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Optimality and Duality on Riemannian Manifolds
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Abstract. Our goal in this paper is to translate results on function classes that are

characterized by the property that all the Karush-Kuhn-Tucker points are efficient

solutions, obtained in Euclidean spaces to Riemannian manifolds. We give two new

characterizations, one for the scalar case and another for the vectorial case, unknown

in this subject literature. We also obtain duality results and give examples to illustrate

it.

1. Introduction

At the beginning of the 19th century, the non-Euclidean geometries arose having as a main

characteristic the replacement of straight lines by geodesics. The minimization of functions

on a Riemannian manifold is, at least locally, equivalent to the smoothly constrained

optimization problem on a Euclidean space, due to the fact that every C∞ Riemannian

manifold can be isometrically imbedded in a Euclidean space. It is well known that solving

the nonconvex constrained problem in Rn with the Euclidean metric is equivalent to solve

the unconstrained convex minimization problem in the Hadamard manifold feasible set

with the affine metric (see [9]). However, the Euclidean dimension space may be larger

than the manifold dimension making this approach not convenient.

There is a considerable number of optimization problems which cannot be solved in

linear spaces and require of Hadamard manifolds structures for their formalization and

study. For example, in controlled thermonuclear fusion research (see [1, 30]) and in engi-

neering (see [18,32,33]). Similarly, other manifolds can be found in very different research

fields. Such is the case of Essential manifolds in stereo vision processing [20] and Stiefel

manifolds St(p, n) = {X ∈ Rn×p : XTX = I} in the machine learning study or computer

vision (see [23,29]).

Moreover, there exist algorithms to detect human shapes in still images that make use

of covariance matrices as object descriptors. These descriptors do not lie on a traditional

vector space and Riemannian manifolds are needed for their study. For example, in the
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field of medicine, Riemannian manifolds have been used in analysis of medical images as

it has been shown by Fletcher et al. [12].

In economics, characterizations, existence, and stability of Nash-Stampacchia equilib-

ria are studied using strategy sets based on geodesic convex subsets of Hadamard manifolds

taking advantage of the geometrical features of these spaces as shown by Kristály [17].

The optimization problems study is usually linked to the duality problems study. It

can be the case that solving the dual problem is easier than solving the original primal

problem from both the theoretical and the practical point of view.

In convex optimization, the convexity of a set in a linear space is based upon the

possibility of connecting any two points of the space. The traditional approach to this

problem has been using line segments. However, various generalizations of this procedure

have been proposed (see [6,10,13]). In this paper, we propose unique a generalization that

extends the linear space definition to Riemannian manifolds, substituting line segments

by geodesic arcs. The aim of this generalization is to extend results of convex optimiza-

tion theory to Riemannian manifolds. Our study focuses on extending concepts such as

critical point, optimal point and the relationships between them on Euclidean spaces to

Riemannian manifolds. A significant generalization of the convex functions are the invex

functions, introduced by Hanson [13]. The invexity concept is an extension of differen-

tiable convexity. A scalar function is invex if and only if every critical point is a global

minimum solution. Therefore, it can also be said that a scalar function is invex if it has no

critical points. The conditions for optimality that invexity involves are essential to obtain

optimal points through practical numerical methods.

But the objective function invexity is not sufficient in constrained scalar mathematical

programming problem to ensure that a Karush-Kuhn-Tucker point is an optimum. The

KT-invexity notion is necessary. So our idea is extending, amongst others, the kind of

KT-invex functions introduced by Martin [22], as well as his results. In Osuna-Gómez

et al. [24, 25] the authors extended these results in both constrained and unconstrained

vector cases.

Rapcsák [27] and Udriste [30] extended some results on convex optimization problems

to Riemannian manifolds, i.e., nonlinear spaces and considered a convexity generalization

called geodesic convexity.

Pini [26] defined the invexity concept for maps on a general smooth manifold in a

natural way. In particular, Pini focused the attention on a property of the map η giving rise

to a family of “integrable” fields on the manifold and providing an interesting relationship

between invexity and convexity along particular curves of the surface.

