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We discuss the effect of small perturbation on nodeless solutions of the nonlinear Schrödinger
equation in 1+1 dimensions in an external complex potential derivable from a parity-time symmetric
superpotential that was considered earlier [Phys. Rev. E 92, 042901 (2015)]. In particular we
consider the nonlinear partial differential equation { i ∂t+∂

2
x+g|ψ(x, t)|2−V +(x) }ψ(x, t) = 0, where

V +(x) =
(
−b2 −m2 + 1/4

)
sech2(x)−2im b sech(x) tanh(x) represents the complex potential. Here

we study the perturbations as a function of b and m using a variational approximation based on
a dissipation functional formalism. We compare the result of this variational approach with direct
numerical simulation of the equations. We find that the variational approximation works quite well
at small and moderate values of the parameter bm which controls the strength of the imaginary
part of the potential. We also show that the dissipation functional formalism is equivalent to the
generalized traveling wave method for this type of dissipation.

I. INTRODUCTION

The topic of balanced loss and gain or parity-time
(PT ) symmetry and its relevance for physical applica-
tions on the one hand, as well as its mathematical struc-
ture on the other, have drawn considerable attention from
both the physics and the mathematics community. The
original proposal of Bender and his collaborators [1–4]
towards the study of such systems was made as an al-
ternative to the postulate of Hermiticity in quantum me-
chanics. Keeping in perspective the formal similarity of
the Schrödinger equation with Maxwell’s equations in the
paraxial approximation, it was realized that such PT in-
variant systems can in fact be experimentally realized in
optics [5–14]. Subsequently, these efforts motivated ex-
periments in several other areas including PT invariant
electronic circuits [15, 16], mechanical circuits [17], and
whispering-gallery microcavities [18].

Concurrently, the notion of supersymmetry (SUSY)
originally espoused in high-energy physics has also been

∗ cooper@santafe.edu
† john.dawson@unh.edu
‡ Franz.Mertens@uni-bayreuth.de
§ earevalo@fis.puc.cl
¶ niurka@us.es
∗∗ bmihaila05@gmail.com
†† khare@physics.unipune.ac.in
‡‡ avadh@lanl.gov

realized in optics [19, 20]. The key idea is that from a
given potential one can obtain a SUSY partner potential
with both potentials possessing the same spectrum, ex-
cept possibly for one eigenvalue [21, 22]. Therefore, an
interplay of SUSY with PT symmetry is expected to be
quite rich and is indeed very useful in achieving trans-
parent as well as one-way reflectionless complex optical
potentials [23–27].

A previous paper [28] explored the interplay between
PT symmetry, SUSY and nonlinearity. That paper de-
rived exact solutions of the general nonlinear Schrödinger
(NLS) equation in 1+1 dimensions when in a PT -
symmetric complex potential [21, 29]. In particular, they
considered the nonlinear partial differential equation{

i ∂t + ∂2
x − V ±(x) + g|ψ(x, t)|2κ

}
ψ(x, t) = 0 , (1.1)

for arbitrary nonlinearity parameter κ, with

V ±(x) = W 2
1 (x)∓W ′1(x)− (m− 1/2)2 , (1.2)

and the partner potentials arise from the superpotential

W1(x) = (m− 1/2) tanhx− ib sechx , (1.3)

giving rise to

V +(x) =
(
−b2 −m2 + 1/4

)
sech2(x) (1.4a)

− 2im b sech(x) tanh(x),

V −(x) =
(
−b2 − (m− 1)2 + 1/4

)
sech2(x) (1.4b)

− 2i (m− 1) b sech(x) tanh(x) .
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For m = 1, the complex potential V +(x) has the same
spectrum, apart from the ground state, as the real po-
tential V −(x) and this fact was used in the numerical
study of the stability of the bound state solutions of the
NLS equation in the presence of V +(x) (see Ref. [28]).
In a recent complementary study [30] of this system of
nonlinear Schrödinger equations in PT symmetric SUSY
external potentials, the stability properties of the bound
state solutions of NLS equation in the presence of the
external real SUSY partner potential V −(x) were inves-
tigated. The stability regime of these solutions, which
depended on the parameters (b, κ), was compared to the
stability regime of the related solitary wave solutions to
the NLS equation in the absence of the external poten-
tial. Because the NLS equation in the presence of V −(x)
is a Hamiltonian dynamical system, in Ref. [30] they were
able to use several variational methods to study the sta-
bility of the solutions when they undergo certain small
deformations, and showed that these variational meth-
ods agreed with a linear stability analysis based on the
Vakhitov-Kolokolov (V-K) stability criterion [31, 32] as
well as numerical simulations that have recently been per-
formed.

In Ref. [28] we determined the exact solutions of the
equation for m = 1 for V +(x), which was complex. We
studied numerically the stability properties of these so-
lutions using linear stability analysis. We found some
unusual results for the stability which depended on the
value of b. What was found for m = 1 (and κ = 1) was
that the eigenvalues of the linear stability matrix became
complex for 0.56 < b < 1.37.

At that time we had not yet formulated a variational
approach for deriving the NLS equation in the presence
of complex potentials. Recently we have developed such
an approach and have applied it to the response of the
solutions of the NLS equation to weak external complex
periodic potentials. Using four variational parameters
we were able to successfully predict the time evolution of
these solitary waves when compared to direct numerical
simulation of the NLS equation in the presence of these
complex potentials [33]. Given this new tool we would
like to return to the original problem of the stability of
the exact solutions found in Ref. [28] and see how well this
variational approach agrees with numerical simulations
as a function of the strength of the dissipative part of the
potential which is proportional to bm. In this paper we
focus on the external potential V +(x) which is symmetric
in b↔ m.

Here we will compare the numerical simulations with
the results of our collective coordinate (CC) approxima-
tion. We will also look at the linear stability analysis
that arises from studying the linearization of the CC or-
dinary differential equations (ODEs). For the case of a
real external potential, studying the eigenvalues of this
reduced stability analysis predicted the correct stability
regime [34].

This paper is structured as follows. In Sec. II we re-
view the non-hermitian SUSY model that we studied in

Ref. [28] and add the self-interactions of the NLS equa-
tion to the linear model. In Sec. III we give some of the
exact low order moment equations for this problem. In
Sec. IV we introduce our collective coordinate approach,
whereas in Sec. V we use a four parameter trial wave
function that we considered in an earlier study of soliton
behavior in complex periodic external potentials, and de-
rive equations for the four CC’s. In Sec. VI we expand
the number of CC’s to six and derive equations for the
six CC’s. In Sec. VII we study the linear response theory
of the six CC approximation. In Sec. VIII we present our
numerical strategy for solving the NLS equation starting
from a perturbed exact solution. In Sec. IX we compare
the four and six CC approximations with direct numer-
ical simulations. In Sec. X we present our main conclu-
sions. Finally in Appendix A we provide the definitions
of various integrals and in Appendix B we show that for
this problem our variational approach is equivalent to the
generalized traveling wave method [35].

