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 INTRODUCTION  

During the last decade, the Successive Approximation Register Analog-to-Digital 

Converters (SAR ADCs) have shown impressive figures of merits in medium-resolution  

ultra-low power applications [1]–[4]. These converters are able to offer speed and accuracy 

with a simple architecture and do not require, in general, major design cost.   

The basic task of these converters is to compare the analog input, stored in a sample-and-

hold circuit (S&H), with an estimation of its value provided by a digital-to-analog converter 

(DAC) embedded in the architecture using a binary search algorithm. Due to the demands of 

speed, power consumption and low-cost, the use of a capacitor-based DAC (CDAC) in 

combination with latched-based comparators is a common design approach in this type of 

architecture [1]–[4]. 

In high-speed high-resolution applications the performance of these SAR ADCs is 

typically limited [5]–[7] by: 1) the non-linear behavior in CDAC due to the capacitor 

mismatch and parasites, 2) errors in comparator decisions caused by the incomplete signal 

settling in the CDAC or signal dependent offsets in comparator threshold [8]–[11], and 

3) random noise (mainly, thermal and clock jitter). The first two sources of errors are 

systematic, and therefore, they are susceptible to be compensated.  

To deal with capacitor mismatch in SAR ADCs, calibration has been a traditional 

approach since early 90’s [12]. These techniques [12]–[21] use a calibration reference to 

obtain an estimation of the capacitor mismatch that later can be compensated in analog [12], 

[14]–[18]  or digital domain [7], [13], [20]. As an example in [12], an auxiliary resistive 

ladder DAC is used for capacitor trimming. In [13], an extra CDAC is used instead. 

Regarding to the errors in the comparator decisions, the digital redundancy concept has 

been proposed to deal with their associated limitations [14], [22]. In the conventional 

architecture without redundancy, the search algorithm resolves 1-bit per conversion cycle up 

to the complete desired resolution. The accuracy in comparison must be below the half the 

least significant bit (LSB) to avoid performance degradation, since any error during the binary 

search algorithm due to comparison mistake will be directly translated to output code. 

Redundancy addresses this problem based on signal processing, which in contrast to 
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calibration, does not require extra devices, and which is transparent to the user. The key 

concept in these methods is the implementation of a search algorithm in which the number of 

cycles is generally greater than the resolution of the converter. It uses a redundant numerical 

codification which defines a tolerance window around each comparator decision (redundancy 

interval), where mistakes in the comparator output can be corrected by the codification itself 

without need of interrupting the ADC operation. 

The redundancy technique has been studied in many works [10]–[14], [20]–[24] and 

approached from various points of view.  In [14], the concept of redundancy in SAR ADCs is 

theoretically evaluated and generalized for arbitrary radix codifications. This treatment is 

formally precise from the perspective of signal processing, but not for physical 

implementation. Thus, several aspects of relevant importance in the SAR ADC 

implementations are not properly covered. In the other way, there are some techniques [2], 

[10], [11], [13] apparently using different algorithms, which mainly focus on the practical 

realization. 

In this work, an analysis of these SAR ADCs with redundancy has been carried out from 

theoretical and practical points of view [25], [26]. We will demonstrate that all these 

techniques are particular cases of a more general formulation. The proposed unified 

description reformulates the general redundancy concept using expressions which are closely 

related with hardware implementation, which can be particularized for the most relevant 

techniques in the state of the art.  

In addition to the previous theoretical study, in this work a special attention has been paid 

to the physical implementation at the electrical level, including: a) an analysis at the 

architectural levels of several implementations with and without redundancy, b) development 

of electrical models for the building blocks in the SAR ADC including comparator, switches 

and SAR logic, c) an analysis of switching scheme in the CDAC, and d) implementation, 

verification and characterization of several case studies at the electrical level.   Of particular 

importance in the practical implementation is the analysis of the feasibility of the capacitor 

scaling in the CDAC. To improve matching and maximize performance, the CDAC 

implementation requires using a common unit capacitance from which the rest of capacitances 

are derived [20], [27]. The resulting scale factors can lead to large aspect ratios between 

devices for resolution above 8 bits. This ratio difference could become problematic due to 
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technological issues (matching, noise, etc.), even making the design no feasible for high 

resolution. To deal with this drawback, an effective solution has been proposed in the 

bibliography [13], [28], [29] consisting in dividing the original CDAC into two or more arrays 

connected by bridge capacitances. This technique, called Split-capacitor DAC (Split-CDAC), 

allows scaling the LSB section by a factor, making them higher, and more suitable for physi-

cal integration, since lower aspect ratios with respect to the MSB capacitors are achieved. The 

key point of this new type of structure lies on the equivalent LSB capacitance referred to the 

MSB array through a bridge capacitor. For this reason, the sizing of this capacitance is crucial 

for a correct conversion. 

In this work, we will analyze this effect proposing also a general formulation of Split-

CDAC SAR ADCs with closed-form expressions for the CDAC sizing [28]. Explicit 

relationships of the impact of redundancy and bridge capacitance selections on the voltage 

excursion of the floating nets in the LSB array are derived. We will demonstrate that this 

excursion can be controlled, similarly that for the case without redundancy [28], [30], using 

an extra limiting capacitor in the LSB array, the optimum value of which is theoretically 

derived. 

The contents in this document are structured as follows. In Section 2, the fundamentals of 

the SAR ADC are explained. Section 3 introduces the concept of redundancy and our 

proposed description. In this section, the proposed formulation will be verified in several 

implementations based on behavioral models and numerical simulations using MATLABTM. 

In Section 4, the validation will be complemented with electrical simulations of a realistic 

case study, within Design Framework II environment from Cadence®, using macro- and 

Verilog-A models of their building blocks. Additionally, a review of the most commonly used 

switching schemes is included, as well as a comparison of their energy consumption. Section 

5 shows the particularization of the theoretical description for the Split-CDAC architecture 

with several case studies at both behavioral and electrical levels. Finally, conclusions and 

future work are summarized in Section 6. 
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 SUCCESSIVE APPROXIMATION REGISTER ADC 

The Successive Approximation Register (SAR) ADC presents a simple architecture that 

implies, as shown in Fig. 1, a Sample-and-Hold circuit (S&H), a Digital-to-Analog Converter 

(DAC), a comparator, and a register and control logic to store the comparator output and acts 

over the DAC. 

2.1 PRINCIPLE OF OPERATION 

The general principle of operation is really intuition-closed: initially, the analog input 

signal, x, is sampled by the S&H, and the SAR logic is reset. Then, the stored input is com-

pared with the initial voltage at the DAC (mid-scale, or zero in differential implementations) 

and the comparator decides the first most-significant bit (MSB), D1. With this information, 

the SAR logic decides the next configuration of the DAC for the following comparison. This 

process is repetitively done during M cycles to resolve the following bits up to the least-

significant bit (LSB) one, DM. In each step, the signal xDAC[i] in Fig. 1 represents the DAC 

estimation at the i-th conversion step, the value of which being defined by the SAR logic 

output D according to the comparator outputs. In the final step, the stored comparator 

decisions (M in total) are processed by SAR correction logic to generate the ADC output 

code, z, with N bits of resolution. In a conventional SAR without redundancy, the number of 

cycles M is equal by definition to the wanted resolution N. 

For illustration purpose, Fig. 2 shows the transient evolution of the DAC estimation in a 

4-bit ADC without redundancy. As introduced before, the process starts with the comparison 

DAC
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 Conceptual block diagram of a SAR ADC. 
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of the sampled input voltage, x, which has an arbitrary analog value between the voltage 

references [−R, R], with respect to the DAC reset voltage at mid-range, i.e. xDAC[1] = 0 with 

D = 2N-1 = 8 in the example. In this situation, as the input signal is positive, the comparator 

output becomes D1 = 1, and the DAC estimation is updated to the mid-voltage of the 

remaining interval [0,+R]. In this case, xDAC[2]  R/2  for the next iteration. 

