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KOMLÓS’ THEOREM AND THE FIXED POINT

PROPERTY FOR AFFINE MAPPINGS

T. DOMÍNGUEZ BENAVIDES, M. A, JAPÓN

Abstract. Assume that X is a Banach space of measurable functions
for which Komlós’ Theorem holds. We associate to any closed convex
bounded subset C of X a coefficient t(C) which attains its minimum
value when C is closed for the topology of convergence in measure and we
prove some fixed point results for affine Lipschitzian mappings, depend-
ing on the value of t(C) ∈ [1, 2] and the value of the Lipschitz constants
of the iterates. As a first consequence, for every L < 2, we deduce the
existence of fixed points for affine uniformly L-Lipschitzian mappings
defined on the closed unit ball of L1[0, 1]. Our main theorem also pro-
vides a wide collection of convex closed bounded sets in L1([0, 1]) and
in some other spaces of functions, which satisfy the fixed point property
for affine nonexpansive mappings. Furthermore, this property is still
preserved by equivalent renormings when the Banach-Mazur distance is
small enough. In particular, we prove that the failure of the fixed point
property for affine nonexpansive mappings in L1(µ) can only occur in
the extremal case t(C) = 2. Examples are displayed proving that our
fixed point theorem is optimal in terms of the Lipschitz constants and
the coefficient t(C).

1. Introduction

Fixed point theory for nonexpansive mappings and Lipschitzian mappings
has been widely developed in the last 40 years. In many Banach spaces, it
is well known that any nonexpansive mappings T defined from a convex
closed bounded subset C into C has a fixed point. However, in some other
spaces this assertion is false. It can be surprising that, as observed in [12,
Chapter 2], most relevant examples about the failure of the fixed point prop-
erty for nonexpansive mappings in closed convex bounded sets involve affine
mappings (see also [7, 9]). Of course, this failure cannot occur when C
is weakly compact due to Tychonov Fixed Point Theorem (and this fact
may well be the reason for the absence of examples of nonexpansive fixed
point free mappings defined on a closed convex bounded subset of a reflex-
ive space). However, we will show that, in the case of L1-like spaces and
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due to Komlós’ Theorem, the failure of the fixed point property for affine
nonexpansive mappings can only occur in a very restricted class of sets

In Section 1, we introduce some preliminary definitions and notation. In
Section 2 we state and prove our main theorem. To do that, we associate to
any closed convex bounded subset C of the spaceX a coefficient t(C) ∈ [1, 2],
which is equal to 1 when C is closed for the topology of convergence in
measure and it can be seen as a measure of the “non-closedness” of the set
C for this topology. We prove some fixed point results for a class of affine
mappings which contains all uniformly L-Lipschitzian mappings, depending
on the value of t(C), the value of L and the Opial modulus of the space with
respect to the convergence in measure topology. Since a fixed point theorem
for L-Lipschitzian mappings with L ≥ 1 immediately yields to the existence
of fixed points for nonexpansive mappings, our result can be applied to
this class of mappings and we obtain stability results for the fixed point
property for affine nonexpansive mappings under renormings. We show a
wide collection of closed convex sets in L1([0, 1]) which satisfy the fixed point
property for affine uniformly L-Lipschitzian mappings (including its closed
unit ball if L < 2) and we show some applications of our main theorem
in some other spaces as Orlicz spaces or non-commutative L1-spaces. In
particular, we prove that the failure of the fixed point property for affine
nonexpansive mappings in L1(µ) can only occurs in the extremal case t(C) =
2.

Since every nonreflexive space contains a closed convex bounded set which
fails the fixed point property for affine continuous mappings [14], we cannot
expect the validity of our results without any Lipschitz restriction. In fact, in
Section 3, we include some examples showing that the value of the constant
L in our main theorem is optimal for all possible values of t(C).

It is worth noting that, while standard fixed point results for nonexpansive
mappings in L1(µ) assume compactness for the set C with respect to the
topology of convergence in measure, due to our affinity assumption, we do
not need any compactness assumption for C.