II. NLS EQUATION IN THE PRESENCE OF A
NON-HERMITIAN SUPERSYMMETRIC

EXTERNAL POTENTIAL

We were interested in studying the NLS equation in
the presence of a complex external potential and were
intrigued by the fact that as a result of PT symmetry,
there existed complex potentials whose SUSY partners
were real and had explicitly known spectra of bound
states. This led us to study the external potential de-
fined by the PT symmetric SUSY superpotential W1(x)
given by Eq. (1.3). This superpotential gives rise to su-
persymmetric partner potentials given by Eqs. (1.4). For
the case m = 1, V −(x) is the well known Pöschl-Teller
potential [36, 37]. The relevant bound state eigenvalues
assume an extremely simple form as

E(−)
n = −1

4
[ 2b− 2n− 1 ]

2
. (2.1)

Such bound state eigenvalues only exist when n < b −
1/2. We notice that for the ground state (n=0) to exist
requires b > 1/2. The existence of a first excited state
(n=1) requires b > 3/2. Here we consider the general
V +(x) arising from the superpotential W1(x) depending
on m, b as an external potential modifying the nonlinear
Schrödinger equation. Rewriting the external potential
given in Eq. (1.4a) as,

V +(x) = V1(x) + iV2(x) , (2.2)

we have

V1(x) = −( b2 +m2 − 1/4) sech2(x) , (2.3a)

V2(x) = −2mb tanh(x) sech(x) . (2.3b)

Note this potential is invariant under the exchange of b
and m. We are interested in the stability properties of
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the exact solutions of the NLS equation in this external
potential:

{i ∂t + ∂2
x + g|ψ(x, t)|2κ − [V1(x) + iV2(x) ] }ψ(x, t) = 0 .

(2.4)
This equation can be obtained from a generalized Euler-
Lagrange equation using a dissipation functional [33],

δΓ

δψ∗
= − δF

δψ∗t
, (2.5)

where

Γ =

∫
dt
{ i

2

∫
dx [ψ∗ψt − ψψ∗t ]−H

}
, (2.6a)

H =

∫
dx
{
|ψx|2 −

g |ψ|2κ+2

κ+ 1
+ V1(x) |ψ|2

}
, (2.6b)

F =

∫
dt F = i

∫
dx dt V2(x) [ψt ψ

∗ − ψ∗t ψ ] . (2.6c)

Localized solutions to Eq. (2.4) exist for arbitrary val-
ues of κ,m, b. Here we use ψ0(x, t) to denote the exact
solution to the NLS equation in the external potential,

ψ0(x, t) = A0 sech1/κ(x) ei[Et+φ(x) ] (2.7)

where

φ(x) =
4bmκ

κ+ 2
tan−1[tanh(x/2) ] , (2.8)

with E = 1/κ2, and

gA2κ
0 =

[4b2κ2 − (κ+ 2)2] [4m2κ2 − (κ+ 2)2]

4κ2(κ+ 2)2
. (2.9)

We notice when mb = 0 the potential is real and that
solutions exist for m2 + b2− 1/4 < (κ+ 1)/κ2. There are
two regimes where A2

0 is positive and so a solution exists
when m 6= 0. This form of the solution reflects the fact
that the potential V + is invariant under the interchange
m↔ b.

In a previous paper [38] we studied the stability of
these solutions for m = 0 (real external potential) and
for arbitrary κ. In that paper, we also considered two
other cases where exact solutions exist. For the case of
g = −1 and attractive potential, for V2 = 0, all the
solutions that were allowed were stable. Solutions also
exist for V2 6= 0 and are given by Eqs. (2.7) and (2.9)
with g = −1. For g = 1 and a repulsive real potential
we found the solutions for V2 = 0 were translationally
unstable. Solutions again exist when V2 6= 0 for this
case. We will not discuss these solutions further here.

Here we will confine ourselves to κ = 1, g = 1 and an
attractive external potential V1 and study the domain of
applicability of the variational methods we have devel-
oped previously to the case of increasing the dissipation
by allowing m to vary. In particular for the case we will
concentrate on here (κ = 1) we have that

gA2
0 = (4b2 − 9)(4m2 − 9)/36 , (2.10)

so that when m2 < 9/4 we need that b2 < 9/4 for there
to be a solution. Also if we confine ourselves to an attrac-
tive potential so that we avoid the known translational
instability associated with repulsive potentials [38], then
we also require b2 + m2 > 1/4. Note that gA2

0 is inde-
pendent of g. For κ = 1 we have

φ(x) = (4mb/3) tan−1[ tanh(x/2) ] , (2.11a)

∂xφ(x) = (2/3)mb sech(x) . (2.11b)

III. SOME GENERAL PROPERTIES OF THE
NLS EQUATION IN COMPLEX POTENTIALS

We are interested in solitary wave solutions that ap-
proach zero exponentially at ±∞. For these solutions we
define the mass density ρ(x, t) = |ψ(x, t)|2, and the mass
or norm M(t) as

M(t) =

∫
dx ρ(x, t) =

∫
dx |ψ(x, t)|2 . (3.1)

In addition, we define the current as:

j(x, t) = i [ψ(x, t)ψ∗x(x, t)− ψ∗(x, t)ψx(x, t) ] . (3.2)

Multiplying the NLS equation (2.4) by ψ∗(x, t) and sub-
tracting the complex conjugate of the resulting equation,
we obtain

∂ρ(x, t)

∂t
+
∂j(x, t)

∂x
= 2V2(x) ρ(x, t). (3.3)

Integrating over space, and assuming that j(+∞, t) −
j(−∞, t) = 0, we find

dM(t)

dt
= 2

∫
dxV2(x) ρ(x, t) . (3.4)

Note that M is conserved when V2(x) = 0. If we instead
multiply the NLS equation by ψ∗ and add the complex
conjugate of the resulting equation, we get

i (ψ∗ψt − ψψ∗t ) (3.5)

= −2gρ2 − ψ∗ψxx − ψψ∗xx + 2V1(x) ρ ,

which when we integrate over space, leads to the virial
theorem:

i

2

∫
dx (ψ∗ψt − ψ∗tψ )−

∫
dx
[
|ψx|2 − g |ψ|4

]
(3.6)

=

∫
dxV1(x) |ψ|2 .

The average position q(t) can be defined through the first
moment of x as follows:

M1(t) =

∫
dxx ρ(x, t) = q(t)M(t) . (3.7)
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Multiplying the continuity equation (3.3) by x and inte-
grating over all space we find:

dM1

dt
= 2P (t) + 2

∫
dx xV2(x) ρ(x, t) , (3.8)

where the momentum

P (t) =
1

2

∫
dx j(x, t) (3.9)

=
i

2

∫
dx [ψ∗(x, t)ψx(x, t)− ψ∗x(x, t)ψ(x, t) ] .

Here, we assumed that

lim
x→∞

xj(x, t)− lim
x→−∞

xj(x, t) = 0 . (3.10)

Assuming that the density is a function of y = x − q(t)
and t, we find

d

dt
[M(t) q(t) ] = 2P (t) + 2

∫
dy y V2(y + q(t)) ρ(y, t)

+ 2 q(t)

∫
dx V2(x) ρ(x− q(t), t) .

We recognize the last term as q(t) dM(t) / dt, so that we
finally have:

M(t)
dq(t)

dt
= 2P (t)+2

∫
dy y V2(y+q(t)) ρ(y, t). (3.11)

Taking the time derivative of the momentum P (t), using
the equations of motion for ψ and ψ∗, and integrating by
parts, we find

dP (t)

dt
= −

∫
dx ρ(x, t)

∂V1(x)

∂x
+

∫
dx j(x, t)V2(x) .

