see section 3.5). Table 3 shows some of the properties related to the techniques used 

to characterize NPs in near native state by usual EM and AFM with some examples of 

applicability. 

Table 3 

 

2.1.5 X-ray microscopy (XRM) 

Microscopy techniques based on X-ray photons can not only provide information on chemical 

composition and binding (See section 3) but also on structure and morphology. As with EM 

techniques, the spatial resolution achievable with a microscope is limited by the wavelength 

of the radiation and the optical elements used. We can classify two types of microscopes 

depending on whether focusing optical elements are used to focus the light by diffraction or 

not. The typical focusing element for X-ray wavelengths is a Fresnel zone plate. Microscopes 

that do not require focusing optics are classified as lensless projection imaging microscopes 

(PIMs) or diffraction imaging microscopes (DIMs).91 As there are no lenses between the 

sample and the detector, higher resolution can be obtained, but it is limited by both the 

wavelength of the incident beam (synchrotron X-ray source) and by the strong decay of the 
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diffraction intensity.92 In biological samples, these techniques also allow good resolution (11-

13 nm) when labelling cells with AuNPs of 1.8 nm as used by Nelson et al..93 3D images can 

also be taken by high-contrast coherent X-ray diffraction patterns of Ag/Au nanoboxes (>100 

nm) with spatial resolution of 4.2 nm92 by Takahashi et al., while Newton et al., obtained 3D 

images of ZnO nanorods with 40 nm of spatial resolution.94 By using coherent X-ray 

diffraction imaging (CXDI), where oversampled diffraction patterns can be inverted to obtain 

real space images, the facetted morphology of Pb nanocrystals95 and single ZnO nanorods96 

have been imaged. Previously Isaacs et al., showed a diffraction pattern of a 160 nm silver 

cube.97 Recently, the same research team, have been able to measure 400 nm diameter gold 

nanocrystal in higher resolution. The three-dimensional morphology and evolution of the 

strain under pressures up to 6.4 GPa were obtained with better than 30 nm spatial resolution.98 

Under low pressure, the edges of the nanocrystal became strained as expected, while under 

higher compression the strains disappeared, suggesting that the pressurised material is 

undergoing "plastic flow". 

Two types of microscopes using optic elements are available: full-field transmission X-ray 

microscopes (TXMs) and scanning transmission X-ray microscopes (STXMs). TXM is 

mainly used for imaging while scanning X-ray microscopes (SXM) are used as an elemental 

analysis technique.99 By the end of the 90´s, the structure of humic substances was visualized 

in situ for liquid samples reaching a resolution of 43 nm.100 NPs preparation such as fixation, 

staining or sectioning are not necessary since the organic matter of some NPs (e.g., iron 

oxides NPs) provides a much higher X-ray absorption than water. Although the TXM beam 

has higher energy than in STMX, causing more sample damage, it is more suitable than 

STMX for tomographic measurements since it takes faster images.91 (STXM acquisition takes 

approximately 2 min per image). TXM is used for in-situ observation of the sulfidation 

process (hollowing effect) from Cu2O crystals to Cu2S cages into liquid phase for the first 
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time (photon energy range of 8–11 keV).101 On the other hand STXM permits the analysis of 

structural changes due to aggregation effects in magnetite NPs (50 nm)102 and the morphology 

of core-shell semiconducting polymer NPs (shell thickness around 10 nm and a core of 50–60 

nm).103 Quantitative compositional maps can be obtained by near-edge X-ray absorption 

spectra (XANES) (see section 3.1). Finally, 3D images with a resolution from 40 nm104 up to 

20 nm105 are obtained by inversion of the coherent X-ray diffraction.  

With lower photon energies (from ~250 eV (~5 nm wavelength) to 1.8 keV (~0.7 nm)), 

typically called soft-XRM, the X-rays reach a condenser zone plate giving a partially coherent 

hollow-cone illumination. This zone plate, in combination with a central stop and a pinhole, 

provides a monochromatic beam on a CCD camera. A spatial resolution below 15 nm is 

offered.106 Soft-XRM in liquid media using a wet sample chamber (photon energy of 430 eV) 

gives a 40 nm resolution when imaging CdTe nanowires and hyperbranched PbS 

nanocrystals.107 Extremely low energies (ca. 100 eV), used in Soft X-ray STXM, are useful 

for investigations of actinide dioxides of uranium (UO2), neptunium (NpO2) and plutonium 

(PuO2). This technique also allows near-edge X-ray absorption fine structure (NEXAFS) for 

elemental mapping of actinide elements (see section 3.1) and imaging with 30 nm spatial 

resolution.108 Finally, resolution at interatomic scale is possible by applying intense but brief 

pulses of X-rays from upcoming free-electron lasers (XFEL)105 extending the X-ray 

microscopy to the femtosecond time domain. Nevertheless, FEL pulses are very bright and 

could involve sample destruction.  

 

2.2 Spectroscopic techniques 

The interaction between NPs and the electromagnetic radiation (electromagnetic waves, 

photons or electron beams) provides unequivocal characteristics. These characteristics involve 

composition information (See section 3), as well as NPs size and size distribution. Latter two 
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are presented in this section and can be studied by spectroscopy (mostly through scattering). 

Different sources of light such as laser, X-rays or neutrons can be used. By using a laser, light 

scattering helps determine particle size in a short time (minutes). The contrast in scattering 

light arises from the difference of the refractive index between the particle and water. To 

determine the size distribution profile and NPs aggregation in suspension, dynamic light 

scattering (DLS),109 also called photon correlation spectroscopy (PCS) or quasi-elastic light 

scattering, is used. Fluctuations in the scattered light measured in DLS, can be originated 

from both (i) the Brownian motion and (ii) from the constructive or destructive interferences 

of the scattered light from the neighbouring particles. Although it is a rapid and simple 

method, this technique should be used in combination with another technique such as SEM or 

TEM110 because of aggregates or dust, that can lead to underestimation or overestimation of 

results, involving a limitation in the interpretation, (especially for polydisperse systems).111 

Therefore, it is not possible to separate out the contributions coming from NPs of different 

sizes in the total population to the total correlation function. This is because the signal from 

larger particles dominates over that of smaller ones. Hence mathematical conversions to 

volume or number distributions from the intensity data, derived of DLS, can be erroneous and 

should only be properly provided with good knowledge of the particle shapes, polydispersity 

and underlying assumptions.112 DLS is widely applied for the determination of average size, 

size distribution and polydispersity of e.g., AgNPs,113 AuNPs below 2 nm,114 coated iron 

oxide NPs115,116 or fluorescent polyacrylamide NPs.117 Moreover, DLS measurements can be 

used to monitor the variation of the hydrodynamic diameter of the termoresponsive polymeric 

NPs (see figure 2). 

FIGURE 2 
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Static light scattering (SLS), also called multi angle (laser) light scattering (MALS or 

MALLS), requires cleaner or sufficiently diluted samples compared to DLS. Here, the 

experimental variable is the time-average intensity of scattered light while in DLS it is the 

fluctuations in light intensity. SLS provides information on particle morphology for instance 

in suspension of triaxial cellulose nanocrystals isolated from cotton.118 

Laser induced breakdown detection (LIBD) allows to detect both mean particle size and their 

concentration (See Section 3.6) in aqueous samples. Here, a laser beam with a fixed pulse is 

focused on the colloids reaching high temperature involving the dissociation of the material 

(breaks down) into excited ionic and atomic species. The analytical signal (the breakdown 

probability (BP))  can be related with the size of the NPs.119 LIBD resolution is down to the 

10 nm range.120 In order to not saturate the breakdown probability, most samples have to be 

diluted, making it impossible to discriminate between different types of NPs. The most 

frequently used detection systems are CCD cameras (intensified (ICCD), non-intensified 

(CCD121)) or piezoelectric crystals. As example, colloidal particles of hexavalent uranium 

(205-215 nm) can be determined. 

Surface-enhanced Raman scattering (SERS) is a surface sensitive technique which measures 

the enhancement of Raman signals of Raman-active species due to the presence of NPs. 

