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Abstract

This paper presents a Deep Learning approach for tra�c sign recognition systems. Several
classification experiments are conducted over publicly available tra�c sign datasets from
Germany and Belgium using a Deep Neural Network which comprises Convolutional layers
and Spatial Transformer Networks. Such trials are built to measure the impact of diverse
factors with the ultimate goal of designing a Convolutional Neural Network that could
improve the state-of-the-art of tra�c sign classification task. On one hand, di↵erent adaptive
and non-adaptive stochastic gradient descent optimization algorithms such as SGD, SGD-
Nesterov, RMSprop and Adam are evaluated. On the other hand, multiple combinations of
Spatial Transformer Networks placed at distinct positions within the main neural network are
analysed. The proposed Convolutional Neural Network reports a recognition rate accuracy
of 99.71% in the German Tra�c Sign Recognition Benchmark, outperforming previous state-
of-the-art methods and also being more e�cient in terms of memory requirements.

Keywords: deep learning, tra�c sign, spatial transformer network, convolutional neural
network

1. Introduction

Tra�c sign recognition systems (TSRS) are essential in many real-world applications
such as autonomous driving, tra�c surveillance, driver safety and assistance, road network
maintenance or urban scene understanding. Normally, a TSRS concerns two related subjects
which are tra�c sign detection (TSD) and tra�c sign recognition (TSR). The former focus
on the localisation of the targets in the pictures while the later performs a fine-grained
classification to identify the type of the detected targets (De La Escalera et al., 1997).

Tra�c signs are a fundamental asset within the road network because their aim is to
be easily noticeable by pedestrians and drivers in order to warn and guide them during
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both day and night time. The fact that signs are designed to be unique, rigid and to have
distinguishable features such as simple shapes and uniform colours implies that its detection
and recognition is a constrained problem. Nevertheless, the development of a robust real-
time TSRS is still a challenging task due to real-world variability such as scale variations, bad
viewpoints, motion-blur, faded colours, occlusions or lightning conditions. On top of that,
there are more than 300 di↵erent tra�c sign categories defined by the Vienna Convention
on Road Tra�c (United Nations Economic Commission for Europe, 1968). This treaty has
been signed by 63 countries though there still exists minor visual variations of tra�c sign
pictographs between countries which can lead to demanding tasks for a machine. Any TSRS
must cope well with such issues.

The main contributions of this work are four-fold: (1) A state-of-the-art tra�c sign
recognition system based on a Convolutional Neural Network (CNN) that includes Spatial
Transformer Networks (STN) and outperforms previously published works related with the
German Tra�c Sign Recognition Benchmark (GTSRB) (Stallkamp et al., 2011). (2) We
provide an insight into the proposed CNN capabilities along with the performance impact
of spatial transformer layers within the network. (3) Analysis of the e↵ect of diverse gra-
dient descent optimization algorithms on the presented CNN. (4) Multiple public available
European tra�c sign classification datasets are reviewed and evaluated by the CNN. These
contributions lead to practical applications such as self-driving cars or automated inventory
and maintenance of vertical signage since the CNN can perform fine-grained classification
once the tra�c sign has been detected. Moreover, as the CNN outperforms the human visual
system, its inference time is quite low and also can be deployed as a standalone service, it
could be used in real-time applications.

The rest of the paper is organised as follows. Section 2 review related works of tra�c sign
recognition systems. Section 3 describes the experiments conducted to analyse the impact
of both spatial transformers and stochastic optimization algorithms on the proposed CNN.
Then, recognition results are shown in Section 4. Finally, conclusions and further work are
drawn in Section 5.

2. Related works

Chronologically, approaches of published works on tra�c sign recognition systems evolved
from colour and shape based methods to machine learning based methods. In recent times,
CNNs have attracted attention in pattern recognition and computer vision research, and
have been widely adopted for both object detection and recognition.