2. Preliminaries

Given a Banach space (X, ‖ · ‖) endowed with a linear topology τ , it is
said that X has the non-strict Opial condition with respect to (w.r.t.) τ if
for every sequence (xn) which is τ -convergent to some x0 ∈ X

lim inf
n

‖xn − x0‖ ≤ lim inf
n

‖xn − x‖

for every x ∈ X. In case that the above inequality is strict for every x 6= x0,
it is said that X verifies the Opial condition w.r.t. τ . Associated to the
Opial property the following coefficient is defined for every c ≥ 0:

rτ (c) = inf{lim inf
n

‖xn − x‖ − 1},

where the infimum is taken over all x ∈ X with ‖x‖ ≥ c and all τ -null
sequences (xn) ⊂ X with lim infn ‖xn‖ ≥ 1 (see for instance [12, Chapter 4]).
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The modulus rτ (·) is a non-decreasing and continuous function in [0,+∞) [2,
Theorem 3.5, page 103]. It is clear that rτ (c) ≥ 0 for every c ≥ 0 whenever
X verifies the non-strict Opial condition w.r.t. τ . In case that rτ (c) > 0 for
every c ≥ 0, the Banach space is said to satisfy the uniform Opial condition
w.r.t. τ .

We recall Komlós’ Theorem:

Theorem 2.1. [13] Let µ be a probability measure. For every bounded se-

quence (fn) in L1(µ), there exists a subsequence (gn) of (fn) and a function

g ∈ L1(µ) such that for every further subsequence (hn) of (gn),

1

n

n
∑

i=1

hi → g µ− a.e.

Komlós’ Theorem has been extended to a broader class of Banach function
spaces.

Definition 2.2. We say that a Banach function space X associated to a σ-
finite measure satisfies the Komlós’ condition if for every bounded sequence
(fn) ⊂ X there exists a subsequence (gn) of (fn) and a function g ∈ X such
that for every further subsequence (hn) of (gn),

1

n

n
∑

i=1

hi → g µ− a.e.

It is proved in [3] that every Banach function space X over a σ-finite
complete measure space (Ω,Σ, µ), such that X is weakly finitely integrable
and has the Fatou property (see definitions in [3]) satisfies Komlós’ condition.
Among this class, Lp(µ) (1 ≤ p ≤ +∞), Lorentz, Orlicz and Orlicz-Lorentz
spaces are included.

3. Main result

We start this section introducing the following geometric coefficient which
will be essential in the proof of our main theorem.

Definition 3.1. Let X be a Banach space endowed with a topology τ .
Let C be a norm-closed convex bounded subset of X which contains some
τ -convergent sequences. We define

t(C) = inf

{

λ ≥ 0 : inf
c∈C

lim sup
n

‖c− xn‖ ≤ λ lim sup
n

‖x− xn‖

}

where (xn) and x run over all sequences (xn) ⊂ C with τ − limxn = x ∈ X.

Note that t(C) ≥ 1 whenever X verifies the non-strict Opial condition
and t(C) ≤ 2 for any case. If X is a Banach space satisfying the uniform
Opial condition w.r.t. τ , it is not difficult to check that t(C) = 1 if and only
if C is τ -closed. Since t(C) attains its minimum value when C is τ -closed,
the coefficient t(C) can be understood as a measure of the“non-closedness”
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of C for the topology τ . If we denote by H(C,C
τ
) the Hausdorff distance

between a set C and its τ -closure, the previous idea can be illustrated with
the following lemma:

Lemma 3.2. Let C be a norm-closed convex bounded subset of L1([0, 1]) and
τ the topology of the convergence in measure. Then H(C,C

τ
) ≤ diam(C)/2.

The extremal case, H(C,C
τ
) = diam(C)/2, implies that t(C) = 2.

