
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


1 

 

Revealing the role of Pb2+ in the stability of 

organic-inorganic hybrid perovskite 

CH3NH3Pb1-xCdxI3. An experimental and 

theoretical study 

Javier Navas,*,a Antonio Sánchez-Coronilla,*,b Juan Jesús Gallardo,a Elisa I. Martín,c 

Norge C. Hernández,d Rodrigo Alcántara,a Concha Fernández-Lorenzo,a Joaquín 

Martín-Callejaa 

aDepartamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, E-11510 Puerto Real 

(Cádiz), Spain; bDepartamento de Química Física, Facultad de Farmacia, Universidad de Sevilla, 

E-41012 Sevilla, Spain; cDepartamento de Ingeniería Química, Facultad de Química, 

Universidad de Sevilla, E-41012 Sevilla, Spain; and dDepartamento de Física Aplicada I, Escuela 

Técnica Superior de Ingeniería Informática, av. Reina Mercedes, Universidad de Sevilla, E-

41012 Sevilla, Spain. 

Corresponding Authors: 

* Javier Navas (javier.navas@uca.es); Antonio Sánchez-Coronilla (antsancor@us.es). 

 

Table of Contents entry 

 

Experimental and theoretical analysis 
revealing the role of Pb2+ in the 

stability of organic-inorganic hybrid 
perovskites 

 

Page 1 of 30 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



2 

 

  

Page 2 of 30Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



3 

 

 

Abstract 

This paper presents the synthesis of organic-inorganic hybrid perovskite CH3NH3Pb1-

xCdxI3. The effect of incorporating Cd2+ or Pb2+ on the stability of the perovskite 

structure was analysed from a theoretical and experimental viewpoint. The XRD results 

showed that the tetragonal perovskite structure was formed for values of x of up to 0.5, 

which seems to indicate that the presence of a considerable amount of Pb2+ is necessary 

to stabilise the structure. In turn, UV-Vis spectroscopy showed how the presence of 

Cd2+ led to a reduction in the optical band gap of the perovskite structure of up to 9% 

for CH3NH3Pb0.5Cd0.5I3 with regards to the MAPbI3 structure. Moreover, periodic-DFT 

calculations were performed to understand the effect of the increased concentration of 

Cd on the structural and electronic properties of MAPbI3 perovskites. The analysis of 

both the ELF and the non-covalent interaction (NCI) index show the important role 

played by the Pb2+ ions in stabilizing this kind of hybrid perovskite structures. Finally, 

the DOS analysis confirmed the experimental results obtained using UV-Vis 

spectroscopy. The theoretical band gap values decreased as the concentration of Cd 

increased. 
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1. Introduction 

Perovskites have many fascinating properties, including superconductivity, 

ferroelectricity, high thermoelectric power or optical properties.1 Thanks to these 

properties, perovskites have been used as sensors, catalysts and optoelectronic 

material.2-4 Nowadays, organic-inorganic perovskites based on halides are studied 

because they perform well in photovoltaic applications.5-7 Perovskites have a specific 

crystal structure with the ABX3 formula. The crystal structure of the ABX3 compounds 

consist of a three-dimensional lattice of corner sharing BX6 octahedra, where B is a 

bivalent metal cation, A is a monovalent organic cation that is small enough to fit into 

the structure, and X is a halogen.8 A methyl ammonium cation ([CH3NH3]
+, MA) is the 

most usual monovalent organic cation in several applications. Moreover, interesting 

examples of this kind of perovskites are CH3NH3BX3, where B = Sn2+, Pb2+; X = Cl-, 

Br-, I-. In turn, methyl ammonium lead iodide (MAPbI3) has brought about a revolution 

in photovoltaic applications thanks to its high efficiency, which reaches 18%.7 Thus, the 

crystalline structure and good photonic absorption are two vital factors in the high 

performance of this kind of compound in solar cells. The substitution of some elements 

in MAPbI3 can make it possible to control the optical and electronic properties of 

perovskites, which can affect the performance of the devices. For example, the 

substitution of I- with Cl- or Br- has been widely studied; and doping with inorganic 

cations such as Sn2+, Sr2+, or Ca2+ in Pb2+ sites has been analysed to understand its 

effect on optical and electronic properties.5, 9-12  

Thus, this article studies the effect on the structural stability and electronic properties of 

the introduction of Pb2+ or Cd2+ ions in position B of an ABX3-type perovskite, where A 

= MA and X = I-. To do this, synthesized samples were characterised using elemental 

analysis techniques such as the CHNS technique or X-ray fluorescence (XRF) to 

corroborate the amount of Pb2+ and Cd2+ introduced; X-ray diffraction (XRD) 
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determined the crystalline phases present in the samples; X-ray photon spectroscopy 

(XPS) determined the chemical bonding states; and UV-Vis spectroscopy in the diffuse 

reflectance mode (DR-UV-Vis) was used to establish the optical band gap of the 

samples. In addition, from a theoretical perspective, periodic density functional theory 