Colour-based approaches are very common. These methods use di↵erent colour spaces
for segmentation of the road image such as RGB (Escalera et al., 1997), HIS (Maldonado-
Bascon et al., 2007) or HSV (Shadeed et al., 2003), among others. The shape-based method is
another popular approach for tra�c sign recognition and detection. Symmetry information
of circular, triangular, squared and octagonal shapes are used in (Loy & Barnes, 2004),
a radial symmetry detector is proposed in (Barnes et al., 2008), Hough transforms are
investigated in (Barnes et al., 2010) and a circular tra�c sign recognition system is studied
in (Kaplan Berkaya et al., 2016).
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One of the main problems before the year 2011 was the lack of a publicly available tra�c
sign dataset. The Belgian Tra�c Sign Dataset (BTSD) (Timofte et al., 2011), the German
Tra�c Sign Recognition and Detection Benchmark (GTSRB and GTSDB) (Stallkamp et al.,
2011), and more recently, the Croatian tra�c sign dataset (rMASTIF) (Jurisic et al., 2015),
the Dataset of Italian Tra�c Signs (DITS) (Youssef et al., 2016) and the Tsinghua-Tencent
100K benchmark (Zhu et al., 2016) solved this issue and boosted the research in TSRS
because some of them are commonly used to evaluate the performance of computer vision
algorithms for tra�c sign detection and recognition.

Mathias et al. (2013) propose fine grained classification applying di↵erent methods
through a pipeline of three stages: feature extraction, dimensionality reduction and clas-
sification. On GTSRB, they reach 98.53% of accuracy merging grayscale values of tra�c
sign images and Histogram of Oriented Gradients (HOG) based features, reducing the di-
mensionality through Iterative Nearest Neighbours-based Linear Projections (INNLP) and
classifying with Iterative Nearest Neighbours (Timofte & Van Gool, 2015) (INNC). Although
Support Vector Machines (SVM) (Salti et al., 2015), Random Forests (Zaklouta et al., 2011)
and Nearest Neighbours (Gudigar et al., 2017) classifiers have been used to recognise tra�c
sign images, Convolutional Neural Networks (Lecun et al., 1998), also known as ConvNets or
CNNs, showed particularly high classification accuracies in the competition. Cireşan et al.
(2012) won the GTSRB contest (Stallkamp et al., 2012) with a 99.46% accuracy thanks to a
committee of 25 CNN by using data augmentation and jittering. Sermanet & LeCun (2011)
use multi-scale CNN achieving an accuracy of 98.31%, second place in the GTSRB challenge.
Later, Jin et al. (2014) propose a hinge loss stochastic gradient descent method to train an
ensemble of 20 CNNs that brought o↵ 99.65% accuracy and o↵ered a faster and more stable
convergence than previous works. However, these approaches can still be improved avoiding
the use of hand-crafted data augmentation and keeping away from applying multiple CNNs
in an ensemble or in a committee way for the reason that it normally leads to higher memory
and computation costs.

3. Methodology

In this work, we propose a tra�c sign recognition system that carries out fine-grained
classification to tra�c sign images through a CNN whose main blocks are convolutional and
spatial transformer modules. In order to find out an accurate and e�cient CNN for such
purpose, we research and discuss firstly the e↵ect of the use of several STNs and secondly
the results applying di↵erent stochastic gradient descent optimization methods.

3.1. Dataset and data pre-processing

Several public available tra�c sign datasets have been gathered in countries like United
States (Mogelmose et al., 2012), Belgium (Timofte et al., 2011), Germany (Stallkamp et al.,
2011), Croatia (Jurisic et al., 2015), Italy (Youssef et al., 2016), Sweden (Larsson & Felsberg,
2011) and China (Zhu et al., 2016). Since the GTSRB (Stallkamp et al., 2011) is the most
used for comparing tra�c sign recognition approaches, we focus both the spatial transformer
e↵ectiveness and cost function optimization experiments on it.
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Figure 1: GTSRB dataset pre-processed.