Proof. It is well known that for every z ∈ L1([0, 1]) and every sequence
τ -null sequence (xn) we have

lim sup
n

‖xn + z‖ = lim sup
n

‖xn‖+ ‖z‖. (∗)

If (xn) ⊂ C with τ − limn xn = x, the above equality implies

diam(C) ≥ lim sup
m

lim sup
n

‖(xn − x) + (x− xm)‖

= lim sup
n

‖xn − x‖+ lim sup
m

‖x− xm‖ = 2 lim sup
n

‖xn − x‖,

and consequently lim supn ‖xn − x‖ ≤ diam(C)/2. The definition of the
Hausdorff distance now implies H(C,C

τ
) ≤ diam(C)/2.

Assume H(C,C
τ
) = diam(C)/2. For every ǫ > 0 there exists x ∈ C

τ

such that d(x,C) ≥ diam(C)/2 − ǫ. Since the topology τ is metrizable, we
can choose a sequence (xn) in C which is τ -convergent to x. For every c ∈ C
we have

lim sup
n

‖xn − c‖ = lim sup
n

‖xn − x‖+ ‖x− c‖

≥ lim sup
n

‖xn − x‖+ diam(C)/2 − ǫ

≥ 2 lim sup ‖xn − x‖ − ǫ,

which implies that t(C) = 2. �

Throughout this section, we consider that X is a function Banach space
over a finite or σ-finite measure space with the Komlós’ condition. In case
that the measure is finite we can endow X with the topology of the conver-
gence in measure. Convergence in measure for a finite measure is related
to a.e. convergence as follows: For (fn) a sequence converging to f in mea-
sure, there is a subsequence (fnk

) which converges to f almost everywhere.
Conversely, if (fn) tends to f a.e. then (fn) converges to f in measure [10,
pages 156-158]. The same holds for a σ-finite measure and the local conver-
gence in measure. Due to the Komlós’ condition, every norm-closed convex
bounded subset of X contains a sequence which is convergent in measure or
locally in measure. In fact, due to these facts, we can equivalently define
the coefficient t(C) by

t(C) = inf{λ ≥ 0 : inf
c∈C

lim sup
n

‖c−xn‖ ≤ λ lim sup
n

‖x−xn‖ : xn → x µ−a.e. }
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and for the Opial modulus rτ (·) we can replace the τ -convergence by con-
vergence µ-a.e.

If T : C → C is a Lipschitzian mapping, we denote by |T | its exact
Lipschitz constant, that is

|T | = sup

{

‖Tx− Ty‖

‖x− y‖
: x, y ∈ C, x 6= y

}

and we define

S(T ) = lim inf
n

|T |+ · · ·+ |T n|

n
.

A sequence (xn) ⊂ C is an approximate fixed point sequence (a.f.p.s.) for T
whenever limn ‖xn −Txn‖ = 0 and it is clear that this property is inherited
by all its subsequences. The main result of the article is the following:

Theorem 3.3. Let X be a function Banach space with the Komlós’ con-

dition and satisfying the non-strict Opial property. Let T : C → C be an

affine Lipschitzian mapping. If

S(T ) <
1 + rX(1)

t(C)

then T has a fixed point.

Proof. Since T is affine, it can be checked that for every x ∈ C the sequence

xn :=
Tx+ T 2x+ · · · + T nx

n
is an a.f.p.s. and the sequence of the arithmetic means of an a.f.p.s. is an
a.f.p.s. as well. Applying Komlós’ condition, there exists a subsequence
of (xn) and x ∈ X, such that for all further subsequences, the sequence
of successive arithmetic means converges to x µ-a.e. Consequently, we can
always assume that the set

D(C) = {{(xn), x} : (xn) is an a.f.p.s. in C and lim
n

xn = x µ− a.e.}

is nonempty.
For every y ∈ C we define

r(y) = inf{lim sup
n

‖y − xn‖ : {(xn), x} ∈ D(C) }.