Differences in the intensity of SERS signals reveal differences in morphologies and sizes 

(e.g., between Ag nanospheres, nanorods and nanostars122 or between Au nanoprisms 

showing a higher Raman enhancement than nanorods).123 SERS was also applied to detect 

biocompatible and nontoxic PEGylated AuNPs for in vivo tumour targeting.124 Noticeable is 

the contribution of the Liz-Marzán group in SERS field.125-127  

UV-vis spectroscopy allows to determine not only composition information but also the NPs 

size and shape from the absorbance spectra.128 The NPs size can be determined by studying 

the shape and position of the localized surface plasmon resonance (LSPR) peak.129 Some 
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examples are now discussed. In the case of gold, the SPR for spherical AuNPs smaller than 2 

nm is placed at 505 nm130 while for 15-20 nm in size it is placed at 520 nm and for 100 nm it 

is around 575 nm. The longitudinal SPR mode for different Au nanorods aspect ratio (length: 

width) is placed from 650 to1000 nm. On nanorods the SPR band observed splits in two 

modes due to the different orientations of the rod in respect to the electric field of the incident 

light. Thus electron oscillation is produced across (transverse mode) and along (longitudinal 

mode) the long axis of the nanorod. The transverse SPR mode (at around 500 nm) only shows 

a minor shift when the Au nanorod aspect ratio varies. In contrast, the longitudinal SPR mode 

is significantly affected by the modification of the aspect ratio.131 Similarly, spherical AgNPs 

present an absorbance band placed at 420 nm while Ag nanorods offer two bands placed at 

420 and 615 nm.122 Moreover, UV-vis has been used to detect biomolecular interactions 

taking place at the surface of the noble metal nanoparticles.132 Thus, the SPR peak is also 

influenced by the refractive index at the adjacent surface interface of the nanoparticle, and this 

is affected by biofuncionalization or by binding interactions. An overview of functionalized 

gold nanorods used in a variety of analytical and biomedical applications is reviewed in 

details by Mannelli et al..133 

UV-vis spectroscopy can be easily combined with different techniques such as 

chromatographic systems to enable size separation134,135 or even with MALLS for the same 

purpose.136 In combination with SEM, SAXS and XANES (see section 3), UV-vis 

spectroscopy has been applied to observe the size behaviour of AuNPs during different 

synthesis procedures.137 

Finally, nuclear magnetic resonance (NMR) can be used for measuring the size of metal NPs 

encapsulated within dendrimers (differing in size by just a few tens of atoms)138 as well as  

the size of colloidal matter.13  
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2.2.1. X-ray and neutron spectroscopy 

Other sources of light such as neutrons and X-rays are used to determine sizes near (0.01–1 

nm) and (1–1000 nm), respectively. Small or wide angle X-ray scattering (SAXS or WAXS) 

use flexible X-ray scattering to provide information of monodisperse samples about shape, 

size and structure. The size distribution is possible only in polydispersed samples via the form 

factor, P(q). SAXS does not show very good contrast between elements that are close in the 

periodic table since the contrast in X-ray scattering arises from the variation in electron 

density within the sample. In that case, it is possible to cause damage to the sample as a result 

of the large amount of energy applied (particularly at synchrotron sources). The NPs diameter 

and the size distribution are obtained from a scattering pattern. With near monodispersed 

particles, the scattering pattern of the X-ray shows concentric rings with a diameter directly 

related to the mean diameter of the NPs. SAXS has been employed to observe how the silica 

NPs interactions are decreased by the progressive dissolution of the  tetrapropylammonium 

hydroxide functionalized surface (decreasing the surface charge when the NPs size 

decreases).139 This technique is also useful to reveal core-shell structures, e.g., in polymer 

coated iron oxide nanocrystals due to the high difference in electron density between the core 

and the polymer shell.140 Suspensions of polymethyl methacrylate (PMMA) NPs with low 

polydispersity and diameters of 108 nm and 192 nm also have been imaged by SAXS.141 X-

ray reflectometry (XRR) combines small angle scattering with the reflection geometry to 

obtain dimensional properties of nanostructured surfaces. Here, by grazing incidence SAXS 

(GISAXS) structural parameters for 10 nm AuNPs142 are determined. X-ray scattering 

coupled with UV-vis128 allow to measure the mean size of AuNPs from the scattering data 

within 10% error.143 SAXS also enables online analysis of the nucleation and growth of 

AuNPs avoiding uncertainties in the interpretation of UV-vis spectra.137 This technique is also 

used to follow the growth of thiol-covered AuNPs at different reaction times.144 Long 
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exposure times are used to obtain high-quality data sets (≈1 h) while shorter times 

predominate in case of high scattering intensity of the sample (e.g., sizing distribution of 

AuNPs (reference materials)).145  

By small-angle neutron scattering (SANS), the contrast arises from the different changes in 

the energy of the neutrons from different NPs (density and composition) and the magnetic 

moments of atoms involving a possible determination of both the chemical and the average 

spatial distributions of magnetic, e.g., Fe3O4 NPs.146 Moreover, it has been applied for the in-

situ determination of the mean core diameter, the ligand length, and ligand solvation from 

dodecanothiol-AgNPs in gas expanded liquids.147 Combining SANS and SAXS, it is possible 

to measure the size of carboxylic acid modified zirconia (ZrO2) NPs in different solvents.148 

Table 4 displays some of the features related to the techniques used to characterize NPs 

depending on of size, structure and morphology among with some useful applications. 

Table 4 

 

2.3 Chromatography and related separation techniques. Size exclusion chromatography 

(SEC), capillary electrophoresis (CE), hydrodynamic chromatography (HDC) and field-

flow fractionation (FFF). 

NPs size characterization can be made by different separation techniques such as size 

exclusion chromatography (SEC), hydrodynamic chromatography (HDC), capillary 

electrophoresis (CE) and field-flow fractionation (FFF). All these techniques can be applied 

with other techniques or detection devices for further sample analysis.  

SEC is a widely used technique for NPs isolation. The column is packed with porous packing 

materials, which form the flow channels. Particles which have a diameter smaller or equal 

than the pore size of the packing materials can permeate deep inside the column, while larger 

particles can only transfer through bigger pores or be excluded to extra-particular region. This 
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causes that smaller particles have longer retention times. Thus, SEC effectiveness for NPs 

isolation in water mainly depends on defining the pore size of the stationary phase to reject 

the particles with diameters that exceed the one specific for NPs.149,150 It was successfully 

used for rapid determination of sizes and size distributions of AuNPs (from 10 to 80 nm151 or  

from 5.3 to 38.3 nm135,152) and can be connected to a MALLS to obtain a molecular mass 

distributions.153 Further development called recycling SEC allowed the high-resolution 

analysis (±0.6 nm) and size based separation of  AuNPs having sizes below 3 nm.154 Different 

shapes and AuNPs can be developed by SEC to examine the 3-D chromatograms obtained by 

employing a diode array detection system. These data are confirmed by TEM sizes.155 

The separation of HDC particles156,157 is based on their hydrodynamic radius.158 The column 

is packed with microparticles that are nonporous, and the flow velocity and the velocity 

gradient across determine the separation.159 Although the efficiency is very poor, the 

operating size range is very good. As the elution order is the same as in SEC and also in the 

steric mode of field flow fractionation (FFF), a further development of SEC consists in using 

HDC columns packed with non-porous beads and with a resolution between 5 to 1200 nm 

NPs size. This combination depends on the NPs flow velocity and the velocity gradient across 

them.13,150 HDC has been combined with DLS for lipid nanocapsule separation160 as well as in 

an interesting procedure using a silicon chip for channel separation using a CCD camera with 

a fluorescence microscope as detection system161 or to detect species by UV absorption 

detection.134 HDC coupled with ICP-MS is used to separate ‘‘real’’ environment samples by 

spiking AgNPs into sewage sludge. Initial data demonstrate that the AgNPs survive in the 

sludge supernatant, and could be successfully fractioned by HDC, even without filtration or 

centrifugation. TEM images also validate the results obtained by HDC-ICP-MS.162 
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Other types of chromatography as reversed-phase liquid chromatography (RPLC) are used to 

monitor the sizes of Au-Pt core-shell NPs.163 Finally, high performance liquid 

chromatography (HPLC) is used in voltammetric detection for AuNPs separation.164 

Species separation based on the charge and the size distribution is specifically allowed by CE. 

Recently, CE has emerged as one of the most potent separation techniques for inorganic ions, 

organic compounds, macromolecules and even biomolecules (e.g., virus and bacteria). On the 

other hand, for selective separation of various NPs by size and surface-charge density (e.g., 

latex particles, polystyrenes, inorganic oxide particles, metal particles and quantum dots) 

capillary-electromigration techniques are used.165,166 Modifying some of the most important 

electrophoretic separation variables such as pH, buffer concentration, and organic modifiers, 

the rate of migration could be varied (e.g., to separate AuNPs and Au/Ag core/shell NPs, 

evaluating also the average size).167,168 A variation of CE called gel electrophoresis can be 

combined with other separation techniques such as liquid chromatography and coupled on-

line to inductively coupled plasma-mass spectrometry (ICP-MS) to study the separation of 

AuNPs standards.169 A review in the application of electrophoretic techniques for the 

separation of nanoparticles have been presented by Surugau et al.,170 and a complete summary 

of AuNPs separation was attempt by Liu.171 Latter provides an introduction to the 

characterizations of AuNPs using SEC, HPLC, electrophoresis, and their self-assembly onto 

solid supports for analyses. 