The German tra�c sign recognition dataset contains tra�c sign samples with di↵erent
resolutions that were extracted from 1-second video sequences. They belong to one of the 43
existing classes. Training set has 39,209 images and validation set consists of 12,630 images
which are used to measure the performance of algorithms in the GTSRB. Tra�c sign samples
are raw RGB and sizes vary from 15x15 to 250x250 pixels. During pre-processing stage, all
of them are down-sampled or up-sampled to 48x48 pixels and both global normalisation and
local contrast normalisation with Gaussians kernels (Jarrett et al., 2009) are computed for
the purpose of centring each input image around its mean value as well as enhancing edges
(Fig. 1).

3.2. Convolutional Neural Network architecture

Inspired by Cireşan et al. (2012) approach, the proposed method to recognize tra�c
signs is a CNN that combines several convolutional, spatial transformer (Jaderberg et al.,
2015), ReLU (Nair & Hinton, 2010), local contrast normalization (Jarrett et al., 2009) and
max-pooling (Scherer et al., 2010) layers. It acts as a feature extractor that maps raw pixel
information of the input image into a tensor to be classified by two fully connected layers.
Spatial transformer layers are used to perform explicit geometric transformations on feature
maps in order to focus on the object to be learned, removing progressively background and
geometric noise. All variable parameters used in each of these layers are optimized together
through minimization of the misclassification error over the GTSRB training set.

Spatial Transformer Networks aim to perform a geometric transformation on an input
map so that provides to CNNs the ability to be spatially invariant to the input data in a
computationally e�cient manner. Thanks to such transformations, there is no need for extra
training supervision, hand-crafted data augmentation (e.g. rotation, translation, scale, skew,
cropping) or dataset normalisation techniques. This di↵erentiable module can be inserted
into existing convolutional architectures because the parameters of the transformation that
are applied to feature maps are learned by means of a backpropagation algorithm. Spatial
transformer networks consist of 3 elements: the localisation network, the grid generator and
the sampler (Fig. 2).

The localization network floc() takes an input feature map U 2 RH⇥W⇥C , where H, W
and C are the height, width and channels respectively, and outputs the parameters ✓ of
the transformation T✓ to be applied to the feature map ✓ = floc(U). The dimension of ✓
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Figure 2: Spatial transformer network components (Jaderberg et al., 2015).

Figure 3: Spatial transformer network. Input images on the left and output images on the right after
computing a�ne transformations.

depends on the transformation type T✓ that is being parameterised, being 6-dimensional
in our proposed net as a result of performing a 2D a�ne transformation A✓ which allows
translation, cropping, rotation, scale and skew. The localisation network can comprise any
number of convolutional and fully connected layers and must have at least one final regression
layer to generate the transformation parameters ✓. Such parameters are used by the grid
generator to create a sampling grid, which is a set of points where the input map has to be
sampled to obtain the desired transformed output. Finally, the sampler uses as inputs the
sampling grid and the input feature map U in order to perform a bilinear sampling which
produces the transformed output feature map V 2 RH0⇥W 0⇥C , where H 0, W 0 are the height
and width of the sampling grid.

For source coordinates in the input feature map (xs
i , y

s
i ) and a learned 2D a�ne trans-

formation matrix A✓, the target coordinates of the regular grid in the output feature map
(xt
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As regards to tra�c sign recognition, spatial transformer networks learn to focus on the
tra�c sign removing gradually geometric noise and background so that only the interesting
zones of the input are forwarded to the next layers of the network (Fig. 3). Up to our
knowledge, no peer review work has been published including the spatial transformer unit
into a CNN for the tra�c sign recognition task.

To measure the performance of spatial transformer layers for tra�c sign recognition, we
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set the main CNN architecture shown in Table 1 that does not contain any STN. Convolu-
tional layers’ stride is set to 1 in order to leave all spatial down-sampling computation to
max-pooling layers, and zero padding is set to 2. Regarding max-pooling layers, their stride
is set to 2 and zero padding to 0. Input and output feature maps of convolutional layers, as
well as kernel sizes, are fixed 1.