We first prove that T (y) = y whenever r(y) = 0. Indeed, let ǫ > 0 and
take {(xn), x} ∈ D(C) with lim supn ‖y − xn‖ ≤ ǫ. Then

‖Ty − y‖ ≤ lim supn ‖Ty − Txn‖+ lim supn ‖Txn − xn‖+ lim supn ‖xn − y‖
≤ |T | lim supn ‖y − xn‖+ lim supn ‖xn − y‖ ≤ (|T |+ 1)ǫ

and T (y) = y since ǫ is arbitrary. Thus, our target will be to find some
y ∈ C with r(y) = 0.

To do that, choose ǫ > 0 such that

S(T ) <
1 + rX(1)

t(C)

1− ǫ

(1 + ǫ)2
.
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and an arbitrary x0 ∈ C. If r(x0) > 0, take {(xn), x} ∈ D(C) with

lim sup
n

‖x0 − xn‖ < r(x0)(1 + ǫ).

We denote by φ(xn)(·) the convex function

φ(xn)(y) = lim sup
n

‖y − xn‖, y ∈ X.

It can be easily checked that limn ‖T
sxn−xn‖ = 0 for every s ∈ N. Hence

φ(xn)(T
sx0) = lim supn ‖T

sx0 − xn‖ = lim supn ‖T
sx0 − T sxn‖

≤ |T s| lim supn ‖x0 − xn‖ = |T s|φ(xn)(x0).

Therefore, if we define the sequence

zs :=
Tx0 + · · · + T sx0

s

we know that (zs) is an a.f.p.s and for every s ∈ N

φ(xn)(zs) ≤
|T |+ |T 2|+ · · ·+ |T s|

s
φ(xn)(x0).

Taking limits

lim inf
s

φ(xn)(zs) ≤ S(T ) φ(xn)(x0).

Applying Komlós’ condition, we can find a subsequence (zsi) and z ∈ X,
such that limi φ(xn)(zsi) = lim infs φ(xn)(zs) and

z̄p =
zs1 + · · ·+ zsp

p

converges to z µ-a.e. Moreover, by convexity and taking limits we have

lim sup
p

φ(xn)(z̄p) ≤ lim sup
p

φ(xn)(zs1) + · · ·+ φ(xn)(zsp)

p
= lim

i
φ(xn)(zsi) ≤ S(T ) φ(xn)(x0).

Consequently, we have obtained an a.f.p.s. (z̄p), convergent to some z ∈ X
µ-a.e. and with

lim sup
p

lim sup
n

‖z̄p − xn‖ < S(T ) r(x0)(1 + ǫ).

Define

ρ :=
r(x0)(1 − ǫ)

t(C)(1 + ǫ)
.

We claim that

min{lim sup
n

‖x− xn‖, lim sup
p

‖z − z̄p‖} ≤ ρ.

Indeed, otherwise, using the Opial modulus

lim sup
p

∥

∥

∥

∥

z̄p − x

ρ

∥

∥

∥

∥

= lim sup
p

∥

∥

∥

∥

z̄p − z + z − x

ρ

∥

∥

∥

∥

≥ 1 + rτ

(

‖z − x‖

ρ

)

≥ 1
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and

S(T ) r(x0)(1 + ǫ) > lim sup
p

lim sup
n

‖z̄p − xn‖

= ρ lim sup
p

lim sup
n

∥

∥

∥

∥

z̄p − x

ρ
+

x− xn
ρ

∥

∥

∥

∥

≥ ρ lim sup
p

[

1 + rτ

(

‖z̄p − x‖

ρ

)]

= ρ

[

1 + rτ

(

lim supp ‖z̄p − x‖

ρ

)]

≥ ρ[1 + rτ (1)],

which is a contradiction with the choice of ǫ and the definition of ρ.

According to the definition of the coefficient t(C), there exist some x̄, z̄ ∈
C such that

lim sup
n

‖x̄− xn‖ ≤ t(C)(1 + ǫ) lim sup
n

‖x− xn‖,

lim sup
n

‖z̄ − z̄n‖ ≤ t(C)(1 + ǫ) lim sup
n

‖z − z̄n‖.