(DFT-periodic) calculations were performed to rationalize the experimental information 

on this topic. Therefore, to explore the electronic and structural effects of increasing the 

concentration of Cd, the structures (MA)4Pb4I12, (MA)4Pb3CdI12, (MA)4Pb2Cd2I12 

(MA)4Pb1Cd3I12 and (MA)4Cd4I12 were optimised. The analysis of both the electron 

localization function (ELF)13-17 and the non-covalent interaction (NCI)18 shed light on 

the bonding interactions established within these hybrid systems, highlighting the 

important role of the Pb2+ ions in the stabilization of this kind of hybrid structures. The 

density of State (DOS) and band structure results taking into account the spin-orbit 

coupling (SOC) effects were in agreement with the tendency forecast experimentally, 

showing a decrease in the optical band gap energy as the concentration of Cd2+ 

increased. 

 
2. Experimental and Computational section 

2.1. Experimental 

2.1.1. Reagents 

All the reagents were from commercial sources and used without further purification. 

The hydroidic acid (HI, 57 wt% in water) was from Aldrich; the methylamine 

(CH3NH2, 33 wt% in ethanol), diethyl ether (Et2O, purity ≥ 99.8%), led iodide (PbI2, 

purity 99%), cadmium iodide (CdI2, purity 99.999%), and γ-butyrolactone (purity ≥ 

99%) were from Sigma-Aldrich. 
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2.1.2. Synthesis 

The synthesis of the perovskite phases was performed by means of the reaction of 

CH3NH3I and the nominal quantities of PbI2 and CdI2. First, the CH3NH3I was 

synthesized following the procedure:12, 19, 20 HI (10 mL, 0.076 mol) and CH3NH2 (11.33 

mL, 0.091 mol) were stirred in an ice bath for 2 h. Next, the mixture was evaporated at 

50 ºC for 1 h, and CH3NH3I was obtained. Then, the solid was cleaned three times using 

Et2O. 

For the synthesis of the perovskite phase, a mixture was prepared of CH3NH3I (0.395 g) 

and the corresponding stoichiometric amount to obtain nominal concentrations of Cd 

(Cd/(Cd+Pb)) of 0, 25, 50, 75 y 100 at.% in γ-butyrolactone (2 mL) at 60 ºC for 18 h. 

 
2.1.2. Characterization 

The elemental analysis was performed using two instrumental techniques. The CHNS 

technique was used to obtain the amount of C, H and N, using an elemental analyser 

supplied by Leco®, model CHNS932. Also, X-ray fluorescence (XRF) was performed 

to determine the amount of Pb, Cd and I using a sequential XRF spectrometer supplied 

by Bruker®, model Pioneer S4. X-ray Diffraction (XRD) was used to determine the 

crystalline phases in the samples. The patterns were recorded using a diffractometer 

supplied by Bruker®, model D8 Discover, with Cu-Kα radiation. The scan conditions 

were from 10 to 70º in 2θ with a resolution of 0.02º, 40 kV and 40 mA. The optical 

band gap (Eg) values were determined from diffuse reflectance UV-Vis (DR-UV-Vis) 

measurements. The spectra were collected by using a system assembled in our 

laboratory composed of an integrating sphere supplied by Spectra Tech®, a USB2000+ 

spectrometer supplied by Ocean Optics®, and a Xe lamp, model ASB-XE-175, supplied 

by Spectral Products®, as the illumination source. Moreover, X-ray photoelectron 

spectroscopy (XPS) was used to study the chemical bonding states and the chemical 
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compositions of the samples. The spectra were obtained using a Kratos® Axis 

UltraDLD spectrometer, with monochromated Al-Kα radiation (1486.6 eV) and 20 eV 

pass energy. The binding energy was given with an accuracy of 0.01 eV. Electrostatic 

charging effects were stabilised with the help of a specific device developed by 

Kratos®. 

 

2.2. Computational framework 

DFT-periodic calculations were performed using the Vienna Ab Initio Simulation 

Package (VASP)21-24 with the projector-augmented wave (PAW) method.25, 26 The 

number of plane waves in VASP was controlled by a cut-off energy, chosen according 

to the pseudopotential and set in our calculations to Ecut=500 eV to satisfactorily 

describe the system.12 In this way, the value of the cut-off was chosen by increasing 

around 30% the highest value defined for all pseudopotentials used, i.e. carbon and 

nitrogen. The electron exchange and correlation were treated within the generalised 

gradient approximation (GGA).27 In the case of GGA, Perdew-Burke-Ernzerhof (PBE)27 

functionals were used that provide geometrical structures and relative stabilities for 

hybrid perovskites in good agreement with experimental data, as reported elsewhere.11, 

28-30 Both the cell shape and atomic positions were optimised using a conjugate-gradient 

algorithm, where the iterative relaxation of atomic positions was stopped when the 

forces on the atoms were less than 0.01 eV/Å. Also, a Gaussian smearing with 

kBT=0.1365 eV was applied. 