(3.12)
Here

∂V1(x)

∂x
= 2

(
b2 +m2 − 1/4

)
tanh(x) sech2(x) . (3.13)

Note that in our case V1(x) is an even function of x and
V2(x) is an odd function. In our study we will assume
ρ(x, t) = ρ̃(y, t) where y(t) = x − q(t). That is, the
functional form of ρ will be maintained if it is given a
slight perturbation away from the origin. If it stays at
the origin (q(t) = 0) and only changes its width and
amplitude under perturbation, then we see that since ρ
is an even function of y and V2(x) is an odd function of x,
the mass is conserved. One can in a systematic fashion
obtain the equations for the higher moments of 〈xn p̂m〉,
where p̂ = −i∂/∂x. It can be demonstrated that the four
and six collective coordinate approximations we derive in
this paper will satisfy a particular subset of four or six
moment equations [35].

IV. COLLECTIVE COORDINATES

The time dependent variational approximation relies
on introducing a finite set of time-dependent real param-
eters in a trial wave function that one hopes captures the
time evolution of a perturbed solution. By doing this one
obtains a simplified set of ordinary differential equations
for the collective coordinates in place of solving the full
partial differential equation for the NLS equation. By
judiciously choosing the collective coordinates, they can
be simply related to the moments of x and p̂ = −i∂/∂x
averaged over the density ρ(x, t).

That is, we set

ψ(x, t) 7→ ψ̃[x,Q(t) ] (4.1)

Q(t) = {Q1(t), Q2(t), . . . , Q2n(t) } ∈ R2n .

The success of the method depends greatly on the choice
of the the trial wave function ψ̃[x,Q(t) ]. The general-
ized Euler-Lagrange equations lead to Hamilton’s equa-
tions for the collective coordinates Q(t). Introducing the
notation ∂µ ≡ ∂/∂Qµ, the Lagrangian in terms of the
collective coordinates is given by

L(Q, Q̇ ) = πµ(Q) Q̇µ −H(Q ) , (4.2)

where πµ(Q) is defined by

πµ(Q) =
i

2

∫
dx { ψ̃∗(x,Q) [ ∂µψ̃(x,Q) ] (4.3)

− [ ∂µψ̃
∗(x,Q) ] ψ̃(x,Q) } ,

and H(Q) is given by

H(Q) =

∫
dx
{
|∂xψ̃(x,Q)|2 − g

2
|ψ̃(x,Q)|4 (4.4)

+ V1(x) |ψ̃(x,Q)|2
}
.

Similarly, in terms of the collective coordinates, the dis-
sipation functional is given by

F [Q, Q̇] = wµ(Q) Q̇µ , (4.5)

where

wµ(Q) = i

∫
dxV2(x) { ψ̃∗(x,Q) [ ∂µψ̃(x,Q) ] (4.6)

− [ ∂µψ̃
∗(x,Q) ] ψ̃(x,Q) } .

The generalized Euler-Lagrange equations are

∂L

∂Qµ
− d

dt

( ∂L

∂Q̇µ

)
= − ∂F

∂Q̇µ
. (4.7)

Setting vµ(Q) = ∂µH(Q), we find

fµν(Q) Q̇ν = uµ(Q) = vµ(Q)− wµ(Q) (4.8)

where

fµν(Q) = ∂µπν(Q)− ∂νπµ(Q) (4.9)
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is an antisymmetric 2n × 2n symplectic matrix. If
det{f(Q)} 6= 0, we can define an inverse as the contra-
variant matrix with upper indices,

fµν(Q) fνσ(Q) = δµσ , (4.10)

in which case the equations of motion (4.8) can be put
in the symplectic form:

Q̇µ = fµν(Q)uν(Q) . (4.11)

Poisson brackets are defined using fµν(Q). If A(Q) and
B(Q) are functions of Q, Poisson brackets are defined by

{A(Q), B(Q) } = (∂µA(Q)) fµν(Q) (∂νB(Q)) . (4.12)

In particular,

{Qµ, Qν } = fµν(Q) . (4.13)

It is easy to show that fµν(x) satisfies Bianchi’s iden-
tity. This means that definition (4.12) satisfies Jacobi’s
identity, as required for symplectic variables. The rate of
energy loss is expressed as

dH(Q)

dt
= −vµ(Q) fµν(Q)wν(Q) ,

since fµν(Q) is an antisymmetric tensor.

V. FOUR PARAMETER TRIAL WAVE
FUNCTION

Let us first look at the four parameter trial wave func-
tion that we have successfully used to study the effect of
weak complex external potentials on the exact solution of
the NLS equation in the absence of that potential. That
is we will choose:

ψ̃(x, t) = A0β(t) sech[β(t) y(x, t) ] ei φ̃(x,t) , (5.1)

where A0 is the amplitude of the exact solution in the
presence of the external potential (2.10) and is a funcition
of m, b, g, and

φ̃(x, t) = −θ(t) + p(t) y(x, t) + φ(x) . (5.2)

Here φ(x) is given by Eq. (2.11) and we have put y(x, t) =
x− q(t). The four variational parameters are labeled by

Qµ = { q(t), p(t), β(t), θ(t) } . (5.3)

The derivatives of ψ̃(x, t) with respect to t and x are
given by

ψ̃t(x, t) = A0 { β̇ sech(βy) (5.4a)

− β sech(βy) tanh(βy) [ β̇y − q̇β ]

+ iβ sech(β y ) [−θ̇ + ṗ y − p q̇ ] } ei φ̃(x,t) ,

ψ̃x(x, t) = A0 β {−β sech(βy) tanh(βy) (5.4b)

+ i sech(βy) [ p+ (2/3)mb sech(x) ] } ei φ̃(x,t) ,

where we have used (2.11b). Then the density and cur-
rent is given by

ρ(x, t) = A2
0 β

2 sech2(βy) , (5.5a)

j(x, t) = 2 ρ(x, t) [ p+ (2/3)mb sech(x) ] . (5.5b)

The time dependent mass, M(t) which is a normalization
factor, is given by

M(t) =

∫
dx ρ(x, t) = 2A2

0 β(t) , (5.6)

and the Lagrangian and dissipation function are given
by,

L =
i

2

∫
dx [ψ∗ ψt − ψ∗t ψ ]−H[ψ,ψ∗ ] , (5.7a)

H =

∫
dx [ |ψx|2 − g |ψ|4/2 + V1(x) |ψ|2 ] , (5.7b)

F = i

∫
dxV2(x) [ψ∗ ψt − ψ∗t ψ ] . (5.7c)

The generalized Euler-Lagrange equations are

δL

δψ∗
− ∂t

δL

δψ∗t
= − δF

δψ∗t
, (5.8a)

δL

δψ
− ∂t

δL

δψt
= − δF

δψt
. (5.8b)

For the trial wave function of Eq. (5.1), we find

L0[Q] ≡ i

2

∫
dx [ ψ̃∗ ψ̃t − ψ̃∗t ψ̃ ] (5.9)

= 2A2
0 β ( θ̇ + p q̇ ) ≡ πµ(Q) Q̇µ ,

where

πq = 2A2
0 β p, πp = 0, πβ = 0, πθ = 2A2

0 β . (5.10)

The only partial derivatives of πµ(Q) that survive are:

∂pπq = 2A2
0 β, ∂βπq = 2A2

0 p, ∂βπθ = 2A2
0 . (5.11)

So the symplectic matrix and its inverse are given by

fµν(Q) = 2A2
0

0 −β −p 0
β 0 0 0
p 0 0 1
0 0 −1 0

 , (5.12)

fµν(Q) =
1

2A2
0 β

 0 1 0 0
−1 0 0 p
0 0 0 −β
0 −p β 0

 .

