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Abstract
The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to
titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag–Cu–Ti alloy
and at 880 °C with a Cu–Sn–Ti–Zr alloy. The brazing methodology was elaborated in order to
enable the production of highly electrically and thermally conductive CNT/metal substrate
contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35Ω.
The improved interfacial transport properties in the brazed films lead to superior electron field-
emission properties when compared to the as-grown films. An emission current of 150 μA was
drawn from the brazed nanotubes at an applied electric field of 0.6 V μm−1. The improvement in
electron field-emission is mainly attributed to the reduction of the contact resistance between the
nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus
temperatures of the alloys; far greater than what is achievable with standard solders, thus
expanding the application potential of CNT films to high-current and high-power applications
where substantial frictional or resistive heating is expected.
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1. Introduction

Most of the emerging and long-term potential carbon nano-
tube (CNT) applications [1] such as field emitters, high-cur-
rent electrical interconnects, power transmission cables and
thermal management in high-power applications require the
availability of an appropriate joining methodology that allows
the CNTs to be permanently transferred to relevant substrates

leading to highly conductive, high-temperature resistant and
mechanically robust contacts. Various methods of joining
CNTs to each other or to other substrate materials have been
attempted in the past, as outlined in the review paper of Seth
Roberts and Singjai [2].

In particular macroscopic CNT films are of interest for
field emitters, e.g. for application in cold x-ray cathodes
[3, 4]. Brazing and soldering are the preferred joining meth-
ods for such applications.

CNT film soldering was previously demonstrated with
solder alloys such as Bi–Sn–Pb [5, 6], Sn–Pb [7], Sn–Ag and
Au–Sn [8]. These alloys have low melting temperatures
(<280 °C) making them suitable for joining materials to
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electronic circuits. However from a chemical point of view,
they are not appropriate for joining carbon materials. It is
known since the 1960s that Cu, Ag, Au, In, Sn, Bi and Pb do
not wet the surface of carbon materials like diamond and
graphite [9]. Likewise, it was experimentally shown that Pb
does not wet singlewalled [10] and multiwalled nanotubes
[11] and that Au and Cu form discontinuous coatings on
suspended CNTs [12, 13]. Alloy wetting, a necessary con-
dition for soldering and brazing, is directly related to the
strength of the interaction between the metal and carbon
atoms. Reactivity to carbon is greatest for those elements
having the most electron vacancies in d- and f-orbitals which
rules out Au, Ag and Sn. Therefore, joining CNT films with
these elements limits the joining mechanism to mechanical
interlocking (nanotube entrapment) unless the CNTs are
appropriately metalized with a carbide forming element. From
a technical point of view, solder alloys based on Sn, Pb and In
are ductile, provide limited mechanical strength and thermal
stability to the joint which further discourages their use
in situations where substantial heating is expected.

A well-established methodology for joining carbon based
materials [14, 15] to metals is vacuum brazing with active filler
alloys that contain carbide forming elements such as Ti, Zr and
Cr. Diffusion of the carbide forming element towards the
carbon material and the subsequent formation of an interfacial
carbide, referred to as an interphase, leads to improved wetting
and strong chemical bonding at the CNT/metal interface.
Active brazes offer superior mechanical properties when
compared to lead and lead-free solders, yet have substantially
higher melting temperatures limiting the type of substrate with
which they can be used. Brazing in vacuum has the advantage
of preserving the excellent physical properties of the CNTs
while permitting their bonding to reactive substrates such as
copper and titanium by limiting both CNT and substrate oxi-
dation. The feasibility of vacuum brazing of double-wall CNT
bundles with a Ti doped Ag–Cu braze alloy was first demon-
strated by Wu et al [16]. They confirmed the formation of
strong Ti–C bonds at the CNT–braze alloy interface. However
they did neither join the CNTs to metallic substrates nor test
them with regard to their electrical properties.

Experimental investigations on the possibility of brazing
CNT films to metals were motivated by the fact that con-
ventional soldering cannot provide mechanically robust,
conductive and high-temperature resistant contacts with sub-
strates for applications, beyond microelectronics, aiming to
exploit the excellent thermal and electrical transport proper-
ties of CNTs.