Perovskite tetragonal phase was characterised by the I4/mcm space group.30 The tag 

KSPACING determined the number of k-points in the mesh. A value of 0.4 for 

sampling the Brillouin zone for perovskite bulk was enough to obtain negligible 

changes in the optimised cell parameters and energy. The resulting cell parameters were 
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a = 8.912 Å, c = 12.707 Å for the tetragonal phase, in agreement with the experimental 

values (a = 8.874 Å, c = 12.671 Å).30  

The (MA)4Pb4I12 cell was optimised as a model for the tetragonal phase of perovskite. 

The incorporation of each proportion of Cd into the structure was performed in 

substitutional positions. The Cd atom substitutes the Pb atom in the perovskite structure 

taking into account the equivalent sites. The structures (MA)4Pb3CdI12, (MA)4Pb2Cd2I12 

(MA)4Pb1Cd3I12 and (MA)4Cd4I12 were optimised. The selected structures were 

adequate to represent qualitatively the experimental concentrations within DFT with a 

periodic boundary condition framework. It is well known the structural disorder 

associated to the MA rotation in this kind of hybrid perovskites.5, 30, 31 In a previous 

work we tested different orientations of MA within the tetragonal structure, reporting 

the most stable configuration for each doped structure.12 This structure has been used as 

origin for optimizing the structures used in this work. 

The density of states (DOS) and projected density of states (PDOS) for the relaxed 

structures were obtained using the tetrahedron method with Blöchl corrections32 and a 

KSPACING of 0.3. For all the systems, DFT+U33 calculations were performed to take 

into account the on-site Coulomb interaction. A U value of 5 eV was used for d 

orbitals.34 

Recent works have confirmed a relevant SOC in MAPbI3 due to the strong SOC on Pb 

atoms leading to a strong band-gap reduction by inducing a large splitting of the 

conduction levels while the valence band levels are nearly unaffected.35, 36 Although 

more computationally demanding, the inclusion of many body perturbation theory, 

within the GW approach37, 38 and SOC lead to a good correlation between the band gap 

values calculated and the experimental ones,11, 35 because of GW corrections are large 

and in opposite direction to SOC effect.35 Nonetheless, a computationally viable 
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alternative that has been recently applied consists of SOC-U which is followed in this 

work.39 For MAPbI3 the U value of 9 eV was used for Pb p-orbitals. 

Electron localization function (ELF)13-17 images and structure images were obtained 

using the Vaspview software40 and ChemCraft 1.6,41 respectively. The non-covalent 

interaction analysis was performed with CRITIC2 software.42, 43 NCI images were made 

with VMD software.44 VMD was developed with NIH support by the Theoretical and 

Computational Biophysics group at the Beckman Institute, University of Illinois at 

Urbana-Champaign. 

 
3. Results and Discussion 

3.1. Elemental analysis 

The elemental analysis of the samples synthesized (see experimental section) was 

performed using X-ray fluorescence to determine the amount of I-, Pb2+ and Cd2+ in the 

samples. The CHNS technique was used to determine the amount of C, H and N. From 

the elemental analysis, the weight percent of the elements present in the samples was 

obtained, and these are shown in Table 1. The percentages of C, H and N are shown 

together, but are detailed by element in Table S1 in the Electronic Supplementary 

Information (ESI). In turn, Table 1 shows the atomic/molar proportion of Cd was 

determined, obtained as the ratio of Cd/(Cd+Pb). It shows that the expected proportions 

were obtained with only small deviations with respect to the nominal composition.  

 

Table 1. Results in weight percentage (wt.%) obtained from the elemental analysis 
performed using the CHNS and XRF techniques. 
Nominal  

at% Cd 
wt% CHN wt% I wt% Pb wt% Cd Cd/(Cd+Pb) 

0.0 5.19 61.25 33.56 -- 0.00 
25.0 5.39 63.71 25.98 4.92 0.26 
50.0 5.57 66.53 17.92 9.98 0.51 
75.0 5.85 69.08 10.05 15.02 0.73 
100.0 6.11 72.14 -- 21.75 1.01 
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3.2. X-Ray Diffraction 

Figure 1A shows the XRD patterns for the samples with a nominal atomic Cd 

proportion of 0 at.%, 25 at.% and 50 at.%, while Figure 1B shows the patterns for the 

samples with 75 at.% and 100 at.%. The patterns of the samples without Cd show 

several diffraction peaks, which can be indexed to planes of the tetragonal I4/mcm space 

group, as reported previously for MAPbI3 perovskite.6, 30, 45-47 The assignation of the 

peaks found in the patterns is shown in Table 2. The peak highlighted as (4) is assigned 

to the reflection of the plane (211) of the perovskite tetragonal phase, and this reflection 

is the main difference between the patterns for perovskite tetragonal phase and 

perovskite cubic phase (Pm3m space group). This reflection is inconsistent with cubic 

symmetry, so the presence of perovskite cubic phase is negligible in our samples.30 In 

turn, for the samples without Cd, some peaks (pointed out as (6)*, (12), (14)) are 

assigned to the residual PbI2 used as a reagent in the synthesis, according to PDF 00-

007-0235 reference. 

