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ABSTRACT

Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells

(hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great

promise for the study of neurogenesis and development, and for treating neurological diseases.

However, current hESCs and hiPSCs neural differentiation protocols require either animal factors

or embryoid body formation, which decreases efficiency and yield, and strongly limits medical

applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs

and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the

direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional

neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors

into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates

that these neural progenitors retain responsiveness to instructive cues revealing the robust applic-

ability of the protocol in the treatment of different neurodegenerative diseases. The fact that this

protocol includes animal-free medium and human extracellular matrix components avoiding

embryoid bodies makes this protocol suitable for the use in clinic. STEM CELLS TRANSLATIONAL

MEDICINE 2017;6:1217–1226

SIGNIFICANCE STATEMENT

Here we present the new simple, animal-free, embryonic body free protocol for neural differen-
tiation of pluripotent stem cells that does not require recombinant proteins. This simple media
formulated protocol represents a clear advantage over similar protocols in the same field gener-
ating a high yield of rossettes-like neural progenitors of clinical grade.

INTRODUCTION

Human pluripotent stem cells (hPSCs), which
encompass human embryonic stem cells (hESCs)
and human induced pluripotent stem cells
(hiPSCs), have broad appeal for numerous basic
biology studies and for therapeutic applications
due to their potential for renewal and for produc-
ing almost any cell type in the human body [1, 2].
Derivation of neural progenitors from pluripotent
stem cells holds promise for the study of human
neurogenesis, central nervous system (CNS) devel-
opment, and neural diseases, and has potential
for cell therapy applications to treat neurodege-
nerative diseases such as Parkinson’s disease [3]
and spinal cord injury, which are currently mostly
untreatable [4, 5].

To date, hPSC differentiation toward a defined

neural lineage involves the formation of embryoid
bodies (EBs) [6, 7] or uses undefined factors such
as an animal extracellular matrix, to form neuroe-
pithelial structures called “rosettes,” followed by

retinoic acid (RA) exposure [8, 9]. The majority of
these cell lines are differentiated in the presence
of animal feeder cell lines or animal components,
which bears the risk of xenogenetic pathogen

cross-transfer, and as such they are unsuitable for
medical applications. In addition, protocols involv-
ing EB formation yield only a small fraction of neu-
ral lineage cells due to the presence of other cell

lineages of mesodermal or endodermal origin.
Importantly, because of the many differences
between hESCs and hiPSCs, particularly in their
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differentiation potential toward specific neural lineages, which is
relevant for many applications, both cell types need to be consid-
ered when devising differentiation protocols [10, 11]. In spite of
recent advances in xeno-free protocols [1, 12–14] to date, there is
no protocol for the controlled conversion of hPSCs into homoge-
neous populations of defined neural progenitors avoiding the for-
mation of EBs under animal-free conditions [15].

In 2008, we developed a protocol for the high conversion of
hESCs toward defined regional specific neural progenitors in
adherent and chemically defined conditions [15]. This protocol
permitted the controlled differentiation toward regional specific
types of neuronal cells by exposing the rosettes to different signal-
ing factors. However, it was not possible to avoid culture medium
containing animal components in order to obtain a pure neural
cell population. Insulin, transferrin, and sodium selenite are com-
monly used to replace the fetal bovine serum in many culture
mediums. We reasoned that optimizing different concentrations
of these components with taurine combined with a human extrac-
ellular matrix could be used to develop an animal-free adherent
culture protocol for converting both hESCs and hiPSC into
regional-specific and transplantable neural progenitors specifically
for clinical applications.

MATERIALS AND METHODS

Cell Culture

In this study, we obtained the same results with both hESCs and
both hiPSCs lines. Primary hESC colonies (H9 and H1 lines, WiCell
Inc., Madison, WI) or human hiPSC (Clone 1 and 4) derived previ-
ously [16] were mechanically dispersed into several small clumps,
which were cultured on fresh commercially available human fore-
skin fibroblasts (American Type Culture Collection, Manassas, VA),
inactivated by irradiation (45Gy) in hESCs medium (ECM) contain-
ing Knockout-DMEM (Invitrogen), 100 mM ß-mercaptoethanol
(Sigma), 1 mM L-glutamine (Invitrogen), 100 mM nonessential
amino acids, 20% serum replacement (SR; Invitrogen), 1%
penicillin-streptomycin (Invitrogen), and 8 ng/ml basic fibroblast
growth factor (bFGF; Invitrogen). ECM was changed daily. Human
pluripotent stem cells were passaged by incubation in 1 mg/ml
collagenase IV (animal-free, Invitrogen) for 5–8 minutes at 378C or
mechanically dissociated and then removed to freshly prepared
human foreskin fibroblast layers.

