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Abstract
This paper analyses the transient behaviour of
SwItched-current (SI) memory cells placed at the
front-end of high-speed A/D interfaces. Based on the
Volterra series method, the non-linear sampling proc-
ess occurring in such cells is studied and closed-form
expressions are obtained for the Total Harmonic Dis-
tortion (THD) and the intermodulation distortion. The
analysis is extended to the case of BandPass Σ∆ Mod-
ulators (BP-Σ∆Ms) using Fully-Differential (FD) SI
memory cells. As a result, the third-order intermodula-
tion distortion at the output of the modulator is derived.
Time-domain simulations and experimental measure-
ments taken from a 0.8µm CMOS 4th-order BP-Σ∆M
silicon prototype validate the study.

1. Introduction

Nowadays the market of digital communication
devices is rapidly expanding with the development of
new services and applications. This trend, together
with the continuous scaling of digital CMOS technolo-
gies, has motivated exploring analog design techniques
compatible with standard, VLSI processes. This is the
case of SwItched-current (SI) circuits, which taking
advantage of current processing, are suitable for fast
operation with low-power consumption and low-volt-
age supplies [1].

Up to now, the potential of the SI technique has
been barely demonstrated through actual, practical cir-
cuits. Thus, in the case of Σ∆ Modulators (Σ∆Ms), per-
formances featured by reported SI silicon prototypes
are well below those of Switched-Capacitor (SC) coun-
terparts, even if the latter are realized in standard tech-
nologies without good passive capacitors. Such poorer
performances are partly due to the larger influence of
SI non-idealities, as well as to the incomplete modeling
of their influence. Particularly, for BandPass Σ∆Ms
(BP-Σ∆Ms), and due to the necessity to cope with the
frequency specifications required for modern digital
wireless systems [2], Harmonic Distortion (HD)
caused by non-linear dynamics becomes one of the
dominant limiting factors.

Most attempts to model HD due to the non-linear
transient assumed that the input signal is constant dur-
ing the sampling phase[3][4]. However, this assump-

tion does not apply to a memory cell placed at the
front-end of BP-Σ∆Ms. In this case, the input signal
frequency is typically a quarter of the sampling fre-
quency. Hence, large variations of the drain-source cur-
rent will occur during the sampling phase, thus causing
additional HD which cannot be explained by evaluat-
ing the step-response. Based on some simplifications,
the HD of a SI memory cell with a continuous-time sin-
ewave was obtained in [5].

In this paper, the study of this phenomenon is
extended to the case of Fully-Differential (FD) SI
BP-Σ∆Ms. For that purpose, a rigorous analysis −based
on the Volterra series method [6]− is carried out at the
memory cell level. On the one hand, this approach
allows us to predict the HD of front-end memory cells
considering all cases regarding the input signal fre-
quency and the memory-cell bandwidth. On the other
hand, it enables hierarchical systematic analysis of SI
circuits composed of memory cells, such as BP-Σ∆Ms.
As a result, a closed-form expression is derived for the
third-order intermodulation distortion ( ) at the
output of the modulator. It is demonstrated that large

levels are obtained even for a low settling error,
as confirmed by experimental measurements taken
from a 0.8µm CMOS 4th-order BP-Σ∆M silicon proto-
type [7].

2. Extra HD due to non-linear S/H process

Fig.1 shows the single-ended (Fig.1(a)) and the
FD (Fig.1(b)) versions of a second-generation simple
memory cell. In what follows, it will be assumed that
the error associated to the transient response is the
dominant limitation. Therefore, the effect of the charge
injection error and the finite output conductance, ana-
lysed elsewhere [1], will not be considered.
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Fig. 1: Second-generation simple memory cell: (a) Single-ended
version. (b) Fully-differential version.
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Besides, in most practical cases the time constant
formed by the drain-source capacitance and the
switch-on resistance is much smaller than that due to
the gate-source capacitance, , and the small-signal
transconductance, , of the memory transistor − M in
Fig.1(a) and M+,− in Fig.1(b). In such a case, the
small-signal transient response during the sampling
phase, , will be governed by the time constant

. Thus, if the input signal, , remains
stationary during , the transient response of the cir-
cuit in Fig.1 can be analysed as a step response. If the
charge of is not completed at the end of the sam-
pling phase, , an error occurs, called incomplete set-
tling, , with being the
sampling period [1]. In addition to that linear error, ,
the signal-dependent step response leads to harmonic
distortion as demonstrated in [3][4].

Let us consider that is a continuous-time sine-
wave of amplitude and frequency

†, where
is the sampling frequency. Fig.2 shows

the transient evolution of the drain current,
( for the FD cell). Observe that, in this
case, will change during the sampling phase up to

††, thus causing an additional error to that due
to the incomplete settling error. This additional error,
dominantly non-linear, will cause extra HD which can-
not be explained by analysing the step-response of the
cell, i.e, considering stationary input signals during the
sampling phase.