 

 

Figure 1. XRD patterns of the samples synthesized. 
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Table 2. Assignation of the XRD peaks. Te: Tetragonal perovskite phase; MAI: 
CH3NH3I. 

Figure 1A Figure 1B 
Peak Assignation Peak Assignation Peak Assignation Peak Assignation 

(1) 
CdI2(002) 
PbI2(001) 

MAI[a] 
(9) Te(213) (a) 

CdI2(002) 
MAI[a] (g) PbI2(102) 

(2) Te(110)(002) (10) Te(114) 
Residual CdI2(103) 

(a)* 
CdI2(002) 
PbI2(001) 

MAI[a] 
(h) CdI2(006) 

(3) 
Te(112) 
MAI[a] (11) 

Te(222)(310) 
MAI[a] (b) MAI[a] (h)* 

CdI2(006) 
PbI2(110) 

(4) Te(211) (12) PbI2(102) (c) 
CdI2(004) 

MAI[a] 
(i) MAI[a] 

(5) Te(200) (13) Te[a] (c)* 
CdI2(004) 
PbI2(002) 

MAI[a] 
(j) PbI2(111) 

(6) 
CdI2(004) 
PbI2(002) 

MAI[a] 
(14) 

CdI2(006) 
PbI2(110) 

(d) MAI[a] (k) CdI2(110) 

(6)* PbI2(002) (15) 
Te[a] 

Residual CdI2(105) 
Residual MAI[a] 

(e) MAI[a] (l) PbI2(103) 

(7) Te(004) (16) CdI2(110) (f) 
CdI2(103) 

MAI[a]   

(8) Te(220) (17) Te(330)     
[a]Planes not assigned in the references. 

 

Moreover, the XRD patterns obtained for the samples with a nominal Cd composition 

of 25 at.% and 50 at.% show the peaks assigned to perovskite tetragonal phase (see 

Table 2). Moreover, the XRD patterns of these samples show peaks (marked as (1), (3), 

(6), (12), (14), (16)) that can be assigned to PbI2, CdI2 and MAI, used as reagents in the 

synthesis, according to PDF 00-007-0235, PDF 00-033-0239, PDF 00-030-1797 

references, respectively. Moreover, the proportion of the reagents increased with the 

nominal percentage of Cd, as is clearly observed in the peak pointed out as (6). 

Therefore, these samples are composed of a mixture of phases. These are tetragonal 

perovskite phase (I4/mcm space group), hexagonal CdI2 (P63mc space group), 

hexagonal PbI2 (P-3m1 space group) and hexagonal MAI.  
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Figure 1B shows the patterns for the samples with a nominal Cd percentage of 75 at.% 

and 100 at.%. The assignation of the peaks is shown in Table 2. The presence of any 

perovskite phase is not observed in these patterns. Moreover, only the peaks of the 

reagents are found. 

The formability of perovskite structure is estimated based on a geometric factor, known 

as Goldschmidt’s tolerance factor (t). For ABX3 perovskites, this factor is described as 

� = ��� + ��� 2
 �⁄ �� + ���⁄  (1) 

where rA, rB and rX are the effective ionic radii for A, B and X ions,48 which in our case 

are [CH3NH3]
+, Pb2+ or Cd2+ and I-, respectively. Goldschmidt’s factor is widely 

accepted as a criterion for the formation of the perovskite structure. Generally, the 

formation of perovskite structures is generated in the range 0.75-1.00, and an ideal cubic 

perovskite is expected when t = 1, while octahedral distortions are expected for t < 1.49 

But, Goldschmidt’s tolerance factor does not seem to be sufficient to predict the 

formation of the perovskite structure, another factor being needed. Li et al. reported the 

use of the ‘octahedral factor’ (µ),49, 50 defined as 

� = � ���  (2) 

According to the literature, for halide perovskites, most perovskites show tolerance 

factors in the range of 0.813-1.107, and the octahedral factor is higher than 0.442.49 

Thus, we analysed the MAPbI3 and MACdI3 systems. The values for the effective ionic 

radii of Pb2+, Cd2+ and I- were taken from the literature,51 while the effective ionic 

radius value of MA (rMA) was calculated according to a rigid sphere model with free 

rotation of its centre of mass. First, the centre of mass of the molecule is detected, and 

the distances between the centre of mass and all the atoms are estimated. The effective 

radius of MA is calculated as the sum of the largest distance between centre of mass and 

an atom, including hydrogen atoms (rCM), and the corresponding covalent radius of this 
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atom (rcovH), which is hydrogen. So, rMA = rCM + rcovH, where in our case rCM = 1.51Å, 

and according to the literature rcovH = 0.23Å.52 Thus, rMA is estimated as 1.74Å, in good 

agreement with the values found in the literature.7 The values for the effective ionic 

radii used and the results for Goldschmidt tolerance factor and octahedral factor for both 

systems are shown in Table 3. These results show that the MAPbI3 system fulfils both 

conditions and that t < 0.9, which is coherent with obtaining tetragonal perovskite phase 

in the sample. In turn, the tolerance factor value for the MACdI3 system is within the 

range established for the formation of perovskite phase, but the octahedral factor value 

is below the usual limit. This is coherent with perovskite phase not being formed when 

the proportion of Cd2+ in the samples increased.  