If lim supn ‖xn − x‖ ≤ ρ then

lim sup
n

‖xn − x̄‖ ≤ r(x0)(1 − ǫ)

which implies r(x̄) ≤ r(x0)(1− ǫ). Note

‖x̄− x0‖ ≤ lim supn ‖xn − x0‖+ lim supn ‖xn − x̄‖ ≤ r(x0)(1 + ǫ) + r(x0)(1− ǫ)
= 2r(x0).

On the other hand, if lim supp ‖z̄p − z‖ ≤ ρ, then

lim sup
p

‖z̄p − z̄‖ ≤ r(x0)(1− ǫ)

which implies r(z̄) ≤ r(x0)(1 − ǫ). In this case,

‖z̄ − x0‖ ≤ lim supn ‖x0 − xn‖+ lim supp ‖z̄ − z̄p‖
+ lim supp lim supn ‖z̄p − xn‖
≤ (1 + ǫ)r(x0) + r(x0)(1− ǫ) + (1 + ǫ)S(T )r(x0)
= [2 + (1 + ǫ)S(T )]r(x0).

In every case, we have obtained some w(x0) ∈ C with

r(w(x0)) ≤ r(x0)(1− ǫ) and ‖x0 − w(x0)‖ ≤ [2 + (1 + ǫ)S(T )]r(x0)

Now we construct the sequence a1 = x0, an+1 = w(an) for n ≥ 1. Since (an)
is a Cauchy sequence, there exists a = limn an such that r(a) = 0 and T has
a fixed point.

�

Equality (∗) used in the proof of Lemma 3.2 for L1([0, 1]) also holds for
L1(µ) for µ either a finite or σ-finite measure and implies that 1+ rτ (1) = 2
when X = L1(µ). Consequently we can deduce:
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Corollary 3.4. Let C be a norm-closed convex bounded subset of L1(µ) and
T : C → C be an affine Lipschitzian mapping. Then T has a fixed point

whenever

S(T ) <
2

t(C)
.

In particular, if we consider any convex bounded subset of L1(µ) which
is τ -closed, we can derive the existence of a fixed point for every affine
Lipschtizian mapping with S(T ) < 2. An example of such a set is BL1(µ), the
closed unit ball of L1(µ). Furthermore, the failure of the fixed point property
for affine nonexpansive mappings in closed convex subsets of L1([0, 1]) (or
ℓ1 which is isometrically embedded in L1([0, 1])) can only occur when t(C)
attains its maximum value 2. Note that the affinity condition can not be
dropped because there exist some nonexpansive mappings from BL([0,1]) into
itself without fixed points. In fact, for every norm-closed convex bounded
set C of L1([0, 1]) containing a closed interval, there is a fixed point free
nonexpansive mapping T : C → C [5] (see also [12, Chapter 2] and [20]).

We next show further examples of norm-closed convex bounded subsets
of L1([0, 1]) where Theorem 3.3 can be applied:

Example 3.5. We use the following notation:

C := {f ∈ L1([0, 1]) : f ≥ 0,

∫ 1

0
f(t)dt = 1 },

Ca := co(C ∪ {a}), a ∈ [0, 1].

All these sets are norm-closed, convex and bounded. They are not weakly
compact because they contain the sequence {nχ[0,1/n]} which has no weakly
convergent subsequence. Furthermore, no one is contained in a compact
set for the topology of the convergence in measure, since they contain the
sequence {1+rn} (where {rn} is the Rademacher sequence) which has no a.e.
convergent subsequence. In particular, we cannot deduce existence of fixed
points for these sets by using any known fixed point theorem for compact in
measure sets, as in [8]. We will prove that t(Ca) = 1+ a for every a ∈ [0, 1]:

Let {gn := λnfn + (1− λn)a} be a sequence in Ca which is convergent to
some g a.e., where (λn) ∈ [0, 1] and (fn) ⊂ C. Throughout a subsequence, if
necessary, we can assume that λn converges to some λ ∈ [0, 1], which implies
that {fn} converges to a function f ≥ 0 a.e. and g = λf + (1 − λ)a. From
Fatou’s Lemma we obtain ‖f‖ ≤ 1. We have

lim sup
n

‖gn − g‖ = lim sup
n

‖λnfn + (1− λn)a− λf − (1− λ)a‖

= λ(lim sup
n

‖fn − f‖) = λ(lim sup
n

‖fn‖ − ‖f‖)

= λ(1− ‖f‖).