Some relationships between generalized invexity and generalized invex monotonicity

were given in Ruiz-Garzón et al. [28] under certain conditions in Euclidean spaces. Wang et
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al. [31] established the equivalence between strong convexity functions and strong mono-

tonicity of its subdifferentials on Riemannian manifolds and these results were applied

to solve the minimization of convex functions on Riemannian manifolds. In Barani and

Pouryayevali [3, 4] several invexity notions for functions on Riemannian manifolds are

defined and their relations with invariant monotone vector fields are studied.

In Zhou and Huang [35] a new class of quasi roughly geodesic B-invex functions and

pseudo roughly geodesic B-invex functions are introduced and sufficient and necessary con-

ditions for optimal solution of the nonlinear programming problems are given on Hadamard

manifolds. Agarwal et al. [2] defined the concepts of geodesic α-invex set and geodesic α-

preinvex functions on Riemannian manifold and using suitable conditions, some relations

between geodesic α-invex set and geodesic α-preinvex function are established.

Bento and Cruz [7] studied this unconstrained problem in the Riemannian context and

under the convexity of the vectorial function they prove that a critical point is a weak

Pareto solution. In Zhou and Huang [34] the authors gave an existence theorem of weak

minimum for a constrained vector optimization problem by KKM lemma on a Hadamard

manifold.

Colao et al. [9] studied the equilibrium problem in Hadamard manifolds.

Weak sharp minima for constrained optimization problems and some other algorithm

on Riemannian manifolds have been proposed by Li et al. [19].

Later, Hosseini and Pouryayevali [14] obtained necessary optimality conditions for a

general minimization problem on complete Riemannian manifolds but they don’t obtain

characterization theorems. Chen et al. [8] discussed a multiobjective optimization problem

involving generalized invex functions and obtained the Kuhn-Tucker sufficient conditions

for a feasible point of vector optimization problem to be an efficient or properly efficient

solution and gave various types of duality results.

The aim of our work is to present necessary and sufficient optimality conditions and

extend the results obtained by Hosseini and Pouryayevali [14] and Chen et al. [8]. The

outline of this work is for the scalar case to obtain classes of functions such that any class

of functions which is characterized by having every critical point as an optimum solution

must be equivalent to these classes of functions and to extend this result to constrained

multiobjective problems.

In Section 2, we recall concepts related to Riemannian manifolds and extend the critical

point concept and the characterization theorem invex functions for the Euclidean dimen-

sional finite space to Riemmannian manifolds. In Section 3 we extend the characterization

of invex functions theorem in Riemmannian manifolds to vectorial case. We prove that

every vector critical solution is an (weak) efficient solution if and only if (f, g) is (Weak)

KKT-pseudoinvex, respectively, where f and g are involved functions for a constrained
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multiobjective problem. In Section 4 we study duality theorems for Mond-Weir type Dual

Problems. Our new results extend and generalize the known results in the literature.

2. Preliminaries and scalar case

Let M be a C∞-manifold modeled on a Hilbert space H, either finite or infinite dimen-

sional, endowed with a Riemannian metric gx on a tangent space TxM . The corresponding

norm is denoted by ‖ · ‖x and the length of a piecewise C1 curve α : [a, b]→M is defined

by

L(α) =

∫ b

a
‖α′(t)‖α(t) dt.

For any point x, y ∈M , we define

d(x, y) = inf{L(α) | α is a piecewise C1 curve joining x and y}

then d is a distance which induces the original topology on M . Any Riemannian manifold

(M, g) can be converted into a metric space (M,d), where d is the distance induced by

the Riemannian metric g.

We know that on every Riemannian manifold exists exactly one covariant derivative

called a Levi Civita connection, denoted by ∇XY , for any vector fields X,Y ∈ TM ; we

also recall that a geodesic is a C∞-smooth path α whose tangent is parallel along the path

α, that is, α satisfies the equation

∇dα(t)/dtdα(t)/dt = 0.

Any path α joining x and y in M such that L(α) = d(x, y) is a geodesic and is called a

minimal geodesic. The existence theorem for ordinary differential equation implies that

for every V ∈ TM , there is an open interval J(V ) containing 0 and exactly one geodesic

αV : J(V )→M with dαV (0)/dt = V . For differentiable manifolds, it is possible to define

the derivatives of the curves on the manifold. The derivatives at a point x on the manifold

lies in a vector space TxM . We denote by TxM the n-dimensional tangent space of M at

x, by TM =
⋃
x∈M TxM the tangent bundle of M , by TM an open neighborhood of the

submanifold M of TM such that for every exp: TM →M defined as expx(V ) = αV (1, x)

for every V ∈ TM , where αV is the geodesic starting at x with velocity V (i.e., α(0) = x,

α′(0) = V ) (see [8, 15,16]).