Fig.3 illustrates the increase of HD due to non-sta-
tionary input signals by comparing the simulated
(HSPICE) output spectra of the FD cell in Fig.1(b)
(with , , ,

, and ), cor-
responding to both a sampled-and-held (stationary)
and a continuous-time (nonstationary) input tone. It is
clear that the latter presents much more HD
( ) than the former
( ). However, in both cases the settling error

is negligible ( , and ),
meaning that the extra HD is caused by the non-linear
sampling process. As illustrated in Fig.3(c), HD due to
the non-linear sampling becomes lower as is
reduced, i.e, as the signal is more stationary during the
sampling phase. This phenomenon can be analysed by
using the Volterra series method [6] to solve the
non-linear transient response of the cell of Fig.1 with
an sinewave input signal.

3. Analysis of THD using Volterra series

A.Review of Volterra series
As well known, the output signal, , of a Lin-

ear Time-Invariant (LTI) system can be represented by:

(1)

where is the impulsive response of the system and
is the input signal. Using fasorial analysis, the

above expression can be expressed as:
†. This is the typical case of a front-end cell in a BP-Σ∆Μ.
††. The maximum signal variation during sampling phase is
given by: .
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Fig. 2: Transient evolution of for an input sinewave with
, and .
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Fig. 3: Extra HD caused by the non-linear sampling. Output spec-
tra (HSPICE) of a FD memory cell with a (a) non-station-
ary and (b) stationary input tone of . (c)
vs. .
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(2)
where is the Fourier transform of and

, is a fasor of amplitude and
angular frequency .

In the more general case, and under some general
continuity conditions, a non-linear time-invariant sys-
tem can be expanded into a series of the type [6],

(3)

which is called the Volterra series. In (3), the term
, usually named Volterra kernel, plays

an analogous role to that of in LTI systems, but
assuming that their currents and voltages are
signals. It can be shown that it is possible to form a
series of equivalent circuits, to solve each
one by conventional linear analysis, and to combine
their individual responses to form a total solution [6].

Expanding a non-linear system in Volterra series is
useful for finding its frequency response and hence its
sinusoidal response, which is directly related to har-
monic distortion. For this purpose, it is more conven-
ient to use the fasorial analysis in the same way as in
linear systems. Thus, assuming that the input signal is
a fasor, , the output signal will be
given by:

(4)

where

(5)

represents the Fourier transform of
the Volterra kernel. It can be shown that the

harmonic distortion coefficients, , are
related to the functions  as [8]:

(6)

Assuming two sinusoidal input signals of the same

amplitude, , and angular frequencies, and ,
the intermodulation distortion coefficients,

, are given by:

(7)

Therefore, the obtainment of is the key in calculat-
ing harmonic and intermodulation distortion coeffi-
cients of non-linear dynamic systems. In the next
section this method will be applied to obtain the THD
of an SI memory cell with a continuous-time sinewave.

B.Application to SI memory cells

Let us consider the simple SI memory cell shown
in Fig.1(a). For the analysis that follows, these approx-
imations will be considered:

• The transient response corresponds to a first-order
dynamics, dominated by .

• The charge injection error and the finite output
resistance will be neglected.

• Memory transistor, M, operates in the saturation
region and can be modelled by:

(8)

where .

Under the above-mentioned conditions, the equiv-
alent circuit of the cell in Fig.1(a) is shown in Fig.4(a).
Note that, this circuit can be viewed as the cascaded
connection of two circuits as illustrated in Fig.4(b): one
of them consists of the equivalent circuit of a simple
current mirror and the other one is an ideal S/H circuit.

Except for the half clock period delay, the analysis
of Fig. 4(b) during the sampling phase gives all infor-
mation needed to analyse the non-linear transient
behaviour of the cell and hence, to get a closed-form
expression of the harmonic distortion. Therefore, in
what follows, we will consider for our analysis the cir-
cuit in Fig. 4(b) during .
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Fig. 4: (a) Equivalent circuit of the memory cell. (b) Equivalent cir-
cuit for the analysis of harmonic distortion.
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By applying Kirchoff’s current law to node n1 (see
Fig.4(b)), we obtain:

(9)

By making the gate-source voltage, , equal to a
quiescent voltage, , plus an incremental voltage,

, i.e, , (9) simplifies into:

(10)

where and
 has been considered.

The incremental voltage, , can be expressed in its
Volterra series as:

(11)

where  stands for the  term of .

Substituting (11) into (10) and keeping only the most
significant terms, it can be obtained that the differential
equations corresponding to the first, second and
third-order kernels are, respectively:

(12)

Performing the same analysis for node n2 yields:

(13)

where , represents the term of the
Volterra series expansion of .

Using fasorial analysis and solving for ,
and in the

above expressions yields:

(14)

(15)

(16)

where .