 As shown in Fig. 3, the estimation error, ε[i]= xDAC[i] – x, is sequentially reduced toward 

zero.  In the M-cycle, the value of ε[M] must remain below the least significant bit (LSB) 

associated to the target resolution N for the final LSB bit estimation DM,  

 
2

[ ]
2N

R
M LSB     (1) 

Considering the information of DM, the final quantization error is below the half the LSB 

as expected for and ideal ADC, 

 
2

q
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   (2) 

To assure that the comparator accuracy does not limit performance, its accuracy must be 

below the quantization error. In a conventional ADC without redundancy, as shown in Fig. 3, 

this requirement must be maintained throughout the entire conversion time. According to the 

scheme in Fig. 1, the task of the comparator is determining if the sampled input signal is 

above or below the DAC output. This is completely equivalent, as shown in Fig. 3, to 
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 Transient evolution of the DAC input estimation ε[i].  
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determine the sign of the estimation error ε[i]= xDAC[i] – x. With this relationship, the building 

blocks in the SAR ADC can be re-allocated as shown in Fig. 4 to derive an equivalent 

realization of the SAR ADC. 

In spite of its formal equivalence, the topology in Fig. 4 has several advantages for 

physical implementation. First, the comparator design is simplified since now all the compa-

risons are done with respect to the zero voltage. Second, and more important, the task of sam-

pling, subtraction and DAC estimation can be simultaneously done in a charge-distribution 

topology based on capacitors with a single device [3], [10], [20], known in the bibliography as 

capacitor-based DAC (CDAC). Due to efficiency of this architecture, the use of a capacitor-

based DAC (CDAC) is a common design approach in high-speed, low-power and low-cost 

applications [1]–[4]. In the following section we will analyze this structure with more details. 
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2.2 IMPLEMENTATION BASED ON A CAPACITOR-BASED DAC (CDAC) 

 Fig. 5 shows a simplified diagram block of SAR ADC based on a fully differential 

implementation of the CDAC. This circuit comprises M capacitors {Ci} and an optional 

capacitor C0 to control the full-scale (FS) range [-R ,+R]. The analog input is sampled at 

conversion starting in phase  i,0. Then in each algorithm cycle, the comparator outputs Di set 

the voltage at the different capacitors Ci, starting from the MSB capacitor to the LSB one, CM. 

As described in Fig. 4, the DAC task is twofold: 1) to perform the sample and hold of the 

analog input x = x+ − x− ,  2) to generate the estimation error, ε[i], between the input signal 

and the CDAC output at each conversion step, i, according to the comparator output Di. The 

SAR process must force, as shown in (1), the ε[M] value to be below the N-bit LSB at the end 

of conversion. If this condition is not satisfied, the converter will not be able to obtain the 

digital output with N-bits precision.   

In an ideal situation with N-bit resolution without redundancy, the CDAC must generate 

2N different levels for comparison within the full-scale FS = 2·R, being the capacitor binary 

scaled, and the number of cycles needed to carry out the conversion M = N. The final digital 

word z, at the end of the conversion process is obtained as the direct concatenation of the 
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stored comparator output bits z = D = [D1, D2 , … , DM-1, DM], simplifying the generation of 

the digital correction logic, generally given by the following expression, 

 
1

i i

M

i

z D W


    (3) 

since the digital weights, Wi, results also binary scaled. 

2.3 CAUSES AND EFFECTS OF COMPARISON ERRORS 

A major source of degradation in SAR conversion is the errors made by the comparator, 

as the final result of the conversion depends intrinsically on its output. This effect has three 

basis terms: 

 The comparator errors itself: these include the time variant errors contribution in 

the offset due to the input signal dependent effects and noise sources (thermal, 

jitter, etc.). 

 The errors associated to switches: signal dependent effects of the switches 

on-resistances and charge injection could also produce a contribution to the 

effective offset in comparison. 

 The incomplete settling in the CDAC: this includes all the settling errors in the 

CDAC depending on the comparator output commutation after the sampling 

process. 

Among these effects, the incomplete settling becomes dominant at high speed. As shown 

in Fig. 6, an incomplete settling means that the sampled signal does not have enough time to 

time
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 Incomplete settling in the CDAC. 
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settle to the expected analog value in the quiescent situation. The greater the conversion 

frequency, the smaller the settling time ts, and the greater the error is. 

Independently of the origin of the comparison mistake, once an error has been made in a 

design without redundancy, it is impossible to recover the correct value at the output. Fig. 7 

and Fig. 8 show this behavior in a 4-bit example without and with errors in the conversion, 

respectively. For sake of simplicity, the full scale [-R,+R] has been defined between 0 and 2N 

= 16. In the first case (Fig. 7), all the comparator decisions are correct, and the result of the 

conversion process is right. However, the digital output depends strongly on the comparator 

output. Fig. 8 shows the same illustrative example with comparison errors. If an error occurs 

at the i-th cycle, a wrong additive term with value Di · Wi  is included at the output code in (3). 

This error level cannot be compensated by the classic SAR algorithm since, by definition, the 

sum of the remaining digital weights contributions are lower than the introduced error as 

theoretically demonstrated in the next section. 

1 2 3 4  

 4-bit SAR ADC algorithm binary radix. 

1 2 3 4  

 4-bit SAR ADC algorithm binary radix with a comparison error in 3th cycle. 
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 REDUNDANCY TECHNIQUES IN SAR ADC 

The solution to deal with the previous problem is the use of redundancy [14], [22], [25]. 

These methods implement a search algorithm where the number of cycles, M, is generally 

greater than the resolution (M > N), introducing redundancy in the definition of the weighting 

coefficient in the correction logic, given by (3), in such a way that if an error in certain cycle 

occurs, the remaining cycles could recover the right estimation.  

As highlighted in the introduction, in the bibliography the redundancy concept has been 

addressed from two different points of views. In [14], the concept of redundancy is theore-

tically evaluated and generalized for arbitrary radix codifications. This treatment is formally 

precise from the perspective of signal processing, but several aspects of relevant importance 

in SAR ADC implementations are not covered, such as: 1) the correspondence between 

capacitor scale factors and digital weighting coefficients, or 2) the need of eliminating the 

capacitor associated to the most significant bit to implement redundancy. In the other way, 

there are some work [2], [10], [11], [13], [20] apparently using different algorithms, which 

mainly focus on the practical realization. Thus, in [2], [10], [11], [13], arbitrary selection of 

the weighting coefficients are considered to allow an optimum distribution of the redundancy 

through the conversion steps. However, as we will see, this advantage is achieved at expenses 

of incrementing the correction logic requirements that implies more area and more power 

consumption (for instance, in [31]  a ROM is used).  To get rid of this overhead, several 

approaches have been proposed. A possibility is use of an extended binary codification [11], 

[15] aiming the simplicity of the conventional binary scheme on which the correction logic is 

simplified since the output code is obtained as the concatenation of the stored comparator 

output. These techniques create redundant decisions, to correct mistakes in comparator output, 

duplicating some of the capacitors in the DAC and using extra clock cycles, but it could imply 

a reduction of the effective full-scale to avoid overranging, as analyzed in [10], [11]. 

In this work, we will demonstrate that all these techniques are particular cases of a more 

general formulation. The proposed unified treatment reformulates the general redundancy 

concept using expressions which are closely related with hardware implementation, which can 

be particularized for the existing methods and it is independent on the considered switching 

scheme in the CDAC [1], [20], [32]. 
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3.1 PROPOSED UNIFIED DESCRIPTION OF SAR ADC 

In our proposed formulation, the correction logic in (3) is modified to include an 

additional constant term z0. The aim of this modification is to make explicit the presence of an 

offset in the generation of the digital output z (with N-bit resolution), depending on the 

practical CDAC implementation and codification, 

 
1

0 1,i i i

M

i

i

z z D W W W 



     (4) 

where, as in the conventional SAR ADC, Di = {0,1} is the comparator output bit, Wi are the 

digital weights (radix) and M is the number of cycles (M = N just for the case without 

redundancy): 

Considering the topology in Fig. 5, and establishing a bipolar implementation with 

FS = [−R, R] , the first capacitor C1 can be omitted in the charge-merged architecture [14], 

[20], since the comparison of injected signal with the mid-range, ε [1] = 0, produces directly 

the Most-Significant-bit (MSB), D1.  