From the Hamiltonian (5.7b) and our choice of trial wave
function we find that

H(Q) = A2
0 β { (2/3)β2 + 2 p2 + (4/3) pmbβ I1(β, q)

− [ b2 +m2 − (4/9)m2b2 − 1/4 ]β I2(β, q) } (5.13)

− (2/3) g A4
0 β

3 ,
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where I1(β, q) and I2(β, q) are given in Appendix A. Then
defining vµ = ∂µH(Q), we find

vq = −A2
0 β [ (4/3) pmbβ f1(β, q) (5.14a)

− 2 [ b2 +m2 − (4/9)m2b2 − 1/4 ]β f6(β, q) ] ,

vp = A2
0 β [ 4p+ (4/3)mbβ I1(β, q) ] , (5.14b)

vβ = A2
0 β { 2β + 2 p2/β (5.14c)

+ (8/3) pmb [ I1(β, q)− β f10(β, q) ]

− 2 [ b2 +m2 − (4/9)m2b2 − 1/4 ]

× [ I2(β, q)− β f7(β, q) ]− 2 g A2
0 β }

vθ = 0 , (5.14d)

where the fi(β, q) are given in Appendix A. From (5.7c),
the dissipation function is given by

F [Q, Q̇] = wµ(Q) Q̇µ , (5.15)

where

wq = −4mbA2
0 β

2 p f1(β, q) , (5.16a)

wp = 4mbA2
0 β

2 f2(β, q) , (5.16b)

wβ = 0 , (5.16c)

wθ = −4mbA2
0 β

2 f1(β, q) . (5.16d)

Here f1(β, q) and f2(β, q) are given in Appendix A. In
terms of the vector uµ(Q) = vµ(Q)−wµ(Q), Hamilton’s
equations for the variational parameters are

Q̇µ = fµν(Q)uν(Q) , (5.17)

which gives

q̇ = 2 p+ (2/3)mbβ I1(β, q)− 2mbβ f2(β, q) , (5.18a)

ṗ = (2/3) pmbβ f1(β, q) (5.18b)

− [ b2 +m2 − (4/9)m2b2 − 1/4 ]β f6(β, q)

β̇ = −2β2mbf1(β, q) . (5.18c)

The equation for θ̇ is not needed for the evolution of the
set of equations given in (5.18). For m = 0, the equations
reduce to:

q̇ = 2 p , (5.19a)

ṗ = −[ b2 − 1/4 ]β f6(β, q) , (5.19b)

β̇ = 0 . (5.19c)

So in this case, β = 1 and is fixed. This is because the
normalization must be conserved. Equations (5.19) then
reduce to:

q̈ + 2 [ b2 − 1/4 ] f6(1, q) = 0 . (5.20)

A. Small Oscillation equations

Using the expansions found in Appendix A we obtain
for the small oscillation equations (we set q = δq, p = δp,

0.6 0.8 1.0 1.2 1.4
b

5

10

15

20

25

T

FIG. 1. Period as a function of b for m = 0 (upper curve)
and m = 1 (lower curve) for 4 CC approximation.

and β = 1 + δβ with δQµ assumed small),

δq̇ =
π

72

(
9π2 − 64

)
bm δβ + 2 δp , (5.21a)

δṗ = − 8

15

(
b2 +m2 − (4/9) b2m2 − 1/4

)
δq , (5.21b)

δβ̇ = −π
2
mb δq . (5.21c)

Thus we obtain for q̈

δq̈ + ω2(b,m) δq = 0 , (5.22)

where

ω2(b,m) =
π2

144
( 9π2 − 64 ) b2m2 (5.23)

+
16

15

(
b2 +m2 − (4/9) b2m2 − 1/4

)
.

The period T = 2π/ω(b,m) for m = 0 and m = 1 is
shown in Fig. 1.

VI. SIX PARAMETER ANSATZ

One expects that when one increases the number of
CC’s the accuracy of the variational approximation in-
creases. For the six parameter Ansatz we will introduce
a “chirp” term [39] Λ(t) which is conjugate to the width
parameter β(t). That is we will assume:

ψ̃(x, t) = A(t) sech[β(t) y(x, t) ] , ei φ̃(x,t) (6.1)

where

φ̃(x, t) = −θ(t) +p(t) y(x, t) + Λ(t)y(x, t)2 +φ(x) . (6.2)

Here φ(x) is given by Eq. (2.11) and we have put y(x, t) =
x− q(t). We find

ρ(x, t) = |ψ̃(x, t)|2 = A2(t) sech2(βy) , (6.3)
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so that the mass becomes

M(t) =

∫
dx ρ(x, t) =

2A2(t)

β(t)
. (6.4)

It will be useful to employ M(t) as a collective coordi-
nate rather than A(t). The six time-dependent collective
coordinates then are:

Qµ(t) = {M(t), θ(t), q(t), p(t), β(t),Λ(t) } . (6.5)

The parameters β(t) and Λ(t) are related to the two
point correlation functions G2 = 〈(x − q(t))2〉 and P2 =
〈[x− q(t)]p̂+ p̂[x− q(t)]〉 where

〈(·)〉 =

∞∫
−∞

(·)|ψ(x, t)|2 dx
/ ∞∫
−∞

|ψ(x, t)|2 dx . (6.6)

Thus we find G2 = π2/(12β2), and

P2 =
i

2

∫
dx [x− q(t)] [ψ∗ψx − ψ∗xψ ]/M(t) (6.7)

=
π2Λ

3β2
+

2

3
bm

I3(β, q)

M(t)
,

where I3 is given in Appendix A. We see that P2 is di-
rectly related to Λ when the potential is real.

From the formalism given in Sec. IV, the equations
of motion for the collective coordinates follow. For the
kinetic term in the Lagrangian, we find

πM = 0, πθ = M, πq = Mp, πp = 0 (6.8)

πβ = 0, πΛ = −M π2

12β2
,

and the only non-zero derivatives are then

∂Mπθ = 1, ∂Mπq = p, ∂pπq = M (6.9)

∂MπΛ = − π2

12β2
, ∂βπΛ = M

π2

6β3
.