We demonstrate in this study how such films of vertically
aligned multiwall CNTs can be transferred and joined to
titanium substrates by active vacuum brazing. Brazing at 820
and 880 °C is demonstrated with the Ag–Cu–Ti and Cu–Sn–
Ti–Zr braze alloys, respectively. The excellent wetting and
spreading of the metal alloys inside the CNT is leading to
strong chemical bonding and superior CNT/substrate contacts
with low electrical and thermal resistances. In particular, the
electron field-emission performance of the brazed CNT film is
excellent and is directly related to improved interfacial elec-
tron and heat transport.

2. Experimental

2.1. CNT film synthesis

Films of vertically aligned multiwalled CNTs were synthe-
sized from C2H2 and H2 by low-pressure chemical vapor
deposition in a commercial reactor (Black Magic 2″, AIX-
TRON) at 695 °C for 20 min with a sputtered 2 nm Fe catalyst
film on a 10 nm Al2O3 support layer on a high resistivity
boron-doped 〈100〉 silicon substrate diced into
4 × 4 × 0.75 mm3 pieces.

2.2. Active vacuum brazing

The as-grown nanotube films were brazed facedown to
4 × 4 × 0.6 mm3 Ni-metalized grade 2 titanium (Ti/Ni 2 μm)
and to 4 × 4 × 0.95 mm3 grade 2 titanium substrates in a
vacuum furnace (Cambridge Vacuum Engineering) at
10−6 mbar. The heating rate was 10 °C min−1, the dwell time
was 5 min and the dwell temperature was 820 °C when using
100 μm thick foils having a composition of Ag 63.25–Cu 35–
Ti 1.75 wt% (Wesgo Metals, Hayward USA) and was 880 °C
with 60 μm thick foils having a composition of Cu 73.9–Sn
14.4–Ti 10.2–Zr 1.5 wt% (Sulzer Metco Germany). The
solidus and liquidus temperatures for the silver alloy are 780
and 815 °C, respectively. The copper alloy has a solidus
temperature of 868 °C and a liquidus temperature of 925 °C
[17]. The brazing foils were made by mixing a metal alloy
powder (325 mesh: particle size <44 μm) with an organic
binder. The resulting paste was manually printed on a flat
surface, dried in air and compressed into a foil to the desired
thickness. The braze foil, substrate and inverted CNT film are
assembled in a jig and held in place with an adjustable screw
during brazing. Once the brazing step was completed, the Si
substrate was removed with tweezers. For inspection, the
joints were manually cleaved transversely and longitudinally
with a steel blade. The different stages of the process are
sketched in figure 1.

2.3. Characterization methods

A FEI ESEM-FEG XL-30 scanning electron microscope
operated at 20 kV was used to examine the CNT joints. A
Carl Zeiss Orion Plus helium ion microscope (HeIM) was
used for high resolution imaging. HeIM allows imaging of
samples with a surface resolution of 0.3 nm and has a dif-
ferent contrast mechanism than electron microscopes [18].
This improved resolution is necessary to reveal structural
details at the nanometer scale over larger, more representative
areas in a non-destructive way as opposed to transmission
electron microscopy. The typical parameters for image
acquisition were: 30 kV of acceleration voltage, beam cur-
rents of 0.5–1 pA, a dwell time of 2 μs with a line averaging
of 16–32.

A CRM200 WiTec confocal Raman microscope equip-
ped with a 10× (0.25 NA) objective with a 532.3 nm laser set
at 5 mW in combination with a 600 grooves/mm grating was
used to track changes in nanotube graphitization after brazing.
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Contact pads (2 nm Cr/200 nm Au) were deposited on
one side of the joints, via shadow masking in a Plassys II
electron beam evaporator system, with the following geo-
metry: 100 μm in width, 1 mm in length, spacing within the
same material was 100 μm and spacing across the joint was
500 μm. A Keithley 2001 electrical characterization equip-
ment in combination with a closed four-probe station were
used to obtain current–voltage curves across the joints in the
dark and at room temperature.

The field-emission properties over a 4 × 4 mm2 area of
the brazed films were measured at base pressures of
10−7 mbar with a scanning anode field-emission microscope
(SAFEM) [19]. The joints were mounted on a horizontal x–y
translation stage. The anode consisted of a spherical tip 1 mm
in radius mounted on a cantilever that was moved in the z-
direction in 100 nm steps. The emission current was measured
with a Keithley 237 source-measure unit at a fixed anode-to-
sample distance of 500 μm.