FFF is a velocity based separation technique172 that does not require a stationary phase for 

separation. Separation occurs by differential retention of NPs in a stream of liquid flowing 

through a thin channel when an external field is applied perpendicular to the channel.173 The 

field drives components unequally into different streams according to the physical properties 

of the NPs, causing the separation from 1 nm until 100 μm.111 In FFF, similarly to liquid 

chromatography, sample containing a mixture of nanoparticles is injected into a mobile phase 
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stream flowing through a thin, empty flow chamber, called ‘separation channel’. The liquid 

flow drives the sample species along the channel. Unlike chromatographic techniques, FFF 

has no stationary phase. Actually, one of the key features of FFF is the absence of such a 

stationary phase. Therefore, undesired interactions of the nanoparticles with any stationary 

phase are avoided. Such, ‘soft’ fractionation mechanism result in a reduction of eventual 

sample degradations, aggregations or looses during the separation process. In FFF, separation 

is performed by the interaction of sample components with an externally generated field, 

which is applied perpendicularly to the direction of the mobile phase flow. The engineered 

nanoparticles present in the colloidal suspension (differing in size, chemical composition, 

surface functionalization and/or other physical properties) are carried downstream through the 

channel at different speeds, and exit the channel to the detector, at different retention times.174  

There are different operation modes of the FFF. In the Figure 3 it is schematized the “Normal 

operation mode”. Here, retention times of nanoparticles are shorter for those with lower molar 

mass or size. 

FIGURE 3 

 FFF can be used in/with different types of fields depending on the sufficient strength and 

selectivity to achieve the separation: centrifugal force (sedimentation FFF), gravitational 

(GrFFF), thermal (ThFFF), electrical (ElFFF), dielectrophoretic (DEP-FFF), Acoustic 

(AcFFF), magnetic (MgFFF) and hydrodynamic flow perpendicular to the separation flow 

(FlFFF). Latter can be found in two types: symmetric flow field-flow fractionation (FlFFF) 

and asymmetrical  (AsFlFFF).175 

FlFFF shows excellent size resolution and ability to investigate a wide range of sample and 

sizes, being promising for NPs fractionation.176 FlFFF is based on hydrodynamic principles in 

which particles are separated due to their interaction with the cross-flow field force (friction 

coefficient) and their translational diffusion.86 Further characterization can frequently be made 
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by on-line coupling detection devices as UV absorbance, DLS,177 light scattering as MALLS 

to size separation of environmental colloids178 or coupled with TEM (FlFFF–MALLS–

TEM)179 or AFM.86 This technique can be applied for size characterization of diluted AuNPs 

using asymmetric flow FFF (AF4).180 AsFlFFF is useful for NP fractionation due to its high 

resolution and is applicable to a large size range. FFF can be coupled off-line with several 

analytical detectors.150 Basically, to monitor the size distributions, the FFF needs to be 

coupled to a detector that responds to the nanoparticle number or mass concentration. 

The measurement and characterization of nanoparticles (nanometrology) is critical in all 

aspects of nanotechnology, and particularly in environmental issues.  Especially, in the field 

of environmental research, it has become clear that "complete" characterization of 

nanomaterials is critical for interpreting the environmental impact of the nanomaterials 

present in the environment.  

Few analytical techniques can be successfully applied for NPs studies.111 These methods each 

differ depending on the properties measured: average size, size distribution, surface 

characteristics, shape and chemical composition. Methods for assessing particle concentration 

and particle size distributions include electron microscopy, chromatography, centrifugation, 

laser-light scattering, ultrafiltration and spectroscopy.  

Difficulties generally arise because of a lack of sensitivity for characterizing and quantifying 

particles at environmentally relevant concentrations (few micrograms per litre). Furthermore, 

the lack of specificity of the technique is problematic for complex environmental matrices 

that may contain natural NPs with polydisperse particle distributions, as well as 

heterogeneous compositions. In these conditions, FFF analysis, is a powerful tool for sizing 

and separating NPs. Particularly, coupling FFF with a sensitive and selective multielemental 

technique such as ICP-MS offers highly sensitive detection capabilities and provides direct 

information about nanoparticle composition.181  
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ICP-MS is a relatively straightforward elemental detection system to be coupled to FFF 

because the sample flow rate of the ICP-MS sample introduction system is similar to the 

outlet flow rate of the FFF system (0.5-2.0 mL·min-1). By using conventional detectors (e.g., 

UV absorbance), the fractogram does not often differentiate between NPs of different 

composition and only shows the FFF separated particles by size. Nevertheless, the fractogram 

obtained using ICP-MS detection clearly shows the separated particles and the signal 

intensities for elemental composition of the NPs.182 

Flow FFF techniques have been successfully utilized to characterize synthetic nanoparticles 

like carbon nanotubes,183 or for the characterization of synthetic nanoparticles, such as 

CdSe/ZnS-MAA (mercaptoacetic acid) core/ shell-coated quantum dots (QDs).184 

Concentrations of manufactured nanoparticles in natural water in the range of 1–100 μg L−1 

have been estimated based on currently available data on nanoparticle production and guesses 

on potential releases into the environment.185 Depending on their elemental composition 

FFF/ICPMS could be sensitive enough to be applied for their characterisation. 

At present, one of the inherent limitations for quantitative applications of FFF-ICP-MS can be 

low recoveries, mainly due to undesirable physical interaction of the analytes with the 

membrane. Adsorption mechanisms result in nanoparticles sticking to the membrane that are 

not finally eluted. Different membrane compositions and mobile phases are investigated 

trying to minimize such a drawback of the technique. 

 

2.4 Centrifugation, filtration and dialysis techniques. 

Using these techniques, a particle size separation is obtained. Several parameters such as 

sedimentation velocity and sedimentation equilibrium experiments are observed.13 To study 

suspended particles within the size range of small monoatomic ions, analytical 

ultracentrifugation (AUC) is a widely used. AUC has played a relevant role in nanoparticle 
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development due to the huge potential for macromolecular characterization.186,187 Bootz et al., 

compared AUC with SEM, TEM and DLS techniques to determine the size and size 

distribution of the particle populations.110 

Although filtration techniques allow particle size fractionation between 0.2 nm and 1μm188 the 

fractionating size can be affected by both clogging and electrostatic interactions when using 

FFF.189 Thus, for filtration and centrifugation, some artifacts may appear decreasing the 

effective pore size and can cause the retention of increasing amounts of colloids. This fact can 

be caused by the overloading of the membrane filters, in both microfiltration (pores size 

>0.1μm) and ultrafiltration (large sample volumes).190 

NPs and ions can be also separated by using nanofiltration (pores of 0.5 or 1 nm). Since cross 

flow filtration (CFF) reduces the artifacts, it has become a standard method for the separation 

of colloids and particles. Cross flow ultrafiltration (CFUF) does not develop fully quantitative 

separation of colloids and particles in freshwater (1 nm- 1 μm). This fact was demonstrated by 

Doucet et al. comparing CFUF performance in the size fractionation of natural aquatic 

colloids against AFM and TEM.85,191 

 Dialysis is a very mild fractionation method and it can be used to separate truly dissolved 

components (ions and small molecules) from their nanoparticle counterparts.111,192 Basically, 

these techniques (centrifugation and filtration) are mainly applied to sample preparation or in 

purification washing cycles.  

 

3. Structural information and chemical composition. Single or hyphenated techniques  

From the interaction between high-energy beams of charged particles (photons, electrons or 

X-rays) and the components of the NPs, unequivocal radiation related to each element can be 

emitted. Detection systems dealing with spectroscopy (absorption peaks, fluorescence or X-

ray emissions), electron energy-loss or nanodiffraction techniques can be combined with 
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imaging techniques to give elemental and structural information. In the following sections, 

several individual or hyphenated techniques are discussed along with some applications to 

characterise NPs by these techniques. 

 

3.1 X-ray spectroscopy 

The generated X-rays from a sample are characteristic of each element or are related to the 

atomic structure. Therefore, the use of X-ray spectroscopic techniques enables us to detect 

subtle differences in atomic structure or chemical bond. These X-rays are obtained when an 

outer electron placed in a higher-energy shell is transferred to a lower energy level to fill the 

inner electron hole that has been excited by an incident electron beam. Energy dispersive X-

ray spectroscopy (EDS, EDX, XEDS or EDAX,) identifies the atomic composition of the NPs 

by the generation of X-rays. EDX can be hyphenated to TEM or SEM to analyze the chemical 

composition of e.g., dust NPs,193 Pt@Fe2O3 core-shell NPs194 or even to determine the 

possible antibacterial effect of silver ions.195  

The combination of STEM and HAADF is suitable to identify structural variations of the 

AgPd@Pt NPs composition196 or the concentration of gold in AuNPs using, interestingly, hair 

fibre as nanoreactor.197 

In fully liquid conditions, it is also possible to develop elemental analysis by using liquid 

sample holders or microchips. EDS coupled with liquid-TEM helps confirming the growth of 

Pt nanocrystals by coalescence as an alternative to simple growth54 and the in situ formation 

of tellurium NPs by microorganisms (see section 3.1.1.). In special conditions such as high 

temperatures and gaseous atmospheres, the visualization of PtNPs on Al2O3 is also possible.66 

Coupled with wet-SEM, the elemental identification of Au, TiO2, ZnO and Fe2O3 NPs is 

reached.6 Moreover, EDS coupled with ESEM has been used to monitor the biomedical 
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effects of several NPs such as metals (Ni, Co), ceramics (TiO2 and SiO2), and PVC64 in rats 

muscles.198  Figure 4 displays the EDX analysis of of Au/Ag alloy NPs imaged by TEM. 

