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The estimation of severity loss distribution is one the main topic in operational 

risk estimation. Numerous parametric estimations have been suggested 

although very few work for both high frequency small losses and low frequency 

big losses. In this paper several estimation are explored. The good performance 

of the double transformation kernel estimation in the context of operational risk 

severity is worthy of a special mention. This method is based on the work of 

Bolancé and Guillén (2009), it was initially proposed in the context of the cost of 

claims insurance, and it means an advance in operational risk research. 
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1. Introduction 

 

The revised Basel Capital Accord requires banks to meet a capital requirement 

for operational risk as part of an overall risk-based capital framework. With 

regards to the definition aspects, the Risk Management Group (RMG) of the 

Basel Committee and industry representatives have agreed on a standardized 

definition of operational risk, i.e., “the risk of loss resulting from inadequate or 

failed internal processes, people and systems or from external events” (BIS, 

2001). The discipline proposed establishes various schemes for the calculation 

of the operational risk charge, which increases sophistication and risk 

sensitivity. The most sophisticated approach is the Advanced Measurement 

Approaches (AMA), based on the adoption of the internal models of banks. 

Concerning the measurement issue, a growing number of articles, research 

papers and books have addressed the topic from a theoretical point of view. In 

practice, this objective is complicated by the relatively short period over which 

operational risk data have been gathered by banks. Obviously, the greatest 

difficulty is in collecting information on infrequent, but large losses, which, on 

the other hand, contribute the most to the capital requirement. The need to 

evaluate the exposure to potentially severe tail events is one of the reasons why 

the new Capital framework requires banks to supplement internal data with 

further sources, (i.e., external data, scenario analysis), in order to compute their 

operational risk capital requirement. 

Recently, the measurement of operational risk has moved towards the data-

driven Loss Distribution Approach (LDA) and therefore, many financial 

institutions have begun collecting operational loss data in order to take 

advantage of this approach. The LDA approach requires the aggregation of the 

severity and frequency distributions in order to obtain the aggregated loss 

distribution.  

The estimation of the severity loss distribution is probably one of the most 

significant phases and that which involves the highest number of complications 

towards the estimation of the capital requirement of operational risk. An 

incorrect estimation of distribution leads to a severe distortion of the model and 

a low estimate or overestimates of regulatory capital with respect to the 

operational risk. This could have a big impact on the Basel II economic capital 
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requirement. Recent literature on operational risk has focused attention on the 

use of a parametric estimation of loss distribution. This is the simplest method 

to follow, since it attempts to fit analytical distributions with certain properties. 

The aim of this approach is to find a distribution of losses that may be feasible 

to the severity distribution of the losses of the sample available. Another 

commonly applied technique in operational risk is the Extreme Value Theory 

(EVT) which is a good methodology in cases where the main attention is the tail 

of the distribution.  

We take as alternative non-parametric estimation which permit the 

quantification of operational loss severity by fitting the whole distribution and 

that do not require the specification of parametric estimation. With this in mind, 

the kernel estimation is taken as the starting point which has been improved 

with the parametric transformation approach given in Wand, Marron and 

Ruppert (1991) and recently considered  in Bolancé, Guillén and Nielsen, 

(2008), Buch-Larsen, Guillén, Nielsen, and Bolancé (2005). The analysis is 

completed by using the latest methodology developed by Bolancé and Guillén 

(2009), based on a double transformation which in our opinion can notably 

improve the operational loss severity estimation. In order to explore all possible 

methods, a data sample of losses is utilized based on the operational risk of a 

medium-sized Spanish Savings Bank.  

In this article, we attempt to find which methodology of estimation (parametric 

and non-parametric) yields the most appropriate measure of operational risk 

severity, with a particular focus on the case of Savings Bank. We demonstrate 

that non-parametric estimation with this improvement (the double transformation 

kernel estimation) is a good alternative methodology for the approximation of 

the loss severity distribution, since it performs much better than parametric 

estimation. These methodologies render the estimation of a threshold 

unnecessary. Another good property of the non-parametric estimation with 

respect to EVT is that it seems to not overestimate the capital requirement. The 

double transformation kernel estimation was applied in the insurance claim field 

to approximate loss distribution. We believe that this methodology can also 

represent an advance in operational loss severity estimation. 