3. Results and discussion

3.1. Structure and morphology of brazed CNT–substrate joints

A typical CNT film with a density of 1010–1011 CNTs cm−2

grown on silicon is shown in figure 2(a). The vermicular
nanotube diameters range from 2 to 20 nm as seen by HeIM
in figure 2(b). Two representative CNT films brazed to Ti and

Ti/Ni substrates with the Cu–Sn–Ti–Zr alloy at 880 °C are
shown in figures 2(c) and 1(d) respectively. In both cases, the
braze alloy has formed a fillet along the film’s edge which is
indicative of a chemical reaction leading to wetting.

Raman spectra of the top surface of the as-grown and
brazed film after silicon lift-off are shown in figure 2(e). The
Raman spectra indicate a slight increase in graphitization [20]
after brazing. The G peak width decreased from 77 to 58 cm−1

and the 2D peak width decreased from 123 to 114 cm−1. The
intensity ratio of the D to G peaks (ID/IG) also decreased from
0.91 to 0.89. A similar decrease in this ratio was reported
when annealing multiwalled CNTs in vacuum above
800 °C [21].

The side view SEM image of the Cu–Sn–Ti–Zr fillet,
after Si lift-off, reveals three distinct regions as shown in
figure 3(a). Region 1 at the top of the film consists of CNTs
having retained more or less their vertical alignment after
brazing. Region 2 contains metal-coated CNT bundles while
the region closest to the brazing foil is characterized by larger
bundles completely encased in metal; hereafter referred to as
the metal matrix CNT composite region. The partially melted
brazed foil is seen below this region and above the substrate.

Brazing is usually carried out above the liquidus tem-
perature of the filler alloy at 925 °C, however preliminary
experiments have shown that this alloy, when it is fully liquid,
excessively penetrates the CNT film and reacts with the Si
substrate preventing lift-off. At 880 °C, 90% of the alloy is
liquid which is sufficient for joining while limiting the infil-
tration to the first ∼100 μm. The top CNT layer (region 1) was
mechanically removed with a blade as shown in figure 3(b).
This image reveals how the molten alloy infiltrated the lower
portion of the CNT film by capillarity. The bundling pattern
observed in region 2 and shown in figure 3(c) is consistent
with the so-called nanocarpet effect which is caused by lateral
capillary forces during the invasive spreading of a liquid
inside an ordered array of high aspect ratio structures [22, 23].

The combination of shear and bending forces during the
removal of the CNTs in region 1 lead to two fracture planes:
at the bundle waist and between regions 1 and 2 (figure 3(c)).
A high magnification HeIM image of the protruding CNTs in
region 2 is shown in figure 3(d). Individual metal-coated
CNTs can be resolved here. The fractured metal matrix
composite bundles are shown in figure 3(e) and a HeIM
image of the fracture surface is shown in figure 3(f). Indivi-
dual CNTs can no longer be resolved here even at high
magnification. Rather, flat crystals embedded in a matrix of
irregular particles are seen in figure 3(f).

High magnification HeIM images of the different regions
along the joint’s transverse cross-section, obtained by
mechanical cleaving, are also shown in figure 4(a). These
images confirm that the different regions observed along the
fillet are also distinguishable in the interior of the film.
Nanoparticles are seen on the aligned CNTs in region 1 far
from the joint line. Individual CNTs and small bundles
thereof are coated with metal at the top of region 2. Partially
encased bundles are identified in the lower part of region 2.
The fracture here is due to shear forces during cleaving. The
metal matrix composite containing flat hexagonal crystals is

Figure 1. Schematic, different stages of the fabrication of active
brazed CNT–metal joints.
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seen in region 3. The qualitative results of an EDX elemental
mapping of a selected area between regions 1, 2 and 3 are
shown in figure 4(b). While Cu and Ti are clearly enriched in
the lower part (i.e. in the composite region), a slight Ti
enrichment can be also seen in the CNT region in the upper
part. This indicates the strong tendency of Ti to interact with
the CNTs.