Now, Di controls the set voltage at the different capacitors Ci+1, where sub-index 

explicitly shows a displacement in the bit actuation. Taking in mind this possibility, herein 

assumed without lack of generality, the capacitor array can be designed based on a common 

unitary capacitor C and the capacitor ratio pi, it is given by,  

   1; 2,..., ; 0i iC p C i M C     (5) 

Fig. 9 shows the transient evolution of the DAC voltage estimation of analog input with a 

resolution N = 4 performed in M = 4 cycles. In the first cycle the input signal is compared 

with the mid-range producing the MSB. Depending on the comparator decision, D1, the DAC 

estimation in the next cycle ε [2] is updated summing or subtracting in charge domain a 

certain voltage related to the capacitor scale factor, in the form, 

      1 22   1  2  1  

t

RC 
D  p

C
    -   (6) 

where  Ct =  Ci is the total capacitance in each branch.  
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Repeating the process, we can obtain the final DAC estimation as follows,  
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which corresponds to a digital counterpart, ∆z[M], measured in effective LSB (LSBe), as  
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The ADC digital output after last cycle is:  
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(2 1) ( )1
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i i Mz p D p D

-



  -  -   (9) 

where three different terms can be identified: a) the best approximation (8),  z[M], b) the 

digital contribution of latest residue, ε[M], with the additive term (DM −1), and c) a constant 
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 Transient evolution of the DAC input estimation ε[i].  
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term to get on offset binary codification, herein labeled p1. Adjusting the range of z to the 

nominal case [0, 2N − 1] by assigning the mid-range code 2N−1 to the zero-analog input (x = 0), 

the value p1 is 2N−1.   

Comparing (4) and (9) the relationships between the capacitor scale factors pi, the digital 

weights Wi and offset term z0 in (4) can be obtained as, 

 1 0 1

2

2 , 1 a  1 n d
M

i i M i

i

W p W z p p



   - -   (10) 

Evaluating expression (9) for the limit cases (e.g. when the comparator outputs Di being 

all ones), the codification overrange, OR, defined by [ ,2 1 ]Nz OR OR - -   as shown in  

Fig. 10, becomes, 

 0

1

(2 1)
M

N

i

i

OR p z


 - -  -   (11) 

The proposed description makes an explicit distinction between the capacitor scale 

factors pi in (5) and the digital weights Wi in (4) and (10).  This study is fully general and 

valid for typical SAR algorithms without and with redundancy, such as:  binary scaled, 

arbitrary weights, etc. In the following subsections this theoretical development is 

particularized for the most commons techniques in the state-of-the-art. 

z
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 Overrange in the transfer function of ADC  
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 SAR ADC without Redundancy (Binary-scaled Weights) 

In the conventional case without redundancy (N = M), the final output code z can be just 

obtained as the concatenation of the comparator output bit-stream z ≡ [D1 , D2, ..., DN] without 

the need of any arithmetic logic, therefore Wi = 2N − i. Applying (10), the capacitor scale factors 

pi results also binary weighted, pi = 2N − i, while according to (11), z0 = 0 . 

Fig. 7 and Fig. 8 shows an illustrative example of this algorithm for the case with N = 4 

without and with comparator errors. Notice that in presence of comparator decision errors (at 

D3 in the example of Fig. 8), the output code z is not correctly generated. If an error occurs at 

the i-th cycle, a wrong additive term with value Wi is included at the output code in (4). This 

error level cannot be compensated by the SAR algorithm since the maximum magnitude of 

the remaining contribution is lower than the introduced error, 

 
1 1
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N N

k i k i

kW W- -

  

-



    -    (12) 

The solution to deal with this problem is the use of redundancy as detail in next section. 

 SAR ADC with Redundancy (Arbitrary Weights) 

The problems associated to the comparator decision mistakes can be compensated, as 

previously introduced,  considering extra clock cycles in the search algorithm (M > N ), in 

such a way that if an error in certain cycle occurs, the remaining cycles could recover the right 

estimation [14]. 

To allow correcting an error a i-th conversion step, the sum of remaining scale factors 

must be greater than a tolerable error of ei (LSBe units). This is, 
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M M

k i k i

e W W p p

   

 -   -      (13) 

If qi is defined as the amplitude of the redundancy interval, i.e. the safety interval within 

which a bad comparator decision can be effectively corrected, and it is evaluated this way, 
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Then, the tolerance error in (13) is bounded by |ei| ≤ qi (LSBe). Equation (14) establishes a 

fixed relationship between the selected scale factors and the tolerance redundancy interval 

suitable for design. Alternatively, given a wanted specification of tolerance qi, the needed 

scale factors in the capacitor array can be determined resolving recursively from (14) in the 

form, 
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Both (14) and (15) are equivalent and can be considered as starting design equation for 

the SAR ADC sizing. However, given the importance of matching and feasibility of the 

CDAC, we recommend the use of (14), checking after that if the achieved level of redundancy 

is enough for the application. In this selection, the relationship between the total sum of 

coefficients pi and the overrange OR (for a given resolution N) must be also considered 

according to (11) which can be alternatively expressed [14] as, 
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M N i
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i

OR q
-



 - -    (16) 

making evident than for a case without redundancy (M = N and qi = 0), there is not overrange. 

Let us continue with a practical example showing how redundancy works. In Fig. 11a-b, 

two cases with N = 4 without and with comparison errors affecting the first bit D1 are presen-

ted. The process starts from the mid-range, that is p1 = 2N − 1. Notice that in contrast to the 

situation in Fig. 3b, the resulting redundant searching algorithm is immune to the comparator 

decision mistake. The immunity to the comparator decision error is achieved trading-off error 

tolerance and complexity of the digital correction logic. The implementation of (4) will 

generally imply the presence of a relatively complex arithmetic logic that may comprise 

adders and multipliers, or ROM [31]. To deal with hardware complexity, several techniques 

have been proposed [14], [20]. However, these methods are just specific implementations 

(aiming the reduction of the digital correction hardware), which can be described with the 

proposed unified description, as analyzed in the following section. 
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3.2 ANALYSIS OF SAR ADC TECHNIQUES USING THE PROPOSED 

UNIFIED DESCRIPTION 

This section analyzes some case studies with arbitrary redundant weights, as well as some 

of the most relevant SAR ADC techniques in the state-of-the-art [14], [22], [31]. Several 

implementations and simulation results are shown. 

 Arbitrary Redundant Weights 

Let us particularize the general formulation in previous section for a first SAR ADC case 

study with N = 10 and M = 12. This case is directly applicable to SAR ADCs in [2], [10], 

[11], [13], the difference between them just found in the overrange in (16). Starting from the 

following analog scale factors, p = {512, 321, 181, 101, 57, 32, 17, 10, 5, 3, 2, 1}, the DAC is 

sized using (5), and the implemented overrange OR becomes 219, since   pi = 1242  exceeds 

the nominal range [0,1023]. For this selection, according to (14), the redundancy interval 

vector is q = {89, 48, 27, 14, 7, 5, 2, 2, 1, 0, 0}, establishing a tolerance in the comparator 

decision of 89 LSBe for the most significant bit D1. 

The sizing process can be extrapolated for other designs with different resolutions. 

Fig. 12 shows the behavioral simulations results (output spectrum) for a 100Msps SAR ADC 
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+ (2D4–1) + (2D5–1) – 1 = 8
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 4-bit SAR ADC algorithm with 5-cycle redundant non-binary radix: a) all correct 

decisions, and b) one wrong decision at 1st cycle. Example with: p = {8, 7, 4, 2, 1, 1} and q = 

{2, 1, 1, 1, 0}. 
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with N = 12 and M = 15. In this design, the conventional capacitor scale factors, {2M − i}, 

were adjusted by a multiplicative term 2N/M under the constrain of getting a null overrange 

(OR = 0) with p = {2048, 872, 501, 288, 165, 95, 54, 31, 18, 10, 6, 3, 2, 1, 1} and q = {304, 

174, 99, 57, 32, 19, 11, 6, 4, 2, 2, 1, 1, 0}. A fully-differential implementation of the CDAC 

and the conventional switching scheme [20] was considered. Results for other switching 

scheme (see Annex I) such as the monotonic [1], [23], omitted in the figure, are in similar 

agreement. The uncertainty of each comparator decision was generated using random-variant 

offset with uniform distribution and amplitude equal to 50% of its redundancy window. The 

rest of error sources in the ADC model was disable to check the effectively of redundancy. 

