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Abstract − This paper presents a precise model for the tran-
sient behaviour of Fully Differential (FD) SwItched-current
(SI) memory cells placed at the front-end of high-speed A/D
interfaces. This model allows us to analyze the main errors
associated to the S/H process, namely: excess transfer-func-
tion delay and harmonic distortion. For the latter, the anal-
ysis is extended to BandPass Σ∆ Modulators (BP-Σ∆Ms) and
a closed-form expression is derived for the third-order inter-
modulation distortion. Time-domain simulations and exper-
imental measurements taken from a 0.8µm CMOS
4th-order BP-Σ∆M silicon prototype validate our approach.

1. Introduction
Nowadays the market of digital communication devices

is rapidly expanding with the development of new services
and applications. This trend, together with the continuous
scaling of digital CMOS technologies, has motivated ex-
ploring analog design techniques compatible with stand-
ard, VLSI processes. This is the case of SwItched-current
(SI) circuits, which taking advantage of current process-
ing, are suitable for fast operation with low-power con-
sumption and low-voltage supplies [1].

Up to now, the potential of the SI technique has been
barely demonstrated through actual, practical circuits.
Thus, in the case of Σ∆ Modulators (Σ∆Ms), performances
featured by reported SI silicon prototypes are well below
those of Switched-Capacitor (SC) counterparts, even if the
latter are realized in standard technologies without good
passive capacitors. Such poorer performances are partly
due to the larger influence of SI non-idealities, as well as
to the incomplete modeling of their influence. Particularly,
for BandPass Σ∆Ms (BP-Σ∆Ms), and due to the necessity
to cope with the frequency specifications required for
modern digital wireless systems [2], Harmonic Distortion
(HD) caused by non-linear dynamics becomes one of the
dominant limiting factors.

Most attempts to model HD due to the non-linear tran-
sient assumed that the input signal is constant during the
sampling phase[3][4]. However, this assumption does not
apply to a memory cell placed at the front-end of
BP-Σ∆Ms. In this case, the input signal frequency is typi-
cally a quarter of the sampling frequency. Hence, large
variations of the drain-source current will occur during the
sampling phase, thus causing an additional HD which can-
not be explained by an step-response.

The analysis of the HD of a SI memory cell with a con-
tinuous-time sinewave signal was analysed in [5]. In this
paper, that analysis is extended to the case of BP-Σ∆Ms.
For this purpose, a precise model is described for a
front-end Fully Differential (FD) memory cell. On the one
hand, this model allows us to study the dominant non-ide-

alities associated to the sampling process, namely: excess
transfer-function delay and harmonic distortion. On the
other hand, it enables hierarchical systematic analysis of
SI circuits composed of memory cells, such as BP-Σ∆Ms.
As a result, a closed-form expression is derived for the
third-order intermodulation distortion. It is demonstrated
that large HD levels are obtained even for a low settling
error, as confirmed by experimental measurements taken
from a 0.8µm CMOS 4th-order BP-Σ∆M [6].

2. Modeling of front-end FD SI memory cells
Fig. 1(a) shows a FD second-generation memory cell.

In what follows, it will be assumed that the error associat-
ed to the transient response is the dominant limitation.
Therefore, the effect of the charge injection error, and the
finite output conductance, analysed elsewhere [1][7], will
not be considered. Besides, in most practical cases the
time constant formed by the drain-source capacitance and
the switch-on resistance is much smaller than that due to
the gate-source capacitance, , and the small-signal
transconductance, . In such a case, the behaviour of
the cell during the sampling phase, φ1, can be modelled by
the equivalent circuit in Fig.1(b). In this circuit, the
large-signal behaviour is modelled by and ,
which represent the transconductances of M+,−, given by

, where ,
, and    is the input current [3].