Neural Differentiation

Undifferentiated hESCs or hiPSCs were maintained on feeders
with ECM medium. On day 0, ECM medium was changed to ITS
medium which contains: DMEM/F12, dextran (6%), human insulin
50 mg/ml, holotransferrin 5 ng/ml, sodium selenite (50 ng/ml),
glutamax 1x, taurine (0.5M), and ascorbic acid (50 mg/ml) and cells
were maintained for 7 days with daily medium changes. During
this period, neural differentiation begins with the formation of
small neural tube-like structures called rosettes that subsequently
form neural islands, which increase in size and grow three dimen-
sionally. These structures were mechanically separated from sur-
rounding feeder cells by needle and transferred to human defined
matrix (Cellstart, Life Technologies, 1:50 prepared in 6% of Dex-
tran) coated plates and maintained with ITS medium over the fol-
lowing 7 days. From D14 to D21, the cells were disaggregated by
accutase and plated on human laminin/polyornithine precoated
plates and maintained in ITS medium (Fig. 1A). In order to

determine the role of insulin, additional experiments were per-
formed in which insulin was omitted from the ITS medium during
the first 7 days of the differentiation protocol. In order to deter-
mine the role of Akt signaling pathway in neural differentiation,
Akt inhibitor VIII (Calbiochem, Darmstadt, Germany, http://www.
emdbiosciences.com) was added to the ITS medium (1mM, D0-
D5).

The rosettes were propagated and expanded in ITS medium
through more than 80 passages to analyze proliferation and telo-
merase activity. To study further differentiation and expansion,
the neural progenitor cells were maintained in neural proliferation
medium (NPM) for one week supplemented with 8 ng/ml human
recombinant bFGF (Invitrogen), after which bFGF was withdrawn
and cells maintained in NPM for 3 weeks. NPMmedium consisted
of DMEM:F-12, xeno-free B27 supplement (Invitrogen), 25 mg/ml
human insulin (Sigma), 6.3 ng/ml progesterone, 10 mg/ml putres-
cine, 50 ng/ml sodium selenite, and 50 mg/ml human holotrans-
ferrin (Sigma).

For neuronal differentiation and induction of more posterior
phenotypes the cells were maintained in NPM supplemented with
10 mM/ml all-trans-RA during the following 7 days, after which
the RA was withdrawn and cells were maintained in NPM for 3
weeks. For oligodendrocyte differentiation, the cells were main-
tained for 4 weeks in NPM supplemented with 40 ng/ml triiodo-
thyroidine (Sigma-Aldrich) and 20 ng/ml of epidermal growth
factor (EGF) (Sigma-Aldrich) (Tit1EGF).

For differentiation of hESCs and hiPSCs toward dopaminergic
neurons, after 21 days in ITS medium the cells were transferred to
human laminin (L4544, Sigma-Aldrich)/polyornithine precoated
plates and maintained in neural induction medium: DMEM/F12
with N2 supplement supplemented with FGF8 (100 ng/ml) and
sonic hedgehog (SHH; 200 ng/ml) for one week. Maturation was
performed during the additional 2 weeks in neural maturation
that includes: neurobasal medium, N2 supplement and cAMP 1
mM supplemented with brain-derived neurotrophic factor (BDNF,
20 ng/ml), ascorbic acid (AA, 7 ml/10 ml) and glial cell-derived neu-
rotrophic factor (GDNF, 20 ng/ml).

Details about other methods used in this study such as RNA
extraction and reverse transcription-polymerase chain reaction
(PCR) analysis, Immunocytochemistry, patch-clamp, and animal
surgery are available in Supporting Information methods.