As expected, the output code is completely insensitive to the comparator errors and the 

effective number of bits (ENOB) is 12.0 bits. In this example, the spectrum was evaluated 

using a full-scale sinusoidal input signal (FS=2Vpp) and 29MHz frequency. The results in 

term of static performance (INL, DNL) are in agreement with the ideal behavior. 

Fig. 13 shows a comparison of the input output characteristic of the ADC in two different 

situations. To make evident the effect of redundancy, a mismatch error in the capacitor scale 

factor p are introduced in one of the cases resulting now ENOB = 8bits and |INL|max = 4.5 

LSBe. Notice that without mismatch error, the effect of comparator uncertainty is 

unobservable, since it is completely ideal. 
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SFDR  = 100.41dB
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 Output spectrum of a 12-bit 100Msps SAR ADC case study with redundancy 

(arbitrary weights) in presence of comparator errors. 
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 Binary Extended Weights 

The redundancy implementation of the previous method is achieved at expenses of 

incrementing the calibration logic requirements (area and power consumption). To get rid of 

this overhead, several approaches have been proposed. A possibility is use of an extended 

binary codification [11], [15] aiming the simplicity of the conventional binary scheme in 

section 3.1.1. The technique creates redundant decisions to correct mistakes in comparator 

output duplicating some of the capacitors in the CDAC and using extra clock cycles.  

This extended binary option can be contemplated in our unified description introducing 

duplication in some of the capacitor scale factors. Let us exemplify this technique with a first 

case study in which the weights associated to the 3-rd and 7th bits are duplicated, that is: p = 

{128, 64, 32, 32, 16, 8, 4, 2, 2, 1} with p4 = p3 and p9 = p8 (i.e. q = {34, 34, 2, 2, 2, 2, 2, 0, 0}). 

In this case, the weighting coefficients in the digital correction logic in (10) are greatly 

simplified. Actually, as shown in Fig. 14 the logic can be implemented by just considering a 

small arithmetic unit in which the bits associated to the redundant capacitors are binary 

shifted and added. In this situation, digital implementation (shown in Fig. 15) is moderate, 

since only multiplexers and a small set of half-adders and full-adders are required to obtain 

digital bits [10], [11]. The penalty is that, as in [11], a systematic overrange is always present 

 

 Zoom-in of the input-output characteristic with and without capacitor mismatch 

errors. 
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(OR = 34) according to (11), since the sum of weights exceed the expected range for N = 8. 

To deal with this overrange, the input signal full-scale must be therefore scaled down a 12%. 

 

 Diagram of the implementation of the arithmetical logic in the SAR ADC (binary 

extended weights) implemented in [11]. 

 

 Split-capacitor Technique for Redundancy 

The drawback of the previous method in term of overrange can be dealt assuring the sum 

of the scale factors in (5) does not exceed the limit for a giving resolution. In [2], [10], this 

goal is achieved splitting the most significant capacitor (C2, since C1 is omitted) and 

distributing its contribution among the SAR ADC queue. These techniques can be 
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 Simplified implementation of the digital correction logic in the SAR ADC (binary 

extended weights) consisting in a binary shifted addition. 



 

21 
 

straightforward analyzed with the proposed description using just additional terms in the 

capacitor scaled vector. 

As an example, let us consider a situation with N=10 and M=13, in which C2 =p2’C is 

split in four sections (M−N+1= 4)  located in the 2nd, 4th, 8th, and 11th positions, i.e. p2’=p2 

+p4 +p8 +p11. With this definitions, the effective capacitor scale factors become p = {512, 

192, 128, 64, 56, 32, 16, 8, 7, 4, 2, 1, 1} and all the results in section 3.1 are directly appli-

cable. As an example, using (14), the redundant intervals are given by q = {128, 64, 64, 16, 8, 

8, 8, 2, 1, 1, 1, 0}. 
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 ELECTRICAL SIMULATION OF SAR ADC WITH 

REDUNDANT WEIGHTS 

In this section, the proposed formulation in Section 3 is used to generate weighting 

coefficients and scaling factor in the capacitor-based DAC (CDAC). As case of study, the 

design of a 1.8V 12-bit SAR ADC based on merged-capacitor architecture [33] is considered. 

The topology uses three extra cycles, i.e.  N = 12-bit and M = 15, for dealing with comparison 

errors due to incomplete settling in the DAC and random/signal-dependent offsets in the 

comparator itself. To simplify the hardware associated to the digital correction logic, a binary 

decomposition of the weighting coefficients [2], [10] was considered as explained in Section 

3.2.3. 

Contents in this section are distributed as follows. In Section 4.1, an analysis of switching 

scheme and its power consumption in the CDAC is carried out. Section 4.2 shows the detail 

on the CDAC sizing and architecture. We continue in Section 4.3 with the temporization of 

the SAR logic, showing the advantages of the asynchronous implementation versus the 

classical synchronous logic. Finally, some details on the proposed modeling approach and the 

verification results at the electrical level are presented in Section  4.4. 

4.1 SWITCHING SCHEMES IN THE CDAC 

The way in which the comparator output acts over the switches, known in the 

bibliography as switching scheme [1], [20], [33]–[36], has crucial implications for energy 

consumption and for the required time for conversion. However, it is important to note that 

the final residue at each conversion step during the SAR binary search algorithm has to be the 

same in all them for an equivalent conversion, being the optimum selection depending on 

extra considerations. In [20] some switching schemes are reviewed and an energy 

consumption comparative is carry out to discriminate the more suitable for a specific 

implementation.  

In the following sections, a review of the most relevant switching schemes in the state of 

the art are presented taking into account the implications for the CDAC as well as the 

consumption per conversion step.  



24 
 

 Conventional Switching Scheme 

Fig. 16 shows an illustrative example of the conventional switching scheme. In this 

scheme, the analog input signal is sampled in the bottom plates of the capacitors. Later, the 

most significant capacitor is switched to R (GND) in the positive (negative) branch and the 

comparison start: if D = 1 the switch maintains the configuration, if D = 0 the switch goes to 

R (GND). The energy drawn from voltage source R per switch in each capacitor can be 

calculated as follows:  

   

0 0 0

( ) ( ) (0) (0)

i

i
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                              (17) 

where εBP is the voltage set by the switch at the bottom plate of the capacitor, and T is the 

elapsed time for voltages settling. Particularizing (17) for a M cycles conversion process, we 

can get a closed expression for the mean consumption as follows: 
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 Conventional switching scheme and voltages excursions for a 3 bit SAR ADC 
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 Merged Capacitor Switching Scheme   

 An alternative to the conventional scheme , aiming the reduction of commutation power, 

is proposed in [33].  This approach, called merged capacitor switching algorithm (MCS), 

samples the analog input signal on the top plates of the capacitors. As shown in Fig. 17, the 

first comparison occurs immediately after sampling and it does not require any charge 

redistribution. Successively, if comparator output is “1” (or equivalent, “0”), the largest 

capacitor in the positive (negative) array, C2, is settled to GND (R).  