Due to the possibility to combine up to 3 STNs at di↵erent parts of the network, several
network architectures were set in order to measure their influence in the final result. Note
that the inclusion of more than three STNs are not analysed because output feature maps’
size of following network’s layers could not be further decreased. Progressively, spatial
transformer modules are added prior to the convolutional layers of the main network. The
localisation network of the three spatial transformer layers is built with a max-pooling layer
followed by two blocks of convolutional, ReLU and max-pooling, and finally, two fully-
connected layers joined by a ReLU one. The output of the last fully-connected consists
of six neurones which correspond to the parameters of the a�ne transformation matrix.
Detailed localization networks architectures are drawn in Table 2. As in convolutional layers
configuration, kernel sizes and the number of input and output feature maps are invariable.

In total, there are eight di↵erent CNN architectures as a result of the possible combina-
tions described. To denote such configurations, on one hand, c refers to a convolutional block
which includes convolutional, ReLU, max-pooling and local contrast normalisation layers.
On the other hand, si indicates the i� th configuration of a spatial transformer module. For
instance, a network with just a spatial transformer at the beginning is expressed as s1 c c c.
Note that s1 can only be placed before the first convolutional layer, s2 ahead of the second
convolutional and s3 preceding the third convolutional module.

3.3. Stochastic Gradient Descent Optimization algorithms

Optimization is the process of finding the set of parameters w that minimise the loss
function L. The loss function L quantify the quality of a particular set of parameters w
based on how well the inferred scores match with the ground truth labels in the training
data. In this work, the last layer of the CNNs proposed is a softmax classifier which uses
the cross-entropy loss function (Eq. 2) where i enumerates the di↵erent classes, y is the
predicted probability distribution and y0 is the true distribution represented as a one-hot
vector. The softmax function (Eq. 3) is used to compute y. It takes a K-dimensional vector
of arbitrary real-valued scores z and squashes it to a K-dimensional vector f(z) of values in
the range (0, 1] that sum up to 1 where j represents the j � th element of the vector f .

Hy0(y) = �
X

i

y0i log(yi)

yi 2 (0, 1) :
X

i

yi = 18i
(2)

1Source-code will be made publicly available.
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Layer Type # Maps & neurons Kernel
0 Input 3 m. of 48x48 n.
1 Convolutional 200 m. of 46x46 n. 7x7
2 ReLU 200 m. of 46x46 n.
3 Max-Pooling 200 m. of 23x23 n. 2x2
4 Local Contrast Norm. 200 m. of 23x23 n.
5 Convolutional 250 m. of 24x24 n. 4x4
6 ReLU 250 m. of 24x24 n.
7 Max-Pooling 250 m. of 12x12 n. 2x2
8 Local Contrast Norm. 250 m. of 12x12 n.
9 Convolutional 350 m. of 13x13 n. 4x4
10 ReLU 350 m. of 13x13 n.
11 Max-Pooling 350 m. of 6x6 n. 2x2
12 Local Contrast Norm. 350 m. of 6x6 n.
13 Fully connected 400 neurons 1x1
14 ReLU 400 neurons
15 Fully connected 43 neurons 1x1
16 Soft-max 43 neurons

Table 1: Main CNN architecture without spatial transformer modules.