Furthermore, if f 6= 0 we have that the function

f + (1− ‖f‖)a = ‖f‖

(

f

‖f‖

)

+ (1− ‖f‖)a
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belongs to Ca. The same is true if f = 0. Denote h = (1− λ)a+ λ(f + (1−
‖f‖)a) ∈ Ca. We have

lim supn ‖gn − h‖ = lim supn ‖gn − g‖ + ‖g − h‖
= λ(1− ‖f‖) + λ(1− ‖f‖)a
= (1 + a) lim supn ‖gn − g‖.

Thus, t(Ca) ≤ 1 + a. The equality is a consequence of the fact that the
sequence fn = {nχ[0,1/n]} converges to 0 a.e. and lim supn ‖fn − f‖ ≥ 1 + a
for every f ∈ Ca. Therefore, for every a ∈ [0, 1] and T : Ca → Ca affine
Lipschitzian with S(T ) < 2

1+a , the set of fixed points is nonempty.

Besides the function spaces L1(µ), there are some broader classes of func-
tion Banach spaces with the uniform Opial property with respect to the
almost everywhere convergence and satisfying the Komlós’ condition. In-
deed, in case of Orlicz function spaces for an Orlicz function Φ satisfying
the ∆2-condition, it was proved in [4, Theorem 3] that the Orlicz space
X = LΦ(µ) verifies the uniform Opial condition w.r.t. the convergence
almost everywhere and

1 + rτ (1) ≥ a

(

1

2

)

where the function a(·) was defined by

a(δ) = inf

{

Φ−1(t)

Φ−1(δt)
: t > 0

}

, ∀δ > 0.

Thus we can conclude:

Corollary 3.6. Let Φ be an Orlicz function satisfying the ∆2-condition and

X = LΦ(µ) endowed with the Luxemburg norm. Let C be a norm-closed

convex bounded set and T : C → C an affine Lipschitzian mapping with

S(T ) <
a(1/2)

t(C)
.

Then T has a fixed point.

A similar result can be obtained for Orlicz function spaces endowed with
the Orlicz norm in case that Φ is an N -function [4, Theorem 5].

To finish this section, we extend our results to non-commutative L1-spaces
associated to a finite von Neumann algebra. Note that for every σ-finite
measure space, the Banach space L∞(µ) is a finite von Neumann algebra and
the corresponding L1(µ) is a particular example of a non-commutative (in
fact, commutative) L1-space. For standard notation and some background
on non-commutative L1-spaces the reader can consult for instance [15, 18].

Let (M, τ) be a finite von Neumann algebra, and consider X = L1(M, τ)
endowed with the usual norm

‖x‖ = τ(|x|).
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The measure topology is defined via the following fundamental system of
neighborhoods of zero: for every ǫ, δ > 0 let

N(ǫ, δ) = {x ∈ M : ∃ p projection in M with ‖xp‖∞ ≤ ǫ and τ(p⊥) ≤ δ}.

In case that we consider L1([0, 1]) and the trace given by τ(f) =
∫ 1
0 fdx,

the previous topology coincides with the usual topology of the convergence
in measure. Note that L1(M, τ) is a L-embedded Banach space and the
measure topology is an abstract measure topology in the sense of [17]. Thus,
equality (∗) given in the proof of Lemma 3.2 can be generalized to the
frame of L1(M, τ) and the measure topology (see [11, 16, 17]) and Komlós’
condition is extended in [19, Proposition 3.11]. As a consequence of Theorem
3.3 we can conclude:

Corollary 3.7. Let (M, τ) be a finite von Neumann algebra and C be a

norm-closed convex bounded subset of L1(M, τ). Every affine Lipschitzian

mapping T : C → C has a fixed point whenever

S(T ) <
2

t(C)
.