In contrast to the conventional switching scheme in Section 4.1.1, which requires M 

capacitors to carry out a conversion process with M cycles, the MCS algorithm can achieve a 

M cycles conversion process with M −1 capacitors since the first bit is decided directly with 

the primary input acting on the comparator. This method drastically reduces, with almost null 

cost, the total capacitors size and the energy consumption, since the first comparison in the 

conventional scheme usually requires more than 75% of the total energy consumption [20].  
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Following the same theoretical analysis than in (17), the average energy consumption for 

this algorithm is given by, 
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 Inverted Merged Capacitor Switching Scheme (IMCS) 

The Inverted Merged Capacitor (IMCS) switching scheme in [20] is a variation of the 

previous technique  to minimize the sensitivity to the parasitic capacitances at the comparator 

inputs and signal dependence of charge injection. To achieve this goal, the comparator input 

is reset at the sampling phase with an extra cycle, called inversion phase in Fig. 18, to 

eliminate the dependence on the parasitics in this net. After this cycle, the conversion 
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proceeds is the same than in Section 4.1.2 considering that the switch actuation is inverted. 

That is: if Di = 1, the largest capacitor in the positive (negative) array is settled to R (GND), 

and vice versa. 

 Monotonic Switching Algorithm  

This algorithm was presented in [1] as a solution to reduce the energy consumption in the 

conversion process using a pseudo-differential strategy. This scheme samples the input signal 

as in Section 4.1.2, but the capacitors bottom plates are connected to R in both branches. The 

first comparison is performed directly on the sampled voltage at the comparator input, and 

therefore, this technique could be sensitive to its non-linear parasitic capacitance. According 

to the comparator output, if D1 = 1, then C2 is connected to ground in the negative branch, 

keeping the same capacitor in positive branch connected to R.  

As shown in Fig. 18, the voltage at the positive array is always decreased monotonically, 

minimizing the power consumption associated to the bit commutation. Thus, the expression 
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for the average consumption becomes: 
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In spite of its power efficiency, this algorithm has the drawback related with different 

values at the comparator input in the first and final cycle, and therefore, being indicated for 

relatively low effective resolution.  

 Other Switching Schemes 

The search for other switching schemes, trying to improve the accuracy, speed, energy 

consumption in the CDAC, is very intense and various jobs have been reported in the last 

years [1], [20], [33]–[36]. The work in [34] presents a switching scheme, called split-

capacitor switching scheme, to solve the problems of the monotonic approach with the 

unbalanced energy consumption in the transition from R to GND. This is effectuated splitting 

the largest capacitor into a sub-capacitors array. This sub-array is connected to R in the first 

cycle while the remaining capacitors are connected to GND. A modification of previous 

method is proposed in [35] called energy-saving switching algorithm which connect all 

bottom plates to GND in the first cycle and only the transition to R depending the comparator 

output is done. In [36] a new method called detect-and-skip switching scheme (DAS) is 

developed. The DAS scheme tries to anticipate the largest capacitor switch decision, when the 

input is small, to further reduce power consumption.  

 Switching Energy Consumption Comparative 

This section presents a comparative of the most relevant switching schemes in the state-

of-the-art to obtain an intuitive view of the different algorithms in terms of power 

consumption. Fig. 20 shows mean energy consumption depending on the number of 

processing steps M. In this figure, MCS and IMCS schemes are able to achieve the highest 

energy efficiency. The method proposed in [36] cannot be evaluated in a closed-form because 

its consumption depends on the input signal.  
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Giving the advantages in terms of switching activity, the merged capacitor switching 

(MCS) presented in 4.1.2 is selected as the default switching scheme in the case studies herein 

presented. The reasons that have motivated this choice are: 1) drastic reduction of 

consumption with respect to the other schemes considered, 2) elimination of the most 

significant capacitor (it only requires M − 1 capacitors) with the consequent advantages in 

terms of area. 

4.2 CDAC SIZING AND ARCHITECTURE 

Once selected the switching scheme, in this section we are going to determine the 

capacitor scaling factors according to the redundancy scheme in section 3.2.3 with N = 12 and 

M = 15. The proposed design process starts form the capacitor scaling factors without 

redundancy for a 12-bit implementation:  

 p’ = [211, 210, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20] (21) 

Then, using the expressions in section 3.1, one of the scaled factor is binary decomposed, 

e.g.: 210 = (29+28) + (27+26+25+24) + (23+22+21+20) + 1, and its contribution distributed 

among the array, in the form:  

p = [211, (29+28), 29, 28, (27+26+25+24), 27, 26, 25, 24, (23+22+21+20), 23, 22, 21, 1, 20] (22) 

MCS/IMCS

 

 Comparative of power consumption between switching algorithms.  
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being the capacitors size given by,  

   768  512  256  240  128  64  32  16  15  8  4  2  1  1, , , , , , , , , , , , , CC   (23) 

where the unitary capacitor is C = 5 fF, and notice that the most significant capacitor C1 is 

omitted. 

With this selection, the remaining aspect in the architectural description of the CDAC is 

the topology of the data multiplexer dedicated to set the different voltages at the bottom plates 

in the capacitors as a function of the stored comparator outputs. According to the MCS 

scheme in section 4.1.2, if the comparator output is “1” (“0”) in a specific processing phase, 

the associated capacitor must be connected to GND (R). Fig. 21 shows the details of the 

proposed multiplexer implementation to allow this task in the positive branch (the results for 

the negative branch are complementary). This block receives the information from the output 

of the comparator, D, and according to the following table defines the voltage at the bottom 

plate of the capacitor (bottomcap), in the form: 

clkph CLKS Bottomcap 

1 1 vcm 

1 0 𝐷̅·R 

0 1 vcm 

0 0 vcm 

 

where vcm is the common mode.  

CLK

CLK

CLK

CLK

NAND
clkph

CLKS

cv cn

cv

cn

cn

vcm

bottomcap

D·R

 

 Data multiplexer implementation in the CDAC.   
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4.3 TEMPORIZATION IN THE SAR LOGIC: SYNCHRONOUS VS 

ASYNCRONOUS 

The CDAC switches and the comparator have to be controlled by a digital logic that sets 

the clock phases, which control: 1) the sampling process, 2) the comparator phase, 3) the 

CDAC data multiplexer operation at each conversion cycle.   

This control can be synchronous [37] when an external clock sets all the mentioned 

operations, or asynchronous if the comparator decides when the next cycle starts. 

Asynchronous implementation [1] is more suitable for medium-high speed implementations, 

since self-temporization optimizes the available time in each step. This control the 

asynchronous operation the comparator generates a signal (valid) when the output is valid, i.e. 

when the decision is complete. This allows the sampling signal (CLKS) to be set to the 

minimum time that maximizes conversion speed.   

In [37], a synchronous implementation that combines phase generation and memory to 

store the raw code in D-type Flip Flops (DFF) during the conversion process was proposed. 

This structure, shown in Fig. 22, has some speed problems due to the activation of the clocks 

in the storage register, which can cause delays and loss of information when the clock edges 

arrive too close in time.   
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 Implementation of phase generator and register in a synchronous  

SAR ADC used by [37]. 
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To overcome this drawback, the diagram of an asynchronous phase generator and control 

logic in Fig. 23 can be used [1]. In this scheme, the D-type Flip Flops (DFF) array which 

generates the different phases (clkph<i>) is controlled by the rising edge of the valid signal  

when the comparison in each step is resolved.  
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 Diagram of the implementation of the control logic and phase generator in the SAR 

ADC. 

 

According to the scheme, in Fig. 24 the internal clock phase generation is shown. The 

valid signal will present a variable pulse width depending on the comparator decision time. 

This signal is generated by a NAND gate connected to the comparator outputs which triggers 

the SAR logic when comparison takes place, that is, the two outputs of the comparator are 

opposite.  

CLKS

valid

clkph<1>

clkph<2>

clkph<3>

clkph<M-2>

clkph<i>

clkph<M-1>

clkph<M>  

 Clock phases in an asynchronous implementation of SAR ADC. 
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4.4 ELECTRICAL VERIFICATION OF THE CASE STUDY 

This section presents the electrical verification results for the considered case study: a 

1.8V 12-bit 10MHz SAR ADC with 3.6Vpp input range with three extra redundant bits for 

dealing with conversion errors (N=12 and M=15). As commented before, the design considers 

a fully differential topology based on the merged-capacitor architecture in section 4.1.2 using 

macro-models for switches, logic and comparators with realistic values for the logic delays 

and signal dependent comparator errors. This case study can be considered as the initial 

description and verification at the architectural level for a future integration in a 180nm 

CMOS process. In case of need, the results herein obtained can be easily adapted to other 

technological nodes. 