Substituting (14)-(16) into (6) and (7), closed-form
expressions can be obtained for THD and the inter-
modulation distortion, respectively. In this paper, we
are mainly interested in the analysis of FD SI circuits.
Thus, even-order harmonic coefficients can be
neglected and hence,  is given by:

(17)

where for a FD SI memory cell,
with  being the input signal amplitude.

Assuming in (16), and ,
expression (17) simplifies into:

(18)

and the third-order intermodulation distortion can be
obtained from (7) and (16), giving for :

(19)

The above results have been validated by electrical
simulations using HSPICE with level-47 MOS models.
Fig.5 represents vs. for a FD memory cell
like that shown in Fig.1(b) with ,

, , , and
different values of . Observe that, for ,
the settling error is negligible, . How-
ever, there are high levels of harmonic distortion,

.

The effect of on the harmonic distortion can be
better appreciated in Fig.6 by displaying as a
function of for , ,

, and different values of
the input signal frequency. In this case, simulations
were carried out by using the precise time-domain SI
behavioural simulator described in [9]. Note from
Fig.6 that is reduced as is increased and/or

 is reduced, i.e, as  is decreased.

It is important to mention that the model described
here is valid not only for analysing the HD of a single
memory cell as in [5], but also to perform precise
time-domain behavioural simulations of any FD SI cir-
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cuit based on memory cells [9][10]. We will take
advantage of this fact to obtain the effect of non-linear
S/H on the intermodulation distortion of BP-Σ∆Ms.

4. Harmonic distortion of FD SI BP-Σ∆Ms

Fig.7(a) shows the block diagram of the 4th-order
BP-Σ∆M under study, with ,
which has been obtained by applying a to
a 2nd-order lowpass Σ∆M [2]. Because of this transfor-
mation, the original integrators become resonators
with a transfer function , where

. This function can be realized by several fil-
ter structures [2]. The resonators of Fig.7(a) are based
on LD Integrators (LDIs), which can be realized using
FD SI memory cells as shown in Fig.7(b). This struc-
ture is advantageous as compared to the others because

it remains stable under changes in the loop coefficients
[10]. For the analysis of HD caused by the non-linear
sampling, the following considerations have been
taken into account:

• HD referred to the modulator input is equal to HD
referred to the modulator output because the signal
transfer function ( ) is unity in the sig-
nal band.

• The quantization error, modelled as an additive
white noise source [2], does not contribute to HD.

• For , HD will be dominated by the non-lin-
ear sampling of the cell connected at the input
node (see Fig.7(b)). According to (17), this cell
can be modelled as an ideal cell with an input sig-
nal having a third-order harmonic of amplitude:

(20)

Taking into account the above considerations, to
calculate the third-order harmonic at the output of the
modulator it is necessary to express as a function of
the modulator input amplitude, . The analy-
sis of Fig.7(c) gives:

(21)

where  has been assumed.

From (19)-(21) it can be shown that the third-order
intermodulation distortion at the output of the
BP-Σ∆M is:

(22)

where , and is the DAC out-
put current.

This analysis has been validated by time-domain sim-
ulation using the SI behavioural simulator reported in
[9]. Fig.8(a) compares (22) with simulations by plot-
ting vs. for different values of ,
and . The theoretical model accu-
rately predicts the simulation results except for some
cases where a maximum error of occurs. In these
cases, the exact expression in (16) should be consid-
ered for the analysis of the distortion in the modulator.
However, the resulting expressions are, mathemati-
cally speaking, too complex, being better to resort to
simulation results from the point of view of the circuit
designer.

To conclude this study, Fig.8(b) compares
caused by the non-linear [10] and sampling error for

and . Note that, for
, both expressions approximately converge.

However, for practical designs, i.e, for ,
due to non-linear sampling dominates, limiting the per-
formance of SI BP-Σ∆Ms unless a front-end S/H cir-
cuit will be used.
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[11]

5. Experimental Results

The study presented here has been confirmed by
experimental results from a 0.8µm CMOS 4th-order
BP-Σ∆M, which digitizes AM signals with
resolution and 60mW power consumption from a 5V
supply voltage [7]. Fig.9 shows two measured output
spectra for when clocked at

and , obtaining
and respectively. In this case,

, ( ),
and ( at

), which according to (22) gives
 and  respectively.

6. Conclusions

The effect of non-linear S/H process on the THD
of SI circuits has been studied in detail. The analysis
developed here, based on Volterra series, allows us to
precisely predict the harmonic content of FD memory
cells placed at the front-end of high-speed A/D inter-
faces. As an application, a closed-form expression has
been derived for the third-order intermodulation distor-
tion at the output of BP-Σ∆Ms. This study, validated by
HSPICE at the memory cell level and by experimental
measurements at the modulator level, demonstrates
that large HD can be obtained even for low values of
the incomplete settling error, thus constituting one of
the most performance limiting factors in practical
designs.
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Fig. 8: due to the non-linear sampling. a) vs. . b) Com-
parison with  due to non-linear [10].
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