The remainder of the paper is organized in the following way. In the second 

section, a description of the parametric and non parametric methodologies is 
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reported. In the third section, the characteristics of data and an exploratory 

analysis are presented.  In the fourth section, a comparison of the distributions 

obtained with parametric and non-parametric estimations to approximate the 

severity loss distribution is included. In the fifth section, an operational VaR is 

estimated aggregating the different severity distributions with a Poisson for the 

frequency distribution.   The conclusion is the last section. 

 

2. Theoretical Framework 

 

In operational risk and specifically in the dataset considered, most operational 

losses are small and extreme losses are rarely observed, although the latter 

can have a substantial influence on the capital charge estimation.  

In previous studies, i.e., de Fontnouvelle et. al., (2003), Frachot et al. (2003), 

Dutta and Perry (2006), the authors have tried to find parametric methods that 

could fit the whole distribution well. However, it is a major problem to find a 

distribution that provides a good fit for both the body and the tail part of the loss 

distribution. This method suffers from another problem, since no emphasis is 

given to the importance of a good fit in the tail, where the problem of operational 

risk is focused. 

One way to solve such an inconvenience is to analyze small and large losses 

separately with the Extreme Value Theory (EVT). This approach involves some 

drawbacks: choosing the appropriate parametric model; finding the best way to 

estimate the parameter; and, most importantly, identifying a criterion to 

determine the threshold not to mention that, in this case, any loss threshold 

applied would lose important information and, therefore, the robustness of the 

results obtained. 

A non-parametric approximation, especially by kernel estimation, can be a good 

alternative. The classic kernel estimation of the distribution function is a simple 

smoothing of the empirical distribution function, and for this reason a lack of 

sample information implies a loss of precision in the approximation of the heavy 

losses. The transformation kernel estimation is an alternative that improves the 

results obtained with the classic kernel estimation. This approach transforms 

the variable by using a concave function symmetrization of the original data, 

and then obtains the classic transformed kernel variable.  
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The methodology used in Bolancé and Guillén (2009) is proposed as an 

alternative method. They propose a new transformation kernel estimation, 

based on a double transformation, which can improve the estimation of risk 

measures. In this paper this methodology is tested in the field of operational risk 

in order to compare the results with those obtained through more traditional 

methodologies. With this in mind, in addition to the non-parametric methodology 

to fit the data, parametric methodologies by fitting distributions such as 

lognormal, Weibull and the generalized Pareto are tested. 

 

2.1.  The parametric loss models. 

 

This section explores three parametric alternatives which capture the severity 

losses for operational risk.  

The most common distribution in modelling the OR is the lognormal whereby 

distribution1.  One can say that a random variable X has a lognormal distribution 

if its density and distribution are, respectively2: 
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where Φ (x) is the standard normal distribution. 

The parameters )( ∞<<−∞ uu  and )0( >σσ are the centre and scale, 

respectively, and can be estimated with the maximum likelihood method: 

∑
=

=
n

j

jx
n

u
1

log
1

ˆ , ∑
=

−=
n

j

j ux
n 1

22
)ˆ(log

1
σ̂                                                             (3) 

The inverse distribution is  upepF +Φ− −

= σ)(1 1

)( , therefore the lognormal random 

variable can be simulated. 

The Weibull distribution is a generalization of the exponential distribution, 

whereby two parameters instead of one allow more flexibility and heavier tails. 

The density and distribution are: 

                                         
1 The lognormal distribution was proposed by the Basel Committee for modelling operational 
risk. 
2
  See: Chernobai, Rachev, and Fabozzi (2006). 



6 

αβααβ xexxf −−= 1)(                                                                  (4) 
α

BxexF −−= 1)(                                                                          (5) 

where x> 0, with )0( >ββ  as the scale parameter and )0( >αα  as the shape 

parameter.  
 
There is no inverse of a Weibull random variable in a closed formula. To 

generate a Weibull random variable, an exponential random variable Y must be 

generated with parameter β  and then follow the transformation α
1

YX = . 

 

2.2. Extreme Value Theory  

 

As seen in the conventional inference, the influence of the small/medium-sized 

losses in the curve parameters estimation prevents the attainment of models 

that fit the tail data accurately. An obvious solution to this problem is to 

disregard the body of the distribution, and to focus the analysis only on the large 

losses. When only the tail area is considered, several distributions could be 

adopted, such as lognormal and Pareto, which are often used in insurance to 

model large claims. However, in this section the attention is focused on extreme 

distribution stemming from the Extreme Value Theory (EVT) 3, and especially on 

Peak Over Threshold (POT)4. 