The contents in this section are distributed as follows. In Section 4.4.1, some details on 

the modeling and verification strategy are drawn. Section 4.4.2 presents the simulations 

results of the case study including the dynamic characterization of the topology in term of 

effective number of bits. These results has been done entirely within the design Framework II 

environment from Cadence®. Finally, in section 4.4.1 a discussion of the maximum frequency 

of operation in the asynchronous SAR ADC implementation is presented. 

 Modeling and Verification Strategy 

The verification of the demonstrator has been done using a hierarchical approach in 

which the main building blocks in the structure were described at relatively low-level. These 

include: 

 Low-level implementation of the CDAC with macro-models of switches, circuit 

implementation of the data multiplexer. The logic gates in the multiplexer were 

realistic modelled using verilog-A to speed up simulations. 

 Low-level description of the asynchronous scheme in Fig. 23, where all the logic 

gates in its implementation (DFF, NAND, OR, etc.) were also modeled in  

verilog-A. 

 Functional description of digital correction logic and comparator. 
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As example, the behavioral model of the comparator incorporates two steps: firstly, when 

comparator control signal (CLKC) goes up, the two outputs are reset to “1”. Then, a delay for 

the decision is incorporated depending exponentially on the input amplitude [38]. The 

transient dependence of the output becomes:  

 
/( ) Lt

i ivout t e       (24) 

where ∆εi is the differential voltage at the comparator input, t is the elapsed time, and τL is the 

time constant intrinsic to comparator structure.  

Considering that the output is stablished when the differential voltage is above the 

midrange, the elapsed time until this value is obtained as,  

 
( )

lnp L

i

R GND
t




 -
  

 
  (25) 

 Simulation Results 

This section presents some simulations results of the case study once the architecture and 

models were debugged using a hierarchical approach. Fig. 25 shows some details on the 

control signals associated to the asynchronous implemented temporization. The figure 

includes all clock phases, the comparator control signal (CLKC), and external reset signal 
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(CLKS) during two conversion cycles. We can see that there is a total agreement with the 

expected ideal behavior in Fig. 24. 

To characterize the ADC, it is necessary to analyze the digital output response in the 

frequency domain. To carry out this, a Fast Fourier Transform (FFT) is done. Fig. 26 shows 

the output spectrum of this simulation. From the spectrum, the SNDR in dB units can be 

calculated, as a figure of merit to determine the quality of the ADC, as follows: 

 1

1

10( ) 10 log
n

i

i

f

f

f

f f

P
SNDR dB

P
 

 
 
  
 
 
 


  (26) 

where Pf1 is the power of the main harmonic in the spectrum, and 
1

n

ii

f

ff f
P

   is the sum of the 

power corresponding to all other frequencies.  

With the previous measurement, the Effective Number of Bits (ENOB) is evaluated in the 

form:  

 
1.76

( )
6.02

SNDR
ENOB bits

-
   (27) 

As expected for an ADC with redundancy, the ENOB is not affected by the errors in 

comparison and the ENOB achieves almost the ideal 12 bit-level. 
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 Output spectrum of a 12-bit 10Msps SAR ADC with 2MHz input signal.  
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 Analysis of Operation Speed in Asynchronous SAR ADCs  

To conclude the analysis of the case study, a analysis of the maximum operation 

frequency is addressed. As can be observed in Fig. 25, the conversion process finishes 7.71ns 

before a new cycle of CLKS starts. This means that the frequency of CLKS can be 

incremented. To obtain an estimation of the maximum increment, it is necessary to evaluate 

the required time to complete all the steps in worst case conditions. Notice if this limit is 

exceed, as is shown in Fig. 27, the conversion cycle ends prematurely and the last conversion 

phase is erroneously eliminated, producing a faulty behavior of the SAR ADC.  
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 Excessive CLKS frequency in  SAD ADC. 

 

Taking into account the worst case conditions for settling, as shown in Fig. 28, a 

theoretical expression of the minimum time spent per conversion step is derived, in the form: 

  , , ,

1

, where
ucycle CLKS ph i ph i set comp i hold

M

i

T t t t t t t


       (28) 

where tset comprise the delays associated with the logic and the time that spend the 

comparator in reset phase, tcomp is the comparator time depending on the input amplitude, thold 

is the time required by the SAR logic after the valid signals is triggered. 
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 Spent time per clock phase. 
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 REDUNDANCY TECHNIQUES IN SAR ADCS 

BASED ON SPLIT-CAPACITOR DACS 

This section generalizes the proposed unified description in Section 3 [14], [25] for SAR 

ADCs based on split-capacitor DACs (Split-CDACs). To improve matching and maximize 

performance, the design of SAR ADCs based on CDACs requires, as previously mentioned, 

using a common unit capacitance from which the rest of capacitances are derived [3], [20], 

[31]. The resulting scale factors can lead to large aspect ratios between devices for resolution 

above 8 bits. Actually, for a conventional N-bit case-study, as in the merged-capacitor topolo-

gy [33], the most-significant bit (MSB) capacitor could be 2N-2 times greater than the least-

significant bit (LSB) one. This ratio difference could become problematic due to 

technological issues (matching, noise, etc.), even making the design no feasible for high 

resolution.  

To deal with this limitation, the Split-CDAC architecture [2], [13], [24], [28], [30], [39]–

[41] divides the original CDAC into two or more arrays connected by bridge capacitances. 

This technique allows scaling the LSB section by a factor, making them higher, and more 

suitable for physical integration, since lower aspect ratios with respect to the MSB capacitors 

are achieved. The key point of this new type of structure lies on the equivalent LSB 

capacitance referred to the MSB array through a bridge capacitor. For this reason, the sizing 

of this capacitance is crucial for a correct conversion 

In this work [28], we will analyze this effect proposing a general formulation of Split-

CDAC SAR ADCs with closed-form expressions for the CDAC sizing. This formulation is 

suitable for conventional designs without redundancy, i.e. binary weighted CDAC with 2-

radix correction logic as in [3], but it is also valid for designs with redundancy [13], based on 

an arbitrary selection of the weighting coefficients in the correction logic [20]. Explicit 

relationships of the impact of redundancy and bridge capacitance selections on the voltage 

excursion of the floating nets in the LSB array are derived. We will demonstrate that this 

excursion can be controlled, similarly that for the case without redundancy [30], using an 

extra limiting capacitor in the LSB array, the optimum value of which is theoretically derived. 
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5.1 PROPOSED UNIFIED DESCRIPTION FOR SAR ADC WITH SPLIT-

CDAC 

Fig. 29 shows a fully differential implementation of a SAR ADC with Split-CDAC. The 

topology has two sections, labelled MSB and LSB arrays, separated by the bridge capacitor 

CS. It includes M different capacitors {Ci} and an optional capacitor C0 to control the full-

scale (FS) range. The aim of the limiting capacitance Cx is related to controlling the excursion 

at the LSB array. Similarly than the classical CDAC, the analog input is sampled at the begin-

ning of the conversion process in phase  1,0 in both the MSB and LSB arrays. Then in each 

algorithm cycle, the comparator outputs Di set the voltage at Ci, starting from the most 

significant, C2, to the least significant one, CM. The SAR process must force the differential 

voltage at the comparator input ε to be below the N-bit quantization error at the end of 

conversion.  