The antisymmetric symplectic tensor is then given by

fµν(Q) =


0 1 p 0 0 −π2/(12β2)
−1 0 0 0 0 0
−p 0 0 −M 0 0
0 0 M 0 0 0
0 0 0 0 0 Mπ2/(6β3)

π2/(12β2) 0 0 0 −Mπ2/(6β3) 0

 . (6.10)

Since det{fij(Q)} = M4π4/(36β6) and is non-zero, the inverse is given by

fµν(Q) =


0 −1 0 0 0 0
1 0 0 −p/M β/(2M) 0
0 0 0 1/M 0 0
0 p/M −1/M 0 0 0
0 −β/(2M) 0 0 0 −6β3/(π2M)
0 0 0 0 6β3/(π2M) 0

 . (6.11)

For the dissipation functional, we obtain

F (Q, Q̇) = 2Mmbβ

∫
dy sech2(βy) sech(y + q) tanh(y + q) [−θ̇ + ṗy − pq̇ + Λ̇y2 − 2yΛq̇ ] , (6.12)

which gives

wM = 0, wθ = −2Mmbβ f1(β, q), wq = −2Mmbβ [ p f1(β, q) + 2Λf2(β, q) ], (6.13)

wp = 2Mmbβ f2(β, q), wβ = 0, wΛ = 2Mmbβ f3(β, q) .

For H(Q), using the 6-parameter Ansatz we now obtain

H(Q)

M
= p2 +

β2

3
+
π2Λ2

3β2
+

2β

3
pbm I1(β, q) +

4β

3
bmΛ I3(β, q) (6.14)

− gMβ

6
− β

2

[
b2 +m2 − 1

4
− 4

9
b2m2

]
I2(β, q) .
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All the integrals are defined in Appendix A. For vµ(Q) = ∂µH(Q) we obtain

vM = p2 +
β2

3
+
π2Λ2

3β2
+

2β

3
pbm I1(β, q) +

4β

3
bmΛ I3(β, q) (6.15a)

− gMβ

3
−
[
b2 +m2 − 1

4
− 4

9
b2m2

] β
2
I2(β, q) ,

vθ = 0 , (6.15b)

vq = −2β

3
M pbmf1(β, q)− 4β

3
M bmΛ f2(β, q) (6.15c)

+M
[
b2 +m2 − 1

4
− 4

9
b2m2

]
β f6(β, q) ,

vp = 2Mp+
2Mβ

3
bm I1(β, q) , (6.15d)

vβ =
2Mβ

3
− 2Mπ2Λ2

3β3
+

2M

3
pbm I1(β, q) +

4M

3
bmΛ I3(β, q) (6.15e)

− gM2

6
− M

2

[
b2 +m2 − 1

4
− 4

9
b2m2

]
I2(β, q)− 4Mβ

3
pbmf10(β, q)

− 8Mβ

3
bmΛ f9(β, q) +

[
b2 +m2 − 1

4
− 4

9
b2m2

]
Mβ f7(β, q) ,

vΛ =
2π2MΛ

3β2
+

4βM

3
bm I3(β, q) . (6.15f)

The symplectic equations of motion are

Q̇µ = fµν(Q)uν(Q) , (6.16)

from which we find:

Ṁ = −2Mmbβf1(β, q) , (6.17a)

θ̇ = −p2 +
2

3
β2 − 5

12
gβM +

1

3
mbpβ I1(β, q) + 2mbβΛ I3(β, q) (6.17b)

+ 2mbpβ f2(β, q)− 2

3
mbpβ2 f10(β, q)− 4

3
mbβ2Λ f9(β, q)

− 1

4

[
b2 +m2 − 1

4
− 4

9
b2m2

]
β [ 3 I2(β, q)− 2β f7(β, q) ]

q̇ = 2p+
2β

3
mb I1(β, q)− 2mbβ f2(β, q) , (6.17c)

ṗ =
2

3
mbβ p f1(β, q)− 8

3
mbβ Λ f2(β, q)−

[
b2 +m2 − 1

4
− 4

9
m2b2

]
β f6(β, q) (6.17d)

β̇ = −mbβ2f1(β, q)− 4βΛ− 8β4

π2
mb I3(β, q) +

12β4

π2
mbf3(β, q) , (6.17e)

Λ̇ = −4Λ2 +
4β4

π2
+

4

π2
β3pmb I1(β, q) +

8

π2
β3Λmb I3(β, q) (6.17f)

− gβ3M

π2
− 6β3

π2

[
b2 +m2 − 1

4
− 4

9
b2m2

]
f8(β, q)

− 8β4

π2
bmp f10(β, q)− 16β4

π2
bmΛ f9(β, q) .

In Eq. (6.17f), we use the identity (A10). Here M(t) is a
dynamic variable. In order for the variational trial wave
function to match the exact solution at t = 0, the initial

conditions are:

q0 = 0, p0 = 0, β0 = 1, Λ0 = 0, θ0 = −t (6.18)

gM0 =
(4b2 − 9)(4m2 − 9)

18
.
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As a check, the right-hand-sides of Eqs. (6.17) vanish

[except for θ̇(0) = −1] at these initial values, which guar-
antees that the exact solution is stationary. For non-zero
values of q0 and/or β0, the values of p0 and Λ0 are some-

times fixed by setting q̇0 = 0 and β̇0 = 0, and solving
Eqs. (6.17c), and (6.17e) for p0 and Λ0, which gives:

p0 =
1

2

[
q̇0 −

2

3
mbβ0 I1(β0, q0) (6.19a)

+ 2mbβ0 f2(β0, q0)
]
,

Λ0 =
1

4β0

[
−β̇0 −mbβ2

0f1(β0, q0) (6.19b)

− 8

π2
mbβ4 I3(β0, q0) +

12

π2
mbβ4 f3(β0, q0)

]
.

When m = 0, the external potential is real and Ṁ = 0.
The stability of the solutions to this equation for arbi-
trary κ and for repulsive and attractive potential V1 as
well as positive and negative g was studied using a va-
riety of methods, and the stability properties and small
oscillation frequencies for q, p, β,Λ were determined in
Ref. [38]. For that problem when we set κ = 1 and
m = 0, our equations simplify to

q̇ = 2 p , (6.20)

β̇ = −4βΛ ,

Λ̇ = −4Λ2 +
4β4

π2
− gβ3M

π2
− 6β3

π2

[
b2 − 1

4

]
f8(β, q)

which agrees with the results in Ref. [38] once we use the
fact that f3[G, q, γ] in that paper is just β2f8(β, q) here.
At m = 0 the small oscillation equations for β and q
decouple. Using the expansions of the integrals found in
Appendix A, we find that the small oscillation equations
are:

δq̇ = 2δp (6.21)

δṗ = − 8

15
(b2 − 1/4) δq

so that

δq̈ + ω2
qδq = 0 , (6.22)

ω2
q =

16

15
(b2 − 1/4) .

This agrees with the result from the 4-parameter Ansatz.
However, we get a different frequency for the β oscilla-
tion,

δβ̇ = −4δΛ , (6.23)

δΛ̇ =
[ 4b2

15
+

4

π2
− 1

15

]
δβ ,

so that

δβ̈ + ω2
β δβ = 0 , (6.24)

ω2
β = 4

[ 4b2

15
+

4

π2
− 1

15

]
.

Plots of ω2
q and ω2

β for m = 0 are shown in Fig. 2(a).

