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Abstract

We investigate the possibility of dc soliton motion sustained by pure ac

driving in the sine-Gordon model. We show by means of the collective co-

ordinate formalism that ac driving induces a net dc velocity whose modulus

and direction depend on the driving phase. Numerical simulations of the full

sine-Gordon equation confirm the correctness and accuracy of this prediction.

Non trivial cases when dc soliton motion is transformed into oscillatory as

well as the effects of damping are analyzed. Our results settle a long stand-

ing issue about the existence and characteristics of this phenomenon, whose

possible appearance in other systems is also discussed.
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I. INTRODUCTION

It is well recognized that the study of nonlinear equations and their solutions is of great
importance in many areas of physics. Among these, the sine-Gordon equation has attracted
the interest from mathematicians and physicists due to not only its complete integrability
but also its ubiquity as a model of nonlinear physical phenomena. Indeed, the sine-Gordon
equation is known to be a canonical model for a wide variety of physical systems when
topological solitons are present, such as motion of dislocations in crystals [1], charge density
waves [2], solitons in magnetically ordered systems [3], epitaxial growth of thin films [4],
fluxon dynamics in long Josephson junctions [5], or DNA promoter dynamics [6].

One still unsolved issue regarding the application of external forces on systems repre-
sented by the sine-Gordon model regards the effects of pure ac driving and the possibility
that it induces dc motion of solitons. To clarify this question, in this Communication we
analyze the corresponding perturbed sine-Gordon equation

φtt − φxx + sin(φ) = −βφt + ǫf(t), (1)

where subindices indicate derivative with respect to the corresponding variable, βφt is the
usual damping term, and f(t) = sin(δt + δo) is an external periodic force describing, for
example, a long Josephson junction under the application of a uniform microwave field
[7]. In the following, we will only consider ac driving (with or without dissipation) acting
on a single soliton. We note that the influence of an ac force like the one we study here
acting on breather solutions of the sine-Gordon equation was the subject of several papers
by the end of the eighties, mostly from the view point of the use of a suitable frequency
to stabilize breathers in the presence of dissipation [8,9]. The related problem of an ac
driving in the presence of an additional dc driving has been already considered and it is
quite well understood (see, e.g., [7,10,11] and references therein), whereas the effects of pure
dc driving were established in the seminal work of McLaughlin and Scott [12]. The issue of
pure ac driving acting on solitons, however, has proven itself much more confusing, and a
clear picture of soliton behavior under this kind of force was still lacking.

To our knowledge, ac driven sine-Gordon solitons were first studied by Bonilla and Mal-
omed [13] (and subsequently in [14] for the Toda lattice with similar results), who claimed
that ac driving could support dc motion of solitons in a discrete (in space) sine-Gordon
model, dissipation being crucial for this phenomenon. Unfortunately, as was shown in [15],
this result was incorrect because of two reasons: First, it was obtained by means of a neces-
sary, but not sufficient, existence condition, and second, the authors used simultaneously and
carelessly both the discrete and continuum limits of the model. Numerical simulations con-
firmed that the dc motion predicted in [13] did not take place [15]. Recently, another study
found a parameter region for the discrete sine-Gordon model (i.e., the Frenkel-Kontorova
chain) where ac driving can induce dc motion. Such behavior can only occur in the discrete
model because its two ingredients arise from discreteness: the Peierls-Nabarro barrier and its
associated frequency [16]. Hence this is a much more complicated (indeed, chaotic) process
involving attractor competition and has nothing to do with the proposal of [13].

In this work, we show that dc motion of solitons induced by pure ac driving in the
continuum sine-Gordon equation is indeed possible: In the next Section, we use a collec-
tive coordinate approach to compute the soliton motion, finding that its mean velocity is
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a function of the phase of the driving. We verify our results by means of numerical sim-
ulation, the comparison turning out to be satisfactory with an almost perfect agreement.
The final Section contains a discussion of our results and comments on related subjects and
generalizations to other systems.