In the Split-CDAC case, the weighting coefficients Wi in (4) can be also related to the 

scale capacitor factor on the array with respect to the unitary capacitance C as in (5). To 

perform the sizing of the CDAC, let us define the index m, to indicate the position of the 

bridge capacitor Cs. This device separates the MSB and LSB arrays between Cm and Cm+1 as 

shown in Fig. 29.  To reduce the ratio between the two arrays, we introduce an arbitrary scale 

factor k > 1 in the coefficients pi of the LSB capacitances in the form: 
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 Fully differential implementation of a SAR ADC with Split-CDAC. Phase 1,0 is the 

initial sampling phase, and 2 is the 1' complementary phase. 
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Assuming that the total effective capacitance CLSB,eff  of the LSB array referred to the 

MSB array is the actual CLSB scaled down by the same factor k, 

 ,

1LSBS
LSB eff LSB

S LSB

C C
C C

C C k


 


 (30)  

the value of the bridge capacitor will be, 
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where it has been used that C0 = k·p0·C and Cx = k·px·C.  With these definitions and following 

the transient evolution in the Split-CDAC, similarly than in Fig. 9 for the no-split case in 

section 3.1, the final output code becomes:  
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Comparing (4) and (32) as it was done before, the digital weighting coefficients in the 

correction logic and offset term become: 
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leading to a general description suitable for Split-CDAC SAR ADCs without [30] and with 

redundancy [13], [41], as particularized in sections 5.2.1 and 5.2.2. 

Analogously the expression for the transient evolution of differential voltage between 

floating nodes of LSB array results, 
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where, as conventionally, sums are null when super index are less than initial index, and the 

following parameters are used: 
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with total capacitances associated to SAR ADC and its MSB and LSB arrays given by, 
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5.2 ANALYSIS OF SPLIT-CDAC SAR ADCS USING THE PROPOSED 

UNIFIED DESCRIPTION  

 SAR ADC with Binary-Weighted Split-CDAC 

Similarly than for the non-split SAR ADC in section 3.1.1, in a Split-CDAC SAR ADC 

without redundancy, i.e. with a 2-radix codification, Wi = 2N – i in (31) (N = M), the digital 

output code z is obtained as the concatenation of the comparator output bits z ≡ [D1, D2, ... , 

DN]. Applying (33), the capacitor scale factors pi results also binary weighted, pi = 2N – i. For 

the MSB array, this implies a binary scaling of the unitary capacitance C according to (29). 

For the LSB array, if k is selected as integer, the capacitors can be easily derived from a 

common C. Obviously, a trade-off in terms of matching is also present, since the factor k 

defines the bridge capacitances Cs in (31). 

To show the generality of the proposed model formulation, let us consider a practical 

implementation of a binary weighted 1.8V 12-bit SAR ADC with p = [211, 210, 29, 28, 27, 26, 

25, 24, 23, 22, 21, 20], null limiting capacitor (Cx = 0) and a full-scale FS = 3.6Vpp (R = 1.8V). 

The parameters m and k in the Split-CDAC are 22 and 23, respectively; that is, according to 

(29), C = [210, 29, 28, 27+3, 26+3, 25+3, 24+3, 23+3, 22+3, 21+3,  20+3]C. With this selection, the 

bridge capacitor in (31) becomes Cs = 292.57C. At each conversion step, the output of the 

internal CDAC nodes can be evaluated according to (34).  
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Fig. 30 shows the voltage excursion in the end of conversion process as a function of the 

input signal. Notice that if Cx is not added to CDAC, the voltages LSB can exceed the full-

scale limits. This behavior could affect to the final resolution and reliability of the switches, 

since the margin for its correct operation is stressed. As we will analyze in section 5.3, the 

excursion of the LSB array voltages can be controlled, similarly than for the binary case [30] 

(but with some particularities), with the addition of capacitor Cx. 

In addition to the excursion of the LSB, the design of split SAR ADC must assure a 

proper settling in the CDAC in all the steps of the algorithm. Actually, if an error in the 

comparator decision occurs due to incomplete settling (as well as signal dependent on 

resistance of switches and comparator noise), the output code z will not be correctly 

generated, as it was explained in previous sections. Fig. 31 shows the output spectrum of a 

full-scale sinusoidal input signal at 98% of the Nyquist’s frequency when random time-va-

riant uncertainty in the comparator decisions is considered. For sake of clarity, the rest of 

errors in the SAR ADC model are omitted. In spite of the model simplicity, we can observe a 

drastic degradation in the ENOB down to 9.02 bits (ideally 12 bits). The performance 

degradation can be justified analyzing the relationship between weights Wi in (33). If a 

comparator decision error occurs at the i-th cycle, a wrong additive term with value Wi will be 

included at the output code z in (4). This error cannot be compensated by the binary SAR 

algorithm without redundancy [14], [25], since again the maximum magnitude of the 

remaining contributions is lower than the added error, as shown in (12).  
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 Voltage excursion of the LSB floating node at the end of conversion process as a 

function of the input signal voltage in a binary 12-bit Split-CDAC SAR ADC with m = 4. 
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 SAR ADC with Split-CDAC with Redundancy 

The solution to the previous drawback is the inclusion of redundancy [2], [13], [33], [41]. 

As it was shown in section 3, the key concept in these techniques consists in adding extra 

conversion cycles in the SAR process (M > N) to compensate comparison mistakes at the 

SAR algorithm allowing a correct generation of the output code z in (4). To achieve this goal, 

a redundant-base codification is implemented satisfying the following condition, 

 
1

i

M

i

k

k

W W
 

    (37) 

Actually, if a comparator decision error occurs at the i-th cycle, the magnitude of the 

error Wi is by definition lower than the sum of remaining weight factors, and therefore, the 

algorithm can recover the correct value. The maximum tolerable error ei in the conversion is 

precisely given by the difference between these two terms, in the form: 

 
1 2

12 1 2i i k i k

M M

k i k i

e W W p p

   

 -   -      (38) 

Attending to this relationship, the amplitude measured in LSBs of the redundant interval 

|ei| ≤ qi will be given by, 

 1

2

[1, 1], 1
M

i i k

k i

i M q p p
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  -  -      (39) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-100

-50

0
Output Spectrum (dBc)

SFDR = 81.51dB   
SINAD= 56.04dB   
ENOB = 9.02 bits 
SNR  = 57.92dB   

 

 Output spectrum of a 12-bit Split-CDAC SAR ADC case study with arbitrary 

weights and random comparator offset. 
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Equation (39) in combination with (29) provides suitable design expressions for the Split-

CDAC sizing. The design process can start with an a priori selection of the capacitor scale 

factors pi, checking after that if the given redundant intervals for dealing with conversion 

errors are valid for the application. In the selection of scale factors pi, we should consider 

according to (33) that in presence of redundancy, the range of codification could exceed the 

standard N-bit limits, i.e. z [0, 2N-1]. Evaluating (32) for the extreme values (e.g. when Di 

are all logical ‘1’), the codification overrange, z [-OR,  2N-1 + OR], can be evaluated as: 

 0 01OR z p -  -   (40) 

 To validate the proposed Split-CDAC formulation, let us introduce a second 12-bit SAR 

ADC with three extra cycles for dealing with conversion errors (N = 12 and M = 15). 

According to the selected scale factors p = [2048, 872, 501, 288, 165, 95, 54, 31, 18, 10, 6, 3, 

2, 1, 1], and the split parameters (m = 4, k = 4, Cx = 0), the capacitor sizes are determined as 

function of the unitary capacitance from (29), in the form: C = [872, 501, 288, 660, 380, 216, 

124, 72, 40, 24, 12, 8, 4, 4]C. With these values, according to (31) the bridge capacitance Cs 

becomes 516.00C, the OR in (40) is 0, and the redundant intervals according to (14) are: q = 

[304, 174, 99, 57, 32, 19, 11, 6, 4, 2, 2, 1, 1, 0, 0]. Fig. 32 shows the results for this case 

study. In the simulation, comparison errors are considered introducing random-variant offsets 

in the comparator with uniform distribution and amplitude equal to 65% of its redundancy 

interval. Thanks to redundancy, these errors are completely compensated (ideal ENOB = 12.0 

bits). The voltage excursion at the end of conversion process is shown in Fig. 33. Similarly 

than in Fig. 30, the maximum voltage ranges exceeds the ADC full scale (FS = 2R = 

3.6Vpp).We can observe, however, that due to redundancy the excursion is below the situation 

in the binary case (3.8Vpp against 5.5Vpp).  