As witnessed by Chapelle et al. (2008), this approach enables us to 

simultaneously determine the cut-off threshold and to calibrate a distribution for 

extreme losses above this threshold. The severity component of the POT 

method is based on a distribution (Generalized Pareto Distribution - GPD), 

whose cumulative function is usually expressed as the following two-parameter 

distribution5: 
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3 For a comprehensive source on the application of EVT in finance and insurance see 
Embrechts et al., (1997), and Reiss and Thomas, (2001). 
4
 In the Peak Over Threshold (POT) model, the focus of the statistical analysis is placed on the 

observations that lie above a certain high threshold. 
5 See: Moscadelli (2004). 
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where: 0000 <−≤≤≥≥ ξ
ξ

σξ  if  , if xx  and ξ  and σ  represent the shape 

and the scale parameter respectively.  

In this work we use the extended version of GPD which includes a location 

parameter u :  
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The inverse of the GPD distribution has a simple form: 
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Although, several authors (see Dupuis, 2004; Matthys and Beirlant, 2003) have 

suggested methods to identify the threshold, there is no single widely-accepted 

method to select the appropriate cut-off. 

 
2.3.  The Kernel Estimation of severity loss distribution 
 
 

 The estimation of the kernel density function is a non-parametric method to 

approximate the probability function of a random variable. It is expressed as: 
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Where k(.) is the kernel function or weight function that satisfies certain 

regularity conditions, and is usually a symmetric density function such as 

normal distribution, centred at zero and asymptotically bounded or unbounded 

and 
}{ nh

is a positive constant sequence known as window width, smoothing 

parameter. 

In this work the Epanechnikov Kernel is used: 
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By integrating (12) and using the change of variable hXut i /)( −= , we obtain 

the kernel estimation of the distribution function: 
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The properties of the kernel estimation of the distribution function were 

analyzed by Reiss (1981) and Azzalini (1981). Both authors suggest that when 

∞→n  , the mean square error of )(ˆ xF X is approximated as: 
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The first two parts of the above expression correspond to the asymptotic 

variance and the third term is the squared asymptotic bias. 

 

2.4. Transformation Kernel Estimation 

 
Wand, Marron and Rupert (1991) set out in their work, that the classical kernel 

estimate of the density function is a good alternative for densities that are 

shaped similarly to a Gaussian distribution function. However, this estimate may 

have problems when the shape of the estimated densities are far from being 

Gaussian. They propose, as a solution, transforming the data prior to the 

estimated core, and then re-transform the data to bring them into the original 

scale. This procedure substantially improves the performance of the classical 

kernel estimate, and obtains results similar to the estimate kernel density 

function with a different bandwidth (smoothing parameter), but estimating only 

one  bandwidth parameter for the whole function. Wand, Marron and Rupert 

(1991) use "shifted power transformation family” to transform the data. Burch-

Larsen et al. (2005) use the distribution function of a generalized 

Champernowne distribution to transform the data: 
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This methodology is used by Gustafsson et al. (2006) in a context of operational 

risk in insurance companies. In particular, the author intends to find a 

methodology to model both the body and tail of the distribution of severity. 

 

The transformations proposed in the previously cited works are carried out in a 

context of density function. 

To estimate the distribution function, which is the goal of this work, not many 

authors use the transformation kernel estimation. Swanepoel (2005) propose a 

kernel estimator of the distribution function based on a non-parametric 

transformation of data. 

As Bolancé and Guillén (2009) suggested, the good properties of the 

transformation kernel estimation of the density function is exported to the 

estimation of the distribution function. In this paper we explore the methodology 

used by Burch-Larsen et al. (2005), employing it to estimate the distribution 

function of the severity of operational risk of a medium- sized Savings Bank. 

As Bolancé and Guillén report (2009), the estimation is done in the following 

way: let T (.) be a concave transformation, where y = T (x) and Yi=T(Xi), 

i=1…..,n are the observed transformed losses. Therefore, the kernel estimation 

of the transformed variable is: 
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This shows that the transformation kernel estimation of )(ˆ xFX
 equals: 

))((ˆ)(ˆ
)( xTFxF xTx =                                               (19) 

In order to obtain the transformed kernel estimation, it is necessary to determine 

which transformation to use, the kernel function, and to calculate the bandwidth. 