Thus, from the XRD patterns, it is possible to conclude that an increase in the 

proportion of Cd2+ in the synthesis impedes the formation of perovskite phase. These 

results are coherent with the UV-Vis spectroscopy results, as shown below. 

 
Table 3. Values of the ionic radii used, and the values calculated for Goldschmidt’s 
tolerance factor and ‘octahedral factor’ for the MAPbI3 and MACdI3 systems. 

Ion r / Å Perovskite t µ 

[CH3NH3]
+ 1.74 MAPbI3 0.822 0.541 

Pb2+ 1.19 MACdI3 0.884 0.432 
Cd2+ 0.95    

I- 2.20    
 

3.3. UV-Vis Spectroscopy 

The optical band gap (Eg) was determined using Diffuse Reflectance UV-Vis 

measurements (DR-UV-Vis). Figure 2A shows the spectra for the samples with a 

nominal composition of Cd of 0 at.%, 25 at.%, and 50 at.%, and the spectrum of PbI2 

used as a reagent in the synthesis. For the samples with Cd, two absorption bands are 

observed in the spectra. The first is at about 540 nm and is assigned to the presence of 

PbI2. For the sample without Cd2+, which is composed of MAPbI3, this absorption band 
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is observed but its intensity is low, which is coherent with the XRD results shown 

above. The second absorption band observed is at about 830 nm. This is assigned to the 

presence of perovskite phase in the samples.12 In turn, a shift of this band towards a 

higher wavelength was observed when the nominal composition of Cd increased in the 

samples, that is from 0 at.% to 25 at.% and 50 at.%. This led to a decrease in the optical 

band gap for the perovskite with Cd2+ and Pb2+, which suggests that the incorporation of 

Cd2+ into the perovskite structure is obtained up to 50 at.% of Cd. 

The optical band gap for the perovskite phases in the samples can be determined from 

the UV-Vis spectra in diffuse reflectance mode. The optical absorption coefficient (α/S) 

can be calculated by means of reflectance using the Kubelka-Munk formulism,53 

�
�
= ���� =

�1 − ���

2�
 (3) 

where R is the light reflected (%), α is the absorption coefficient and S the scattering 

coefficient. Moreover, the optical band gap is related to the incident photon energy (hν) 

according to the Tauc plot, that is54, 55 

�����ℎ��� = ��ℎ� − ��� (4) 

where A is a constant depending on the transition probability and p is related to the 

optical absorption process. Theoretically, p equals ½ or 2 for an indirect or a direct 

allowed transition, respectively.19 The optical absorption for this kind of perovskite 

occurs by direct transition, as reported previously.28 So, the optical band gap was 

determined from the extrapolation of the linear part of the Tauc plot with p = 2. The 

values of the optical band gap obtained were 1.57 eV, 1.50 eV and 1.43 eV for the 

samples with a nominal composition of Cd of 0 at.%, 25 at.% and 50 at.%, respectively. 

A decrease of around 9% in the band gap value was obtained when Cd2+ was 

incorporated into the perovskite structure in the Pb2+ position. 
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Figure 2. UV-Vis spectra, in diffuse reflectance mode, of the samples synthesized. 
 

Figure 2B shows the spectra for the samples with a nominal composition of Cd of 75%, 

and 100%, and the spectrum of CdI2 used as reagent in the synthesis. For these samples, 

the presence of the perovskite absorption band is not observed. Moreover, the presence 

of the typical absorption band for CdI2 at about 390 nm, seen in the DR-UV-Vis 

spectrum for CdI2 used as reagent, is observed in the samples with a nominal 

composition of Cd of 75 at.% and 100 at.%. Moreover, for the sample 75 at.% of Cd, it 

is possible to observe the typical absorption band for PbI2. So, these spectra are further 

evidence of the non-reaction between CH3NH3I, PbI2 and CdI2 for higher proportions of 

Cd, or when PbI2 is not present, for obtaining perovskites structures. Thus, the results 

seem to indicate that a high proportion of Cd2+ in the samples (75 at.% and 100 at.% for 

the Cd/(Cd+Pb ratio)) impedes the formation of the perovskite structure, the presence of 

the reactants used for its synthesis being observed. The presence of CH3NH3I is not 

detected with UV-Vis, as its absorption band overlaps the one assigned to the CdI2. The 

UV-Vis spectrum, in diffuse reflectance mode, for CH3NH3I used as a reagent is shown 

in Figure S1 in the ESI. 
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3.4. XPS 

XPS spectra were recorded to study the oxidation and bonding states of the elements in 

the samples. The samples with a nominal composition of 25 and 75 at.% of Cd were 

studied. Figure S2 in the ESI shows the general spectra for these samples. Moreover, 

Figure 3A shows the Pb 4f spectra for these samples. The Pb 4f7/2 signals appear at the 

binding energy (BE) of about 139 eV, in good agreement with the values reported 

previously.56, 57 Moreover, the spectra show well-separated spin-orbit components, with 

a separation of about 5 eV in both cases, which is typical for Pb2+.  