RESULTS

Undifferentiated hESCs and hiPSCs were maintained on a human
foreskin fibroblast layer. To initiate controlled neural differentia-
tion, the hESCs medium (ECM) was replaced by ITS medium (Fig.
1A). At day 3 (D3), the first sign of neural differentiation emerged
as typical neuroepithelial structures or rosettes in the center of
colonies, and at D5-D7 the cells organized into neural tube-like
rosettes with lumens (Fig. 1B). After 7 days, the cell clusters were
transferred to a human matrix (CellStart) and maintained in ITS
medium for the following 7 days. For final neural differentiation,
the clusters were dissociated and plated on a human laminin/pol-
yornithine matrix and maintained in ITS medium for an additional
7 days (Fig. 1A). To confirm that the neural conversion of hESCs
and hiPSCs was due to the medium conditions and not spontane-
ous differentiation, we performed immunocytochemical analysis
of the cells at D3 and D7 of our protocol and compared it with the
hESCs and hiPSCs maintained in ECM (Fig. 1B). This revealed that

1218 Pluripotent Stem Cell Derived Neural Progenitors

Oc 2017 The Authors STEM CELLS TRANSLATIONAL MEDICINE published by
Wiley Periodicals, Inc. on behalf of AlphaMed Press

STEM CELLS TRANSLATIONAL MEDICINE

http://www.emdbiosciences.com
http://www.emdbiosciences.com


Figure 1. Initial differentiation of hPSCs to neural progenitors. (A): Schematic representation of the different steps in the feeder-free, animal
free and chemically defined medium conditions (see online methods). (B): Immunocytochemistry of hESCs colonies treated with ITS or ECM
medium at day 3 and day 7 of the differentiation protocol. At day 7, all OCT41 cells were converted to PAX61 cells, while 60% of the ECM
treated colony remained OCT41. (C–G): Comparative RT-PCR analysis of the hESCs and hiPSCs treated with ECM or ITS medium for: pluripo-
tent genes NANOG and OCT4 (C), neurogenic markers PAX6 and SOX1 (D), ZIC1 and FGF5 (E), mesodermal (BRACHYURY) and endodermal
marker (SOX17) (F) and GBX2 and P75 (G). Expression levels represent an average of at least 6 independent experiments6 SEM. Scale bar:
(A) 100 lm. Abbreviations: ECM, embryonic stem medium; hESC, human embryonic stem cells; ITS, Insulin transferrin selenite.
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the columnar cells in rosettes (labeled with PAX61) appeared in
the center of colonies in both conditions. However, at D7 more
that 95% of the cells cultured in ITS medium were PAX61/OCT42,
which indicates a direct conversion of pluripotent stem cells. In
contrast, 60% of hESCs and hiPSC colonies at D7 maintained in
ECM were OCT41. We next characterized the lineage progression
of both hESCs and hiPSCs progeny grown in either ECM or ITS
medium by real-time (RT) PCR. Temporal analysis of gene expres-
sion in ITS treated cells showed a rapid loss of OCT4 and NANOG
expression (Fig. 1C), and increased expression of the neuroecto-
dermal markers PAX6, SOX1, and ZIC1 (Fig. 1D, 1E), further empha-
sizing the high level of direct neural conversion of these cells. Low
expression of FGF5 in this early stage of the protocol (Fig. 1E)
revealed the absence of intermediate cell types, in contrast to
other protocols [17]. Almost complete loss of Brachyury (a meso-
dermal marker) and SOX17 (endodermal marker) expression (Fig.
1F) indicated that ITS medium conditions mediate efficient con-
version of hiPSCs and hESCs to neuroectoderm.

To determine whether insulin-mediated induction of AKT sig-
naling plays a crucial role in neural differentiation of hESCs and
hiPSCs we tested the effect of either removing insulin from our
medium or using an Akt inhibitor (VIII) during the first 5 days of
the protocol [18]. We observed a significant decrease of the neu-
roectodermal marker PAX6 and significant increase of the endo-
dermal marker SOX17 in both conditions (Supporting Information
Fig. 1). This indicates that insulin exerts a critical function likely
through AKT signaling by redirecting differentiation from meso-
derm and endoderm to neuroectoderm, consistent with a previ-
ous study on hESCs [18].

We next performed immunocytochemical analysis of the neu-
ral progenitors derived from both hESCs and hiPSCs for specific
neural markers at D21. We found strong expression of neuroepi-
thelial markers SOX1 and PAX6, as well as ZO1, a marker typically
found in neural stem cells with asymmetric apical localization as a
key feature of neural induction, as reported elsewhere [6, 19] (Fig.
2A). The proliferative nature of forming rosettes is confirmed by
Ki67 and PHH3, as an evidence of interkinetic nuclear migration
(PHH3) (Fig. 2D). Only a few cells (<0,5%) stained positive for plu-
ripotent marker SSEA4 (Fig. 2A). Neural progenitors were also pos-
itive for other neural progenitor markers: Musashi, BF1, OTX2,
A2B5, Nestin, SOX2, Tuj1, and Dach1 (Fig. 2B, 2C). Only a few cells
(approximately 1.5%) expressed protein AP2 and P75 (neural crest
marker) (Fig. 2D).