 In the kernel estimation of density function literature, several methods are 

proposed for the calculation of the bandwidth6, however very few alternatives 

are analyzed in the context of the kernel function of the distribution estimation. 

 

                                         
6
 Wand and Jones(1995).  
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Bolancé and Guillén (2009) propose an adaptation of the method based on the 

normal distribution described by Silverman (1986). This method implies the 

minimization of the mean integrated squared error (MISE): 
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The asymptotic value of MISE is known as A-MISE (Asymptotic Mean 

Integrated Squared Error). 

By integrating the asymptotic mean square error given in expression (19) and 

by taking the distribution function YF  estimate into account the A-MISE 

becomes: 
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Silverman (1986) proposed approximating h&  by replacing the terms that depend 

on the theoretical density function with the value they would obtain if it were 

assumed that f is the density of a normal distribution ( u ,σ ). By using the kernel 

of Epanechnikov: 
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This method produces good results for almost the entire distribution, but serious 

problems for approximating the higher quantiles of the distribution, which in the 

context of measuring risk are the most important. 

 

2.5. The double transformation kernel estimation 

 

In this work the methodology used in Bolancé and Guillén (2009) is proposed as 

an alternative method. This estimation was initially applied in Bolancé, Guillén 

and Nielsen (2008) in the density function context and later in Bolancé and 
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Guillén (2009) for the estimation of a distribution function.  In this article, this 

methodology is applied to the estimation of operational loss severity distribution. 

Bolancé and Guillén (2009) propose a new transformation kernel estimation, 

based on a double transformation, which can improve the estimation of risk 

measures. 

The A_MISE expression given in (20) shows that to obtain the asymptotically 

optimal smoothing parameter it is sufficient to minimize: 
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This is minimized when the function ∫ ′ dyyf
2))((   is minimal. 

The method proposed is based on transforming the variable so that its 

distribution is achieved by minimizing the above functional.  

Terrell (1990) proves that the density of the Beta (3, 3) defined in the domain    

(-1, 1) minimizes ∫ ′ dyyf
2))(( among all densities with a known variance. The 

density functions and distribution of Beta (3, 3) are: 
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Double transformation kernel estimation involves carrying out an initial 

processing of the data by using the distribution function of the generalized 

Champernowne with three parameters; Hence the transformed variable has a 

distribution that is located around a Uniform distribution (0,1). Subsequently, the 

data is transformed again by using the inverse of the Beta function (3, 3), 

nnt YZHYZH == −− )(,........,)( 1

1

1 . 

The result of this double transformation will have a distribution close to that of 

Beta (3, 3). The resulting transformation kernel estimation is: 
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The smoothing parameter h is estimated by following the methodology 

explained above, with the knowledge that 
7

15))((
2 =′∫ dyyf ,for Beta (3, 3),  and 

hence by using  Epanechnikov’s kernel, we obtain: 
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3.    Exploratory Analysis of the Data 

 

The data available in this work is provided by a medium-sized Spanish Savings 

Bank which has compiled internal data in order to make step-by-step advances 

in measuring and modelling Operational Risk. 

Data are daily collected by reference to the date of occurrence. The threshold 

for collecting the loss data in the saving bank is set at 0 Euros. Unlike other 

studies, where the threshold is set at 10,000 euros, 95% of the losses are lower 

than 542.32 Euros. Most studies apply a high threshold since information is 

taken from various databases. According to Carrillo (2005), the lower the 

threshold utilized, the more complete the information about the real distribution 

of the data.  The data provided spans from the year 2000 to 2006. The years 

2000, 2001, 2002 and 2003 contain 2, 5, 2, and 50 operational loss events, 

respectively, due to the bank not providing a recompilation system for 

operational losses in those years. However, in the year 2004 the bank provided 

such a system, and hence for the years 2004, 2005 and 2006 there are 6,397, 

4,959 and 6,580 operational loss events, respectively.  

In order to prevent a distortion of the estimation of the distribution models, data 

from 2000 to 2003 are disregarded. The core business of any Spanish Savings 

Bank is retail banking, and for this reason all the data come from this business 

line. Our data set is relatively small but is satisfactory enough for operational 

risk analysis at the level of a whole bank.  

The data is adjusted according to the Consumer Price Index (CPI) to prevent 

distortion in the work outcome, and 2006 is taken as the baseline year. 