FIGURE 4 

 

Wavelength dispersive X-ray spectrometry (WDS, also called WDXRF when using X-ray 

fluorescence) measures the X-rays coming from a specific and diffracted wavelength of the 

NPs. WDS is more precise than EDX and shows several improvements such as (i) a better 

energy resolution (ii) a peak-to-background capability to detect smaller amounts of 

elements199 and (iii) a better detection of light atomic number (Z) elements. Combined with 

STEM,200  the composition of Molybdenum NPs (MoNPs) can be given. As single technique, 

it is useful for the determination of Bismuth composition as residual synthesis component of 

magnetic metal oxide nanocrystals.201 Furthermore, it is used to identify the residual Br– and 

Cl– capping agents on palladium nanowires in the catalysis of acetylene.198 

 

3.1.1 Non hyphenated X-ray techniques 

X-ray photoelectron spectroscopy (XPS) measures the kinetic energy of photoemitted 

(ejected) electrons  when irradiating a sample with focused soft X-rays (typically below 1,5 

keV).202 As the X-ray photon energy is known, it is possible to determine the electron binding 

energy and identify the atomic core-level where the electron was extracted. XPS is useful to 

characterize NPs surfaces and coatings (e.g., the evolution in the composition of Au/Cu NPs 

along the time in catalysis).202 It is also used for the identification of encapsulated AuNPs into 

Cu2S nanocages101 and even for checking different chemical states of elements present in NPs 

(e.g., the concentration of Au(I) in Au@Au(I) NPs and Ag in silica nanocomposites).203,204 

In X-ray diffraction (XRD),140 X-ray beams are projected over the NPs in a determined angle, 

called theta “θ”, and the diffracted X-rays are collected in an angle of 2θ (See Table 5). XRD 
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allows structural phase identification of the NPs cristallinity (e.g., between magnetite and 

maghemite NPs)115,116 giving also the average particle size by using the Scherrer equation. 

Furthermore, different chemical states and elemental composition (e.g., Ag into silica 

nanocomposites204 or in nanocubes205) can be provided.  

X-ray fluorescence (XRF)206 results from the atom-localized emission when incident X-rays 

have higher energy than the ionization potential of the atoms in the NPs. Different types such 

as Wavelength X-ray separation (WDXRF) and energy dispersive X-ray (EDXRF)13 can be 

used. Elemental composition of nanomaterials such as Ru-Pt bimetallic NPs207 or ZnO 

nanoplates208 is obtained. 

(Table 5) 

 

X-ray absorption spectroscopy (XAS) studies local atomic arrangements when intense and 

collimated X-ray beams (synchrotron radiation) reach the sample (See Figure 2). XAS can be 

divided in four energy regions: (i) pre-edge region < (ii) "rising edge" referred to XANES < 

(iii) NEXAFS < (iv) Extended X-ray Absorption Fine Structure (EXAFS) (corresponding to 

the scattering of the ejected photoelectron of neighbouring atoms). The combination of 

XANES and EXAFS is called XAFS. NEXAFS measurements allow further characterization 

of the organic material, identifying phenolic, carboxylic and carbonyl carbons. This specific 

characterization is possible due to the fact that each type of carbon is assigned to different eV 

peaks.24 This improves the TEM-EDX analysis where all these analytes are grouped as only 

one carbon peak. XAS is used to detect small differences in the structure of colloidal 

nanocrystals209 which can be difficult to discern using EM and XRD.206 Nevertheless, 

structural evaluation of bimetallic NPs (Ru-Pt NPs)207 is clarified by using EXAFS, XANES 

and XRD.7 Moreover, it is possible to monitor different reaction steps137 by checking both the 
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NPs surface passivation and the different oxidation states of CdSe quantum dots.210 Moreover, 

latex particles are also imaged.211  

Interestingly, using a photoemission electron microscopy, electronic and magnetic properties 

of single FeNPs (6-25 nm) can be measured with XAS and X-ray magnetic circular dichroism 

(XMCD) spectra.212 

 

3.2 Other techniques coupled to EM  

Electron energy-loss spectroscopy (EELS) is based on the energy analysis of the sample’s 

inelastically scattered electrons (transmitted electron beam). EELS provides information on 

the electronic structure, surface properties, oxidation states and chemical composition at an 

atomic or subnanometer scale. EELS spectra are influenced by both the coordination 

chemistry (environment surrounding the atom) and the valence state of the atomic species 

(atomic core electron excitations). Parallel acquisition systems (PEELS) allow the 

simultaneous collection of data over a range of energy losses. Elemental analysis is possible 

for most elements, although in practice, the quantification is mostly applicable to the lighter 

elements with Z greater than 3. PEELS has superior detection efficiency for low Z elements 

compared with EDX (generally better suited for detecting elements of high Z). Both 

techniques show clear advantages for identifying and analysing higher Z components. EELS 

and EDX are complementary techniques and can be used to map composition in 2D or 3D.213 

Coupled with TEM or STEM they are successfully  applied to elemental analysis (e.g., of the 

oxide shell on the surface of FeNPs)214 or to differentiate carbon nanotubes by metallic or 

semiconducting nature.215 With the aim of increasing the energy-resolution in elemental 

analysis by SEM-EDX (usually limited between 100 and 150 eV and nearly two orders of 

magnitude larger than the energy resolution of EELS in TEMs/STEMs) a successful 
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combination between SEM and EELS is developed to acquire structural information with 4 

eV of energy-resolution.216  

EELS hyphenated to STEM38 is useful to obtain maps of the SPR modes of single molecule 

SERS-active nanostructures.217 

Energy-filtered TEM (EFTEM) forms images using only electrons coming from a particular 

energy-loss. EFTEM is useful for lighter elements218 as well as to distinguish different 

materials in composites (e.g., Nylon (22 eV)) from the nanotube (27 eV).213  

Regarding nanodiffraction techniques, with STEM it is possible to obtain nanodiffraction 

patterns which provide nanostructure and morphology information from individual 

nanocomponents by coherent electron nanodiffraction (CEND). CEND is the only technique 

that gives full diffraction information about individual NPs, and is applied for instance to 

AgNPs smaller than 3 nm.38 

Selected Area Electron Diffraction (SAED) paired with TEM or STEM gives information 

about crystalline properties of NPs,23 e.g., pattern of atomic Fe3O4 magnetic layer deposition 

on carbon nanocoils,219 and allows to obtain atomic order information. Moreover, comparing 

with X-ray diffraction, bigger sample fields can be monitored.150 All techniques described 

from sections 3.1 to 3.2 are shown in Table 6, among with several characteristics and 

applications. 

 

3.3 X-ray microscopy (XRM) 

XRM uses soft X-ray beams to image the samples, allowing both absorption and fluorescence 

signals to map the elemental and chemical composition of the NPs. XRM reaches a resolution 

between optical microscopy and EM in the so-called water window. Two types of 

microscopes are used in X-ray microscopy (i) full-field transmission X-ray microscopes for 

standalone and synchrotron sources (TXM and laboratory TXM (LTXM) where experiments 
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can be performed in the user's home lab) mainly used for imaging and particularly well suited 

for tomography, and the (ii) scanning X-ray microscope (STXM), mainly used for 

microanalysis and magnetization with high spatial resolution. In both techniques, Fresnel 

zone plates lenses for diffractive and spatially focused coherent X-rays are used. By TXM, it 

is possible to reach 3D images of Ag/Au nanoboxes (up 100 nm) not obtained by X-ray 

tomography with lenses nor atom probe microscopy or electron tomography.92 

STXM can be used to monitor the presence of zinc in human cells exposed to ZnO NPs,220 as 

well as to provide spatially resolved chemical state information of FeNPs221 or to characterize 

actinide particles (100 to 1000 nm).108 When combined with NEXAFS, the electronic and 

structural properties obtained by chemical mapping allow to distinguish core-shell structures 

in polymer NPs.103 Different CNTs (from onion like or carbon NPs) and nanotubes 

synthesized by different growth methods222 can also be distinguished. Notice that the  

analytical signal is 100-1000 times smaller for STXM than for techniques based on 

spectromicroscopy such as TEM-EELS, decreasing the radiation damage (See Table 6).222 

Figure 5 displays a schematic representation of electronic and X-ray microscopes. 

 

FIGURE 5 

 

3.4. Auger electron and Mössbauer spectroscopies. 

A highly surface-sensitive technique such as Auger electron spectroscopy (AES) offers 

information about the surface topography and the surface composition of the NPs by 

collecting or analyzing Auger electrons (AE) emitted from the NPs surface (similar 

information is obtained with secondary electrons, SE). When an incident electron beam 

excites an inner electron, an outer electron can migrate to the created void in the inner shell. 