Layer/Type Loc. net of ST 1 Loc. net of ST 2 Loc. net of ST 3
0/Input 3 of 48x48 200 of 23x23 250 of 12x12
1/Max-Pool 3 of 24x24 200 of 11x11 250 of 6x6
2/Conv 250 of 24x24 150 of 11x11 150 of 6x6
3/ReLU 250 of 24x24 150 of 11x11 150 of 6x6
4/Max-Pool 250 of 12x12 150 of 5x5 150 of 3x3
5/Conv 250 of 12x12 200 of 5x5 200 of 3x3
6/ReLU 250 of 12x12 200 of 5x5 200 of 3x3
7/Max-Pool 250 of 6x6 200 of 2x2 200 of 1x1
8/Fc 250 neurons 300 neurons 300 neurons
9/ReLU 250 neurons 300 neurons 300 neurons
10/Fc 6 neurons 6 neurons 6 neurons

Table 2: Localisation network details of spatial transformers used in the basic CNN. Kernel size of convo-
lutional layers is set to 5x5 and max-pooling layers to 2x2. The annotation shown in the table is simplified,
for instance, 3 of 48x48 stands for 3 feature maps of 48x48 neurons each one.

7



fj(z) =
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(3)

Gradient descent is the most common and established algorithm to optimize neural
network’s loss function. Iteratively, it computes the gradient of the objective function L
with respect to the model’s parameters w and updates them. One of its variants is the
mini-batch gradient descent that can be written as follows:

wk+1 = wk � ⌘křL(wk) (4)

It computes the gradient řL(wk) := rL(wk; x
(i:i+n)
k ; y(i:i+n))

k ) of the loss function L
and performs an update for every mini-batch of n training examples x(i) and labels y(i),
representing ⌘ the learning rate.

To accelerate training, some techniques such as Nesterov’s Accelerated Gradient method
(NAG) (Nesterov, 1983) and Polyak’s heavy-ball method (HB)(Polyak, 1964) have been
widely used. They can be categorised as stochastic momentum methods.

Adaptive optimization methods are another family of gradient descent algorithms. In
comparison with non-adaptive methods, they perform local optimization choosing a local
distance measure constructed from the history of iterates w1, ..., wk. Examples included
in this category are Adaptive Gradient algorithm (AdaGrad) (Duchi et al., 2011), Root
Mean Square Propagation (RMSprop) (Tieleman & Hinton, 2012) and Adaptive Moment
Estimation (Adam) (Kingma & Ba, 2015).

In this paper, we compare the e↵ectiveness of four mini-batch gradient descent optimiza-
tion algorithms applied to the CNNs proposed in Section 3.2: Stochastic Gradient Descent
(SGD) without momentum (Qian, 1999), SGD with Nesterov’s accelerated gradient, RM-
Sprop and Adam. For hyper parameter tuning, several networks were trained during few
epochs in order to find an adequate initial learning rate value that reaches model conver-
gence. We observed that a high learning rate like 0.01 does not work well in the cases of
RMSprop and Adam, achieving low accuracy scores. The main reason could be that un-
like SGD where learning rate is fixed and optionally it can follow an annealing schedule,
RMSprop and Adam calculate adaptive learning rates for each model’s parameter based on
the history of iterates. Consequently, a lower learning rate is set for such methods in order
to avoid that loss values get stuck at bad spots in the optimization landscape. The initial
parameters of these algorithms are shown in Table 3.

4. Results

Once described the CNNs architectures and the loss function optimizers, 32 experiments
were run in a computer built with an Intel Core i7-6700k CPU, 16 GB of RAM and a Nvidia
Geforce GTX 1070 discrete GPU which has 1920 CUDA cores and 8 GB of RAM, using
the Torch scientific computer framework (Collobert et al., 2011) and an implementation of
spatial transformer networks for Torch (Oquab, 2017) as development tools. The aim is to
find out which are the best places to add the STNs within the CNN at the same time as the
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SGD w/o momentum SGD with Nesterov

Momentum = 0
Weight decay = 0
Learning rate = 1e�2

Momentum = 0.9
Weight decay = 1e�4
Nesterov
Learning rate = 1e�3

RMSprop Adam

↵=0.99
✏=1e-8
Weight decay = 0
Learning rate = 1e�5

�1 = 0.9
�2 = 0.999
✏ = 1e�8
Weight decay = 0
Learning rate = 1e�4

Table 3: Configuration parameters of stochastic gradient descent optimization algorithms.