 

 

Figure 3. XPS spectra for: (A) Pb 4f; (B) Pb 4d and Cd 3d; and (C) I 3d for the samples 
with a nominal composition of 25 and 75 at.% Cd. 
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Figure 3B shows the spectrum of the Cd 3d. The signal of the Cd 3d3/2 completely 

overlaps that of the Pb 4d5/2 at approximately 413 eV. This signal is asymmetrical due 

to the presence of several contributions to it. Furthermore, the signal changes shape 

depending on the Cd content in the samples. The BE of Cd 3d5/2 was found at about 

406.2 eV, in agreement with the literature for Cd2+.56 The intensity ratio between the 

signals shown in Figure 3B varies due to the different amounts of Cd in the samples. 

The signal observed at a BE of about 402.5 eV in Figure 3B is assigned to N 1s. 

Figure 3C shows the I 3d3/2 and I 3d5/2 spectra for the samples. The spectra show well-

separated spin-orbit components, with a separation of about 11.5 eV in both cases, 

which is in agreement with values reported for I-.56 Moreover, a shift towards a lower 

BE is observed in the samples with a higher nominal composition of Cd, which is 

coherent for compounds of a more ionic nature. So, this typical shift suggests small 

modifications in the oxidation state of I- occurred in accordance with the amount of 

Cd2+ in the samples. In fact, the decrease in the optical band gap for the perovskite 

samples suggests that the presence of Cd slightly modifies the interactions of the ions in 

the lattice, which leads to changes in the band gap and geometrical distortions in the 

lattice, as theoretical calculations show.  

 
3.5. Structure and local geometry analysis 

From a theoretical perspective, an analysis was performed into the effect of increasing 

the concentration of Cd on the structural and electronic properties of MAPbI3 

perovskites. Likewise, a study was performed of the tetragonal structures of MAPb1-

xCdxI3 with x=0.00, 0.25, 0.50, 0.75 and 1.00. 

The local geometry for the most stable configuration of the optimised structures is 

shown in Figure 4. Our theoretical results show that the incorporation of Cd2+ ions 

caused distortions in the structure. Generally, the inclusion of Cd2+ ions produced a  
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Figure 4. The local geometry in 2D and 3D and ELF contour plots for the tetragonal 
MAPb1-xCdxI3 perovskite with x=0.00, 0.25, 0.50, 0.75 and 1.00. 
 

shortening of the Cd-I distances compared with the Pb-I ones. This change is more 

noticeable for the MAPb0.75Cd0.25I3 and MAPb0.50Cd0.50I3  structures (c.a. 3-5% in both) 

than for the MAPb0.25Cd0.75I3 structures (c.a. 1-2%) and MACdI3 (c.a. 1%). These 

modifications to the Cd-I and I-Pb distances are reflected in the changes in the values of 

the Pb-I-Cd and Cd-I-Cd angles (Figure 4, Table 4). As an example and for clarity, 

these angles are represented as α, β, γ, and δ in Figure 4. The ESI includes the cut 

corresponding with the front face of the tetragonal structure (Figure S3) and a table with 

its angles (Table S2). As Table 4 shows, in general the α, β, γ and δ angles increase in 

accordance with the concentration of Cd, reaching their highest values in the MACdI3 

structure. In turn, the γ and δ angles in the MACdI3 structure are c.a. 10 and 5º bigger 

than the same angles for the MAPbI3 structure. These geometry results lead us to 

believe that the structural tensions in the theoretical structures MAPb0.25Cd0.75I3  and 

MACdI3 are greater than in the structures with low concentrations of Cd2+ ions. 
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Therefore, it would seem that a certain concentration of Pb2+ ions must be present to 

stabilise the structure, as shown experimentally and as the results from ELF and NCI 

indicate, and which will be discussed below. 

 

Table 4. Geometrical parameters, identified in Figure 4, of the structures studied. 
Structure α β γ δ 
MAPbI3 157.11 155.03 156.52 158.35 

MAPb0.75Cd0.25I3 157.98 155.22 158.38 160.33 
MAPb0.50Cd0.50I3 158.71 155.33 160.02 161.95 
MAPb0.25Cd0.75I3 159.03 155.30 161.19 163.19 

MACdI3 159.85 157.02 166.40 163.48 
 

The lower part of Figures 4 and S3 show the ELF plots corresponding to the geometries 

represented in 2D. Figure 4 shows how the contour plot for Pb is different to that of Cd. 