Figures 2 and 3 reveal that the joint microstructure is
anisotropic with a complex metallurgy. It arises from the
interaction of a quaternary alloy with a porous carbon mate-
rial at high temperatures. It is difficult to characterize in detail
and at the nanoscale the metallurgy of the joint since differ-
ences in solid state atomic surface diffusion, on the CNTs’
outer graphene walls, and liquid state diffusion lead to

elemental segregation. Chemical reactions away from equili-
brium condition will occur locally and over short time scale
leading to the formation of various compounds such as stoi-
chiometric and sub-stoichiometric carbides as well as inter-
metallic phases, based on the Cu–Sn, Cu–Ti and Sn–Ti binary
systems, as were experimentally identified [24] and predicted
by thermodynamic assessments of the Cu–Sn–Ti system [25].

A detailed characterization of the microstructure is
beyond the scope of this work, yet it is evident that the
improved wetting of the CNTs in region 2 is due to the for-
mation of a carbide interphase between the alloy and the outer
CNT walls. Indeed, a thin reaction layer of TiC was experi-
mentally observed at the CNT/Ag–Cu–Ti interface after
brazing at 1000 °C [16]. Likewise, Chen et al observed the

Figure 2. (a) SEM image of a multiwalled carbon nanotube film on silicon prior to brazing. (b) High magnification HeIM image of the CNTs.
Optical microscope image of CNT films brazed to (c) Ti and (d) to Ni-metalized Ti (Ti/Ni) at 880 °C with the Cu–Sn–Ti–Zr filler alloy. (e)
Raman spectra of the surface of the as-grown and brazed CNT films indicating a slight increase in graphitization after brazing.
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formation of a TixC layer on single wall CNTs ultrasonically
bonded to Ti electrodes [26], Similarly, the presence of a 5
nm SiC interphase on CNTs was confirmed experimentally
and was credited with the improved wetting of an Al alloy
containing 23 wt% Si [27]. Concerning region 3, the solubi-
lity of C in Cu is extremely low, in the parts per million range
[28], making it unlikely that the CNTs were completely dis-
solved as atomic carbon in the melt. It is possible that the
CNTs were fully converted to carbide particles since the

thickness of the TiC layer that is formed when brazing dia-
mond under similar conditions is larger than the diameter of
the CNTs.

A second alloy, Ag–Cu–Ti, containing only 1.75 wt% of
Ti was used to join CNT films to Ti and Ti/Ni substrates at
820 °C, that is, above the liquidus temperature of this alloy. A
typical CNT film brazed to Ti after silicon lift-off is shown in
figure 5(a). A fillet is seen on the edge of the CNT film
similarly to what was observed for the Cu–Sn–Ti–Zr braze,

Figure 3. (a) Side view SEM image of the Cu–Sn–Ti–Zr fillet with labeled regions. (b) SEM image (55° tilt) of the top of region 2 after the
removal of the CNT layer in region 1. (c) SEM image (55° tilt) of the bundles in region 2. (d) Side view HeIM image of the top of region 2
showing individual CNTs coated with metal. (e) Top view HeIM image of the fractured metal matrix composite bundles. (f) High
magnification HeIM image of a composite bundle’s fracture surface.
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however the metal matrix composite region is now separated
from the top CNT region by a thin diffusion zone as shown in
figure 5(b). Cu and Ag especially are known to be highly
mobile on graphene. Again, the bare CNTs in region 1 were
removed mechanically and revealed extensive bundling
leading to a porosity of ∼48% as shown in figure 5(c). A high
magnification HeIM image of the top of one of the metal
matrix bundles reveals individual metal-sheathed CNTs pro-
truding from the matrix (figure 5(d)). Evidently, the CNTs
were not fully converted to TiC here. This is due to the
reduced Ti content and lower brazing temperature. Slight
microstructural differences are observed when brazing CNTs
on Ti/Ni. The fillet height is reduced and bundling is less
pronounced with the metalized substrate (figure 5(e)). Fur-
thermore, a region a few micrometers in length with metal-
coated bundles is now seen below the diffusion zone
(figure 5(f)). Additional EDX elemental mappings led to very
similar results as in the case of brazing with the Cu–Sn–Ti–Zr
alloy.

Overall, the CNT brazing process with the Cu–Sn–Ti–Zr
and Ag–Cu–Ti alloy, respectively, can be described as fol-
lows: as the temperature is progressively raised above the
solidus temperature, the brazing alloys will begin to melt and
the Ti will start reacting with the CNTs to form a TiC
interlayer. The resulting liquid will spread along the CNTs on
this interlayer as well as laterally into the film leading to
bundling. Solidification close to the substrate will lead to the
formation of a metal matrix composite. The metal atoms that
have diffused on the surface of the CNT walls from the braze
foil into region 1 will eventually coalesce into nanoparticles.
No significant difference, apart from fillet height, was
remarked when brazing CNTs to the bare and metalized
substrates with this alloy.