VII. LINEAR RESPONSE RESULTS FOR THE
SIX CC APPROXIMATION

We linearize the set of equations given in (6.17) by
expanding the equations about the exact solutions, Qµ =
Qµ0 + δQµ keeping only the first order terms. Note that
Qµ0 are given in Eqs. (6.18). Using the expansions of
Appendix ??, we find

δṀ = −π
2
mbM0 δq , (7.1a)

δθ̇ = − 5

12
gδM +

7π

18
mb δp (7.1b)

+
1

3

[
1 +

2π2

15
−
( 1

2
+
π2

30

)
gM0

]
δβ ,

δq̇ =
π

72

(
9π2 − 64

)
mb δβ + 2 δp , (7.1c)

δṗ =
4

15
[ gM0 − 4 ] δq − 4π

9
mb δΛ , (7.1d)

δβ̇ =
[ π

2
− 20

3π

]
mb δq − 4 δΛ , (7.1e)

δΛ̇ =
2bm

3π
δp− g

π2
δM (7.1f)

+
2

15

[
−gM0 +

30

π2
+ 4

]
δβ ,

where we have used the relation,

b2 +m2 − 4

9
b2m2 − 1

4
= 2− 1

2
gM0 . (7.2)

Equations (7.1) are written as

δQ̇µ = Mµ
ν(Q0) δQν , (7.3)

from which we find:

δQ̈µ +Wµ
ν(Q0) δQν = 0 (7.4)

Wµ
ν(Q0) = −Mµ

σ(Q0)Mσ
ν(Q0) .

Here Wµ
ν(Q0) is Hermitian. The square of the linearized

oscillation frequencies ω2 are given by the eigenvalues of
Wµ

ν(Q0). One can show that the matrix Wµ
ν(Q0) can

be split into two blocks, one of them coupling (δq, δΛ, δθ),
the other coupling (δp, δβ, δM). Both of these blocks give
identical eigenvalues, a zero eigenvalue and two non-zero
eigenvalues. For example, using Eqs. (7.1), we find

δq̈ − [Aδq +B δΛ ] = 0 , (7.5a)

δΛ̈− [D δq + E δΛ ] = 0 , (7.5b)
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(a) m = 0 (b) m = 1.0

(c) m = 1.25

FIG. 2. Plots of the linear response frequencies ω2
q (lower curve in red) and ω2

β (upper curve in blue) as a function of b for (a)
m = 0, (b) m = 1, and (c) m = 1.25. The black dots represent data from the numerical simulation (see Sec. IX). The product
mb controls the strength of the imaginary part of the potential.

where

A =
8

15
(gM0 − 4) (7.6a)

+
(9π2 − 64)(3π2 − 40) b2m2

432
,

B =
(
16− 3π2

) π bm
6

, (7.6b)

D = bm
{ gM0

2π
+

2(3π2 − 40)

3π3
(7.6c)

+
(gM0 − 4)(16− π2)

15π

}
,

E = −16

π2
− 8

27
m2b2 +

8

15
(gM0 − 4) , (7.6d)

from which we find

ω2 =
1

2

[
−(A+ E)±

√
(A− E)

2
+ 4BD

]
. (7.7)

Although these two frequencies increase together when
m = 0 as a function of b, once we get near m = 1 they

start repelling each other and the dependence of the lower
frequency has a maximum as a function of b instead of
monotonically increasing. This is shown in Fig. 2. Note
that when m = 0 and b2 < 1/4, the potential becomes re-
pulsive, which leads to ω2 < 0 and thus to a translational
instability. This was studied in detail in Ref. [38].

VIII. COMPUTATIONAL STRATEGY

In our previous sections we were able to develop a six
parameter variational approach to the time evolution of
slightly perturbed solutions of the NLS equation in an ex-
ternal complex potential. We were able to get an explicit
analytic expression as a function of m, b, of two oscilla-
tion frequencies that affect the response of the solution
to small perturbations. So the first question we would
like to answer is how does this analytic result compare
to the actual response found by numerically solving the
NLS equation. The second question we want to answer
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is the domain of applicability of the variational approach
in terms of predicting the actual time evolution of the
low order moments of the solution. This has two parts:
(i) for fixed m, b how long is the approximation valid and
(ii) as we increase the size of the complex part of the
potential, by say varying m for fixed b, when does this
approach start losing its validity. In our approximation
for all b,m that correspond to an attractive potential,
there is no translational instability. So we would like to
see in our numerical simulations, that for the case m = 1
(and κ = 1), the translational instability that arises due
to mixing of the solution we are considering with the first
excited state in the potential occurs at times much later
than the domain of applicability of the six CC method.
For that case when 0.56 < b < 1.37 a late time transla-
tional instability was found.

To study numerically the evolution of Eqs. (1.1), we
have used a homemade code using a Crank-Nicolson
scheme [40]. In Ref. [33] we have shown that the Crank-
Nicolson scheme is a reliable method for successfully solv-
ing Eq. (1.1) in the presence of a complex potential. For
the sake of comparison with the analytical calculations,
the initial soliton shape ψ(x, 0) in our simulations is given
by Eqs. (6.1) and (6.2) at t = 0. The complex soliton
shape in the transverse spatial domain x was represented
in a regular grid with mesh size ∆x = 2 × 10−6 and
free boundary conditions were imposed. The mesh size
was chosen to be much smaller than the initial soliton
width parameter 1/β(0) = 1, so that very small vari-
ations of the soliton position could be accurately mea-
sured by using a center of mass definition, i.e. q = 〈x〉,
where the expectation value is defined in Eq. (6.6). The
soliton width W (t) is the square root of the normalized
second moment G2 = π2/(12β2(t)). The soliton width
parameter 1/β(t) in the simulations was calculated by

using the expression 1/β(t) =
√
G2(t)/G2(0). The other

CC’s measured in the simulations were the amplitude
A(t) = maxx∈R

√
ρ(x, t) and the mass M(t) given by

Eq. (3.1).

IX. COMPARISON OF COLLECTIVE
VARIABLE THEORIES WITH SIMULATIONS

Our potential is symmetric in b ↔ m. When either
b or m = 0 the potential is real and the small oscilla-
tion equations for q, p β,Λ decouple giving rise to sep-
arate oscillation frequencies in that regime. Once the
imaginary part turns on, we expect that these two oscil-
lation frequencies appear to a certain degree in all the
collective coordinates. Note that in the collective coor-
dinate approach the mass is related to the height and
the CC parameter β and is not an independent param-
eter, namely M(t) = 2A2(t)/β(t). First let us choose
g = 1, κ = 1,m = 0 and b = 1 to see how well our CC ap-
proximation works when compared with numerical simu-
lations when the potential is real. For our simulations we
choose the parameters g = 1, κ = 1, q0 = 0.001, β = 1.001

1 7.14357T  1 7.14357T  1 7.69231T  

(a) Position q(t) vs. t

1 4.0004T  1 5.555T  

(b) Width 1/β(t) − 1/β(0) vs.t

FIG. 3. Comparison of the four CC (blue line), six CC
(red line) and numerical simulation (black line). Parameters
and initial conditions are m = 0, q0 = 0.001, β = 1.001. All
other initial conditions are the exact solution values. Since
M = M0, we display only q and 1/β−1/β0. For this choice the
two linear response periods are Tq = 7.025, and Tβ = 4.038.

and all other parameters those of the exact solution. The
small oscillation theory for this case predicts separate
oscillation frequencies for q and β, namely Tq = 7.025,
ω2
q = 0.800 and Tβ = 4.038, ω2

β = 2.421. These frequen-

cies are located on the two branches in Fig. 2(a), and
agree with the six CC approximation. The simulation
results are represented by the black data points. This is
seen in both the six CC approximation and the numerical
simulation.