In consequence, energy is emitted, which is different to X-ray emission, and it is transferred 
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to a third electron on a further outer shell, leading to its ejection. AES was used to evaluate 

surface oxidative chemistry of AuNPs3 and combined with SEM or STEM allows also 

chemical-composition analysis.150 In STEM, sub-nanometer surface details can be observed at 

high-resolution SE images. AES can give qualitative and, in some cases, quantitative 

information about the surface composition of NPs consisting of multiple components.38 For 

instance, it is applied to different types of chemical depositions such as diamond-like carbon 

on metal substrates (used as catalyst templates for the growth of CNTs)223 and Prussian-blue 

analogues (PBA) NPs (from 6 to 25 nm) on silicon surfaces.224 In Scanning Auger 

microscopy (SAM)38 an image resolution <1 nm can be obtained which allows to detect as 

few as 15 silver atoms in AgNPs of a diameter smaller than 1 nm.225  

Mössbauer spectroscopy is based on the resonant absorption and emission of gamma rays 

giving information about physical, chemical and magnetic properties of NPs. Gold-coated 

magnetic nanoparticles show the ability to yield high magnetic moments with the simplicity 

of bioconjugation on the gold surface. This type of NPs are suitable targets to be measured by 

Mössbauer spectroscopy,226 which provides detailed information about magnetite NPs 

formation.227 

 

3.5. AFM and Brunauer-Emmett-Teller technique (BET) 

AFM allows to measure surface forces of the NPs for physicochemical characterization. AFM 

helps to identify chemical elements placed on the NPs surface by comparing with atomic 

force patterns228,229 or by chemical force microscopy (CFM)22 where functionalized probe tips 

are used.230  

BET method is used for characterizing the porosity and surface area of solids, allowing the 

determination of the specific surface area by means of gas adsorption. For instance, it is 
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applied to measure the surface area of FeNPs221 and the pore size distribution in SWCNTs231 

as well as to conduct toxicity studies.232,233  

 

3.6. Spectroscopic techniques for chemical identification 

LIBS belongs to the atomic emission spectroscopy techniques and consists in a short laser 

pulse irradiated on a sample creating highly energetic plasma that emits light at a specific 

wavelength peak according to the material. By identifying different peaks for the analyzed 

samples, their chemical composition can be rapidly determined. The number of plasmas 

(dielectric breakdowns) per number of total laser pulses and their spatial distribution in the 

laser focus can reveal both the colloidal concentration and size.24 The LIBS plasmas depend 

strongly on the ambient conditions, the matrix effects and the signal to noise ratio.234 LIBS 

reaches a low  limit of detection (LOD) in the range of ppt (ng·L-1) allowing to analyze the 

NP size between 10 nm and 1 μm235,236 as well as the particle number density (concentration) 

(see section 4) of colloids237 and NPs (20 nm).24 

By using double-pulse LIBS, some signals can be enhanced, such as for Al and Ca lines, up to 

five times compared to the single-pulse signal.238  

Laser-induced fluorescence (LIF) and Raman spectroscopy allow the molecular structure 

characterization.13 Electron paramagnetic resonance (EPR) detects unpaired electrons existing 

in a sample239 and offers the possibility to analyze the particle surface reactivity. Due to the 

high sensitivity of EPR towards surface variations, it is possible to determine ligands in mixed 

monolayers which are covering AuNPs and also impurities on CdSe QD.240 EPR is largely 

applied to NPs toxicity studies.241 

UV-vis spectroscopy allows to obtain the NPs size and concentration (see section 4) 

depending on the position of the surface plasmon peak as Haiss et al., demonstrated for 

AuNPs.242 Several chemical effects, that modify the optical behaviour of small metal 
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particles, can be studied by optical measurements focusing on the SPR displacement.243 This 

displacement depends on both the surrounding environment of the NPs and the different types 

of surface functionalization.244,245 Moreover, the particle concentration can be measured by 

using the molar extinction coefficient at the wavelength of the maximum absorption band 

(e.g., in gold colloids).246 Here, due to the difference in absorbance it is possible to determine 

Langmuir isotherms for the replacement of citrate by  POM anions at the gold surface.71 For 

AgNPs, the SPR shifts towards a longer wavelength as the solvent refractive index 

increases.247 Depending on the composition of Ag/Au nanocages, different positions of the 

SPR of the metal nanocages248 and hollow metal nanostructures249 can be observed at the 

near-infrared region. Similarly, silver and gold can be used to form alloyed NPs which offer 

different SPR peaks at the visible range of wavelengths (See figure 6). 

 Finally, the effect of both humic acids attached to citrate-stabilized AuNPs and the pH can be 

observed by the reduction/displacement of  the gold plasmon peak, leading to NPs 

agglomerations.245  

 

FIGURE 6  

 

Fourier transform infrared spectroscopy (FTIR) is useful to identify chemicals or to determine 

structural properties e.g., in silver nanocomposites.204 FTIR is used to identify the typical 

peaks for organic and inorganic NPs,250,251 but often presenting an overlap between peaks that 

makes difficult to identify properly the different species or functional groups.115 Changes in 

the absorbance bands of the NPs give details about composition. For instance, the presence of 

bovine serum albumin (BSA) shows a red shift of the AgNPs plasmon peak and the oxidation 

of AgNPs produces a broadening of the band width and a decrease in  absorbance.252 
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SERS allows detecting single molecules by the enhancement of the Raman scattering signal 

(from a molecule) when it is located next to a nanostructured metal. Gold and silver 

nanoaggregates with attached reporter molecules can be identified by the Raman 

signature32,253,254 as well as the ligand conformation on AuNPs.255 In this field the contribution 

of Liz-Marzán et al. is of relevant interest.256,257 All these techniques are displayed in Table 6. 

 

Table 6 

4. Elemental composition and concentration.  

From a toxicological point of view, in addition to all the explained above characteristics, 

chemical composition is an essential issue to NPs identification. Specific techniques are 

related to characterize NPs, providing chemical composition of targeted NPs including if any, 

the core material and/or the surface layer composition.  Moreover, several cases based on the 

NPs characterization by these techniques are also discussed. 

 

4.1 Mass spectrometry (MS) 

It is an analytical technique for element determination in which the sample is vaporized, 

ionized and measured by mass-to-charge ratio for quantitative purposes. Different ionization 

modes such as electrospray ionization (ESI) and laser desorption/ionization (LDI) can be 

used. ESI can be used e.g., for the characterization of Au nanoclusters258 while laser 

desorption/ionization of individual particles by soft ionization called matrix assisted laser 

desorption/ionization (MALDI) can be applied to detect products of ligand exchange 

reactions of the nanoparticles.259 Inductively coupled plasma (ICP) uses high temperatures to 

dry, vaporize, atomize, and ionize the sample and generally is used for metal analysis. LDI 

can be applied to aerosol characterization by aerosol time-of-flight mass spectrometer 

(ATOF-MS),13 providing valuable insights for functionalized NPs also by using time of flight 
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(TOF) as detection system.260,261 The LOD of element gold can be as low as 1 part per trillion 

(pg·mL-1).114 

ICP-MS can be coupled with separation techniques e.g., with FlFFF for the elemental 

characterization of small colloidal materials169 or with HPLC or electrophoresis techniques,  

not only for obtaining size fractioning NPs but also for determining chemical composition, 

relating distinct gel electrophoresis (GE) peak tailing with the chemical structure of the NP’s 

surface.169  

Different combinations with other techniques (SEM, TEM, AFM) and other analytical tools 

are possible (e.g., HDC- or FFF-ICP-MS, DLS).162 On the basis of electrical mobility, using a 

differential mobility analysis (DMA), size differentiation and elemental composition are also 

possible.13 Moreover,  a detection system mainly composed by a laser induced fluorescence 

(LIF) and a quadrupole ion trap was useful to characterize fluorescence NPs by ion trap mass 

spectrometry of NPs.262 

Inorganic mass spectrometry techniques may also offer great potential for the characterisation 

at the nanoscale, because they provide unique elemental information of great value for a better 

understanding of processes occurring at nanometre-length dimensions. Accordingly, several 

approaches for the characterisation (i.e. size, composition, presence of impurities, etc.) of 

colloidal solutions containing nanoparticles by the well-established ICP-MS technique can be 

found in the literature. The capabilities derived from the on-line coupling of separation 

techniques such as field-flow fractionation and liquid chromatography with ICP-MS allows a 

further exhaustive characterization of colloidal engineered nanoparticles.  

In recent years, ICP-MS has become one of the most versatile and sensitive tool for elemental 

analysis in analytical chemistry263,264 since most elements can be ionised in the ICP source. 

Routinely achievable until subnanogram per litre, detection limits have permitted the 

detection of ultratrace metal species in complex matrices. In addition, the dynamic range of 
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ICP-MS routinely exceeds 6 orders of magnitude, allowing detection of both major 

constituents and trace components at the same sample dilution. Therefore, quantification is 

rather easy and requires only standard solutions of inorganic elements. Furthermore, ICP-MS 

allows the straightforward use of isotopic-dilution techniques for most accurate 

measurements. 