In Table 1, all the main features on central tendency, asymmetry and tail-

heaviness of the data set are given. 
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Table1: Descriptive statistics 

Statistics Operational risk 

 

N 

Mean 

Median 

Standard .deviation 

Skewness coefficient 

Kurtosis coefficient 

           

17936 

254.48 

51.35 

3602.71 

73.48 

6924.22 

 

The mean is much higher than the median. This is a feature present in the 

skewed distributions, and is confirmed in our case by the skewness coefficients. 

The kurtosis coefficient also shows leptokurtic tails. The main reason for such 

levels of skewness and kurtosis can be found in the zero thresholds7.  

We will explore whether seasonal factors are detected in the monthly 

distribution of data 

Table 2: Monthly amount of loss 

Year 

Month 2004 2005 2006 Total 

1 66,169.1 70,337.23 38,225.93 174732.3 

2 179,981.8 105,454.8 91,763.87 377200.5 

3 134,809.7 249,035.4 175,849.6 559694.8 

4 55,011.89 93,549.19 51,454.33 200015.4 

5 168,053.5 50,433.71 106,385.2 324872.5 

6 557,136.5 83,403.4 126,467.9 767007.7 

7 95,412.18 558,23.84 174,745.3 325981.3 

8 76,233.28 70,356.69 153,999.9 300589.8 

9 80,651.07 146,472.4 190,217.6 417341 

10 244,451.2 52,047.94 123,753.7 420252.9 

11 84,456.23 50,670 103,134.9 238261.2 

12 257,794.8 118,080.7 82,559.62 458435 

 

 

 

 

 

 

 

                                         
7
 Higher thresholds reveal smaller kurtosis coefficients, as we have proved with the database.  
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Table 3: Monthly frequency of loss 

Year 

Month 2004 2005 2006 Total 

1 266 428 370 1064 

2 349 417 366 1132 

3 538 405 490 1433 

4 388 502 410 1300 

5 452 418 700 1570 

6 475 371 704 1550 

7 439 433 655 1527 

8 554 396 533 1483 

9 546 412 654 1612 

10 1394 416 690 2500 

11 519 389 519 1427 

12 477 372 489 1338 

 

Looking at Tables 2 and 3 and Figures 1 and 2 derived from them, we note that 

removing the loss peak in June 2004 for the monthly amount of loss and that of 

October of the same year for the monthly frequency of loss, the data seems to 

not present seasonality. 

 

Figure 1: Monthly amount of loss 
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Figure 2: Monthly frequency of loss 
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Figure 3: Daily Frequency for events above a Threshold 

 

 

To test the independence of events, the graph above shows, in the abscissa, 

the losses that exceed a specific threshold  and, in the ordinate, the number of 

times that these losses are exceeded. The graph approximates a binomial 

distribution, thereby indicating the independence of events. We chose 166 as 

the threshold, which is going to be used to fit the generalized Pareto 
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distribution, and which was obtained with the method used by Reiss and 

Thomas (2001)8. 

 

Table 4: Quantiles of data 

Quantile 100%  99% 95% 90% 75%  50%  
 

25%  10% 5% 1% 0% 

Estimated 352350 2474.32 540 294.3 100 50 20 10 5.15 1.15 0.03 

 

Observing Table 4, we can notice the great difference of values between 0.99 

and 1 quantiles. This figure gives an indication of the nature of the very heavy 

tail of these data, and this can lead to difficulty in finding the severity distribution 

that fits these data. 

To complete the exploratory analysis of the data, we now focus our attention on 

the tail of the underlying distribution. Since it was anticipated in the introduction 

of the present work, we study how the threshold choice affects the GPD 

parameters estimated, especially the shape parameter, and the quantile 

estimation that directly affects the operational VaR. 

 

Figure 4: Me plot and Hill plot. 
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Figure 4 shows the mean excess plot (on the left) and the hill plot (on the right) 

respectively, obtained with the threshold chosen to fit the GPD distribution. For 

the abscissa of the former different thresholds are used and for the abscissa of 

                                         
8
 It is an ad hoc method that the authors describe as Automatic choice of the number of 

extremes. 
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the latter different execeedances (the number of observations above the 

threshold). 

In order to understand the problem of the choice of the threshold better, we 

check the effect of different thresholds on the shape parameter and on the 

quantile estimation. 