II. COLLECTIVE COORDINATE ANALYSIS

In order to perturbatively study eq. (1) we will resort to the usual collective coordinate
approach [17,18]: If β and ǫ are small, we can approximate the one-soliton solution of eq.
(1) by that of the unperturbed sine-Gordon equation (β = ǫ = 0) with time dependent
parameters, i.e., we will make the following ansatz:

φ(x, t) = 4 arctan



exp



±x− xo(t)−Xo(t)
√

1− u2(t)







 ,

Xo(t) =
∫ t

0

u(t′)dt′,

(2)

where the positive (negative) sign corresponds to a kink (anti-kink) solution. We note that
X(t) = xo(t) + Xo(t) [u(t)] has the meaning of the position (velocity) of the center of the
soliton, hence the name “collective coordinate,” and that the main assumption underlying
this approximation is that radiation effects induced by the perturbation are neglected. This
will be verified a posteriori by comparing with the numerical simulations.

We now apply the method of McLaughlin and Scott [12] to obtain the equations of motion
for the soliton center. The method, which they dubbed energetic analysis, is a rather simple
one and amounts to compute the variation of the energy and momentum of the unperturbed
sine-Gordon system due to the perturbation and the same quantity for a soliton solution,
subsequently imposing compatibility. This is already a classic procedure and details can be
found in [12,17,18]. The resulting equations of motion are (again, the ± sign corresponds to
a kink or an anti-kink)

du

dt
= −1

4
(1− u2)(±π

√
1− u2ǫf(t) + 4βu),

dX

dt
= u(t).

(3)

We begin by discussing the dissipation-free case, i.e., we set β = 0 in eqs. (3). In this case,
the first equation of (3) can be exactly solved, yielding

u(t) = F [u(0), δ0]/ (1 + F [u(0), δ0]
2)

1/2
,

F [u(0), δ0] ≡
u(0)

√

1− u2(0)
± πǫ

4δ
[cos(δt+ δo)− cos(δo)].

(4)
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Equation (4) should now be integrated to obtain the final result, namely the soliton center
motion. This cannot be done in general; however, when |u(0)| << 1 and |πǫ

4δ
| << 1, a good

approximation to the solution is given by

X(t) = X(0) + [u(0)∓ πǫ

4δ
cos (δo)] t±

± πǫ[sin(δt+ δo)− sin(δo)]

4δ2
.

(5)

From eq. (5) it is evident that kinks and anti-kinks will move with net velocity {u(0) ∓
[πǫ cos (δo)]/4δ} in a straight line, to which oscillations of frequency δ are overimposed.
Therefore, in this approximation, an ac driving of frequency δ will almost always induce a
dc motion of sine-Gordon solitons; indeed, only if

u(0) = ±πǫ cos(δo)

4δ
(6)

solitons will remain oscillating around their initial position. It is important to note that this
condition depends on the initial velocity of the soliton, u(0); if u(0) = 0, i.e., the soliton
is initially at rest, the condition is simply δ0 = (2n + 1)π/2, n = 0,±1, . . . But even if the
soliton is initially moving, a phase can be chosen such that this dc motion is stopped and
transformed to an oscillation, a non-trivial and unexpected result.

We note that the above predictions have been obtained for the case of a slowly moving
soliton and a small driving strength. It is possible, however, to establish this result in general
by means of an alternative method based on the study of the Hamiltonian. This calculation
is somewhat more complicated, so we will report on in elsewhere [19] and here we will just
quote the final result, namely condition (6) for oscillatory motion becomes

u(0)
√

1− u(0)2
= ±πǫ cos(δo)

4δ
, (7)

i.e., the only change with respect to the approximate condition previously derived is the

(otherwise expected) appearance of the Lorentz factor γ =
√

1− u(0)2.
To conclude our analytical calculations for this problem, we now turn to the dissipative

case. Then, eq. (3) cannot be solved, not even for u. A slow motion approximation (|u(t)| <<
1) yields

u(t) = c exp(−βt)∓

∓ πǫ

4(β2 + δ2)
[β sin(δt+ δo)− δ cos(δt+ δo)],

(8)

with

c = u(0)± ǫπ

4(β2 + δ2)
[β sin(δo)− δ cos(δo)]. (9)

From the above, rather involved expression [or from the even more cumbersome one for
X(t) which can be obtained by integrating (8)], the main conclusion we can draw is that
(within the small velocity approximation) solitons will never exhibit dc motion except for a
transient, after which they will reach a final oscillatory state around a point depending on
the initial conditions.
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III. NUMERICAL RESULTS