3.2. Electrical and field emission properties

It was demonstrated that both alloys can be used to join CNT
films to titanium substrates. The joint properties were mea-
sured to confirm the applicability of such assemblies. The
electrical resistances across the joints were determined by
four-probe electrical measurements. Two gold contact pads
were produced on the side of the CNT film (region 1) while
the other two were on the substrate. Two probes were used to
supply current while the other two measured the voltage drop
across the joint. The results are shown in figure 6 with
schematic representations of each measurement. The current
versus voltage (I–V) curve across the Si/CNT interface for the
as-grown film is provided in figure 6(a). The nonlinearity of
the I–V curve in combination with the polarity of the applied
bias is consistent with a Schottky diode-like junction con-
sisting of a p-doped Si substrate and metallic CNTs. Fitting
the linear portion of the curve yield a resistance of 40Ω with
a positive voltage and 125Ω with a negative voltage. The I–V
curves for the brazed films are shown in figure 6(b). The
linearity indicates an ohmic contact with the substrate across
both joints. The Ag–Cu–Ti joint shows slightly lower resis-
tance of 0.35Ω than the Cu–Sn–Ti–Zr joint with 0.86Ω. The
electrical conductivity for the Ag–Cu–Ti alloy is
23×106Ω−1 m−1 according to the supplier while conductivity
values of ~7×106Ω−1 m−1 are typical for bronzes with
11 wt% Sn [29]. It is clear that the presence of the braze alloy
significantly reduces the contact resistance between the
nanotubes and the substrate when compared to when they are
grown on Si.

Again, the presence of the braze layers improves the
interfacial transport properties by reducing the thermal con-
tact resistance when compared to CNTs grown on Si. The
nonlinear temperature profile in the CNT film is indicative of
an anisotropic solid with varying physical properties. This is
consistent with the anisotropic microstructure observed.

So far, the joints were shown to possess superior inter-
facial transport properties when compared to the as-grown
CNT films on Si. One application that would clearly benefit
from low electrical and low thermal resistance contacts is
CNT cold electron sources. It was recently demonstrated how
thermionic electron sources in commercial x-ray tubes can be
replaced by CNT-based cathodes to produce x-rays without
requiring any further modification to the device design [3]. In
spite of this demonstration, several challenges remain and
limit the widespread use of CNTs as cold electron sources.
The maximum current that can be drawn per emitter and the
contact resistance between the CNTs and the substrate were
identified as the most crucial parameters affecting macro-
scopic emission behavior [30]. It is possible to reduce the
contact resistance by employing metallization layers between
the nanotube growth catalyst and the Si substrate and by
carrying out post-treatments on the emitters [30]. Brazing is
another approach to reduce emitter contact resistance, as
demonstrated in this work.

The field-emission behavior of the brazed CNT films on
Ti/Ni was measured with a SAFEM and compared to the
emission of a CNT film grown on Si. The instrument allows

Figure 4. (a) HeIM images of different regions along the joint’s
transverse cross-section: (1) nanoparticles on CNTs (region 1), (2)
metal-coated CNT (top of region 2), (3) partially encased bundles
(bottom of region 2), (4) metal matrix composite (region 3) (b).
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an accurate determination of the CNT apex height by means
of the voltage versus anode-CNT distance plots which are
shown in figure 7(a). From the resulting linear plot, the
location of the emitter apex can be extrapolated as the height
for V= 0. This is a very important aspect, since the real anode-
CNT apex distance can be accurately determined for every
measurement, obtaining a direct measurement of the applied
electric field. In addition to the CNT height determination, the
slope of the curve gives information related with the so called
field enhancement factor (β) caused by the accumulation of
the electric field lines at the CNT apex due to their high aspect
ratio (see inset in figure 7(b)). The β value for an individual
CNT is uniquely related with the geometry of the emitter and
can be calculated in first approximation (i.e. floating sphere
model) from the equation β= h/r, with h and r the height and

radius of the CNT, respectively. However, dense CNT forest
samples present drastically reduced β values due to the
screening from neighbor tubes (inset in figure 7(b)) which
emission is usually limited by randomly distributed ones that
stick out from the sample. The determination of β can be
calculated from the slope of the voltage versus anode-CNT
distance curves assuming that the electric field needed at the
CNT apex to achieve an emission current of 50 nA is around
4000 V μm−1 [31]. It is remarkable that the slopes obtained
from the V versus anode-CNT distance are very low (between
0.38 and 0.2 V μm−1) giving rise to extremely high β values
ranging from around 10 000 to 20 000. Such high values are
obtained for both brazed and as-grown CNT with a radius of
around 10 nm as determined by SEM images in figure 2. The
calculated β indicates that the height of tubes which stick out