In case that C is closed in measure, as the close unit ball, T has a fixed point

if S(T ) < 2.

4. Some sharp examples

In this section, we show that the statement of Theorem 3.3 is sharp for
every possible value of t(C). First, we check that either the condition t(C) =
2 or s(T ) = 2 does not imply the existence of fixed points in L1([0, 1]).

Example 4.1. Let C be the subset of L1([0, 1]) given in Example 3.5. For
every f ∈ L1([0, 1]) we define T (f)(t) = 2f(2t), where we assume f(t) = 0
if t > 1. Note that T is an affine isometry, T (C) ⊂ C and supp T n(f) ⊂
[0, 1/2n] for every n ∈ N. This implies that f = 0 a.e., which does not belong
to C, is the unique possible fixed point for T . Consequently, T : C → C
fails to have a fixed point and t(C) must be equal to 2.

Example 4.2. We consider the set C0 introduced in Example 3.5 which
verifies t(C0) = 1. Define G : C0 → C0 by G = TR, where T is the mapping
in Example 4.1 and R : C0 → C is given by

R(f) = (1− ‖f‖) + f.

Note that ‖λf + (1 − λ)g‖ = λ‖f‖ + (1 − λ)‖g‖ for every f, g ∈ C0

which implies that R is an affine retraction. Furthermore G is fixed point
free because T is. Since (TR)n = T nR and |R| ≤ 2, S(G) ≤ 2. Finally,
Corollary 3.4 implies S(G) = 2 due to the absence of fixed point.

Finally, for every possible value of t(C) ∈ (1, 2), we next show an example
of an affine Lipschitzian mapping, failing to have any fixed point, and with

S(T ) = 1+rτ (1)
t(C) . That is, Theorem 3.3 is sharp in every possible case.
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Example 4.3. Take (gn) a sequence of normalized functions in L1([0, 1])
supported on a pairwise disjoint sequence of subsets of [0, 1]. For every
t ∈ (1, 2) we consider the following norm-closed convex bounded set

Ct :=

{

s1(t− 1)g1 +

∞
∑

n=2

sngn : sn ≥ 0,

∞
∑

n=1

sn = 1

}

.

Define T : Ct → Ct by

T

(

s1(t− 1)g1 +

∞
∑

n=2

sngn

)

=

∞
∑

n=1

sngn+1.

It is not difficult to check that T is fixed point free, affine and

‖T nf − T ng‖ ≤
2

t
‖f − g‖

for every f, g ∈ Ct. For f = (t− 1)g1 and g = g2 we have

‖T nf − T ng‖ = ‖gn+1 − gn+2‖ = 2 =
2

t
‖f − g‖

which implies that S(T ) = 2
t . Now let us check that t(Ct) = t. Indeed, let

(fn) be a sequence in C which converges a.e. to some f ∈ L1([0, 1]). In
particular f = s1(t− 1)f1 +

∑∞
n=2 snfn where δf :=

∑∞
n=1 sn ≤ 1 and

lim sup
n

‖fn − f‖ = lim sup
n

‖fn‖ − ‖f‖ = 1− δf .

Let g = f + (1− δf )(t− 1)f1 ∈ Ct. Then

infh∈Ct
lim supn ‖fn − h‖ ≤ lim supn ‖fn − g‖

= lim supn ‖fn − f‖+ (1− δf )(t− 1)
= t lim supn ‖fn − f‖,

which shows that t(Ct) ≤ t. Consider the sequence (gn)n≥2 ⊂ Ct which tends
to zero a.e. It can be checked that for every h ∈ Ct, lim supn ‖gn − h‖ ≥ t
and this proves that t(Ct) = t for every t ∈ (1, 2).
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