Recently, ICP-MS has been demonstrated to be a highly valuable tool for ultrasensitive 

detection and characterisation of metalloid-containing NPs and as a fast and reliable technique 

for quantification of NPs in solution. In this context, ICP-MS analysis of colloidal 

suspensions of QDs, with a core of CdSe and a shell of ZnS, was used to study the 

distribution of elements (Cd, Se, Zn and S) in both the core and the shell of the 

nanocrystals.265 The accurate quantitative ICP-MS measurements (using isotopic-dilution 

inorganic mass spectrometry as a tool for characterisation at the nanoscale) of the NP 

colloidal suspensions were used to investigate the kinetics and to characterise the elemental 

composition of the core and shell with time. 

Furthermore, ICP-MS coupled on-line to chromatographic and molecular fluorescence 

techniques can play a pivotal role in the assessment of CdSe/ZnS QDs synthesis, 

solubilisation and bioconjugation for their eventual use in reliable quantitative bioassays.  

Such a combination of analytical techniques allows the assessment of the effectiveness of the 

bioconjugations of QDs to antibodies, another important aspect rarely tackled so far.266  

 

4.2 Chromatography and related separation techniques. 

Although FFF is a specific size fractioning technique, thermal FFF can develop NPs 

identification. This is possible since one of the variables that affect the metal NPs retention is 

the particle composition being allowed to elute different NPs composition at different elution 

times (metal particles of Ag, Au ,Pd and Pt).267 Moreover, FFF can be coupled to elemental 
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detectors as ICP-MS185,268,269 for studying trace element speciation in natural waters.270 A 

more complicated combination of techniques such as FlFFF-ICP-MS-TEM/X-EDS allows 

revealing the chemical composition of aquatic colloids and their interaction with trace 

elements as a function of colloidal size.271 Tangential flow ultrafiltration method was 

efficiency used for size selecting and concentration of AgNPs minimizing the aggregation 

state.272 In addition to concentration, speciation of the NPs can also be identified and 

quantified by FlFFF-ICP-MS.185 

Collectively, it has become clear that the combination of different techniques that provide 

sizes and morphology information with more established techniques for elemental 

composition or structural identification can provide a full characterization of NPs. Nowadays, 

an extensive NPs knowledge is necessary e.g., to minimize the environmental risks273 

associated to their size, morphology or composition.239 However, depending on both the inner 

properties of the NPs and the environmental surroundings, the utility of these techniques have 

to be evaluated on a case-by-case basis. In each situation, preparing correctly the sample 

containing the NPs is a critical parameter that has special consideration.274  As long as this 

critical step is successfully treated, the efficiency of the technique will be dramatically 

improved, obtaining more representative and more accurate information about the NPs in 

each studied conditions. Therefore, the approach towards a better understanding of the NPs 

behaviour and characteristics will allow a solid basis for the design of safer materials or 

materials with enhanced properties. 
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Table 1.  Usual range of voltages for SEM and TEM techniques with the associated electron 
wavelength.  Relativistic and non relativistic calculations are considered. Therefore, these 
wavelengths correspond to the highest resolution that would be reached in each case. 

 
Accelerating 

voltages (keV) 
Non-relativistic 

wavelength (nm) 
Relativistic 

wavelength (nm) 

SEM 

0.5 0.05474 0.05473 

1.0 0.03871 0.03869 

10.0 0.01224 0.01218 

30.0 0.00707 0.00697 

TEM

80.0 0.00433 0.00417 

100.0 0.00387 0.00369 

300.0 0.00223 0.00197 

1000.0 0.00122 0.00087 
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Table 2.  Optical microscopy and electron microscopy (EM) to measure the size and 
morphological characteristics of NPs. 

Optical microscopy 

Technique 
Main Characteristic 
measured 

phenomenon 
Spatial 
resolution 

Detector comments 
Applications in 
materials science 

NSOM Morphology; Size 
Light-matter 
interaction 

Lateral: sub-20 nm 
Vertical: 2-5 nm 

 Sub-20 nm resolution for stripped gold pyramids 12 
 

CLSM 
Fluorescence;   
Morphology; Size 

Scattered, 
reflected laser 
light and any 
fluorescent 
emission 

up to 200 nm13 
Not always possible to distinguish between internalized 
NPs in the cells and NPs attached to the cell membrane, 
CRM better suited 16 

FCS Uses CLSM or Two photon excitation microscopy Size distributions NPs 19. NPs coating21 

Dried samples in Electron microscopy 

TEM 

NPs visualization: 
aggregation, size, 
shape, dispersion,  
crystallographic 
structure 

Electron beam 
passing through 
a  thin layer of 
the specimen at 
high vacuum 

Up to 0.07- 
0.05 nm 

 
Biological samples acceleration 
voltage would be limited up to 
200 keV.  Dehydration artifacts 

NPs morphology. 
Even core shells 
structure 115,116. 

HRTEM atomic distances  300 keV CeO2 NPs30 

SEM 

NPs visualization: 
surface topography, 
aggregation, 
dispersion, size and 
shape 

Detection of 
scattered off 
electron when an 
electron beam is 
scanned over the 
sample at high 
vacuum 

Up to 1-3 
nm 

 

Low energy electron beam (1 - 30 
keV). SEs:  surface topography 
BSEs:  visible mapping contrast 
when the difference between Z of 
elements as low as Z= 0.1; 
dehydration artifacts 
 
 

Metallic NPs in 
natural 
Environments 275 
 

TSEM 

Detection of 
transmitted 
electron  when a 
electron beam is 
scanned over the 
sample at high 
vacuum 

~10 nm BF and DF  
Conventional TEM grids. ~30 
keV 
 

Silica, Au and latex  
NPs morphology 33,34 

FIB-SEM 
3D sample imaging. Full imaging of  
individually collected sample sections 

~ 10 nm  
Fine focused beam of ions with a 
diameter down to ~5 nm 

Nanostructured 
carbon materials 37 

STEM 

Imaging, diffraction pattern or 
spectroscopic information 
NPs visualization: surface topography, 
aggregation, dispersion, size and shape. 
 
TEM electron beam scanned across the 
sample, transmitted, secondary, back 
scattered and diffracted electrons as 
well as the characteristic X-ray 
spectrum can be measured 

~0.14 nm BF 
Higher atomic number: dark; No 
sample regions: bright 

AuNPs (2.2 wt%) 
supported in 
mesoporous silica 
functionalized with 
a diethylenetriamine 
ligand 39. Toxicity  of  
iron oxide NPs, 
SWCNT and QDs 42 

<0.1  nm DF 

BF detector includes the 
transmitted beam and so the holes 
appear bright whereas DF 
detector excludes the transmitted 
beam and holes appear dark 

atomic ADF 

Energy, 300 keV; spherical 
aberration, 1.2 mm; illumination 
semi-angle, 7.98 mrad; defocus, 
48.6 nm. 

3D structure of  10 
nm AuNPs at 2.4 Å 
resolution 46 

0.14 nm 
HAADF or 
Z-contrast 
 

Information about structural 
variations across the sample on 
an atomic level. 200 keV. 3D 
electron tomography 

Porous structure 276; 
AuNPs and Au 
nanorods 45; 3D-ET 
of CeO2 NPs 30 

atomic 
TAD 
TADBF 
TADDF 

Magnetic domains revealed 
Heavy and light-
element NPs 38 

atomic EELS 

EELS is similar to X-ray 
absorption spectroscopy, but 
providing atomic-scale spatial 
resolution 

Oxide shell 
characterization on 
Fe NPs214 

a For abbreviations see text. Atomic distances: ~ 0.1 nm 
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Table 3.  Analytical techniques to measure physical properties, structural information, 
elemental composition and concentration for some examples of NPs in near native state 
(liquid, gas). 
 
Technique 

Main characteristic 
measured 

phenomenon 
Spatial 
resolution 

comments 
Applications in 
materials science 

Chip 
technology 

Liquid TEM 
or wet-TEM  

Size, shape, lattice 
image of NPs. 
Imaging in a wet 
environment or in 
situ liquid conditions 
by using a  liquid 
cell (silicon made) 

TEM  beam 
passing through 
the thin window 
of a liquid cell 
sample holder 

0.23 nm 
 

200 keV. Combined 
with DF. Lattice-
image of micro 
crystalline NPs 

in situ imaging of 
TeNPs reduction by K. 
pneumonia 51 

 200 keV. 
Al2O3 NPs, and CNT 
52,53 

Sub-nm 
300 keV 
100 nL o f sample 

Pt nanocrystal growth 
54  

HRTEM 
Silicon made MEMS-based nanoreactor 
that enables atomic-scale resolution at 
atmospheric pressure (GAS condition) 

0.18 nm 
300 keV. 100 kPa 
and up to 500 ◦C.  

CuNPs formation in 
methanol production 57 

0.15 nm 14 bar and 660°C AuNPs 56 

Wet-STEM 

TEM electron beam scanned across a 
microfluidic system. NPs facet imaging 

0.2  nm 
200 keV, 
flow speed Q=2 or 5 
μL·min-1. 