Figure 5. (a) SEM image of a CNT film brazed to Ti with the Ag–Cu–Ti alloy. (b) SEM image of the fillet showing the metal matrix
composite region, the diffusion zone and the aligned CNTs. (c) SEM top view image after removal of the top CNT layer. (d) High
magnification HeIM image of the top of a metal matrix composite bundle showing metal-sheathed nanotubes protruding from the matrix. (e)
SEM image of the fillet when brazing CNTs on Ti/Ni with the Ag–Cu–Ti alloy. (f) SEM image of the diffusion zone and coated bundles.
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from the forest surface is around 100–200 μm, which is in
good agreement with the SEM images.

The emission current (I) versus applied electric field (E)
plots are presented in figure 7(b)) and were recorded after
several cycles applying a maximum field of 0.6 V μm−1. After
several measurements, stable and reproducible curves were
obtained. For the case of the as-grown CNT, a significant and
continuous degradation was observed after every measure-
ment. Due to that, the applied field was increased to a max-
imum of 1 V μm−1 to reach significant emission currents. The
emission behavior of the CNTs on Si is consistent with the
well-known Fowler–Nordheim (FN) model (I(E)= fFN(E))
that describes the ideal emitter behavior up to currents of
around 1 μA. The deviation from the FN model can be
explained by considering the presence of a voltage drop along
the nanotube representing a resistance, at the nanotube/sub-
strate interface, which is in series with the emitter. The data
can be fitted by solving numerically: I(E) = fFN(E − IR) where
R is the contact resistance parameter [32]. This is referred to
as the resistor-limited FN fit. An equivalent resistance of
4 MΩ is obtained from the curve in figure 7(b)) for the CNTs
grown on Si which is consistent with the values of 5 MΩ
previously reported [32]. A much lower contact resistance of
10 kΩ is obtained for the CNTs brazed with the Cu–Sn–Ti–Zr
alloy and 100 kΩ is obtained for the Ag–Cu–Ti joint. It

should be noted that the resistance values extracted from the
correction to the FN characteristic cannot be directly com-
pared to the measured electrical resistances since the modified
FN relation expresses the link between a voltage drop and a
change in field-enhancement [21].

The turn-on field for a detectable emission of 0.5 pA is
reduced from 0.4 V μm−1 for the CNTs on Si to 0.2 V μm−1

for the brazed films. The field-enhancement factors, that can
be estimated from the emitters’ height-to-radius aspect ratio,
can also be extracted from the FN fits [21] and are around
5800 for the as-grown film and 11 000 for the brazed CNT
films. The initial beta values extrapolated from the voltage
versus anode-CNT distance are higher than the ones calcu-
lated from the FN fit. This is likely caused by a partial
degradation of the tubes due to the high current achieved
during the measurements. A maximum current of 150 μA at
0.6 V μm−1 was drawn from the Cu–Sn–Ti–Zr brazed nano-
tubes and 42 μA for the Ag–Cu–Ti braze. Only 0.1 μA was
drawn from the as-grown sample at this field while 30 μA was
obtained at 1 V μm−1. Individual CNT emitters typically
provide maximum 10–100 μA [30] and can be pushed to yield
up to 120 μA when annealed in vacuum [21]. We thus con-
clude on the basis of the measured current that only a limited
number of high field-enhancement emitters, randomly dis-
tributed over the cathode area contribute to the measured
currents in figure 7(b)). An accurate determination of the
current density would require knowledge of the exact location
of the dominant field-emitters. Although the current density
provided by the CNTs cannot be calculated, the area mea-
sured with a 1 mm diameter spherical tip is around
0.0016 cm2 [3]. This indicates that the minimum current
density provided is around 93 and 26 mA cm−2 for the Cu–
Sn–Ti–Zr and the Ag–Cu–Ti brazed samples, respectively.
Figure 7(c) shows some representative current density versus
applied electric field curves obtained from the literature and
the Cu–Sn–Ti–Zr brazed sample [3, 6, 33–36]. From the
comparison with the literature it can be concluded that the
brazed samples studied here present outstanding field emis-
sion properties among which the following can be
highlighted.