best stochastic gradient descent optimizer. With a mini-batch size of 50, each experiment
is a two-stage process that trains the neural network with the GTSRB training set and
then tests it with the GTSRB validation set during 15 epochs. Results draw in Table 4
show the maximum accuracy percentage achieved by each CNN model over the validation
set. The best configuration found contains three spatial transformer modules (s1 c s2 c s3 c)
and the computed loss value is optimized by means of SGD without momentum algorithm.
On the other hand, worst results are obtained by the CNN that does not include any
spatial transformer (c c c) regardless of the optimizer, followed by the CNN with a spatial
transformer located right before the last convolutional layer (c c s3 c). It is noteworthy that
the winner configuration doubles the number of model’s parameters of the worst CNN. As a
consequence, for the SGD without momentum optimization algorithm, the training time per
epoch of the CNN with three spatial transformers is 355.05 ± 0.8 seconds while the CNN
without any spatial transfEormer takes 212.12 ± 0.1 seconds. Considering such results and
that the solutions found by adaptive methods generalise worse than SGD (Wilson et al.,
2017), from now on, we choose the CNN s1 c s2 c s3 c (Fig. 4) along with the SGD without
momentum algorithm as our proposed method for tra�c sign classification, whose processing
time for training and testing one example is 11.18 ± 0.02 and 4.28 ± 0.02 respectively. A
comparison of accuracy and loss values computed for each optimization algorithm over the
validation set is shown in Figure 5.

The following subsections describe the German and Belgian tra�c sign datasets along
with the attained classification results. The structure of each dataset is drawn in Table 5
together with overall recognition results. Note that these datasets are highly imbalanced as
can be seen in Figure 6.

4.1. GTSRB dataset results

The GSTRB dataset was introduced in Section 3.1. Our proposed CNN with three
spatial transformer layers and SGD without momentum as loss function optimizer achieves
an accuracy of 99.71% at the 21st epoch (6 more than in the previous experiment). By
the time of writing this paper, our method is top-1 ranked in the GTSRB outperforming
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CNN/Optimizer SGD SGD-N RMSprop Adam # Parameters
c c c 98.31 98.33 98.66 98.81 7,303,883
s1 c c c 99.09 99.15 99.37 99.20 11,137,389
c s2 c c 99.22 99.13 99.28 99.15 9,046,339
c c s3 c 99.02 99.04 99.11 99.39 9,053,839
s1 c s2 c c 99.31 99.30 99.38 99.23 12,879,845
s1 c c s3 c 99.21 99.25 99.32 99.32 12,887,345
c s2 c s3 c 99.34 99.23 99.45 99.28 10,796,295
s1 c s2 c s3 c 99.49 99.43 99.40 99.42 14,629,801

Table 4: Recognition rate accuracy achieved by CNNs configurations described in Section 3.2 using di↵erent
loss function optimizers: SGD without momentum (SGD), SGD with Nesterov accelerated gradient (SGD-
N), Root Mean Square Propagation (RMSprop) and Adaptive Moment Estimation (Adam). c refers to
convolutional block and s to spatial transformer module. Experiments were run during 15 epochs.

Figure 4: CNN for tra�c sign recognition. Local contrast normalization layers have been omitted in the
figure above to simplify its visualization as well as localization networks of spatial transformers. The st
layers refer to spatial transformer networks, conv to convolutional layers, mp to max-pooling layers, fc to
fully-connected layers and sm to soft-max layer.

Figure 5: Comparison of di↵erent loss function optimizers during validation phase applying the CNN model
s1 c s2 c s3 c.
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Dataset Training images Testing images Classes
Germany 39,209 12,630 43
Belgium 4,533 2,562 62

Precision (%) Recall (%) F1 score (%)
Germany 99.71 99.71 99.71
Belgium 98.95 98.87 98.86

Table 5: European tra�c sign classification datasets along with precision, recall and f1-score recognition
results.

Figure 6: European datasets categories distribution.