COS7 labelled with 
AuNPs 58,59 

Transmission observations of wet 
samples in an ESEM. Control of the 
sample surface in SE and BSE mode. 

5 nm ; 
Combined 
with ADF 

30 keV. Samples 
above their saturated 
vapour pressure. 

AuNPs, silica NPs and  
grafted latex particles 
in water 61 

 NPs imaging in silicon chip. 
0.8 nm ; 
0.21 nm; 
 

Combined with BF 
and DF.  200 keV, 
15 ns electron pulses 
at 8 Hz. 

Corrected spherical 
aberration PbSNPs 60 

ESEM 
Morphology of hydrated samples  
maintaining a higher vapour pressure 
around the sample in the chamber 

4 nm 
10 keV 

Resolution depends 
on the liquid 
thickness 

Natural  colloids 62  
NPs of Co, Ni, TiO2, 
SiO2 and PVC 64 

ETEM 
Size, morphology 
and structure lattice 

Electron beam 
passing through 
the sample under 
different 
atmosphere 
conditions  

0.17 nm 
300 keV 
 

Environmental 
sample holder 
designed for in situ 
chemical reaction 
studies 

Au and Pd NPs 
behaviour in catalysis 
65. Al2O3 and graphite 
nanofiber with PtNPs 
66 

Wet-SEM© 

Fully liquid conditions to be imaged 
through an electron transparent 
membrane in a steel holder. 
Conventional SEM under hydrated 
conditions 

5-100 nm 

20–30 keV.  
Imaging elements 
with high atomic 
numbers; Metal in 
their environment 

Au, TiO2, ZnO and 
Fe2O3 NPs in distilled, 
water and soil 
suspension 6 

Cryo-TEM 

Size, morphology, 
crystallinity, and 
aggregation NPs in 
situ 

Electron beam 
passing through a 
frozen sample  

0.207 nm  
 

200-300 keV, (-175 
to -190 ªC) 

AgNPs grown in ionic 
liquid69 

5 nm 120keV. Self-assembled POM on AuNPs 71 

Better than 
0.2 nm 

300 keV. -180 ºC. Imaging gold (200) planes 
of AuNPs68 

Cryo-SEM 
Detecting the electrons scattered off the 
sample. Morphological data. 

1-3 nm 5-10 keV, -130 ºC 
Cellular uptake of 
polymeric NPs277 

Cryo-ET Imaging by sections of freeze samples. 5 nm 
200 keV.Growth of PS and Ag NPs69,75; SiO2 
and AuNPs internalization77 

AFM 

Surface imaging. Sharp probe in contact 
or not with the surface of the sample in 
their natural environment Si3N4 
cantilevers with metal coatings (V-
shaped). 

Atomic 
resolution 

1.5–2 volts with a scan speed of 1–2 Hz 
TiO2, ZrO2 and Al2O3, NPs87; CdSe/ZnS and 
AuNPs 88 Au@NIPAM NPs90. Natural aquatic 
colloids24,83 

a For abbreviations see text. Atomic distances: ~ 0.1 nm 
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Table 4.  X-ray and spectroscopic techniques to characterize NPs in terms of size, size 
distribution, structure and morphology. Some selected examples are discussed. 
Technique 

Main characteristic 
measured 

phenomenon 
Spatial 
resolution 

comments 
Applications in 
materials science 

X-Ray Microscopy 

XRM X-rays pass through the sample towards a CCD 
detector. For hydrated samples, both phase and 
amplitude contrast are maximized when working 
in the “water window,” the spectral region between 
the carbon and oxygen K-shell energies. 
[O (K: 543 eV) ~ C (K: 284 eV)] 
Large penetration depth of soft X-rays into the 
liquid media in comparison to electrons. 

Better than 15 nm; spectral range from a photon energy of 250 eV 
(~5 nm λ) to 1.8 keV (~0.7 nm), so primary K and L atomic 
resonances of elements such as C, N, O, Al, Ti, Fe, Co and Ni can 
be probed106. 
Resolution: 40 nm in studies of the growth of CdTe nanowires and 
hyperbranched dried PbS nanocrystals 107. 

Soft- XRM 

TXM 
Nanostructure evolution from Cu2O crystals to Cu2S cages in liquid 
phase, using a photon energy range of 8–11 keV 101.  Resolution: 
Cu2S wall thickness of 10–20 nm. 

STXM 

It focuses a highly monochromatic synchrotron X-
ray beam by using Fresnel zone plates. Sample 
imaging by scanning the focal spot over the sample 
and measuring the transmission point by point  

sub-10 nm 
Structural changes in magnetite NPs (50 nm) due to 
aggregation at 1 keV 102 
Core (50-60 nm)-shell (10 nm) polymer NPs 103 

Soft X-ray STXM 
It operates at ambient pressure removing influence 
of vacuum, uses fully sealed sample holders, 
requires a small amount of sample 

Resolution around 500 nm for actinide dioxides of U, Np, and Pu 
108. Nevertheless, differences between the apparent size and the 
images are due to slightly different STXM focal settings 

CXDI 

Scattering from the entire volume of the crystal at 
the Bragg reflection condition will interfere in the 
far-field, producing a three-dimensional (3D) 
diffraction pattern 
Measured (111) for Pb and (010) orientation for 
ZnO nanorods 

40 nm 
Growing Pb nanocrystals inside the vacuum 
chamber95 

4.2 nm Ag/Au nanoboxes 92 

40 nm 
ZnO nanorods (7.2 keV corresponding to a 
wavelength of 1.72 Å) 94,96 

30 nm 400 nm diameter gold nanocrystal 98 

11-13 nm 
750 eV photon energy. Labelling cell with 1.8 nm 
AuNPs 93  

SAXS 
X-ray scattering depending on the electron density 
of the NPs. It requires intense, monochromatic X-
rays of low divergence. 

Iron oxide core-polymer shell NPs 140. 100-200 nm PMMA NPs  
using synchrotron radiation (photon energies from 6 to 10 keV) 141 

GISAXS 
AuNPs size (10-30 nm)128,142. Wavelength range below 1 nm 
corresponds to a photon energy of 1.24 keV, reaching 10 keV using 
monochromatized synchrotron radiation 

Spectroscopic Techniques 

DLS Scattered light due to the interaction between the 
NPs and the source of light is related to the 
hydrodynamic NPs diameter 

0.15 nm 
Ag 113 AuNPs 114, polymeric NPs 278, Iron oxide (7-8 
nm) silica coated NPs 115,116  

SLS 5 nm Cellulose nanocrystals 109 

SANS 
NPs scattered beam of neutrons as a function of 
scattering angle. 

0.01 nm 

Spatial distributions of magnetic moments of Fe3O4 
NPs (9 nm).,magnetic shells 1.0 to 1.5 nm 146. 
Dodecanothiol-AgNPs in-situ ligand solvation 
measurements147 and ZrO2 NPs 148 (SANS/SAXS). 

LIBD 
Pulsed and focused laser excites the sample which 
atomically emits. 

< 10 nm-
1000 nm 

Traces of hexavalent uranium (U(VI)) colloidal 
particles 119 e.g., pulsed Nd:YAG laser and pulse 
repetition rate = 20-100 Hz 

UV-vis  
Plasmon peak is related with the shape and size of 
the NPs 

AuNPs of different shapes and sizes, including nanospheres, 
nanocubes, nanobranches, nanorods, and nanobipyramids 279 

SERS 
Inelastic scattering of photons from the incident 
laser light due to an electromagnetic and a 
chemical enhancement 

SERS due to different shapes of Au or Ag NPs 122,123 
Gold nanorods as SERS substrates for detection of scrambled prions 
127 

NMR 
1H NMR integral values of the innermost protons 
are modified by the NPs  

1H NMR experiment can be used to readily distinguish between 
dendrimers capsulated NPs 138 

a For abbreviations see text. Atomic distances: ~ 0.1 nm 
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Table 5.  Hyphenated techniques in electron microscopy and X-ray detectors. Information 
about structure and elemental composition of NPs (only selected examples are described) 
Technique 

Main characteristic 
measured 

phenomenon Combined comments Applications in materials science 

X-Ray Spectroscopy  

EDS, EDX, 
XEDS or 
EDAX 

High-energy beam of charged particles, such as 
electrons or protons or a beam of X-rays, is focused 
into the sample, registering the X-ray spectra. 
Elemental composition related to generated X-rays of 
an imaged NPs or their aggregates can be obtained 

HRTEM NPs composition 280  

FE-SEM 
UHV STEM 

Pt@Fe2O3 core-shell NPs 194 

TEM 
Antibacterial effects Ag(I)  by interacting with thiol 
groups in proteins and inactivating the enzyme activity 
due the presence of sulphur 195 

ETEM 
Liquid-Cell: PtNPs growth54. By Microchip-TEM 
TNPs51. Specimen holder allows high temperature and 
gaseous atmospheres, Pt over Al2O3 

66 

WetSEM Au, TiO2, ZnO and Fe2O3 NPs 6 

ESEM Ni , Co, TiO2,SiO2, and  PVC 64 in rat muscle 

STEM 
HAADF, morphology and composition of AgPd@Pt 
NPs in catalysis196 and Au concentration in  
fluorescent AuNPs197 

 WDS, 
WDXRF 

Displays X-ray of a single wavelength at time without 
giving a broad spectrum of wavelengths or energies 
simultaneously as EDX. 