(i) Extremely high field enhancement noticeable by the
low turn-on field (ca. 0.2 V μm−1). To our knowledge,
the lowest turn-on field has been reported by Hazra et al
[36], with similar values to the brazed samples
reported here.

(ii) Very low contact resistance between CNT and the
supporting metal that allows emission currents higher
than 0.093 A cm−2. Such high currents are usually
obtained by structuring the samples (like the work
reported by Chiu et al [34]). In this work, similar
current densities are obtained for the brazed CNT due to
the improved metal–CNT contact.

The improvement in emitted current results mainly from
the improved contact with the substrate which reduces the
electrical resistance and promotes heat dissipation away from
the CNT/substrate interface. This allows the nanotube emit-
ters to be operated at higher currents before the onset of

Figure 6. (a) Four-probe current versus voltage curves of the (a) Si/
CNT interface and (b) across the Cu–Sn–Ti–Zr and Ag–Cu–Ti
joints.
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degradation. The power dissipated at the base of the nanotube
at a mere 1 μA can reach several hundreds of W cm−2.
Resistive heating can lead to substrate melting and explosive
damage of CNT bundles as was experimentally observed
[30]. The slight increase in nanotube graphitization during
brazing may also have contributed to improve the emission
current by reducing the intrinsic resistance of the nanotubes.
Although out of the scope of this work, we are convinced that
the combination of the brazing technique developed here with
catalyst structuring will be ideal candidates for field emission
applications.

As a final remark, the fact that the nanotubes are brazed
rather than soldered leads to joints with high re-melting
temperatures. The joints will retain their integrity at tem-
peratures at least up to the solidus temperatures of the braze
alloys used. This directly translates into the possibility of
using the brazed films as components in devices that require
harsh downstream processing steps such as vacuum sealing
for commercial x-ray source manufacturing carried out at
780 °C [3]. More importantly, braze alloy contacts allows for

operating CNT devices at performance levels previously
unachievable due to the inability of low melting point solder
contacts, especially indium alloy contacts, to cope with the
heat generated during device operation.

4. Conclusions

The joining of macroscopic films of vertically aligned multi
wall CNTs to bare Ti and Ni-metalized Ti substrates was
demonstrated by active vacuum brazing at 820 °C with the
Ag–Cu–Ti braze and at 880 °C with the Cu–Sn–Ti–Zr braze.
The formation of a TiC interphase on the nanotubes is cred-
ited for the wetting and spreading of the filler alloy inside the
porous nanotube film, leading to a mechanically strong bond.
The resulting joint microstructures are anisotropic with
complex metallurgies involving the formation of carbides,
intermetallic phases and solid solutions. Brazing leads to a
slight increase in nanotube graphitization and to low electrical

Figure 7. (a) Applied voltage versus anode-CNT distance and (b) field-emission current versus applied electric field for the brazed CNT film
on Ti/Ni and for the CNT film grown on Si. (b) The ideal emitter behavior is described by the FN model according to: I(E) = fFN(E) (dashed
line). The contact resistances can be obtained from the resistor-limited FN fits according to: I(E) = fFN(E− IR) (solid lines). (c) Literature
comparison of emission current density versus applied electric field with the results obtained in this work.
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and thermal resistance contacts with the substrate which
greatly improve the electron field-emission properties.

The described brazing methodology is applicable for
joining macroscopic CNT films to several other substrate
material such as steel, copper and nickel. Moreover, it pre-
vails the vertically aligned CNT structure which is important
for the field emission properties. This greatly expands the
application potential of CNT beyond vias and electrical
interconnects. The brazed CNT films could make excellent
cold electron cathodes for x-ray sources or could be alter-
native materials to graphitic foams and carbon–carbon com-
posites for thermal management applications in various land,
space and aerospace applications. The joints have high re-
melting temperatures; at least up to the solidus temperatures
of the respective filler alloys, which means that they can
survive most processing steps required for e.g. encapsulation
or vacuum-tight sealing of x-ray sources.
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