If h is a smooth map from the manifold M to the manifold N , we shall denote by dhx

dhx : Tx(M)→ Th(x)(N)

the differential map of h at x. The gradient of a real-valued C∞ function h on M in x,

denoted by gradhx, is the unique vector in Tx(M) such that dhx(X) = 〈gradhx, X〉 for

all X in Tx(M).
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Assume now that h is a real differentiable map defined on a manifold M , and η is a

map η : M ×M → TM defined on the product manifold and such that

η(x, y) ∈ Ty(M), ∀x, y ∈M.

Notice that the function η(x, · ) assigns to each point y ∈M a tangent vector Vy to M

at y so that η(x, · ) is a vector field on M , for each x ∈M . Intuitively, {η(x, y)}|y∈M gives

a collection of arrows on M (x fixed). In particular, if η(x, y) is smooth in the variable y,

then η(x, · ) is a smooth vector field on M , for each x ∈M .

We also recall that a simply connected complete Riemannian manifold of non-positive

sectional curvature is called a Cartan-Hadamard manifold. If we consider M to be a

Cartan-Hadamard manifold (either infinite or finite dimensional), then on M there is a

map playing the role of x− y ∈ Rn. We can define the function η as η(x, y) = α′x,y(0) for

all x, y ∈M . Here αx,y is the unique minimal geodesic joining y to x as follows

αx,y = expy(t exp−1
y x), ∀ t ∈ [x, y].

Definition 2.1. [30] A subset X of M is called totally convex if X contains every geodesic

αxy of M whose endpoints x and y belong to X.

Now, we can define the invexity of a function h on a totally convex subset of a Rie-

mannian manifold:

Definition 2.2. Let M be a Riemannian manifold, X be an open totally convex subset

of M and θ : X ⊆ M → R be a differentiable map. We say that the function θ is invex

(IX) on X if there exists a non necessarily differentiable function η : M ×M → TM such

that

θ(x)− θ(y) ≥ dθy(η(x, y)), ∀x, y ∈ X.

If M = Rn we have the usual invexity definition given by Hanson (see [13]). If M = Rn

then exp−1
y x = x− y.

Let us consider the unconstrained scalar optimization problem (SOP)

(SOP) min θ(x), x ∈ X ⊆M.

Definition 2.3. Let η : M ×M → TM be a non necessarily differentiable function. A

feasible point x for (SOP) is said to be a critical point (CP) with respect to η, if exists

some x ∈ X ⊆M with Q = η(x, x) ∈ TxM non identically zero such that

dθx(Q) = 0.

Theorem 2.4. Let θ : X ⊆ M → R be a differentiable map. A function θ is invex with

respect to η : M ×M → TM if and only if every critical point (CP) with respect to this

same η is a global solution.
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Proof. Let θ be an invex function (IX) on X, then there exists a non necessarily differ-

entiable function η : M ×M → TM such that

(2.1) θ(x)− θ(x) ≥ dθx(η(x, x)), ∀x, x ∈ X.

If x is a (CP) with respect to the same function η of which θ function is invex then

(2.2) dθx(η(x, x)) = 0

for all critical point x.

By (2.1) and (2.2) we have that

θ(x)− θ(x) ≥ dθx(η(x, x)) = 0, ∀x ∈ X

so that x is a global minimum solution.

Let’s now prove the sufficient condition. We have to prove that there exists a non

necessarily differentiable function η : M ×M → TM such that

(2.3) θ(x)− θ(x) ≥ dθx(η(x, x)), ∀x, x ∈ X.

If every (CP) x is not a global minimum then there exists η(x, x) defined as

η(x, x) =

0 if grad θx = 0,

θ(x)−θ(x)
‖ grad θx‖2x

grad θx if grad θx 6= 0

such that (2.3) holds.

Otherwise, if every (CP) is a global minimum then (2.3) is obvious.

In sum up, we have that

IX ⇔ [CP ⇔ optimum (SOP)].

The previous result generalizes invex functions in the scalar case obtained by Craven

and Glover [10] to Riemannian manifolds.