STEM MoNPs (25keV) 200 

SP 
Bi composition as residual synthesis component of  
magnetic metal oxide nanocrystals 201. residual Br– and 
Cl– capping agents on Pd nanowires198 

XPS 
Kinetic energy of photoemitted electrons when 
irradiated a sample with focused X-rays with 
photon energy range of 8–11 keV Synchrotron 101 

SP 

Au-CuNPs evolution 202. Confirmation of Au(I) on 
Au@Au(I) 203., chemical states of Ag into silica 
nanocomposites 204 Cu2S nanocage composition with 
encapsulated AuNPs 101 

XRD 

Impinging X-rays over the sample satisfies the 
Bragg’s equation, constructive interference occurs, 
sample rotates in the path of the collimated X-ray 
beam at an angle θ while the detector rotates 2θ 

SP 

Magnetite 115 and maghemite 116 core composition into 
fluorescence silica shell NPs Ag nanocubes patterns 
205, Iron oxides composition encapsulated in polymer 
140 

XRF 
Short X-ray or gamma -ray with energy higher than 
the ionization potential of atoms in the sample induces 
emission of characteristic fluorescence. 

SP 
Composition of Ru-Pt bimetallic NPs 207 or purity of 
ZnO nanoplates 208 

XAS 

Incident photon interacts with the electrons bound in 
an atom. The energy of the incident photons is 
sufficient to cause excitation of a core electron of the 
absorbing atom to a continuum state to produce a 
photoelectron. 
1s: k-edge; 2s, 2p:L-edge; 3s,3p,3d: M-edge 

Synchrotron 

Pre-edge; XANES; NEXAFS; EXAFS. 
Latex particles and microballoons dispersed in water 
211. Structural determination of Ru-Pt NPs 207, QD 
surface passivation 210 

Others techniques coupled to EM, elemental information 

EELS 
Measure of the energy-loss of incident electron when 
passing through the sample 

TEM 
Electronic structure of the oxide shell on the surface of  
FNPs 214. Differences in metallic or semiconducting 
CNTs 215 

SEM Carbon film at 30 keV beam energy 216 

STEM Image SERS hot spot 217 

EFTEM 
Discrimination in a composite the different plasmon 
excitation energies of the nylon (~22 eV) and the 
nanotube (~27 eV) 

 CEND 
Diffraction information about structure and 
morphology 

STEM <3 nm in diameter AgNPs 38 

 SAED 
Diffraction patterns of the impinging electrons due to 
the atoms of the sample act as a diffraction grating 

TEM 
Atomic layer deposition is applied to coat carbon 
nanocoils with magnetic Fe3O4 or Ni 219, SAED pattern 
of Ag nanocubes patterns 205 

a For abbreviations see text. Atomic distances: ~ 0.1 nm. SP: Spectrometer 
 

 

 

 



 50

 

Table 6.  X-ray microscopy, spectroscopic techniques and Auger, Mössbauer and BET 
techniques. The most important issues related to some NPs applications are described for each 
technique 
Technique Main characteristic measured phenomenon Applications in materials science 

X-RAY Microscopy 

STXM Use radiation in the energy range 250 to 3000 eV, focused by 
Fresnel Lens, being then the sample scanned perpendicular to the 
optical axis, while the intensity of the transmitted X-rays is 
detected at the same time. 

ZnO NPs in cells 220, down to ~20 nm in carbon 
nanotubes 222, Polymer NPs compositional maps 103. 
Chemical state information of Fe and actinide NPs 
(100 to 1,000 nm)108. 

TXM 
3D electron density mapping of Au/Ag nanoboxes ~ 
100 nm 92 

Other techniques 

AES 

Surface-sensitive technique related to the inelastic scattering that 
occurs for electrons; Most of the emitted Auger electrons are 
produced within a very short distance from the sample surface, 
typically 0.3–3 nm. 

Catalyst layers and the CNT systems 223 
Prussian-blue analogues (PBA) NPs (from 6 to 25 nm) 
over silicon surfaces 224. 

Mössbauer 
spectroscopy 

Resonant absorption and emission of gamma rays for energy level 
transitions gives information about the atom's local environment 

Fe3O4 NPs pathway formation 227 

BET Physical adsorption of gas molecules on a solid surface. 
Specific surface area and pore size distribution of 
SWCNTs 231 and on FNPs (gas adsorption 3 m2·g-1 
with a diameter (Ф) between 38-45 nm) 221 

Spectroscopic techniques to determine NPs concentration 

LIBS 
The strong heating of the sample leads to a ionized light (plasma) 
related to the chemical elements 

Quantification of particle number density 24. 

LIF Excited NPs by a laser and the fluorescence spectrum is analyzed Structural species characterization 13 

EPR Detection of unpaired electron in or related to NPs. 
Impurities on CdSe QDs240 
Induced OH- species by iron oxide NPs 241  

UV-vis 
spectroscopy 

Position of the UV-vis peaks are related with size, shape and NPs 
composition  

Ag/Au nanocages composition 248 
Hollow metal nanostructures 281 

FTIR Chemical bonds in a molecule results in absorption peaks 
Structural properties of e.g., Ag nanocomposites 
204. Iron oxide core-shell silica NPs115 

SERS 
Enhancement of a Raman intensity peak through changing the 
composition and the morphology of the NPs 

Ligand conformation on AuNPs 255 
Au nanostructures modified with silver 256 

a For abbreviations see text. Atomic distances: ~ 0.1 nm 
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FIGURE LEGENDS 
 
Figure 1. (a) and (b) cryo-TEM of silica NPs. (b) It shows an self-assembly of nanoparticles 

in higher-order and defined structures in 2D. (c) TEM of magnetite (Fe3O4) NPs. (d) 
Cryo-TEM of core-shell NPs (magnetic core@silica shells). (e) TEM of Carbon 
Dots. (f) FIB-SEM of Au NPs where it can be seen the laser size effect, involving an 
important limitation to observe the interior of the NPs. (g) TSEM of hybrid NPs 
(gold@polymer), (h) TEM image of gold NPs (Φ =30 nm) (i) HRTEM of seed and 
grown AuNPs (Φ =100 nm). (j) and (k) are TEM of Au nanorods and branched 
morphologies. 

Figure 2. TSEM of polymeric termoresponsive NPs (a) and (b) TEM image of a dilution of 
NPs imaged by the picture "a". (c) Variation of the hydrodynamic diameter of 
stimuli-responsive polymeric NPs, with temperature. Closed and open symbols 
denote the cooling and the heating cycles, respectively. Continuous (Cooling) and 
dashed (Heating) lines correspond to the Boltzmann fit of the experimental values. 
The inset is a typical view of the size distribution of the NPs by DLS. 

Figure 3. Normal operation mode in FFF. (Reprinted from publication ref. 174, Copyright 
(2005), with permission  from Elsevier.) 

Figure 4. Information obtained by a EDX coupled to a TEM. (a)TEM image for alloy Au/Ag 
15:85 ratio NPs, (b) corresponding EDX spectrum. Peak at (8.04 keV) are from the 
copper of the support grid. 

Figure 5. Schematic diagram of electron microscopy (EM) and scanning transmission X-ray 
microscopes (STXM) together with generated signals for high-resolution images, 
nanodiffraction patterns or spectroscopic related to NPs characteristics. 
Transmission electron microscopy (TEM), scanning electron microscopy (SEM), 
focused ion beam SEM (FIB-SEM), scanning transmission electron microscopy 
(STEM), energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy 
(AES) and scanning Auger microscopy (SAM), secondary electron microscopy 
(SEM), wavelength dispersive X-ray spectrometry (WDS) electron energy-loss 
spectroscopy (EELS), coherent electron nano-diffraction (CEND) and selected area 
electron diffraction (SAED). Bright field (BF) and large angle BF (LABF), dark-
field (DF), annular dark-field (ADF) and high-angle annular dark-field (HAADF); 
Into STXM: Lensless projection imaging microscopes (PIMs) or diffraction imaging 
microscopes (DIMs) 

Figure 6.  TEM images of (a) AgNPs ( size around 40-60 nm), (b) AuNPs (size around 20-30 
nm) (c) . Uv-Vis- spectra of AgNPs (416 nm), AuNPs (521 nm) and alloys NPs 
made of different Au:Ag ratios, being 15, 25 and 50% content of Au placed at 426, 
442 and 463 nm, respectively (sizes 40-60 nm). (d) Observed visual range for Au/ 
Ag alloy NPs. 
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