It shows that for the experimentally-formed MAPbI3, structure, the outlines of the ELF 

for I and Pb almost overlap by means of slight electron localization (sky blue colour) 

that provides more stability to the Pb-I interaction. The introduction of Cd produces 

directionality in the outlines of the electron localization of the I towards the Cd, which 

explains the decrease produced in the Cd-I distances. As an example, this directionality 

is shown as an arrow in the enlarged image of the ELF for the MAPb0.75Cd0.25I3 

structure. However, for the MAPb0.75Cd0.25I3, MAPb0.50Cd0.50I3 and MAPb0.25Cd0.75I3 

structures, there is a sky blue area between the Pb and I atoms due to the electron 

localization between them. For the MACdI3 structure, a double directionality can be 

observed of the I towards each Cd, which explains the variation in the angles stated 

above (Table 4). This effect is also observed in the ELF image of the MAPb0.25Cd0.75I3 

structure in Figure S3 in the ESI. The results of the analysis of the ELF show that a 

certain proportion of Pb must be present for the perovskite structure to be formed and 

that the Pb-I interaction provides the structure with a stabilizing effect. At this point, it 

is interesting to use the NCI index,18 an analysis tools that complements ELF and is 
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useful for studying weak interactions. This index enables the qualitative identification 

and characterisation of weak interactions of various strengths as chemically intuitive 

isosurfaces that reveal both stabilizing (strong and attractive interactions in blue, weak 

interactions in green) and destabilizing interactions (strong and repulsive interactions in 

red). Figure 5 shows a comparison of the NCI plots for the I-Pb-I, I-Cd-I-Pb-I and I-Cd-

I interactions for the MAPbI3, MAPb0.50Cd0.50I3 and MACdI3 structures, respectively. 

The ESI includes the NCI plots for the remaining structures (Figure S4) as well as 

multimedia files (video) with the NCI analysis for all the structures. Comparing Figures 

5A and 5B, it is interesting that the experimentally formed structures (MAPbI3 and 

MAPb0.50Cd0.50I3) show isosurfaces in blue for the Pb-I and Cd-I-Pb interactions. 

However, for the MACdI3 structure, which was not formed experimentally, the Cd-I 

isosurface lobes are a green-blue colour, which shows that this interaction is weaker 

compared with the previous ones. Bearing in mind the tones of the isosurfaces, it is 

clear that the presence of Pb, particularly above a certain concentration, provides 

stabilizing characteristics to the Pb-I interaction, which promotes the formation of these 

perovskite-type structures. In this sense, the MAPb0.25Cd0.75I3 structure that was not 

formed experimentally provides crucial evidence of this (see Figure S4 and multimedia 

files in the ESI). Figure S4 shows a majority of Cd-I interactions of a green-blue colour, 

compared with the uniform blue colour of the Pb-I interaction. This greater strength of 

the Pb-I interactions means that the structures with a certain amount of Pb are more 

stable, so they can be formed experimentally. In the case of the MAPb0.25Cd0.75I3 

structure, the smaller presence of strong interactions leads us to believe that the 

structure is less stable, which is coherent with the fact that it is not formed 

experimentally. Of course, all of the above does not mean that the interactions of other 

perovskite-type experimental structures will present green-blue interactions, as the 
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formation of these structures is known to present a wide range of exceptions.49, 50 These 

results are coherent with the experimental results shown previously. 

 

 

Figure 5. NCI plots for tetragonal structures: (A) MAPbI3; (B) MAPb0.5Cd0.5I3; (C) 
MACdI3. 
 

 

3.6. DOS and PDOS analysis 

To deepen our understanding of the electronic properties that underlie the geometrical 

effects mentioned above, we will discuss the electronic structure in terms of the density 

of states (DOS), the projected density of states (PDOS) and the band structure analysis. 

The band gaps calculated using the DOS analysis decreased with higher concentrations 

of Cd (see Figure 6). This smaller band gap is in agreement with the tendency observed 

experimentally for the perovskite structures formed. Figure 6 compares the DOS with 

and without SOC. Although, qualitatively, they follow the same trend, the band gap 

values calculated when the SOC is taken into account are slightly lower than those 

without SOC. 
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Figure 6. Total DOS for tetragonal perovskite structures analysed with and without 
SOC. 
 

Figure 7 shows the contribution of Pb, Cd, I and MA groups to the valence band (VB) 

and conduction band (CB) for the MAPbI3, MAPb0.50Cd0.50I3 and MACdI3 structures, 

which were chosen as being representative for the discussion below. Figure S5 in the 

ESI includes the same contributions for the MAPb0.75Cd0.25I3 and MAPb0.25Cd0.75I3 

structures. Figure S6 shows the PDOS for all structures without SOC. In the figures, the 

contributions of I atoms and MA groups are represented as total I (s, p and d states of I 

atoms) and total CHN (s and p states of C and N, and s states of H), respectively. The 

analysis of the projected density of states (PDOS) of the structures simulated indicates 

that the VB is mostly composed of I p states, and the CB of the s, p and d states of the 

Pb2+ and Cd2+ ions, depending on the structure analysed. For the MAPbI3 structure, the  
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Figure 7. Total CHN, total I, Pb and Cd projected states with SOC+U for tetragonal 

structures: (A) MAPbI3; (B) MAPb0.5Cd0.5I3; (C) MACdI3. 