Example 2.5. Let us consider the set Sym2(R) of symmetric 2 × 2 matrices endowed

with the Frobenius metric kX(U, V ) = trace(UV ) where X ∈ Pos2(R) and U, V ∈
TX(Pos2(R)) = Sym2(R). Let Pos2(R) be the set of all 2 × 2 positive definite matrices

and (Pos2(R), k) is a Hadamard manifold. Consider the following problem on Pos2(R):

(SOP)

min θ(X) = x1 subject to M =

X =

x1 x2

x2 x3

 ∈ Pos2(R) such that x1 ≥ 1

 .
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Given X = ( 1 2
2 5 ) using the Riemannian metric k and η(X,X) = X −X, θ is trivially

an invex function, X = ( 1 2
2 6 ) and at Q = η(X,X) = ( 0 0

0 1 ) we have that

dθ(X)(Q) = trace

1 0

0 0

0 0

0 1

 = trace

0 0

0 0

 = 0.

Thus X is a (CP) with respect to previous η and therefore X is an optimum solution.

Also, the next aim of this work is to extend this scalar result to the vector case.

3. Characterization of efficient solutions set: vector case

The following convention for equalities and inequalities will be used.

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, then

x = y ⇔ xi = yi, ∀ i = 1, . . . , n,

x < y ⇔ xi < yi, ∀ i = 1, . . . , n,

x 5 y ⇔ xi ≤ yi, ∀ i = 1, . . . , n,

x ≤ y ⇔ x 5 y, there is i such that xi < yi.

In this section we consider the constrained multiobjective programming (CVOP) de-

fined as

(CVOP) min f(x), g(x) 5 0, x ∈ X ⊆M

where f = (f1, . . . , fp) : X ⊆ M → Rp, with fi : X ⊆ M → R for all i : 1, . . . , p, g =

(g1, . . . , gm) : X ⊆ M → Rm are differentiable functions on the open set X ⊆ M and

let M be a Riemannian manifold. And we denote by dfx = (df1(x), . . . , dfp(x)) where

dfi(x) : TxM → Tfi(x)R ≡ R for all i : 1, . . . , p.

We focus on the study and location of efficient solutions for (CVOP).

Definition 3.1. A feasible point x is said to be an efficient solution for (CVOP) if does

not exist another feasible point x, such that f(x) ≤ f(x).

Definition 3.2. A feasible point x is said to be a weakly efficient solution for (CVOP) if

there does not exist another feasible point x, such that f(x) < f(x).

Just as happens in the scalar case, we are going to use Karush-Kuhn-Tucker vector

critical points (VCP) as optimality condition, as we shall define bellow.

Definition 3.3. Let η : M ×M → TM be a non necessarily differentiable function. A

feasible point x for (CVOP) is said to be a Karush-Kuhn-Tucker vector critical point
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(VCP) with respect to η, if there exists some x ∈ X ⊆ M , λ ∈ Rp, µ ∈ Rm with

Q = η(x, x) ∈ TxM non identically zero such that

λTdfx(Q) + µTdgx(Q) = 0, µT g(x) = 0, µ = 0, λ ≥ 0.

A new type of invex function that involves the objective and constraints function is

needed in order to study the efficient solutions for (CVOP), using the KKT vector points.

Definition 3.4. The pair of functions (f, g) is said to be KKT-pseudoinvex if there exists

a non necessarily differentiable function η : M ×M → TM such that

f(x)− f(x) ≤ 0 =⇒

dfx(η(x, x)) < 0,

dgj(x)(η(x, x)) ≤ 0, ∀ j ∈ I(x)

for all feasible points x, x for (CVOP), where I(x) = {j = 1, . . . ,m : gj(x) = 0}.

Definition 3.5. The pair of functions (f, g) is said to be Weak KKT-pseudoinvex if there

exists a non necessarily differentiable function η : M ×M → TM such that

f(x)− f(x) < 0 =⇒

dfx(η(x, x)) < 0,

dgj(x)(η(x, x)) ≤ 0, ∀ j ∈ I(x)

for all feasible points x, x for (CVOP), where I(x) = {j = 1, . . . ,m : gj(x) = 0}.

Remark 3.6. The Weak KKT-pseudoinvex coincides with the KT-pseudoinvex defined by

the authors in Osuna-Gómez et al. [24,25]. If g = 0 we obtain the pseudoinvexity defined

by Osuna-Gómez et al. [24, 25] for unconstrained vectorial optimization problems.