All the results and predictions in the previous section involve some approximation, be-
ginning with the collective coordinate hypothesis of negligible radiation. Therefore, they
are meaningless unless verified by numerical simulations of the full perturbed sine-Gordon
problem (1). Simulations were carried out by means of a standard fourth order Runge-Kutta
algorithm [20] with initial conditions given by an unperturbed sine-Gordon soliton, at rest
or with velocity u(0), and boundary conditions φx(L = ±50, t) = 0. The conclusion of our
numerical simulation program was that the predictions of the collective coordinate theory
are very well verified by the full perturbed sine-Gordon equation. An example of the accu-
racy of our analytical results is shown in Fig. 1, where we plot the results of simulations in
the absence of dissipation for different values of the phase δ0 and a soliton (actually, a kink)
initially at rest. The high degree of agreement between theory and simulations is apparent,
confirming that dc motion of ac driven kinks is indeed the usual behavior, except for very
particular choices of the phase of the driving.

The rest of the predictions are equally correct. Thus, Fig. 2 collects the outcome of
simulations intended to verify the accuracy of the prediction that solitons with specific
velocities can be stopped by a suitable choice of the driving phase. To verify this result,
we proceed in the opposite way, i.e., we compute the critical velocity for a given value of
the phase, and then we obtain the same value numerically. As can be seen from Fig. 2,
the numerical value turns out to be u(0) = 0.1335, to be compared to the predicted u(0) =
0.1347, i.e., the accuracy is better than 1%. Finally, Fig. 3 is an example of the behavior of
the system when dissipation is present. We find numerically that, indeed, oscillatory motion
is the only outcome of simulations for whatever value (not even small ones) of the initial
velocity (which, in turn, agrees with the results in [15]).

IV. CONCLUSIONS

In summary, in this Communication we have analytically and numerically demonstrated
the possibility of soliton dc motion induced by pure ac driving in sine-Gordon systems.
The direction and modulus of the corresponding velocity have been shown to depend on
the driving phase, which for a specific value (depending on the initial data) leads to pure
ac motion even if the soliton was moving. The analytical results, obtained by means of a
collective coordinate approach, agree with the numerical ones within an accuracy better than
1%. We have also found that this effect is only possible in the absence of dissipation, and that
the final steady state for all damping values is the oscillatory one. This conclusion finally
clarifies the problem of ac driving effects on solitons and opens the way to its applications
in different technological contexts, such as, e.g., Josephson junctions [5,7].

To close this section, some comments are in order about the existence of this phenomenon
in other systems. We believe that the features we have found here are generic in the collective
coordinate sense, i.e., for systems whose solitons exhibit a clear and robust particle-like
behavior (see, e.g., [17,18] and references therein). However, care must be taken when dealing
with solitons possesing inner degrees of freedom, such as the sine-Gordon breather or the
φ4 solitary wave, as the frequencies pertaining to these degrees of freedom will necessarily
interact in a complicated manner with the driving frequency. It is clear that this competition
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can give rise to chaotic phenomena, similar to that found in [16], overruling the simple
scenario we have depicted here. On the other hand, if those frequencies are very different,
our results should once again hold. Preliminary analytical and numerical investigations
support this conclusion [19].
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FIG. 1. Verification of collective coordinate predictions in the absence of dissipation. Sim-

ulation starts from a static kink located at X(0) = −5, and subject to an ac force given by

−0.02 sin(0.1t + δ0). (a) δ0 = 0 (upper curve), δ0 = 3π
4

(lower curve); notice that the direction of

motion is opposite in both cases. (b) δ0 = π
2
, critical value exhibiting oscillatory motion. Both in

(a) and (b), solid line corresponds to numerical integration of eq. (1), dashed line is the analytical

prediction (5).
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FIG. 2. Stopping of a kink initially moving with velocity u(0) = 0.1335 (solid line) compared

to the evolution of kinks moving with u(0) = 0.135 (upper dashed curve) and u(0) = 0.132

(lower dashed curve). The ac driving had δ0 = π/6; other parameters are δ = 0.1 and ǫ = 0.02.

The theoretically predicted critical velocity was u(0) = 0.1347, and the corresponding theoretical

evolution lies on top of the numerical curve for u(0) = 0.1335.
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FIG. 3. Verification of collective coordinate predictions with dissipation. Shown are two exam-

ples of soliton motion subject to an ac force given by ǫ sin(0.1t + δ0), with ǫ = 0.01 (upper curve)

and ǫ = 0.05 (lower curve); other parameters are β = 0.01, δ0 = 0.1 and u(0) = 0.2. Solid lines

correspond to numerical integration of eq. (1), dashed lines are the analytical predictions obtained

by integrating (8).
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