Figure 5: Shape parameter and quantile plot. 
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Figure 5 (on the left) plots how the estimation of the shape parameter changes 

depending on the number of the observations above the threshold9, and Figure 

5 (on the right) plots the estimation of the 0.999 quantile for the different number 

of the exceedances. Both figures highlight how the shape parameter and 

quantile estimations depend strongly on the threshold choice.  

 

4. Severity Distribution 

 

In this section we compare the distributions obtained with parametric and non-

parametric estimations to approximate the severity loss distribution. 

Maximum likelihood is the methodology used to estimate the parameter 

distributions of the parametric distributions. For the selection of threshold 

applied to the Generalized Pareto (GPD) the methodology used by Reiss and 

Thomas (2001) is employed. 

 

 

 

                                         
9
 The number of observations above the threshold is inversely proportional to the value of the 

threshold. 
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Table 5: Parameters estimated by maximum likelihood. 

Distributions Parameters  Stand. Dev. 

Weibull 
α 0.59 0.36 

β 104.42 187.50 

Lognormal 
ų 3.92 1.44 

σ 1.44 1.017 

GPD ξ  0.9058 0.034 

 σ 174.8585 6.16 

 

In order to analyze the different results, we compare the results of the empirical 

cumulative distribution function (cdf) with each distribution resulting from the 

different estimation methods presented in this work, with particular attention to 

the tail.  We divide the cdf into two parts, one part for the body that varies from 

0 to 0.99 percentiles and the other part for the tail from 0.99 to 1.  

To complement the visual assessment of the goodness-of-fit of different 

distributions, we present the result of two goodness-of-fit tests, the Cramer-Von 

Mises (CVM) and the Kolmogorov-Smirnov (KS). 

The latter is based on the maximum vertical distance between the 

model proposed and the empirical distribution function. It is represented by the 

following formula: 

- )x(Ĝ)x(FsupD nx=                                   (28) 

Where  D  represents the distance and  Ĝ the estimated cdf. 

The problem with this test is that it takes into account only the maximum 

distance between the estimated and empirical cdf regardless of the whole 

setting, so we also used the Cramer-Von Mises (CVM) test. 

This is a measure of the square of the average distance between the data and 

the model being considered, with a correction in the size of the sample. The 

formula that represents this test is: n))x(Ĝ)x(F(CVM n 121+= 2∑ -                             (29) 

Three different estimating tail quantiles for each cdf are also checked. 
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Figure 6: The cdf for the lognormal distribution 
compared with that of the empirical function 

 

 

The two figures above show that the lognormal distribution fits to the body 

(above) of the distribution reasonably well, but does not fit the higher quantiles 

(below) of the distribution very well. 
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Figure 7: The cdf for the Weibull distribution 
compared with that of the empirical function 

 

 

The Weibull distribution has a worse fit than the lognormal distribution in the 

body (above) and fits as badly as the lognormal in the tail (below). 
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Figure 8: The cdf for Generalized Pareto Distribution 
compared with that of the empirical function 

 

 

In the case of GPD, only the tail is considered to analyze the fit that this 

distribution provides. As it is possible to note from the figure, the GPD presents 

a better fit on the tail than the parametric distribution that does not focus the 

attention on the tail. The problem is the overestimation that can imply 

uneconomical operational VaR estimation. The GPD line plots a quite bigger 

amount for each quantile than the empirical line. 

Figure 9: The cdf for the transformation kernel estimation 
compared with that of the empirical function 

 



22 

 

The kernel cdf estimation using the Champernowne distribution provides a good 

fit in the body of the distribution but has a serious problem in the tail due to the 

lack of information in this part of the distribution. This result is coherent with 

Bolancé and Guillén (2009). In the work of the authors the quantile estimation 

carried out by this methodology does not approximate the higher quantiles. 
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Figure 10: The cdf for the double transformed kernel estimation 
compared with that of the empirical function 

   

 
As shown in Figure 10, the double transformation in the kernel estimation 

function significantly improves the fit of the cumulative distribution in both the 

body and in the tail.  