Because the obtained progenitor cell populations had a uni-
form morphology with a neural tube rosette-like pattern, we
sought to identify rosette-specific genes by RT-PCR [6]. At D21,
the hESC- and hiPSC neural progenitors expressed PLZF, DACH1,
MMNR1, PLAGL1, NR2F1, DMTR3, LMO3, FAM70, EVI, ZNF312,
LIX1, and RSPO3 (Fig. 2E). In order to determine the subtype of
neural stem cells generated, we first analyzed whether our neural
rosette cells exhibited neural stem cell properties similar to those
previously described as NSCFGF2/EGF [6, 19, 20]. Indeed, the
markers PMP2, HOP, S100b, SPARCL, and AQP4 were strongly
expressed at D21 in all neural progenitors (Fig. 2F). To determine
the positional identity and specification of the mature neuronal
population, we next analyzed the expression of region-specific
transcription factors at D21. Strong expression of BF1 and OTX2
(anterior neural markers) revealed that culture conditions pro-
mote immediate rostral neuralization of primitive ectodermal cells
(Fig. 2G). In addition, a very heterogeneous transcription factor
profile was detected, with expression of the telencephalic markers

(FOXG1, EMX1, EMX2, and OTX2), anterior hindbrain markers
(GBX2, HOXA1, HOXA2, and HOXB6), and dorsal hindbrain markers
(PAX7, IRX3, and PAX6), but no ventral hindbrain markers such as
Nkx6.1 and NKX2.2 (Fig. 2G).

We next tested the stability of the derived neural progenitors
in long-term culture. After 21 days of neural differentiation, the
progenitors were passaged in a 1:2 ratio and maintained in
densely populated cultures in ITS medium. After extensive prolif-
eration (>80 passages) the cell population maintained a uniform
morphology, with stable proliferation capacity, as measured by
the levels of telomerase reverse transcriptase (TERT) (Supporting
Information Fig. 2a, 2b), and rosette-like pattern, (data not shown)
and neuroectodermal (PAX6 and SOX1) characteristics (Supporting
Information Fig. 2c, 2d). There was no contamination by undiffer-
entiated cells or cells with mesodermal (Brachyury) or endodermal
(SOX17) origin (Supporting Information Fig. 2e, 2f). In addition,
the cells could be frozen and thawed without detectable altera-
tions in proliferation or differentiation properties. Immunocyto-
chemical analysis after 2 passages in NPM revealed that 60% of
the cells were Tuj11, of which 45% (45%6 12%; n 5 4) were
GABA-ergic, 35% (35%6 12%; n 5 4) glutamatergic, and 2%
(2%6 0.2%; n 5 4) serotoninergic neurons (Fig. 3A). At this stage,
34% of cells were immunoreactive to astrocytes glial fibrillary
acidic protein (GFAP) (Fig. 3A).

We next analyzed whether hESCs and hiPSCs were capable of
generating mature, electrically active neurons forming neuronal
networks with functional chemical synapses. For this purpose, the
electrophysiological properties of hESCs and hiPSCs were analyzed
from 21 to 28 days of differentiation in NPM medium using the
whole-cell configuration of the patch clamp technique. In current-
clamp conditions, application of depolarizing current pulses (20–
100 pA) evoked repetitive firing of action potentials in 80% of
hESCs (n 5 18) and 85% of hiPSC, (n 5 20) (Fig. 3Bi, 3Bii). In con-
trast only a single action potential was generated in immature
neurons (cultured without trophic factors) subjected to the same
experimental protocol (Fig. 3Biii). This observation fits well with
the high level of expression of voltage-dependent Na1 (fast tran-
sient inward current) and K1 (delayed outward current) channels
in mature neurons (Fig. 3Biv, 3Bv) in comparison with immature
cells cultured only in ITS medium (Fig. 3Bvi). The properties of iso-
lated Na1 and K1 currents recorded after application of specific
ion channels blockers are shown in Supporting Information Figure
3. Inward Na1 currents in hESC- and hiPSC-derived neurons were
completely blocked by application of tetrodotoxin (1 microM (Sup-
porting Information Fig. 3a, 3c). Outward K1 currents were fully
abolished by application of 2 mM 4-AP plus 20 mM TEA (Support-
ing Information Fig. 3b, 3d). Spontaneous postsynaptic currents
were observed in mature neurons obtained from hESCs (n 5 15)
and hiPSC (n 5 18) after 14 to 28 days of differentiation in vitro
indicating functional synaptic transmission (Supporting Informa-
tion Fig. 3e–3g). External application of CNQX (100 lM), a blocker
of glutamate receptors, and bicuculline (2 lM), a blocker of GABA
receptors, abolished the spontaneous synaptic activity (Support-
ing Information Fig. 3eii). Thus, both hESCs and hiPSCs are capable
of generating electrophysiologically functional and synaptically
connected neurons in vitro.