Since the perturbation is so small, we subtract the ini-
tial value of 1/β0 = 1 from 1/β to show the oscillation
in the numerical simulations. We see that for q(t), both
the amplitude as well as period of oscillation are well re-
produced by the six CC theory. This is shown in Fig. 3.

For the width parameter 1/β, the oscillation period
is 4.00 which agrees well with the linear response result
4.038, but not so well with the simulation result. Here the
spectrum consists of several peaks around the frequency
of 1.132, which corresponds to the period 5.55. Moreover,
the soliton amplitude A(t) has the period 3.85, which is
rather close to the above value of 4.00.

For our simulations with a complex potential we choose
the parameters g = 1, κ = 1,m = 1, and three values for
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b. First we choose b = 0.1 so that the imaginary part of
the potential is small, and the dissipation is weak. Next
we choose b = 0.5 which is located in the lower stability
regime 0 < b < 0.56; and b = 1.45 is located in the upper
stability regime 1.37 < b < 1.5.

The exact solution Eq. (2.7) is stationary and is ob-
tained by the CC Ansatz Eq. (6.1) with the initial con-
ditions (ICs) q0 = 0, p0 = 0, β0 = 1,Λ0 = 0, θ0 = 0, and
gM0 = (4b2 − 9)(4m2 − 9)/18, see Eqs. (6.18). In order
to test the stability of the exact solution, we choose ICs
that are slightly different from the above values. This
excites intrinsic oscillations of the soliton which are seen
in the time evolution of the CCs, which is obtained by
solving the six CC equations, Eqs. (6.17), by a Math-
ematica program. These oscillations are compared with
the oscillations which are observed in the simulations, i.e.
in the numerical solution of the NLS equation. In par-
ticular, the frequencies, periods, and amplitudes of the
oscillations are compared.

For the case b = 0.1 the four CC and six CC results
are nearly identical and agree very well with the simu-
lation results in Fig. 4. The periods of the oscillations
are T4CC = T6CC = 7.14, compared to Tsim = 7.69. This
means that the error in the CC theories is only 7%.

For the case b = 0.5 the six CC result is much better
than the four CC result and agrees rather well with the
simulation shown in Fig. 5. The periods are T4CC = 5.26,
T6CC = 6.25 and Tsim = 6.67, the error is 6%.

For the case b = 1.45 the four CC result poorly fits
the numerical result. The six CC result is very anhar-
monic and the oscillation amplitudes do not agree well
with the simulations as seen in Fig. 6. Nevertheless, the
periods T6CC = 8.33 and Tsim = 7.69 agree within an
error of 8%. Interestingly, the spectra exhibit a second
frequency which is obtained also in the linear response
theory. Fig. 2(b) shows the two frequencies for all values
of b. However, the simulations show only one frequency.

So far we have always taken q0 = 0.001, and the other
ICs as in the exact solution. Choosing a finite value for p0

gives very similar results, because the q and p oscillations
are related, see the relations below Eq. (6.21). Let us
now consider b = 1.45 and finite values for Λ0 which
will also affect the width 1/β because their oscillations
are related. Choosing a very small, negative value Λ0 =
−0.00005, and increasing this value by steps, we find that
the anharmonicity of the CCs gradually decreases. For
Λ0 = −0.00025 the oscillations are nearly harmonic and
the periods are the same as in Fig. 6

For Λ0 = +0.00025 the periods are again the same as in
Fig. 6. However, the spectrum of M(t) exhibits a second
peak at T2 = 2.38 which is stronger than the first peak at
T1 = 8.33. This second peak belongs to the upper branch
in Fig. 2(b) which was obtained by our linear response
theory. However, this peak is not seen in the simulations.

(a) Position q(t) vs. t

(b) Amplitde A(t) vs. t

(c) Width 1/β(t) vs. t

FIG. 4. Comparison of the four CC (blue line), six CC (red
line), and numerical simulation (black line) for b = 0.1. Pa-
rameters and initial conditions are m = 1, q0 = .001, all other
initial conditions are the exact solution values. Here we dis-
play q(t), A(t), and 1/β(t). For this choice the two linear
response periods are: Tq = 7.025 and Tβ = 4.038.

X. CONCLUSIONS

In this paper we investigated the domain of applica-
bility of a four and six collective coordinate approxima-
tion to study the response of the nodeless solution of
the NLS equation in the presence of a complex potential
to small perturbations. This type of approximation had
been used in the past to study the response of exact solu-
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(a) q(t) vs. t

(b) A(t)

(c) 1/β(t)

FIG. 5. Comparison of the four CC (blue line), six CC (red
line), and numerical simulation (black line) for b = 0.5. Other
parameters and initial conditions being the same as in Fig. 4.

tions of the NLS equation when in the presence of weak
harmonic complex external potentials. In this paper we
instead considered a PT -symmetric potential where we
could vary the strength of the complex part of the po-

tential from zero to its maximum allowed value. Using a
small oscillation approximation to the CC equations we
were able to obtain analytic expressions for the two fre-
quencies of small oscillation found in our six CC approx-
imation. These frequencies were quite close to those that
were found in the numerical simulations of the discretized
PDEs when we perturbed the initial conditions of the ex-
act solution. This was true for all allowed values of the
parameter product bm which governed the strength of
the imaginary part of the potential. We found that as we
increased bm, the four CC approximation quickly broke
down. The six CC approximation was quite a reasonable
approximation even at bm = 1/2, but at the maximum
value we studied bm = 1.45, it tracked accurately the
position of the solitary wave for less than 1/4 of a period
and then began to differ from the numerical solution.
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Appendix A: Definition of integrals

We note that

d

dz
sech2(z) = −2 sech2(z) tanh(z) = −2 sech3(z) sinh(z) , (A1a)

d

dz
tanh(z) = sech2(z) . (A1b)
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(a) q(t) vs. t (b) A(t)

(c) 1/β(t)

FIG. 6. Comparison of the four CC (blue line), six CC (red line), and numerical simulation (black line) for b = 1.45. Other
parameters and initial conditions being the same as in Fig. 4.