 

VB and CB are mostly composed of I p and Pb p states (see Figure 7A) respectively, as 

reported elsewhere.12, 30 Likewise, Figure 7A shows that the s and p states of the Pb 

make the biggest contribution to the edges of the VB and CB, respectively, while the 

MA groups contribute more internally. In Figure 7B, for the MAPb0.50Cd0.50I3 structure, 

as well as the I and CHN states, it is possible to see that the s states of the Pb together 

with the d states of the Cd make the biggest contribution to the edge of the VB. In 

particular, the d states that are near the edge of the VB must play an important role in 

the charge transfer processes. The origin of the CB is dominated by the s states of the 

Cd followed by the p states of the Pb (Figure 7B). A different situation is observed for 

the MACdI3 structure, where the I states contribute almost exclusively to the edge of the 

VB while the s states of the Cd make an extraordinary contribution to the origin of the 

conduction band (Figure 7C). The analysis of the PDOS shows that the contribution of 

the s states of the Cd to the origin of the conduction band (CB) plays a fundamental role 

in the decrease in the band gap (Figure 6). This decrease in the band gap values can be 

seen more clearly in Figure 8, where the Cd s states in the CB have been superimposed 
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for the MAPb0.75Cd0.25I3, MAPb0.50Cd0.50I3, MAPb0.25Cd0.75I3 and MACdI3 structures. 

Figure 8 shows the shift to lower gap values of the Cd s states as the concentration of 

Cd increases.  

 

 

Figure 8. Cd projected s-states for tetragonal perovskite structures analysed with 

SOC+U. 

 

In turn, Figure 9 shows the band structure for the MAPbI3, MAPb0.50Cd0.50I3 and 

MACdI3 structures. The Brillouin Zone for the tetragonal lattice was chosen as 

described in the literature.28 As Figure 9A and 9C show, the transition from VB towards 

CB for the MAPbI3 and MACdI3 structures is direct and takes place at point Γ. 

However, the transition for MAPb0.50Cd0.50I3 is indirect (Figure 9B). The valence-band-

maximum (VBM) corresponds to point Γ and the conduction-band-minimum (CBM) to 

point R. For the MAPbI3 structure, a splitting of the bands away from the critical point36 

associated with the loss of inversion symmetry has been reported. This splitting in the 

presence of SOC is also produced in the MAPb0.50Cd0.50I3 and MACdI3 structures. 

Nevertheless, strangely, the splitting for both the MAPb0.50Cd0.50I3 and MACdI3 around 
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the critical point R and G, respectively, is less striking than that observed for the 

MAPbI3 structure (Figure 9D). This result shows the marked effect of lead in this kind 

of hybrid materials. 

 

 

Figure 9. Band structure with SOC+U for tetragonal structures: (A) MAPbI3; (B) 

MAPb0.5Cd0.5I3; and (C) MACdI3. A detail of splitting associated with the loss of 

inversion symmetry  is shown in (D). Γ (0.0,0.0,0.0); M (0.5, 0.5,0.0); Z (0.0,0.0,0.5); X 

(0.0,0.5,0.0); A (0.5,0.5,0.5); R (0.0,0.5,0.5). 

 

4. Conclusions 

This paper presents the synthesis of organic-inorganic perovskite CH3NH3Pb1-xCdxI3. 

XRD showed the formation of tetragonal perovskite phase for x values of up to 0.5, 

while for values of x > 0.5 the perovskite phase was not formed and evidence was found 

of crystalline phases of the reactants used in the synthesis. The geometrical analysis 

seems to indicate that the Cd2+ ion was small and its incorporation into the octahedral 
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geometry of the perovskite structure was not satisfactory. For this reason, the presence 

of a large quantity of Pb2+ ions was what made possible the stabilization of the 

tetragonal perovskite structure in the system studied. In addition, DR-UV-Vis 

spectroscopy showed that the optical band gap value of the perovskite structure 

decreased when the amount of Cd increased. The optical band gap values decreased by 

9% for the MAPb0.5Cd0.5I3 structure with regard to the MAPbI3 structure. 

The tendency followed by the band gap values calculated by means of DOS was in 

agreement with that obtained experimentally. In this sense, the s states of the Cd played 

a very important role in narrowing the band gap between the valence-band-maximum 

(VBM) and the conduction-band-minimum (CBM). The band structure analysis shows 

an indirect transition between VBM and the conduction-band-minimum CBM for 

MAPb0.75Cd0.25I3, MAPb0.50Cd0.50I3 and MAPb0.25Cd0.75I3 structures.  

The ELF and NCI analyses complemented these results and suggested that a certain 

proportion of Pb2+ must be present for the perovskite-type structure to be formed and in 

this regard the Pb-I interaction provides a stabilizing effect to this kind of hybrid 

systems, which is in agreement with the experimental results found. Finally, the NCI 

analysis indicated that the Cd-I interaction was weaker in the structures with a high 

percentage of Cd than in those with low percentages.   
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