We next explored whether neural progenitors derived at D21
respond to anterior-posterior and dorso-ventral instructive region-
alization by exposing them to morphogenic factors such as RA
(Fig. 3C, 3I) and bFGF (Fig. 3Cii) during the 7 days of differentiation
in animal free NPM. To determine whether these neural
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progenitors are capable of differentiating to a high yield of oligo-
dendrocytes, they were also cultured in NPM supplemented with
triiodothyronine hormone (TIT) [21], and EGF [22, 23], according
to previous studies [24] (Fig. 3Ciii). The cells were analyzed by RT-
PCR at D49 of the differentiation protocol.While bFGF mostly sup-
pressed rosette markers, maintaining the rostral pattern of differ-
entiated cells, treatment with RA maintained the rosette
expression profile (Fig. 3D) and enhanced the expression of caudal
genes such as HOXA1, HOXA2, HOXB2, HOXB4, HOXB6, and
HOXC1 (Fig. 3E). This profile of neural HOXC expression is indica-
tive of spinal cord cells with a rostral cervical identity [25].

To determine whether the RA treated neural progenitors have
a strictly caudal profile we next examined the expression of caudal
markers such as class I (IRX3, PAX6, PAX7) and class II (NKX2.2,
NKX6.1), which are homeodomain proteins important for moto-
neuron differentiation [26], and found high expression at D49
compared to bFGF treated progenitors (Fig. 3D). This suggests that
our protocol, using RA (D21-D28), efficiently supported differen-
tiation towards caudal cells characteristic for the primary moto-
neuron (pMN) domain, giving rise to a significant number of ISL1
cells (Fig. 3E). Only a few cells were positive for HB9, a well-known
mature motoneuron marker. Thus, hPSCs, initially differentiated

Figure 2. Immunocytochemical characterization of pluripotent stem cell derived neural precursors at D21. Neural progenitors derived from
hESC (A–D) and hiPSC (E–H). Neural progenitors were analyzed with the following antibodies: SOX1/PAX6, ZO1/PAX6, and SSEA4/SOX1 (A),
BF1/PAX6, OTX2/PAX6 and SOX2/NESTIN (B), TUJ1/MUSASHI, DACH, A2B5 (C), and PHH3, AP2/PAX6 and P75/Ki67 (D). RT-PCR of neural pro-
genitors at day 21 for neural rosettes markers (E), and genes proposed to be characteristic for fibroblast growth factor/epidermal growth
factor-expanded cells (F). RT-PCR of neural progenitors for a wide range of anterior and posterior markers (G). Scale bars: (A) 100, 30 and 100
lm, 50, 30 and 50 lm (B) 75, 75 and 30 lm, 30, 50 and 25 lm (C) 75, 25 and 75 lm, 75, 25 and 75 lm, (D) 25, 25 and 75 lm, 10, 75 and 75
lm. Abbreviations: hESCs, human embryonic stem cells; hiPSC, human induced pluripotent stem cell.
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under chemically defined conditions to neural cells of forebrain-
like identity, can be caudalized to a motoneuron identity upon
exposure to RA.

With the goal of restricting the multipotent nature of gener-
ated neural progenitors to oligodendroglial-lineage cells, we
exposed cultures to NPM supplemented with components influ-
encing oligodendroglial-lineage TIT and EGF (Fig. 3F). At D49,
immunocytochemistry revealed that about 29% of total cells were
positive for the oligodendrocyte marker GALC. RT-PCR analysis
also revealed high expression of the oligodendrocyte marker NG2

specifically in iPSC-derived progenitors, but not PLP (Fig. 3F),
revealing the high capacity of neural progenitors to differentiate
towards mature oligodendrocytes.