Theorem 3.7. (f, g) is a pair KKT-pseudoinvex functions if and only if every Karush-

Kuhn-Tucker vector critical point (VCP) with respect to the same η is an efficient solution

for (CVOP).

Proof. Let (f, g) be a pair KKT-pseudoinvex functions and x be a Karush-Kuhn-Tucker

vector critical point (VCP) with respect to the same η. We have to prove that x is an

efficient solution for (CVOP). Let us argue by contradiction. Suppose x is not an efficient

solution. Then there exists a feasible solution x such that

f(x)− f(x) ≤ 0.

Since (f, g) is KKT-pseudoinvex then there exists a non necessarily differentiable func-

tion η : M ×M → TM such that

(3.1) dfx(η(x, x)) < 0, dgI(x)(η(x, x)) 5 0, I = I(x)
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for all feasible points x, x for (CVOP).

Since λ ≥ 0, µI = 0 and from (3.1), it follows

(3.2) λ
T
dfx(η(x, x)) + µTI dgI(x)(η(x, x)) < 0, ∀x, x ∈ X.

On the other hand, if x is a Karush-Kuhn-Tucker vector critical point (VCP) with

respect to the same η then there exist some x ∈ X ⊆M , λ ∈ Rp, ∃ (λ, µI) ≥ 0, λ 6= 0 with

Q = η(x, x) ∈ TxM non identically zero such that

λ
T
dfx(η(x, x)) + µTI dgI(x)(η(x, x)) = 0

which stands in contradiction to (3.2), and therefore, x is an efficient solution for (CVOP).

Let’s now prove the sufficient condition. Let us suppose that there exist two feasible

points x and x such that

f(x)− f(x) ≤ 0,

since otherwise (f, g) would be KKT-pseudoinvex, and the result would be proved. This

means that x is not an efficient solution, and by using the initial hypothesis, x is not a

(VCP), i.e., given η there exists some x ∈ X ⊆M with Q = η(x, x) ∈ TxM non identically

zero such that

λ
T
dfx(Q) + µTI dgI(x)(Q) = 0

has no solution λ ≥ 0, µI = 0. Therefore, by Motzkin’s theorem [5], the system

dfx(Q) < 0, dgI(x)(Q) 5 0, I = I(x)

has the solution Q = η(x, x) ∈ TxM . In consequence, (f, g) is KKT-pseudoinvex.

In sum up, we have that

(f, g) KKT-PIX ⇔ [VCP ⇔ Efficient (CVOP)].

The efficient solutions results for (CVOP) can be considered a generalization of others

for the scalar problem given in Theorem 1 and the results given by Martin [22] in finite

dimensional Euclidean spaces.

Arguing in the same form, we prove

Corollary 3.8. (f, g) is a pair weak KKT-pseudoinvex functions if and only if every

Karush-Kuhn-Tucker vector critical point (VCP) with respect to the same η is a weakly

efficient solution for (CVOP).

This result is a generalization of Theorem 3.7 obtained by Osuna-Gómez et al. in [24]

or Theorem 2.3 obtained by Osuna-Gómez et al. [25].
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Example 3.9. Let us consider the set Sym2(R) of symmetric 2 × 2 matrices endowed

with the Frobenius metric kX(U, V ) = trace(UV ) where X ∈ Pos2(R) and U, V ∈
TX(Pos2(R)) = Sym2(R). Consider the following problem on Pos2(R):

max f(X) = (f1, f2)(X) = (x1, x3) subject to(CVOP)

g1(X) = x2 + x3 − 7 ≤ 0, g2(X) = −x1 + 1 ≤ 0, X =

x1 x2

x2 x3

 ∈ Pos2(R).

Given

X =

1 2

2 5


using the Riemannian metric k and (f, g) is KT-pseudoinvex, η(X,X) = X − X and at

Q = ( 0 0
0 1 ) we have that

df1(X)(Q) = trace

1 0

0 0

0 0

0 1

 = trace

0 0

0 0

 = 0,

df2(X)(Q) = trace

0 0

0 1

0 0

0 1

 = trace

0 0

0 1

 = 1.