 

 Output spectrum of a 12-bit Split-CDAC SAR ADC case study with arbitrary 

weights and random comparator offset. 
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In the following section we will demonstrate that this behavior is completely general, i.e. 

the binary case is always more pessimistic.   

5.3 LSB VOLTAGE EXCURSION LIMITATION 

In the binary case, the characteristic of the voltage excursion LSB at the LSB array, 

defined by (34), shows a segmented behavior. The extreme voltage excursion appears at in the 

first and last segments on last conversion cycle, n = M. In particular, the maximum and 

minimum voltages correspond to two levels of the input signal, labelled {-|xo|, +|xo|} in  

Fig. 30, the value of which being related to number of bits in the MSB, 

 
1 2

2 1
(1 )

2 2
o mm
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x R R a R

--
   -      (41) 

where an exponent less than m, is related to the suppression of capacitor C1 in the merged-

capacitor topology [30].  

The determination of the specific voltage excursion at these levels, LSB,peak = 

|LSB
(M)(±x0)| can be easily estimated with (34), since at these inputs, the digital code words 

are known. Specifically, the maximum and minimum values occur when codes are: 
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 Voltage excursion of the LSB floating node at the end of conversion process as a 

function of the input signal voltage in a 12-bit Split-CDAC SAR ADC case study with 

arbitrary weights and m = 4.   
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Due to symmetry, let us analyze in detail only one of the cases. Using (34) with (41) and 

(42) results: 

 ,

1
( )LSB Peak e MSB LSB t LSBaR Q p p k p

k
  

 
  -   

 
  (43) 

The case without overranging (LSB,Peak ≤ R) is evaluated now in in this general 

description: 
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  (44) 

Solving (44) for the unknown px using definitions in (35), a theoretical approximation is 

obtained as follows: 
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  (45) 

Particularizing the proposed procedure for the binary example in Fig. 30, we obtain that 

the voltage excursion on the LSB can be controlled (LSB,Peak ≤ R) with Cx > 1080C (px>135), 

with a final bridge capacitor of Cs = 447.0114C.  

In the case with redundancy, the voltage excursion at the LSB array also shows a segment 

behavior as shown in Fig. 33, but the limits between segments are not equally distributed 

within the full scale, since they depend on the scale factors. However, as can be derived from 

(37), assuming the same number of bits in the LSB array, by the definition the total 

capacitance in the LSB array is greater than for the binary case, and hence its excursion is 

strictly lower. Therefore, the limit in section 5.2.1, particularized for the new p selection, can 

be still used for the Split CDAC sizing as pessimistic scenario.  

5.4 ELECTRICAL VERIFICATION OF THE PROPOSED FORMULATION 

The proposed formulation has been satisfactorily validated by electrical simulations. As 

case study a 1.8V 12-bit 20MHz SAR ADC with 3.6Vpp input range and three extra cycles 

for dealing with conversion errors (N=12 and M=15) are considered (split parameters m = 8, k 
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= 32). The design considers a fully differential topology based on the merged-capacitor 

architecture in [33] using macro-models for switches, logic and comparators with realistic 

values for the logic delays, signal dependent comparator errors and switches resistors. 

To simplify the hardware complexity of the correction logic, a binary decomposition of 

the scaling factors according [2] is implemented. The proposed design process starts with a 

selection of the capacitor scaling factors without redundancy: p’ = [211, 210, 29, 28, 27, 26, 25, 

24, 23, 22, 21, 20]. Then, one of the scaled factor is binary decomposed, e.g.: 210 = (29+28)+ 

(27+26+25+24)+(23+22+21+20)+1, and its distributed among the SAR array, in the form: p = 

[211, (29+28), 29, 28, (27+26+25+24), 27, 26, 25, 24, (23+22+21+20),23, 22, 21, 1, 20]. 

 To conclude, the final capacitor sizes are determined according to the values of m and k 

as function of the unitary capacitance in the form C = [768, 512, 256, 240, 128, 64, 32, 512, 

480, 256, 128, 64, 32, 32]C and Cx = 1448.8C with C = 5fF. With these values, according to 
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 Output spectrum of a 12-bit Split-CDAC SAR ADC in an electrical simulation with 

split capacitor redundant weights. 
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 Voltage excursion of the LSB floating node at the end of conversion process as a 

function of the input signal voltage in a 12-bit Split-CDAC SAR ADC  in an electrical 

simulation with redundant weights and m = 8. 
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(31) the bridge capacitance Cs becomes 96.2823C, OR = 0, and the redundant intervals 

according to (39) are: q = [512, 256, 256, 32, 16, 16, 16, 16, 2, 1, 1, 1, 1, 0, 0].  

Fig. 34 and Fig. 35 show the output spectrum and dependence of the LSB excursion on 

the analog input in the same conditions. A total agreement with theoretical expressions 

(omitted due to space limitations) has been achieved. 



50 
 

 CONCLUSIONS AND FUTURE WORK 

This work analyzes the effect of redundancy in Successive Approximation Register 

(SAR) ADCs with charge-based DAC (CDAC) from both theoretical and practical point of 

views. A general hardware-based model formulation has been proposed with emphasis in its 

physical implementation which can be particularized, as demonstrated in the document, for 

the most relevant techniques in the state of the art. The proposed unified description 

differentiates between capacitor scale factors and binary weights in the digital correction 

logic, getting close to the physical implementation of the subtracting DAC. The proposed 

description is fully general (suitable for different switching schemes), and it can incorporate 

second order effects, such as mismatch between capacitors.  

Based on this description, the redundancy concept, effects and implication have been 

illustrated through some simulation examples at behavioral and electrical levels in several 

case studies without and with redundancy considering both the non-split and split CDAC 

architectures. These analyses include:  

 Theoretical study, modelling and simulation of different redundancy schemes 

including: arbitrary selection of weighting coefficients, extended binary 

codification and split-capacitor technique. These techniques are the most common 

in the bibliography. 

 Evaluation of the dependence between the digital weights selection and the 

associated redundant intervals for dealing with comparison errors. 

 Development of a guide procedure for the complete sizing of capacitors in the 

CDAC. 

 In the case of the split CDAC architecture, a theoretical study of the voltage 

excursions in the CDAC arrays has been carried out without and with redundancy. 

Closed-form expressions suitable for design are derived to determine the bridge 

capacitance and the optimum limiting capacitor which avoids overranging in the 

LSB array to ensure that node voltages are kept into the ADC full-scale limits. 
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These aspects have been complemented with the analysis of other relevant aspects fort 

physical ADC implementation and verification (modelling, simulation and characterization):  

- Switching schemes: different switching schemes have been analyzed and compared in 

terms of energy consumption. This analysis has concluded that the switching schemes 

based on the merged capacitor approach are the most efficient. 

- Synchronous vs Asynchronous SAR logic: SAR ADCs with synchronous timing, i.e. 

an external clock sets each conversion phase, are widely used in the literature. 

However, this approach presents certain problems since the operation frequency is 

upper limit by the greater delay in comparator for the worst case input amplitude. To 

overcome this drawback, an asynchronous implementation can be considered. This 

implementation allows the converter to automatically adjust its internal phases to 

increase the operating speed when it is possible. Taking into account the advantage of 

this solution, in this work the control logic and clock phase generation have been 

studied and designed for an asynchronous implementation.  

- Modelling: to support the verification, several macro- and Verilog-A models have 

been developed for the basic building blocks in the SAR ADC, including comparator, 

switches and the SAR and digital correction logic. 

- Characterization of ADCs: study of the characterizations methods for ADCs, 

including the evaluation of standardized dynamic (ENOB, THD, etc.) and static 

(INL,DNL) parameters. Based on this, several behavioral and electrical simulations 

have been done to verify the case studies. 
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FUTURE WORK 

To conclude this report, a summary of the research aspects that will be contemplated as 

future work is provided below. These include: 

 The analysis of existing calibration techniques for discerning the best approach 

for a future integration.  

 A theoretical study of the impact of mismatch and noise in CDAC in the 

performance of the SAR ADC. 

 The development of a design methodology which incorporates all the previous 

considerations. 

 The validation of this methodology with a silicon demonstrator. 
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