Generation of dopamine neurons was observed when the
neural progenitors were exposed to FGF8 and SHH from D21 to
D29 and further maturated in medium containing BDNF, GDNF and
AA for an additional 2 weeks (Fig. 3G). A midbrain dopaminergic
profile of the generated cells was confirmed with the expression of
transcription factors LMX1a, LMX1b [27], NURR1, PAX2 [28], AADC,
PTX3, and EN1 involved in dopaminergic differentiation (Fig. 3G).

Figure 3. Neural progenitors behave as functional neurons and respond to regional specific cues. (A): Representative immunofluorescence
images of differentiated neural progenitors derived from hESC labeled for GABA, glutamate and serotonin as well as immunocytochemistry
of neural progenitors derived from hESC and hiPSC labeled with the neuronal specific marker b-tubulin (tuj20) and the astrocyte marker
GFAP (left image correspond to hESC and the right to hiPSC). (B): Functional characterization of hESCs, hiPSCs and immature neurons. (Bi–
Biii): Current-clamp recording of action potentials evoked by current injection. (Biv–Bvi): Whole-cell voltage-clamp recording of Na1 and K1
currents. Voltage pulses from 250 mV to 170 mV. (C): Schematic representation of the further differentiation steps using the feeder-free,
animal free and chemically defined medium conditions (see Material and Methods): (Ci): induction of posterior neural progenitors using RA,
(Cii): induction of anterior neural progenitors using bFGF, (Ciii): induction of oligodendrocytes using TIT and EGF. (D): Real-time (RT)-PCR of
RA treated neural progenitors confirmed rosettes specific markers and a caudal profile. (E): RT-PCR and immunofluorescence analysis of RA
treated progenitors for spinal phenotypes (HOX gene expression). The most of derived neurons were immature motoneurons expressing ISL.
Only a few cells (1%, data not shown) were positive for mature motoneuron marker HB9. About 34% of generated cells were astrocytes
expressing the GFAP marker. (F): Neural progenitors maintained for 3 weeks in NPM medium containing TIT and EGF were analyzed by RT-
PCR for expression of the NG2 and PLP markers and by immunochemistry the oligodendrocyte marker GALC. (G): Schematic representation
of dopaminergic neural patterning using FGF8 and SHH from D21 to D28 followed by addition of BDNF, AA, and GDNF. Neural progenitors
grown under these culture conditions were analyzed by RT-PCR for the midbrain-specific transcripts LIMX1a, LIMX1b, PAX2, TH, NURR1, PTX2,
and AADC, and by immunofluorescence for TH and DBH. Data were averaged and represented as means6 S.E.M. Scale bars: (A) Scale bar: 50
and 25 lm, (E) 50 and 75 lm, (F) 50 and 75 lm, (G) 75 and 150 lm (K). Abbreviations: BDNF, brain-derived neurotrophic factor; DBH, dopa-
mine b-hydroxylase; GDNF, glial cell-derived neurotrophic factor; hESCs, human embryonic stem cells; ihPSC, induced human pluripotent
stem cell; NIM, neural induction medium; NPM, neural proliferation medium; SHH, sonic hedgehog; TH, tyrosine hydroxylase.
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Finally, the markers associated with the mature dopaminergic neu-
ronal phenotype, tyrosine hydroxylase (TH) and dopamine b-
hydroxylase (DBH), were also expressed (Fig. 3G). These data dem-
onstrate that our protocol generates neural progenitors capable of
differentiating to any type of regional specific neural cell.

To explore whether hPSC-derived neural progenitors can
survive and integrate into the postnatal CNS and retain their
differentiation potential, we implanted neural cells from D21
into adult mouse striatum. Immunohistochemistry analysis
after 11 weeks using human specific nestin and neurofila-
ment70 antibodies showed that the neural progenitors grafted,
and the about 4%–8% (of total injected cells) survived and dis-
played typical neuronal morphology (Supporting Information
Fig. 4a, 4b). The cells were localized in the striatum, cerebral
cortex and hippocampus, consistent with previous studies [6].
hESCs grafted in the brain of newborn SCID-beige mice were
previously shown to acquire predominantly GABAergic pheno-
types [6]. However, there was no detectable expression of
calcium-binding proteins in our grafted cells (such as calretinin
or calbindin D28K, data not shown), perhaps because our hESCs
were grafted into adults instead of newborns. Importantly, we
did not observe teratomas or other signs of tumorigenicity in
any of the animals grafted.