Then

dg1(X)(Q) = trace

 0 1/2

1/2 1

0 0

0 1

 = trace

0 1

0 1

 = 1,

dg2(X)(Q) = trace

−1 0

0 0

0 0

0 1

 = trace

0 0

0 0

 = 0.

We have

dfx(Q) = (df1(X)(Q), df2(X)(Q)) = (0, 1),

dgx(Q) = (dg1(X)(Q), dg2(X)(Q)) = (1, 0)

and therefore there exist X = ( 1 2
2 6 ), λ = (1, 0) and µ = (0, 1) such that λTdfx(Q) +

µTdgx(Q) = 0. Thus X is trivially a (VCP) with respect to η and then X is an efficient

solution.
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4. Duality

We study the Mond-Weir type Dual Problem (MWDP) as the dual of (CVOP), formulated

as

maximizef(u) subject to(MWDP)

λTdfu(Q) + µTdgu(Q) = 0 for some x, η with Q = η(x, u) 6= 0,

µjgj(u) = 0, j = 1 . . . ,m,

µ = 0, λ ≥ 0, u ∈ X ⊆M.

Theorem 4.1 (Weak Duality). Let x be a feasible point for (CVOP), and (u, λ, µ) a

feasible point for (MWDP). If (f, g) is KKT-pseudoinvex on X then f(x) ≤ f(u) is not

verified.

Proof. Let us suppose (f, g) is KKT-pseudoinvex. Let x be a feasible point for (CVOP),

(u, λ, µ) a feasible point for (MWDP), such that f(x) ≤ f(u). In other case the result

would be proved. Then, there exist λ ∈ Rp, µ ∈ Rm and Q ∈ TuM non identically zero

such that

λTdfu(Q) + µTdgu(Q) = 0 for some x, η with Q = η(x, u) 6= 0,

µjgj(u) = 0, j = 1, . . . ,m,

µ = 0, λ ≥ 0,

i.e.,

λTdfu(Q) + µTI dgI(u)(Q) = 0

with (λ, µI) ≥ 0, λ 6= 0, I = I(u) = {j = 1, . . . ,m : gj(u) = 0}. In consequence,

(4.1) λTdfu(η(x, u)) + µTI dgI(u)(η(x, u)) = 0.

Since f(x) ≤ f(u), from KKT-pseudoinvexity of (f, g) it follows that for all feasible points

x, u

dfu(η(x, u)) < 0, dgI(u)(η(x, u)) 5 0, I = I(x)

and multiplying by (λ, µI) we have

λTdfu(η(x, u)) + µTI dgI(u)(η(x, u)) < 0, ∀x, u

which stands in contradiction to (4.1), and therefore, f(x) ≤ f(u) is not verified.

For converse duality we prove that
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Theorem 4.2 (Converse Duality). Let (f, g) be KKT-pseudoinvex, and x a feasible point

for (CVOP). If (x, λ, µ) is a feasible point for (MWDP) then x is an efficient solution for

(CVOP).

Proof. Let us suppose that x is a feasible point for (CVOP). If (x, λ, µ) is a feasible point

for (MWDP), then

λTdfx(Q) + µTdgx(Q) = 0 for some x, η with Q = η(x, x) 6= 0,

µjgj(x) = 0, j = 1, . . . ,m,

µ = 0, λ ≥ 0

hold and therefore x is a (VCP) with respect to the same η. Since (f, g) is KKT-

pseudoinvex, from Theorem 3.7 it follows that x is an efficient solution for (CVOP).

5. Conclusions

This paper shows for the first time that invex functions can be characterized in the Rie-

mannian manifolds context for both the scalar and vector case. We have obtained new

necessary and sufficient optimality conditions that characterize these functions. We have

proven that the results obtained by Osuna-Gómez et al. [24,25] or Craven and Glover [10]

for Euclidean spaces can be understood as particular cases of the results obtained in this

paper. As future work, it would be interesting to study the possibility of extending these

methods to the generation of algorithms to obtain optimal points in Riemannian manifolds

or in eigenvector computation as it has been shown in [21]. Moreover, these results could

also be extended to other fields such as physics, regarding problems in quantum mechan-

ics [11]. Besides, another discipline that could potentially benefit from these findings is

economics as shown in Nash-type equilibria problems [17].
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Departamento de Economı́a, Métodos Cuantitativos e Historia Económica, Universidad
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