Let us consider that is a continuous-time sinewave of
amplitude and frequency ‡, with being
the sampling frequency. In this case, will change during
the sampling phase up to ††, thus causing an addi-
tional error to that due to the incomplete settling error,
which cannot be explained by analysing the step-response
of the cell. For a better understanding of this phenomenon,
we will consider first the linear analysis of Fig.1(b), with

and . Thus,
solving  for the initial condition, , yields:

(1)
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‡.This is the typical case of a front-end memory cell in a BP-Σ∆Μ.
††.The maximum signal variation during the sampling phase is given
by: .
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Figure 1. Fully differential memory cell. a) Schematic. b)
Equivalent circuit during the sampling phase.
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where , .

Assuming that the memory switch becomes OFF at
( is the sampling period), it can be

shown from (1) that the differential drain-source current at
the end of the sampling phase,

‡‡, is given by:

(2)

where is the incomplete settling
error and .

During the hold phase, keeps constant at the value
reached at the end of the sampling phase and the cell de-
livers the output current, . Thus, at the end of the hold
phase , the output current is:

(3)

The above expression can be simplified for two particu-
lar cases. On the one hand, consider us the case of station-
ary ( ) input signals, i.e, . In
this case, and . Making these approx-
imations in (3), results in the well-known finite difference
equation of a memory cell degraded by  [1].

On the other hand, considering a negligible settling er-
ror, i.e, , and taking into account that

, it can be shown from (3) that:

(4)

meaning that the overall transfer function of the cell is:

(5)

which can be seen as the cascade of two transfer functions:
one of the Continuous-Time (CT) type, given by

, and other one of the dis-
crete-time type corresponding to the ideal transfer function
of a memory cell, . The former causes a transmis-
sion error which we will define as . This error
can severely degrade the performance of the memory cell
even for  as will be shown in the next section.

In a more general case, i.e, for and ,
will evolve in time during the sampling phase from the
previous memorized value to the new stationary state in-
put current, degraded by . However, as a conse-
quence of , that stationary state will not be reached at
the end of the sampling phase, such that there will be an
accumulation of two errors: and . The latter has
been analysed elsewhere [1][3][4]. Here, we will focus on
studying the main effects of .

2.1 Excess transfer-function phase delay
One of the main effects of is to increase the phase

delay between and . This is illustrated in Fig.2(a) by
showing an electrical simulation (HSPICE) of the cell in
Fig. 1(a) with and assuming a
CT input signal of . This figure plots as a

function of for three values of . Comparing the re-
sulting ellipses it can be concluded that the phase delay in-
creases with as a consequence of the increment of

, i.e, . This effect is predicted by the proposed
model as Fig.2(b) illustrates. Besides, note that the el-
lipses become wider as increases. This effect appears
because is not an exact submultiple of − which is
common in practice. Hence, since the number of sampling
periods contained in an input period is not an integer, the
sampled currents will vary from one input period to the
next one.

Fig.3 illustrates the effect of changing in memo-
ry cells with non-stationary input signals for
and , ( ). Observe that the phase
delay becomes larger as a consequence of increasing ,
i.e, , not due to  (which is kept constant).

In the case of sampled-and-held input signals, the
above-mentioned phenomenon appears but when is
greatly increased. This is illustrated in Fig.4 for a FD
memory cell with , and

. Note that the cell starts to behave as if it had a
non-stationary input signal when the settling error be-
comes large ( ), i.e, for , and the dis-
crete-time approaches the continuous-time.

2.2 Harmonic distortion due to non-linear S/H
Another consequence of non-stationary input signals is

the increase of the HD as compared to the case of station-
ary signals. This is illustrated in Fig.5 by comparing the

‡‡.The notation  is used to represent .
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simulated (HSPICE) output spectra of the cell in Fig.1(a)
(with , , ,

, and ), cor-
responding to both a sampled-and-held and a continu-
ous-time input tone. It is clear that the latter presents
much more HD ( ) than the former
( ). However, in both cases the settling
error is negligible ( and ), meaning
that the extra HD is caused by the non-linear sampling
process. This phenomenon can be analysed by solving the
non-linear circuit shown in Fig.1(b) for an sinewave input.
A rigorous study will require using the Volterra series
method as we demonstrated in [7]. However this method
involves a tedious mathematical analysis and is difficult to
extend to other SI circuits of higher hierarchy such as
Σ∆Ms. Instead, we can find a similar solution − but in-
volving a more simple analysis − by replacing in (3)
with . Making this respectively in each branch of the
FD cell, the output current can be approximated by:

(6)

where

(7)

and

(8)

To obtain a closed-form expression of , we have per-
formed a Taylor series expansion of (7) and (8) for ,
giving:

(9)

where

and .
Substituting (9) into (6), it can be shown that the non-linear
term appearing at the output of the cell is:

(10)

Approximating by its first-order harmonic and perform-
ing a Fourier series expansion of (10) it can be derived that
the amplitude of the third-order harmonic is:

(11)

which agrees with HSPICE simulations as illustrated in
Fig.6 by representing ( ) vs. for

, , ,
, and different values of .

It is important to mention that the model described here
is valid not only for analysing the HD of a single memory
cell as in [5], but also to perform precise time-domain be-
havioural simulations of any FD SI circuit based on mem-
ory cells [7][8]. We will take advantage of this fact to ob-
tain the effect of non-linear  on the HD of BP-Σ∆Ms.

3. Harmonic distortion of FD SI BP-Σ∆Μs
Fig.7(a) shows the block diagram of the 4th-order

BP-Σ∆M under study, with ,
which has been obtained by applying a to a
2nd-order lowpass Σ∆M [2]. Because of this transforma-
tion, the original integrators become resonators with a
transfer function , where . This
function can be realized by several filter structures [2].
The resonators of Fig.7(a) are based on LD Integrators
(LDI’s), which can be realized using FD SI memory cells
as shown in Fig.7(b). This structure is advantageous as
compared to the others because it remains stable under
changes in the loop coefficients [7]. For the analysis of the
HD caused by non-linear , the following considera-
tions have been taken into account:
•The HD referred to the modulator input is equal to the HD
referred to the modulator output because the signal
transfer function ( ) is unity in the signal band.

•The quantization error, modelled as an additive white
noise source [2], does not contribute to HD.

•For , the HD will be dominated by the non-linear
of the cell connected at the input node (see Fig.7(b)).

Figure 4. Excess transfer-function phase delay caused by
 for a sampled-and-held input signal of .εs f i f s 4⁄≅
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Taking into account the above considerations, to calcu-
late the third-order harmonic at the output of the modula-
tor it is necessary to express as a function of the modu-
lator input amplitude, . The analysis of Fig.7(c)
gives:

(12)

where  has been assumed.
Substituting (12) into (11) and dividing by it can be
shown that the third-order intermodulation distortion,

†††, at the output of the BP-Σ∆M is:

(13)

where , and is the DAC output
current.
This analysis has been validated by time-domain simula-
tion using the behavioural simulator for SI circuits reported
in [8]. Fig.8(a) compares (13) with simulations by plotting

vs. for different values of , and
. The theoretical model accurately pre-

dicts the simulation results except for some cases where a
maximum error of occurs. In these cases a more exact
analysis using the Volterra series method should be used.

To conclude this study, Fig.8(b) compares caused
by the non-linear [7] and for and

. Note that, for , both expres-
sions approximately converge. However, for practical de-
signs, i.e, for , due to dominates,
limiting the performance of SI BP-Σ∆Ms unless a
front-end S/H circuit will be used. This fact has been con-
firmed by experimental results from a 0.8µm CMOS
4th-order BP-Σ∆M [6]. Fig.9 shows two measured output
spectra for when clocked at

and , obtaining
and respectively. In this case,

and ( at
), which according to (13) gives

 and  respectively.

4. Conclusions
The effect of non-linear S/H process on SI circuits has

been studied in detail. A model for FD memory cells
placed at the front-end of A/D interfaces has been de-
scribed. The analysis, validated by HSPICE, explains the
main errors associated to the non-linear S/H, namely: ex-
cess phase delay and HD. For the latter, a closed-form ex-
pression has been derived for at the output of
BP-Σ∆Ms, which as confirmed by experimental results,
constitutes the main source of HD in practical designs.
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