DISCUSSION

Stem cell heterogeneity and a lack of efficient protocols for neural
differentiation of hPSC represent significant obstacles to the clini-
cal implementation of cell-based therapies. In this study, we have
demonstrated that neural progenitors can be efficiently generated
from hPSC in a three-step approach using animal-free and feeder-
free conditions without formation of the EBs. Exposure of hESC
and hiPSC to simply defined medium, including ITS and taurine,
and human extracellular matrix leads to the generation of the
highly enriched and proliferative rosette-like neural progenitors
without the presence of other cells with pluripotent, mesodermal,
or endodermal characteristics.

Our protocol reveals advantages over a number of already
existing protocols [9, 24, 29–35] describing the generation of neu-
ral progenitors. First, most of these protocols are based either on
spontaneous hESC differentiation into a mixture of various cell
types [31, 36] or generation of neural progenitors involving neuro-
spheres [6, 37] or EB formation [38, 39] or using recombinant pro-
teins to inhibit SMAD signaling [17]. Our method is minimistic,
less costly (according to actual prices; 88evs. �300eper 500 ml
compared to Erceg et al., 2008) and includes the initial differentia-
tion of hPSC in chemically defined and animal-free medium and
adherent human substrate avoiding EB step resulting in morpho-
logical changes, including rosettes and neural tube-like structures
previously identified as typical neural progenitor cells [9, 31, 40].
Additionally, the defined media is combined with the defined sur-
face components (Cell start) vs Matrigel used in Chambers et al.
2009 [17] or vitronectine, human collagen, and fibronectin used
by Erceg et al., 2008 which all together create defined conditions
for neural differentiation.

Second, the yield of obtained neural progenitors was higher
than in previously published protocols where chemically defined
medium and adherent conditions were used [6, 9, 17, 34, 35, 37].
Comparing to spontaneous differentiation procedure we showed
that high yield of neural progenitors (>98% at D7, compared to

later stage (D11) of 82% of Chambers et al., [17]) were achieved in
specific medium conditions including defined combinations of
insulin, transferrin, sodium selenite, and taurine applied in our
protocol. The critical components in ITS medium that could con-
tribute to this orchestrated and highly efficient conversion of
hPSCs to neural progenitors are insulin and taurine. It has been
shown that insulin can promote differentiation to the neuroecto-
dermal lineage, which is dependent on PI3K/AKT signaling [18]. In
addition, while sodium selenite and human holotransferrin have
mainly anti-oxidant roles in the medium [41], taurine could have
an important role in neural differentiation due to its neuroprotec-
tive function [42]. That insulin-mediated induction of AKTsignaling
plays a crucial role in neural differentiation of hESCs and hiPSCs,
was confirmed in by removing insulin from the medium and using
an Akt inhibitor (VIII) during the first 5 days of the protocol [18].
This indicates that insulin exerts a critical function through AKT sig-
naling by redirecting differentiation from mesoderm and endo-
derm to neuroectoderm, consistent with a previous study with
hESCs [18]. On the hand, recent studies have reported that taurine
causes increased proliferation of neural stem/progenitor neural
cells obtained from embryonic and adult rodent brain [43]
that indicates the important role of taurine in our protocol
possible related to proliferation of initially formed neuroepithelial
cells.

Generated neural progenitors exhibit early neuroepithelial
and neural rosette profile (expressing PLZF, DACH1, MMNR1,
PLAGL1, NR2F1, DMTR3, LMO3, FAM70, EVI, ZNF312, LIX1, and
RSPO3) independently of the hPSC source used, but the with nota-
ble variation in differentiation capacity between hiPSC and hESC.
Although some studies have suggested that hESCs and hiPSCs
have similar differentiation capacity toward neural cells [44, 45],
our study is more compatible with other opposite studies in which
have been demonstrated the differences between the neural dif-
ferentiation propensities within hESC and hiPSC lines [44, 46, 47].
In spite of variation in gene expression kinetics of some neuroepi-
thelial markers (PAX6/SOX1), electrophysiological properties of
generated neurons from both lines were similar, what is the
essential aspect of the characterization of fully matured neuronal
cells [48].