(a) Germany (b) Belgium
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Paper Method Accuracy (%)
Ours Single CNN with 3 STNs 99.71
Jin et al. (2014) HLSGD (20 CNNs ensemble) 99.65
Cireşan et al. (2012) MCDNN (25 CNNs committee) 99.46
Yu et al. (2016) GDBM 99.34
Stallkamp et al. (2011) Human performance (best) 99.22
Jurisic et al. (2015) OneCNN 99.11 ± 0.10

Table 6: Recognition rate accuracy of di↵erent methods on GTSRB.

Paper
Data augment.
or jittering

# trainable
parameters

# ConvNets

Ours No 14,629,801 1
Jin et al. (2014) Yes ⇠ 23 millions 20 (ensemble)
Cireşan et al. (2012) Yes ⇠ 90 millions 25 (committee)

Table 7: Proposed CNN’s learnable parameters compared with previous state-of-the-art approaches.

previously published approaches (Table 6). In addition, the total parameters learned by this
CNN is 14,629,801 which is much less than in other CNNs proposed for tra�c sign recognition
systems (Table 7), leading this advantage to lower memory consumption, computational cost
and simpler pipeline.

4.2. BTSC dataset results

The Belgian tra�c sign classification dataset (BTSC) (Mathias et al., 2013) has 4,533
training images and 2,562 validation ones split into 62 tra�c sign types. In comparison
with the GTSRB dataset, this one has di↵erent tra�c sign pictograms, lighting conditions,
occlusions, image resolutions and so on. Moreover, it contains categories that cluster di↵erent
tra�c signs types (e.g. 50-speed limit sign and 70-speed limit sign) raising the recognition
task di�culty. Using the SGD without momentum loss optimizer and the CNN with three
spatial transformer layers, the model obtains an accuracy of 98.87% at the 13th epoch (Table
8).

Paper Method Accuracy (%)
Yu et al. (2016) GDBM 98.92
Ours Single CNN with 3 STNs 98.87
Jurisic et al. (2015) OneCNN 98.17 ± 0.22
Mathias et al. (2013) INNLP+SRC(PI) 97.83

Table 8: Recognition rate accuracy of di↵erent methods on BTSC.
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5. Conclusions and future work

In this paper, a method for automatic fine-grained recognition of tra�c signs is presented.
The classification process is carried out by using a single CNN that alternates convolutional
and spatial transformer modules. To find out the best CNN architecture, several empirical
experiments are conducted in order to investigate the impact of multiple spatial transformer
network configurations within the CNN, together with the e↵ectiveness of four stochastic
gradient descent optimization algorithms. The CNN model outperforms previous state-of-
the-art methods achieving a recognition rate accuracy of 99.71% in the GTSRB, currently
top-1 rank. Also, our proposed approach avoids the need of hand-crafted data augmentation
and jittering used in prior works (Cireşan et al., 2012; Sermanet & LeCun, 2011; Jin et al.,
2014). Moreover, there are fewer memory requirements and the network has less number of
parameters to learn compared with existing methods since we keep away from using several
CNNs in a committee or in an ensemble way.

Although our method is ranked on top positions of German and Belgian datasets, there
are several recent releases of publicly available tra�c sign recognition datasets where it has
not been tested due to they were not so established than the previous ones. Nevertheless, up
to our knowledge, no scientific paper analyses the use of several STNs and the comparison
of stochastic gradient descent optimizers in tra�c sign classification problem domain. These
experiments and their results can help other researchers to apply to these new datasets.

Future work should study how to build a single deep neural network that could pro-
vide top-notch tra�c sign recognition rate accuracy in every country whose tra�c sign
pictographs are quite similar, which is the case of Europe, without needing a particular
dataset for each of these countries. Finally, we encourage researchers and companies to
build tra�c sign classifiers which are robust to adversarial examples as it poses security
concerns that could negatively a↵ect, for instance, to self-driving cars, and consequently,
the safety of people.
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