Table 6: Goodness-of-fit tests and quantiles estimation 

CDF  K-S CVM α=0.95 α=0.99 α=0.999 

Lognormal 0.069 0.00047 533 1,427 3,718 

Weibull 0.18 0.0058 529 1,098 2,246 

GPD 0.036 0.00016 2895.2 12,608 10,2660 

TKCH  ---- ------- 557 10,036 +∞ 

DTKB 0.009 0.00007 560 2,535 27,233 

GPD Generalized Pareto Distribution 

TKCH Transformation Kernel Estimation with Chapernowne Distribution 

DTKB Double Transformation Kernel Estimation 
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Table 6 shows the coefficients of the goodness-of-fit tests of the two tests 

mentioned above and the values produced for each cdf quantiles 0.95, 0.99, 

and 0.999. The lowest values of the two tests allow us to conclude that the 

distribution resulting from the double transformation kernel estimation provides 

the best fit to the data according to both goodness-of-fit tests. This good 

performance is coherent with the work of Bolancé and Guillén (2009). 

 

 

5. Operational VaR  

 

As a last step we analyze the performance of the non-parametric methodology, 

in particular the doble transformation kernel estimation, as an alternative to the 

approximation of the severity distribution and its subsequent use for the 

aggregate distribution of losses, with the aim of estimating an operational VaR. 

In this regard, we aggregate the severity distribution obtained with the different 

estimations proposed (we exclude the transformation kernel estimation because 

does not approximate high quantiles) with a Poisson distribution ((λ = 5978). 

For the calculation of VaR lognormal, weibull and DTBK we perform the 

following operational steps (see de Fountanelle et al, 2003): 

• We simulate n years (the parameters of our work are estimated on an 

annual basis). 

• For each year, we extract λ numbers of events from the Poisson 

distribution. 

For each λ events we draw an operational loss from the estimated 

distribution. 

• Adding up the losses for each year, we obtain the aggregate distribution 

of losses. 

•  We repeat this process 100,000 times. 

Finally, we sort the losses and calculate the VaR at a 95, 99 and 99.9% 

confidence level. 

For EVT techniques, the operational VaR is estimated in the following way: 

• We simulate n years (the parameters of our work are estimated on an 

annual basis). 



25 

• For each simulated year, we draw a frequency λ from the Poisson 

distribution. 

• We multiply λ by the fraction of the data in the body to get λb and the 

fraction of the data in the tail to get λt. We draw λ b loss severities (with 

replacements) from the data in the body (empirical sampling) and λt loss 

severities from the estimated GPD in the tail.  

• We sum all the λb and λt losses together to get the total annual loss. 

Finally, these steps are repeated 100,000 times. 

 

Table 7: Results of operational VaR (0.95, 0.99, 0.999). 

 Lognormal Weibull GPD DTKB Empirical 

 Opvar OpVar OpVar Opvar OpVar 

95
th 

819,296,286 795,324,432 
4,216,711 3,513,613 

 
1,812,978 
 

99
th 

866,386,188 811,137,231 
11,763,538 4,311,743 

 
1,992,326 
 

99.9
th 

910,444,252 852,321,221 
98,143,348 4,988,502 

 
2,318,679 
 

 

Table 7 shows the results of the aggregations of the various distribution 

functions. The VaR estimated with the parametric estimation tends to 

underestimate (lognormal, Weibull) or overestimate the real VaR. The VaR 

estimated with the double transformation kernel estimation seems to presents 

the more realistic estimation compared with the empirical estimation. These 

results confirm our initial hypothesis as outlined in the Introduction of this work.  

 

 Conclusions 

 

In recent literature on operational risk, the severity loss distribution is the main 

topic. Numerous modelling methods have been suggested although very few 

work for both high-frequency small losses and low-frequency big losses. Hence, 

common sense suggests the estimation of a mixture of these two distributions. 

For small losses, distributions, such as lognormal and Weibull, are frequently 

used in combination with Extreme Value Theory. 

Attention is then focused on an alternative one-method-fits-all approach, and we 

analyse the transformation kernel estimation method and the double 

transformation kernel estimation. The good performance of the latter in the 
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context of operational risk severity is worthy of a special mention. In our opinion, 

these methodologies, especially the double transformation kernel estimation, 

can provide an excellent alternative for the estimation an operational risk loss 

severity distribution. This methodology takes into account all tail behaviour and 

also includes data of high-frequency small losses that form the body of the 

distribution. 

To test the good performance of the distribution obtained from these estimation 

methods, we compare it with the most frequently used parametric estimation 

methods. The results show that in the context where the most frequently used 

parametric estimations are not able to fit the data or provide operational VaR 

economical unrealistic, the double transformation kernel estimation enables a 

better approximation and a more realistic operational VaR. 
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