Furthermore, our neural rosette cells exhibited also neural
stem cell properties similar to those previously described as
NSCFGF2/EGF [6, 19, 20]. Applying NPM medium that includes
animal-free B27 we showed that neuronal progenitor subtypes
give rise to differentiated neurons that generate overshooting
action potentials in response to depolarising current injection. The
majority of neuron-like cells responded to GABA and to a lesser
extent to glutamate, which has been previously reported in
neural progenitors derived from hPSC using neurospheres [6, 49]
corresponding to neurons in developing and adult animals [15,
50–52].

Regarding the regional character of neural progenitors, it
seems that our culture conditions promote immediate rostral
neuralization of primitive ectodermal expressing telencephalic
markers as well as anterior and dorsal hindbrain markers with
tendency to mature predominantly into GABAergic neurons simi-
lar to our previously published study [15] and many others [6, 49].

We show here that neural progenitors retain responsiveness
to instructive cues, in animal-free conditions, enabling the deriva-
tion of ventral midbrain TH-positive neurons, motoneurons or
high yield of oligodendrocyte progenitors showing their potential
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for future use in the treatment specific neurodegenerative
diseases.

During the development, RA and FGF signals act in opposing
manner to impose rostrocaudal regional identity on hindbrain and
spinal cord progenitor cells [15, 53]. Interestingly, while bFGF
mostly suppressed rosette markers, differentiation and mainte-
nance of neural progenitors, in GRM/RA medium it maintained
the rostral pattern of differentiated cells and enhanced the
expression of caudal genes such as HOXA1, HOXA2, HOXB2,
HOXB4, HOXB6, and HOXC1 profile indicative for spinal cord cells
with a rostral cervical identity [15, 25]. This medium efficiently
supported further differentiation towards caudal cells characteris-
tic for the pMN domain, giving rise to a significant number of ISL1

cells without more specific maturation procedure applied in other
studies [6, 15, 19] where mostly sonic hedgehog as a ventralizing
factor was used.

On the other hand, we have applied several factors can stimu-
late dopaminergic neuron development. Nurr1, Lmx1b, and Ptx3
transcription factors are mesencephalon specific, whereas the
messenger molecules Shh and FGF8 seem to promote the dopa-
minergic phenotype irrespective of brain region [54–56]. Our
results clearly demonstrated that our neural progenitors respond
to Shh and FGF8 recombination factors generating TH1 neurons
expressing main midbrain dopaminergic markers.

In order to assess the multipotent nature of generated neural
progenitors and their capacity to differentiate to oligodendroglial-
lineage cells, we exposed the cells to NPM supplemented with TIT
and EGF. It has been described that these components play impor-
tant role in proliferation and survival of oligodendrocyte preproge-
nitors [22] promoting differentiation in mature oligodendrocytes
[57]. Immunocytochemistry analysis revealed that about 29% of
total cells were positive for the oligodendrocyte marker GALC
revealing the higher capacity of neural progenitors to differentiate
towards mature oligodendrocytes compared to similar protocols
[34, 58, 59]. This demonstrates that our differentiation protocol is
advantageous over protocols where stromal cells [8], EBs [8, 31,
60] or adherent system were used [6, 15, 19]. Further studies are
required to conclusively determine whether other developing
neural processes could be completely mimicked using hPSC and in
vitro defined system.

Finally, in this study we answered the crucial question
whether neural progenitor derived from hPSCs can be functionally
grafted and survived in rodent host brain. We show that neural
progenitors engrafted in rat striatum survive and exhibit mature
neuronal phenotypes crucial for further application of these pro-
genitors in cell therapy.

CONCLUSION

In summary, we have developed a simple, low cost protocol for
highly efficient differentiation of hPSCs (both iPSCs and hESCs)
toward neural progenitors using simple animal-free and feeder-
free medium, which represents an important advantage over
other published protocols [6, 17]. This protocol also avoids genera-
tion of EBs, therefore reducing the mesoderm and endoderm deri-
vates, and use of recombinant animal factors. In addition, it allows
efficient further generation of regional specific neuronal subtypes
in a much shorter time (3 weeks) compared to other similar
approaches [6, 17]. Together, this strategy could represent the
standard differentiation procedure suitable for clinical applications
including neurodegenerative diseases and spinal cord injury. Tak-
ing into account that these neural progenitors can be derived
from patient-specific hiPSC, thus could provide an attractive
human in vitro cellular tool for disease modeling and pharmaco-
logical screening.
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