Some useful integrals are the following:

∫
dz sech2(z) = 2 , (A2a)∫
dz sech3(z) =

π

2
, (A2b)∫

dz sech4(z) =
4

3
, (A2c)∫

dz z2 sech2(z) =
π2

6
, (A2d)∫

dz sech2(z) tanh2(z) =
2

3
. (A2e)

We define:

I1(β, q) =

∫
dx sech2(βy) sech(x) =

∫
dy sech2(βy) sech(y + q) , (A3a)

I2(β, q) =

∫
dx sech2(βy) sech2(x) =

∫
dy sech2(βy) sech2(y + q) , (A3b)

I3(β, q) =

∫
dx y sech2(βy) sech(x) =

∫
dy y sech2(βy) sech(y + q) . (A3c)
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Also, we define:

f1(β, q) =

∫
dy sech2(βy) sech(y + q) tanh(y + q) , (A4a)

f2(β, q) =

∫
dy y sech2(βy) sech(y + q) tanh(y + q) , (A4b)

f3(β, q) =

∫
dy y2 sech2(βy) sech(y + q) tanh(y + q) , (A4c)

f4(β, q) =

∫
dy sech3(βy) sech(y + q) tanh(y + q) , (A4d)

f5(β, q) =

∫
dy y sech3(βy) sech(y + q) tanh(y + q) , (A4e)

f6(β, q) =

∫
dy sech2(βy) sech2(y + q) tanh(y + q) , (A4f)

f7(β, q) =

∫
dy y sech2(βy) tanh(βy) sech2(y + q) , (A4g)

f8(β, q) =

∫
dy y sech2(βy) sech2(y + q) tanh(y + q) , (A4h)

f9(β, q) =

∫
dy y2 sech2(βy) tanh(βy) sech(y + q) , (A4i)

f10(β, q) =

∫
dy y sech2(βy) tanh(βy) sech(y + q) . (A4j)

Partial derivatives of I1(β, q) are given by

∂I1(β, q)

∂q
= −

∫
dy sech2(βy) sech(y + q) tanh(y + q) = −f1(β, q) , (A5a)

∂I1(β, q)

∂β
= −2

∫
dy y sech2(βy) tanh(βy) sech(y + q) = −2f10(β, q) . (A5b)

Partial derivatives of I2(β, q) are given by

∂I2(β, q)

∂q
= −2

∫
dy sech2(βy) sech2(y + q) tanh(y + q) = −2f6(β, q) , (A6a)

∂I2(β, q)

∂β
= −2

∫
dy y sech2(βy) tanh(βy) sech2(y + q) = −2f7(β, q) . (A6b)

Partial derivatives of I3(β, q) are given by

∂I3(β, q)

∂q
= −

∫
dy y sech2(βy) sech(y + q) tanh(y + q) = −f2(β, q) , (A7a)

∂I3(β, q)

∂β
= −2

∫
dy y2 sech2(βy) tanh(βy) sech(y + q) = −2f9(β, q) . (A7b)

A useful identity is obtained by integration of f7(β, q) by parts. Using

∂

∂y
sech2(βy) = −2β sech2(βy) tanh(βy) , (A8)

we find

−2βf7(β, q) =

∫
y sech2(y + q) d

{
sech2(βy)

}
(A9)

= −
∫

sech2(βy) d
{
y sech2(y + q)

}
= −

∫
dy sech2(βy) sech2(y + q) + 2

∫
dy sech2(βy) sech2(y + q) tanh(y + q)

= −I2(β, q) + 2 f8(β, q) .
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That is,

I2(β, q)− 2βf7(β, q) = 2 f8(β, q) . (A10)

We use this identity in the Λ̇ equation, (6.17f). Next, we now consider the expansion of the integrals and find to first
order:

I1(1 + δβ, δq) =
π

2
− π

3
δβ , (A11a)

I2(1 + δβ, δq) =
4

3
− 2

3
δβ , (A11b)

I3(1 + δβ, δq) = −π
6
δq , (A11c)

f1(1 + δβ, δq) =
π

4
δq , (A11d)

f2(1 + δβ, δq) =
π

6
+

π

48
(16− 3π2) δβ , (A11e)

f3(1 + δβ, δq) =
π

48
(−32 + 3π2) δq , (A11f)

f6(1 + δβ, δq) =
8

15
δq , (A11g)

f7(1 + δβ, δq) =
1

3
+

2

45
(−15 + π2) δβ , (A11h)

f8(1 + δβ, δq) =
1

3
− 2π2

45
δβ , (A11i)

f9(1 + δβ, δq) =
π

96
(16− 3π2) δq , (A11j)

f10(1 + δβ, δq) =
π

6
+

π

32
(−16 + π2) δβ . (A11k)

Appendix B: Generalized traveling wave method

This method was named and used in a paper by Quin-
tero, Mertens and Bishop [35]. We will show here that
it is an alternative way to obtain Eq. (6.16) for the rate
of change of the collective coordinates. The authors sub-
stitute the trial wave function directly into Schrödinger’s
equation. This gives

i Q̇ν∂νψ̃ (x,Q) + ψ̃xx(x,Q) + g |ψ̃(x,Q)|2κ ψ̃ (x,Q)

= [V1(x) + iV2(x) ] ψ̃ (x,Q) , (B1a)

−i Q̇ν∂νψ̃
∗(x,Q) + ψ̃xx(x,Q) + g |ψ̃(x,Q)|2κ ψ̃∗(x,Q)

= [V1(x)− iV2(x) ] ψ̃∗(x,Q) . (B1b)

Multiply (B1a) by ∂µψ̃
∗(x,Q) and (B1b) by ∂µψ̃(x,Q)

and add them to give

i { [∂µψ̃
∗] [∂νψ̃]− [∂νψ̃

∗] [∂µψ̃] } Q̇ν + [∂µψ̃
∗] ψ̃xx (B2)

+ [∂µψ̃] ψ̃∗xx + { g |ψ̃|2κ − V1(x) } { [∂µψ̃
∗] ψ̃ + [∂µψ̃] ψ̃∗ }

= iV2(x) { [∂µψ̃
∗] ψ̃ − [∂µψ̃] ψ̃∗ } .

Integrating (B2) over x and the second term by parts
gives

Iµν(Q) Q̇ν = ∂µH(Q) +Rµ(Q) , (B3)
where

Iµν(Q) = i

∫
dx
{

[ ∂µψ̃
∗ ] [ ∂νψ̃ ]− [ ∂νψ̃

∗ ] [ ∂µψ̃ ]
}
, (B4a)

H(Q) =

∫
dx
{
|∂xψ̃|2 −

g |ψ̃|2κ+2

κ+ 1
+ V1(x)|ψ̃|2

}
, (B4b)

Rµ(Q) = i

∫
dxV2(x)

{
[ ∂µψ̃

∗ ] ψ̃ − ψ̃∗ [ ∂µψ̃ ]
}
. (B4c)

Here we have interchanged µ ↔ ν in the definition of
Iµν(Q) from their Eq. (6) [35]. So we see that Rµ(Q) ≡
−wµ(Q) and we find that
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fµν(Q) = ∂µπν(Q)− ∂νπµ(Q) (B5)

=
i

2

∫
dx { [ ∂µψ̃

∗ ] [ ∂νψ̃ ] + ψ̃∗ [ ∂µ∂νψ̃ ]− [ ∂µ∂νψ̃
∗ ] ψ̃ − [ ∂νψ̃

∗ ] [ ∂µψ̃ ]− [ ∂νψ̃
∗ ] [ ∂µψ̃ ]− ψ̃∗ [ ∂ν∂µψ̃ ]

+ [ ∂ν∂µψ̃
∗ ] ψ̃ + [ ∂µψ̃

∗ ] [ ∂νψ̃ ] } ,

= i

∫
dx { [ ∂µψ̃

∗ ] [ ∂νψ̃ ]− [ ∂νψ̃
∗ ] [ ∂µψ̃ ] } = Iµν(Q) .

In the notation used in the variational method, Eq. (B3)
becomes

fµν(Q) Q̇ν = uµ(Q)− wµ(Q) = vµ(Q) . (B6)

So the generalized traveling wave approximation is iden-

tical to the variational method. The authors of Ref. [35]
proved this in another way in Sec. III of their paper for
a simpler dissipative system.
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